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Abstract
Cognitive radio network (CRN), that employs dynamic spectrum access (DSA) to

opportunistically coexist with a primary user network, is expected to support a large number of

connected devices for a variety of wireless related applications. In this regard, DSA, where the

unlicensed users, or secondary users (SUs), can opportunistically access an underutilized spectrum

of the licensed users, or primary users (PUs), is the de facto solution for the realization of dynamic

spectrum sharing, which is envisioned to be an integral part of the future 5G communication

systems. A fundamental feature of CRN is spectrum sensing by which one can obtain the spectrum

usage status of the PU. Conventional cooperative sensing (CCS) is preferred due to its resilience

to multipath fading and hidden node problem. CCS is carried out in two consecutive phases,

namely, the sensing phase, where each CR carries out sensing, and a reporting phase, where each

CR shares its decision with a fusion center (FC) which makes a global decision. Thus, CCS

consumes a significant amount of energy, which is a challenge for successful deployment of SU

network. Moreover, the necessity to periodically sense and an increase in the number of channels

to be sensed, further increases the energy demand. Hence, one of the main factor that limits

the implementation of cognitive radio network especially in battery powered terminal is due to its

high energy consumption. Towards this end, energy efficient cooperative spectrum sensing in a CR

network is the focus of this research. Energy efficiency in a CR network can be increased by either

increasing the network throughput, or decreasing the total energy consumption. A significant

improvement in energy efficiency can be achieved by (a) ensuring proper cooperation among the

nodes, (b) optimally assigning a subset of nodes for spectrum sensing for a given PU channel,

and (c) by employing techniques like compressed sensing to reduce the communication overhead

between the sensors and FC.

In this thesis, energy-efficient schemes for CCS are proposed under the above mentioned scenarios.

The proposed work includes energy efficiency analysis due to a reduction in sensor reporting

overhead, sensor-to-channel assignment in energy harvesting-based heterogeneous cognitive

radio network (HCRN), and the energy efficiency analysis of the compressed sensing-based

collaborative sensing scheme. To begin with, the energy efficiency of superior selective reporting

(SSR)-based schemes for CCS in cognitive radio networks is studied. The maximization of

energy efficiency (EE) for the SSR scheme is proposed as a multiple variable-based, non-convex

optimization problem and approximations to reduce it to a quasi-convex optimization problem is

provided. The errors due to these approximations are shown to be negligible. The SSR scheme

is designed to optimize the energy consumption, which enhances the EE. Alternatively, EE can

also be improved by increasing the achievable throughput. Towards this end, a novel variation on

the SSR scheme called the opportunistic SSR (OSSR) scheme, was proposed and its EE analysis
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is carried out. The tradeoff between the performances of the SSR and OSSR schemes is shown

to be the implicit tradeoff between achievable throughput and energy consumption. The regimes

where OSSR is preferred over SSR and vice-versa, in terms of EE are discussed. Also, through an

extensive numerical study, it was shown that both SSR and OSSR schemes outperform the CCS

schemes that employ the OR and AND fusion rules, in terms of EE.

The performance of SSR scheme is also analyzed in a multi-channel heterogeneous cognitive

radio wireless sensor network (HCRWSN) which employs energy harvesting nodes for spectrum

sensing. Initially, the average achievable network throughput of the optimal CCS scheme which

employs the L-out-of-M fusion rule and the SSR scheme is analyzed. Next, for both CCS and

SSR schemes, a nonlinear integer programming problem is formulated to find throughput-optimal

set of spectrum sensors scheduled to sense a particular channel, with a given PU interference and

energy harvesting constraints. The problem is solved by using the cross entropy (CE) method,

and the advantages of the CE algorithm in comparison to the exhaustive search, and the greedy

algorithm is discussed. Finally, the tradeoff between the average achievable throughput of SSR and

CCS schemes is analyzed to highlight the regime where the SSR scheme is better than the optimal

CCS scheme. It is shown that this inherent tradeoff is between the channel available time and the

detection accuracy. Numerical results show that as the number of spectrum sensors increases, the

channel available time gets a larger priority in an HCRWSN, as opposed to detection accuracy.

Finally, a study on the compression limit, and trade-off between the achievable throughput and

energy consumption of CR network employing compressed conventional collaborative sensing

(CCCS) scheme is carried out. The expressions for the achievable throughput, energy consumption

and EE of CCCS scheme is derived and a multiple variable, non-convex optimization problem is

formulated to find out the optimum compression level that maximizes energy efficiency, subject

to interference constraints on the primary network. Approximations to reduce it to a convex

optimization problem are provided and it is shown that the errors due to these approximations

are negligible. It is shown that the EE achieved due to the CCCS scheme is higher than that

of the CCS scheme under the same predefined conditions, and the increase in the EE is due to

the considerable decrease in the energy consumption, which is especially significant with higher

number of sensors.

In all the above mentioned scenarios, a detailed performance study, comparing the energy

efficiency of the proposed techniques, is presented, and their relative advantages are discussed.

Most importantly, it is interesting to note that each study resulted in a performance trade-off,

which are also discussed in detail.
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Chapter 1

Introduction

1.1 Introduction

The ever-increasing data traffic in radio communication systems, calls for new methods of handling

and managing the existing radio spectrum resources. This demand, along with a shortage of

existing spectrum resource, has inspired researchers to come up with the idea of cognitive radio

(CR), introduced in fundamental works by J. Mitola III [2]–[3]. The works of J. Mitola III,

have also stimulated investigation in the field of efficient spectrum sharing and dynamic spectrum

access, which are considered an integral part of future 5G communication systems [4]. The CR

technology employs dynamic spectrum access (DSA) to opportunistically coexist with licensed

users, also referred to as primary users (PU). CR aims to determine the availability of considered

frequency band with atmost probability. This may essentially be achieved based on the knowledge

about scheduled primary activities, known as database, or based on the real-time measurement

of the PU’s activity, known as spectrum sensing. The latter solution was initially considered as

the main aspects for future CR systems, but due to long-standing open research issues in the

implementation of reliable sensing methods, the interest in databases grew significantly [5], [6].

However, investigation on spectrum sensing is still highly encouraged, as sensing can complement

and extend the information provided by databases.

1



Chapter 1. Introduction 2

1.2 Spectrum Sensing

The objective of spectrum sensing (SS) is to detect the existence of a PU by a cognitive entity or

secondary user (SU) in any particular band of frequency. Energy detector, matched filter detector,

feature detection technique and wavelet technique are various spectrum sensing techniques which

have been proposed in this context, as described in [7], [8],[9].

The spectrum sensing decision Di made by the secondary user to detect the primary user signal si

can be represented as:

Di =

H0 if Yi = ni

H1 if Yi = hisi + ni,

i = 1, 2, ...Z (1.1)

where Z is the number of observations used for detection, H0 is the hypothesis that the spectrum

is vacant, and H1 is the hypothesis that the spectrum is occupied. A test-statistic represented by

T(·) is calculated based on the recorded observations. If the test statistic is greater than a chosen

threshold, denoted by δ, then hypothesis H1 is declared true. Otherwise, H0 is declared true.

Mathematically, the detector is represented as

T (Y1, ...YZ)
H1

≷
H0

δ (1.2)

Most popular local sensing techniques such as, energy detector [10], cyclostationarity- based

detector [11], matched filter- based detector [12] and Bayesian detector [13],[14] have been

proposed and studied extensively. The energy detector senses the state of the PU by calibrating

the power of obtained signal [15]. Cyclostationarity-based detection exploits the cyclostationarity

features of the primary signals; however, it does not make full use of the characteristics of the

modulated signals [11]. The matched filter-based detector correlates the received signal with a

copy of the transmitted signal. Although it is computationally simple, it assumes knowledge of

the primary user signal, which may not be feasible in general [12]. In Bayesian detector (BD),

the effect of the prior probabilities are taken into account and the detection threshold is chosen

to minimize a convex combination of the false-alarm and signal detection probabilities [14].

However, prior investigations have proved that the sensing is not accurate enough when carried
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Figure 1.1. Steps involved in Cooperative Spectrum Sensing

out locally by a single device [16, 17], and hence, cooperative sensing is preferred for spectrum

sensing for its resilience to multipath fading [18, 19]. Hence, it is agreed that applying cooperation

between the nodes is one of the ways to improve the consistency of spectrum sensing.

1.3 Cooperative Spectrum Sensing

In cooperative spectrum sensing (CSS), each node in the network reports its local sensing result

to a fusion center, which makes an overall decision about the availability of the primary spectrum.

Thus, cooperative SS is carried out in four consecutive phases, as illustrated in Figure 1.1.

i. Local spectrum sensing by single node

ii. Local spectrum sensing decision reporting

iii. Decision fusion

iv. Global decision reporting

Each of these phases will be discussed in detail in the subsequent sections.
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1.3.1 Local Spectrum Sensing by Single Node

The main objective of local SS is to sense the presence or absence of a PU signal by SU. The

quality of sensing is characterized by

i. Probability of detection Pd - The probability that SU correctly declares the presence of PU,

given the true hypothesis to beH1

ii. Probability of missed-detection Pmd - The probability that SU incorrectly declares the absence

of PU, given the true hypothesis to beH1.

iii. Probability of false alarm Pf - The probability that SU incorrectly declares the presence of

PU when the PU is inactive.

Maximizing the detection probability and minimizing the false alarm probability will improve the

detection reliability. However, optimization of these two metrics are contradictory goals [20],

i.e., lowering the requirement for detection threshold leads to increase in detection probability

and consequently to an increase in false alarm probability. Similarly, increasing the detection

threshold reduces both detection and false alarm probability. Thus, it is important to sustain a

tradeoff that maintains low false alarm rate and high detection rate for every sensing scheme. To

attain this tradeoff, Bayesian test and Neyman-Pearson test are the most popular approaches used.

In Neyman-Pearson (NP) formulation, the goal is to maximize the probability detection, subjected

to a constraint on the probability of false alarm. Alternatively, in Bayesian approach, the effect of

the prior probabilities are taken into account and the detection threshold is chosen to minimize a

convex combination of the false-alarm and signal detection probabilities.

Once all the sensors/nodes procures individual sensing decisions with a given detection accuracy

measured by Pd and Pf , the next stage is to share this sensing result with other nodes or fusion

center to generate global, improved-quality decision.
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(a) (d)(c)(b)

Figure 1.2. Classification of cooperative spectrum sensing (a) centralized, (b) distributed, (c)
cluster-based, (d) relay-based

1.3.2 Sensing Decision Reporting

Local decision on the availability of vacant spectrum in a given band, made by the individual node,

can be shared to the fusion center or neighboring nodes through a lossless channel. This method of

decision reporting, known as hard-decision combining, is very brief and easy-to-decode and hence

decision fusion and global decision can be easily achieved, whereas in soft-decision reporting

scheme, sensing information with an assumed level of accuracy is encoded and reported. Thus,

soft decision reporting increases global detection quality. However, due to the large data overhead,

computational complexity increases in soft-metric reporting. In an energy-efficient perspective,

the size of the sensing report should be limited, and practically, it can be achieved by adopting

compressed sensing (CS) - reducing the sampling rate at the sub-Nyquist rate [21], which further

reduces the sensing time duration and greatly favors energy saving. For this reason, the CS is

proposed as an efficient approach for improving the energy efficiency in cognitive radio network.

The preparation of local sensing decision in the form of decision reports is followed by the process

of sharing the local observation with the selected nodes or the fusion center. There are several

methods by which these local observations can be conveyed to other nodes which rely on: a)

the location of fusion center (FC), b) the sensing channel quality and c) the reporting channel

availability [22]. The classification of cooperative spectrum sensing is presented in the following

subsection.

1.3.2.1 Classification of cooperative sensing

Cooperative spectrum sensing can be classified based on how local sensing nodes share the sensing

reports within the network as follows:
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• Centralized Cooperative Sensing

• Distributed Cooperative Sensing

• Cluster-based Cooperative Sensing

• Relay-based Cooperative Sensing

In centralized cooperative sensing, the fusion center (FC) generates a global decision based on

sensing decisions collected from the nodes and broadcasts the global decision back to nodes. In

Figure.1.2, a such a centralized topology is presented. Unlike centralized cooperative sensing,

distributed cooperative sensing does not rely on an FC for making the cooperative decision [20].

In this case, sensing nodes communicate among themselves and converge to a unified decision

on the presence or absence of PUs. Figure.1.2b illustrates the cooperation in the distributed

manner. When the distance between the nodes are larger, the reporting channel distance will also

be larger and in such a scenario, a cluster-based scheme is adopted. In the cluster-based approach,

a closed group, which is known as a cluster, is formed by geographically neighboring nodes.

Each cluster selects a cluster head, [20]. All nodes in a cluster report their local decisions to the

cluster head, which forwards, the decisions collected to the FC. This is illustrated in Figure.1.2c.

The cluster-based scheme introduces additional overhead in sharing the sensing information for

organizing cluster nodes and for cluster heads selection. If a node has poor reporting channel

quality, relaying is employed in which sensing information by the individual nodes is transmitted

based on the channel condition of individual nodes. In such cooperation, the sensing messages

are relayed by another node to the FC or a selected node. This is illustrated in Figure.1.2d. The

method of relaying introduces additional delay in the network where the information is relayed by

a number of secondary nodes [20].

1.3.3 Decision Fusion

After the local sensing results are collected, the fusion center or selected sink node should perform

decision fusion using various fusion rules [23],[24–26] to get the global decision [27]. Various

fusion rules such as L-out-of-M-rule, AND rule, OR rule, Majority rule are possible, and their

global decisions are based on local sensing information from secondary nodes [20].
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1.3.4 Global Decision Reporting

The final phase of cooperative sensing is to share the global decision on the spectrum vacancy. In

the centralized topology, the FC shares the global decision by broadcasting its decision to all other

cooperative nodes. However, in a distributed topology, nodes acquire their neighbors’ sensing

result during the local decision reporting stage. In the cluster-based approach, the cluster heads

are responsible to report the global decisions back to the nodes within a cluster.

1.4 Performance Evaluation Metrics of CSS Scheme

The overall performance of CSS is based on the detection accuracy, which is a combination of

the detection and false-alarm probabilities [28]. A comprehensive metric which includes both

detection and false alarm probability is the error probability Pe and is expressed as follows:

Pe = P (H0)Pf + P (H1)(1− Pd) = P (H0)Pf + P (H1)Pmd (1.3)

Low values of Pe indicate high detection accuracy which favors other aspects of the network

performance. Yet another important evaluation metrics for the CRN performance are the

achievable throughput and total energy consumption. The average achievable throughput (R)

is defined as the average achievable data rate by the scheduled secondary nodes, while the energy

consumption (E) is defined as the average energy consumed during local sensing, results reporting

and data transmission by the secondary nodes [28]. Notice that detection accuracy affects both

the throughput and energy consumption. However, there exists a trade-off between the achievable

throughput and energy consumption, since increase in average achievable throughput may increase

energy consumption and vice versa. Thus, energy efficiency is a general metric that combines

both of them. Energy efficiency (EE) is defined as the ratio between the achievable throughput

to the total energy consumption, and measured in Bits/Hz/Joule [28]. Mathematically, EE is

expressed as follows:

Energy Efficiency (EE) =
Throughput (R)

Energy consumed (E)
Bits/Hz/J (1.4)
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Note that the EE metric represents the overall performance of a CR system, by jointly taking into

account the achievable network throughput in terms of the detection accuracy, and the overall

energy consumption. Apparently, EE represents a fair indicator of the whole performance of

cognitive radio network.

In a network where cognition capabilities are involved to access the licensed spectrum, an essential

criterion is to guarantee PU protection against interference generated by the CR system. As

primary users can use its spectrum at any moment, sensing should be a continuous process

which results in an increased energy consumption and a larger delay in making a decision on

the availability of the spectrum due to the sensing overhead. This makes energy efficiency an

important issue to be addressed in practical implementation of cooperative spectrum sensing

[29–31] in CR networks.

1.5 Energy Efficient Cooperative Spectrum Sensing

This section provides an outline of the energy efficiency aspects of cooperative sensing in terms of

tradeoff impact and the classification of energy saving techniques in cooperative sensing in CRN.

In an energy saving context, the following tradeoffs are identified in each phase of CSS.

1.5.1 Tradeoff in Single-Node Sensing

Sensing time 

Detection accuracy

Data transmission time

Data Throughput

Figure 1.3. Sensing time- data transmission time tradeoff

One of the key tradeoffs in spectrum sensing is to regulate the sensing duration and the data

transmission duration [20]. The first one influences sensing reliability, thereby increasing the PU

protection, and the second increases the SU spectral efficiency, which is illustrated in Figure 1.3.
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Thus, both influence the energy efficiency of a CR system [20]. Therefore, the sensing duration

has to be carefully maintained in order to achieve a given level of sensing reliability [20].

1.5.2 Tradeoff in Sensing Decision Reporting

In the context of energy saving, it is easy to indicate the trade-off between the accuracy and

granularity of sensing decision transmitted and the energy and time needed for this action. The

higher the granularity of the transferred sensing decision, the higher the generated traffic in the

network and energy consumption in that particular phase, but at the same time, the more detailed

and accurate the message delivered to the fusion centre.

1.5.3 Tradeoff in Sink Node Selection

Energy consumed during sink node selection mainly depends on the number of links between the

nodes involved in exchanging of information [20]. However, this tradeoff is highly influenced by

the topology selection which was mentioned in the previous section.

1.5.4 Tradeoff in the Decision Fusion

A tradeoff exists between the detection accuracy in decision made by a fusion center and the EE.

If the detection probability is low, the number of collisions with a PU increases, which increases

the re-transmissions for both the PU and the SU. This leads to a lower energy efficiency. However,

this tradeoff can be handled to an extent by assuming the level of uncertainty to a constant. Even

in this scenario, the tradeoff will depend highly on the topology [20].

1.5.5 Tradeoff in the Global Decision Reporting

This phase of cooperative sensing requires the delivery of the global decision to all nodes.

However, the tradeoffs between detection accuracy and energy efficiency still occur when the
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Figure 1.4. Classification of energy efficient cooperative spectrum sensing

global decisions are transmitted to all nodes or the cluster heads receive the decision and further

transmit the decision report to individual nodes within the cluster.

The identification of the prevailing tradeoffs in each phase of cooperative sensing shows that there

exist a variety of methods by which optimization of the energy efficiency in CSS networks is

possible. Based on the aforementioned EE analysis of CSS, the classification of energy efficiency

of CSS techniques are discussed in detail in the following section.

1.6 Classification of Energy Efficient CSS

Based on the possible energy savings, following are the classification of energy efficient

cooperative spectrum sensing technique, as shown in Figure 1.4:

• Energy Efficient Local Sensing Phase :

Reduction in sensing time or number of collected samples are the ways to attain energy

efficiency in local spectrum sensing. As the number of acquired samples is reduced,
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the energy consumption reduces. However, this reduction in energy consumption is only

possible with reduction in performance. Energy efficiency can be further improved by

optimization of the detection threshold which is used for the differentiation of decision

variable to decide on the binary hypothesis of presence and absence of the primary user

in a given spectrum.

Another promising technology for improving energy efficiency in local spectrum sensing

phase is energy harvesting (EH). It allows wireless devices to capture and store ambient

energy such as solar, wind and ambient radio power to generate power [32]. Thus,

deployment of energy harvesting aided spectrum sensors takes care of the energy efficiency

in an energy- constrained CR network.

• Fusion and Decision Rules Selection : Energy savings in decision fusion phase is possible

if an efficient fusion of local sensing decisions is considered at the fusion center. Further

improvement in EE can be attained by adapting the decision fusion threshold on the basis of

wireless channel condition [20].

• Optimization of Number of Cooperative Nodes : Energy efficiency in CSS can be

improved by reducing the sensing overhead which can be achieved either by selective

sensing [33] or selective decision reporting [34]. Thus, it is advantageous to avoid the nodes

that offer only a relatively small value addition to the network energy efficiency metrics at a

higher energy cost.

• Optimal Sensor Scheduling : In a multi-channel system, the benefits of assigning users to

sense channels in parallel must also be considered to improve the energy efficiency of the

network. A sensing schedule, for each user to sense the assigned channel at different sensing

moments, must be thus created to optimize system performance.

• Energy Efficient Network Organization : The EE can also be improved by efficient

network organization. The energy devoted to interchange decision information in CSS

should be considered more carefully. Thus, by choosing network topology based on the

scenario, energy efficiency can be improved to a greater extent.
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1.7 Challenges in Energy Efficient Cooperative Spectrum

Sensing

The open challenges regarding energy efficient cooperative sensing scheme is to maintain detection

accuracy and efficient resource utilization to satisfy the requirements of the sustainable green

cognitive radio network. Towards this end, a few of the open challenges includes the following:

1.7.1 Effect of Cooperation Overhead

Most of the existing cooperative sensing schemes focus on attaining detection performance

accuracy, where all the SUs reports their sensing results to FC or to the respective nodes

which results in considerable amount of energy consumption. Hence, reduction of overhead

in cooperation detection has received considerable research attention. Only a few cooperation

overhead issues have been discussed in the existing literature. For example, in [35], only the

number of cooperative CR users and the sensing time-throughput tradeoff are considered in

forming utility functions. While cooperative gain is important in the sensing scheme, proper

modeling of cooperation overhead can reveal achievable cooperative gain and energy saving. In

[34], only the sensor with the highest received SINR reports its decision to the center SU. This

scheme is called as superior selective reporting (SSR) scheme. However, the study in [34] was

restricted to the detection performance of SSR scheme, under the NP framework. The detection

performance of SSR scheme under Bayesian framework is given in Appendix D [36].

Another interesting aspect related to energy efficient CSS is achieved by optimization of sensing

time and/or number of sensing nodes that maximizes the energy efficiency. But energy efficiency

analysis in SSR scheme is more challenging as both overhead reduction and optimization of

parameters such as sensing time and number of nodes are to be considered while analyzing the

energy efficiency of cooperative sensing scheme.
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1.7.2 Effect of Multichannel Sensing

Apart from conventional CRN, another network where spectrum sensing is challenging is

heterogeneous cognitive radio wireless sensor network (HCRWSNs) where multiple sensors are

assigned to sense more than one channel. Hence, frequent scanning is required to obtain higher

detection accuracy to protect the PU from the interference caused by SU [37]. However, in

energy-constrained networks which are traditionally powered by batteries, frequent spectrum

sensing will increase the energy consumption. Consequently, energy conservation becomes a

critical design issue for HCRWSNs. Several attempts are made to reduce energy consumption by

incorporating energy-harvesting based spectrum sensors. But the disadvantage is that a reduction

in channel available time occurs due to the need to report all the associated local decisions to the

fusion center (FC), which decreases the channel available time as the number of SUs increases.

This leads to another open challenge on how to further reduce the sensing overhead and to improve

the channel available time for data transmission.

1.7.3 Effect of compressed sensing in a cooperative scenario

Compressed sensing is a promising wideband, energy efficient sensing technique and is an efficient

approach for energy saving in CRN scenario. However, due to the sub-Nyquist-rate sampling and

insufficient number of samples, a weak PU signal with a nearby strong signal may not be properly

reconstructed for detection by the SU in a wideband spectrum. Thus, it is a challenge to achieve

the detection sensitivity by compressed sensing in a wide-band spectrum. Most of the existing

literature aims at the signal reconstruction performance [38], or sensing performance [21, 39], but

has not considered energy efficiency.

The main goal of this thesis is to analyze energy efficiency of various cooperative spectrum

sensing methods based on overhead reduction, multichannel and multiuser sensing and reduction

in number of sensing samples. The main contribution of this thesis is discussed in the next section.
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1.8 Contribution of the Thesis

As highlighted in Figure.1.5, based on achievable throughput, energy consumed and energy

efficiency, the performances of superior selective reporting scheme (SSR), opportunistic SSR

scheme, heterogeneous CR network (HCRN) and collaborative compressed sensing scheme

(CCCS) for cooperative spectrum sensing in CR network are analytically evaluated and specific

contributions in each of these analysis are listed below.

1. The energy efficiency of the SSR scheme is studied in terms of the detection threshold, the

sensing time allocation factors denoted by β and η, and the required number of SUs for

cooperation. The maximization of EE of SSR is posed as a multiple variable, non-convex

optimization problem, and approximations to reduce this to a quasi-convex optimization are

discussed. The accuracy of the approximation is studied. The optimal detection threshold,

time allocation factors and the number of cooperative SUs are derived. Through numerical

results, it is shown that the SSR scheme outperforms the conventional cooperative sensing

(CCS) schemes employing the OR and AND-fusion rules.
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2. Extending the analysis of selective reporting-based sensing scheme, a novel variation on

the SSR scheme, namely the OSSR scheme, is proposed and analyzed following a method

similar to that of SSR scheme. The tradeoff in energy efficiency performances of SSR and

OSSR schemes are referred to the tradeoff between energy consumption and the achievable

throughput of both the schemes. Through numerical results, it is shown that the SSR and

OSSR schemes outperform the conventional cooperative sensing (CCS) schemes employing

the popular OR and AND-fusion rules. In particular, it is highlighted that SSR outperforms

all the other schemes in several scenarios. In other words, it is shown that minimizing the

energy consumption takes a priority over maximizing the achievable throughput in a CRN,

in several scenarios.

3. The average achievable throughput of an SSR-based, multi-channel HCRWSN is analyzed

in terms of channel available time and detection accuracy. The problem of finding an optimal

set of spectrum sensors scheduled for spectrum sensing for each channel such that the

average network throughput is maximized is formulated and solved by employing the cross

entropy (CE) algorithm. The advantages of the CE algorithm in contrast to the exhaustive

search algorithm and a greedy algorithm are established. Through numerical results, it is

shown that as the number of sensors increases, the SSR-based scheme outperforms the

optimal CCS scheme in terms of average achievable throughput. A tradeoff between the

average achievable throughput of SSR and CCS schemes is studied, which is the inherent

tradeoff between the channel available time and detection accuracy. It was shown that as the

number of spectrum sensors increases, the channel available time gets a larger priority in a

HCRWSN than the detection accuracy.

4. The energy efficiency analysis of the compressed conventional collaborative sensing

(CCCS) scheme for cognitive radio networks is considered, and a study on the compression

limit and trade-off between the achievable throughput and energy consumption of the

network is carried out. First, the expressions for the achievable throughput, energy

consumption and energy efficiency of CCCS scheme are derived. Later, a multi-variable,

non-convex optimization problem is formulated to find out the optimum compression

level that maximizes energy efficiency, subject to interference constraints on the primary

network. Approximation to reduce it to convex optimization problem is provided, and it is

highlighted that the error due to these approximations are negligible. It is shown that the
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energy efficiency achieved due to the CCCS scheme is higher than that of the conventional

collaborative sensing scheme under the same predefined conditions. It was shown that the

increase in the energy efficiency is due to the considerable decrease in energy consumption,

which is especially significant with higher number of sensors.

1.9 Organization of the Thesis

The thesis is organized as follows:

• Chapter 1: This chapter explains the basics of cooperative spectrum sensing in cognitive

radio network, steps involved in CSS and their classification. In addition, the energy efficient

aspects of CSS in terms of tradeoff impact and the classification of energy-saving techniques

in CSS are discussed in detail. Contribution of the thesis are highlighted in the end.

• Chapter 2: As an overview of methods adopted in the past to improve the energy efficiency

of various CSS scheme, detailed literature review is presented in this chapter.

• Chapter 3: In this chapter, the EE of the SSR spectrum sensing scheme is studied, in

terms of the detection threshold, the sensing time allocation factors and the required number

of SUs for cooperation. The optimal detection threshold, time allocation factors and the

number of cooperative SUs are derived. With a detailed numerical analysis, the performance

of the SSR scheme and the conventional cooperative sensing (CCS) schemes employing the

OR and AND-fusion rules are investigated.

• Chapter 4: Extending the analysis of selective reporting-based sensing scheme, in this

chapter, a novel variation on the SSR scheme, namely the OSSR scheme, is proposed

and analyzed following a method similar to that of SSR scheme. The tradeoff in energy

efficiency performances of SSR and OSSR schemes are referred to the tradeoff between

energy consumption and the achievable throughput of both the schemes. The performance of

the SSR and OSSR schemes are compared with the conventional cooperative sensing (CCS)

schemes employing the popular OR and AND-fusion rules. The advantages of the SSR and

OSSR schemes are highlighted, and the performance benefits relative to conventional CSS

scheme are illustrated through numerical analysis.
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• Chapter 5: In this chapter, the average achievable throughput of an SSR-based,

multi-channel HCRWSN is analyzed in terms of channel available time and detection

accuracy. The problem of finding an optimal set of spectrum sensors scheduled for

spectrum sensing for each channel such that the average network throughput is maximized,

formulated and solved by employing the cross entropy (CE) algorithm. The advantages

of the CE algorithm in contrast to the exhaustive search algorithm and greedy algorithm

are established. The advantages of the SSR scheme in comparison with the optimal CCS

scheme are highlighted, and the performance benefits relative to CCS scheme are illustrated

through numerical analysis. A tradeoff between the average achievable throughput of SSR

and CCS schemes is studied, which is the inherent tradeoff between the channel available

time and detection accuracy.

• Chapter 6: In this chapter, the energy efficiency of the compressed conventional

collaborative (CCCS) spectrum sensing scheme is studied in terms of the required number

of sensors involved in collaboration and the compression ratio that satisfies a given primary

user detection constraints. The tradeoff between reducing the number of samples in

a compressive sensing-based measurement scheme and achievable energy efficiency of

CCCS considering different signal models such as deterministic and random signal are

studied. Energy efficiency improvement in CCCS scheme, when compared to uncompressed

collaborative sensing scheme, are illustrated and the advantages of CCCS scheme, are

highlighted through numerical analysis.

• Chapter 7: The outcomes of research work carried out are summarized in this chapter.

Also, further improvements that can be done in this research area are listed.



Chapter 2

Literature Survey

2.1 Introduction

Spectrum efficiency and energy efficiency are two critical issues in wireless communication

networks. Cognitive radio has received much research attention recently, as a promising

paradigm to improve the spectrum usage efficiency [40]. Energy efficiency design is particularly

important for a CR scenario, because it not only involves the greenhouse problem and operational

expenditure, but it is also prerequisite to achieve high utilization of the limited transmission

power consumed to support additional signal processing requirements for the CR system, such

as spectrum sensing and decision reporting overhead [40]. Thus, EE has received a lot of research

interest. Another important reason for considering EE as a performance metric is due to the

fact that it represents the overall performance of a CR network, as it is capable of jointly taking

into account the detection accuracy, the average throughput and the overall energy consumption.

The combination of these factors in a single metric has made the EE as a significant metric for

analyzing the quality of CR network. Moreover, optimizing the EE in CR networks not only

reduces the environmental impact, but also cuts deployment costs to enable economical green

wireless networks [40]. This chapter provides an overview of available research activities that

are aimed at improving the detection accuracy, spectral efficiency or throughput, reducing energy

consumption and improving the EE of cooperative spectrum sensing applied to CR networks.

18
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2.2 Literature Review

The efforts made in the past to improve the performance of spectrum sensing techniques in

cognitive radio in terms of detection accuracy, spectral efficiency and energy efficiency using

different techniques can be grouped according to several scenarios. The classifications based on

four main directions on attaining energy efficiency are listed in Table 2.1. General observations

for each classification are discussed in detail in the following subsections.

2.2.1 Energy Efficient Local Spectrum Sensing Phase

Focusing on achieving EE in local spectrum sensing, an immediate and natural way of achieving

energy saving is by reducing the sensing duration or employing compressed sensing irrespective of

the adopted sensing method. Thus, sensing time is a critical parameter for sustaining the spectrum

sensing performance. Varying the sensing time gives rise to a tradeoff between the detection

accuracy and spectral efficiency. To balance the energy inefficiency of continuous spectrum

sensing and the unreliability issue of periodic spectrum sensing, Gan et al. [41] optimized the

sampling rate and sensing time to minimize the total sensing power across multiple channels, while

maintaining the sensing reliability constraints. In [42], the authors considered spectrum sensing

scheme where the SU adaptively performs spectrum sensing for either one or two periods based

on the first sensing result. Specifically, this allows the SU to perform the spectrum sensing again

to confirm that the PU is indeed idle when the first sensing result indicates the PU is idle, which

leads to a better protection for the PU. In addition, based on the different activity level of the PU,

the sensing interval can be adjusted to further improve the energy efficiency. A similar scenario

was also examined in [43] where the optimization problem was formulated to optimize the sensing

period using recently introduced optimization technique, namely Jaya algorithm, to maximize the

discovery of spectrum opportunities while maintaining the sensing overhead and interference time

within user defined value. Different from [43], the authors in [44] have investigated a cluster-based

collaborative spectrum sensing scheme to maximize energy efficiency by considering optimized

parameters such as the number of clusters, local detection threshold and time fraction under

collision constraint and false alarm probability constraint. It was shown that there exists a unique

time fraction to maximize the energy efficiency when meeting performance constraints.
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Table 2.1. Energy efficient approaches in cooperative spectrum sensing

A. Energy efficient local spectrum sensing phase
Features Advantages Disadvantages References

Sensing time
optimization

• Reduction in energy consumption
• Decreased detection

performance [41]-[44]

Detection
threshold
optimization

• Processing load reduction
in each sensing node

• Optimization of sensing time

• Incorrect threshold
selection may affect
sensing reliability

[45]- [49]

Reduced number
of samples

• Processing load reduction
• Reduced data to send and process
• Shorter sensing time

• Less reliable sensing
• Good for non-sparse

signal
[50]-[55]

Energy
harvesting nodes

• Do not require battery backup.
• Better energy utilization

• If energy harvesting
is based on solar power,
it is unpredictable
source of energy.

[56]-[57]

B. Energy efficiency by overhead reduction
Features Advantages Disadvantages References

Sensing node
selection

• Reduction in the number of
sensing nodes

• No energy consumption
by inactive nodes

• Quality of the reported
message can be improved
by proper selection of
the reporting node

• Detection accuracy
degradation

• Additional data
acquisition is required
for proper selection
of reporting nodes

[58] -[63]

Reporting node
selection

• Quality of the reported
message can be improved
by proper selection of
the reporting node

• Additional data
acquisition is required
for proper selection
of reporting nodes

[30][64]

Censoring of
reports nodes

• Censoring of faulty
or malicious nodes

• No energy consumption for
reporting by censored nodes

• Reduction in number of
reporting nodes

• Faulty censoring
process may lead to
wrong decision

• Finding the analytical
thresholds for
censoring is hard

[65],[66],
[67]

Voting scheme

• Reduced number of
control messages

• Low demand for additional
data (nodes, SNR, location)

• Malicious nodes may
affect performance [68]-[71]
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Table 2.1 (Continued)

C. Energy efficient fusion and decision rule
Features Advantages Disadvantages References

Selection of
fusion rule

• Fusion rule decides the
type and nature of reporting
information send to
the fusion center

• Fusion rule can be
selected depending on
the required QoS

• Cooperative nodes has to
be updated for every

change of the fusion rule
[72], [73]

Soft/Hard
reporting

• Depending on the
transmission rate soft or
hard decision
reporting can be chosen

• Adaptation of the traffic
related to data reporting

• Tradeoff between the
accuracy of each report
and amount of data volume
needed to deliver

[74],[75],
[76]

Selective
decision reporting

• Reduction of traffic overhead
• Negative effect on accuracy

of detection report delivered
to the fusion center

[74]

D. Energy efficient network organization
Features Advantages Disadvantages References

Multichannel
heterogeneous
network

• Multiple channels will be
available which enhances
the throughput when

compared to conventional
network

• CSS should be implemented
over several channels to
increase the number of
available channels which
increases the complexity

• Detection within a minimal
time bound over multiple
channels is a challenging
problem

[77]- [80]

Relay-based
network

• Reduction of the transmit
power of the reporting
node due to shorter distance

• Due to processing of
information from other
nodes, energy consumption in
relaying node is increased

• Data delivery to the fusion
center causes additional delay

[81]-[82]

Cluster-based
network

• Shorter transmission
link enhances energy saving

• Delay in sharing sensing
report

• Additional overhead in
cluster heads selection and
organizing nodes into
clusters

[83]- [88]

Energy efficiency may be further enhanced by compressed sensing (CS) which was recently

proposed to reduce the sampling rate below the Nyquist rate, without a significant loss in
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the performance [50]. The energy consumption in spectrum sensing, mainly caused by the

analog-to-digital converter (ADC), is proportional to the sensing time duration and the sampling

rate [51, 52]. However, at any instance of time, only a small subset of channels are occupied by

PUs, making the wideband spectrum sparser in the frequency range. Such sparsity of wideband

spectrum is taken as an advantage in compressed sensing (CS). Thus, when compared to the

conventional wideband spectrum sensing, compressed sensing reduces the sampling rate at the

sub-Nyquist rate [54, 89] which further reduces the sensing time duration and greatly favors

energy saving. For this reason, the CS-based spectrum sensing methods have been proposed

as an efficient approach for improving the energy efficiency [55] in cognitive radio network.

Despite its attractiveness as an energy efficient technique, compressed sensing suffers from a few

major drawbacks which limit its applicability in practice. A CS based sensing scheme incurs a

certain performance loss due to compression, when compared to the conventional sensing scheme

while detecting non-sparse signals. This performance degradation can be seen as a loss in the

detection performance to improve the energy efficiency. Thus, to compensate the performance

loss due to compression, the authors in [53] proposed a collaborative compressive detection (CCD)

framework in which a group of spatially distributed nodes sense the presence of PU independently

and send a compressed summary of observations to the fusion center (FC) where a global decision

is made. It was shown that through collaboration the performance loss due to compression can

be recovered. However, the study [53], did not consider energy efficiency and was restricted to

the detection performance of CCD, where it is evident that an increase in either the compression

ratio (c) (keeping number of collaborative nodes N fixed) or the N (keeping c fixed)decreases the

probability of error exponentially.

Another possibility of improving the EE is to optimize the sensing threshold. In [45–47] the

authors investigate the effects of detection threshold optimization for a fixed sensing time which

may result in contradictory goals. However, joint optimization of sensing durations and detection

thresholds of SUs is necessary for finding a spectrum hole effectively. It was shown in [48]

that the joint optimization of sensing parameters such as detection threshold and sensing time

can considerably improve system performance to detect a spectrum hole. This work was then

extended to the case for minimization of the average detection time as well as joint maximization

of the aggregate opportunistic throughput in [49]. Specifically, the joint optimization approach

can considerably improve system performance in terms of the mean time to detect a spectrum hole
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and also the aggregate opportunistic throughput of both primary and secondary users, relative to

the scenarios where only a single sensing variable is considered.

Yet another way of achieving energy efficiency in local spectrum sensing is energy harvesting by

local sensing nodes, which manages to improve both channel utilization and meet the requirement

of green communications [56],[90]- [93]. It has been shown that combining energy harvesting

(EH) techniques with CR can simultaneously improve the spectrum efficiency and energy

efficiency [94, 95]. Moreover, powering the mobile devices by harvested energy [96] from ambient

sources and/or external transmission activities makes the wireless networks to be self-sustaining

for a longer duration. More recently, the radio frequency (RF) powered CR networks [97, 98]

have been proposed and studied for CR, where a CR transmitter harvests energy when the primary

user is present, and utilizes it for the data transmission when the spectrum is vacant. This protocol

is known as the harvest-then-transmit (HTT) mode [99, 100]. A major disadvantage with this

functionality is the drastic reduction in secondary throughput when the harvested energy is low

and/or when the data transmission time is less. To overcome this drawback, the concept of

simultaneous wireless information and power transfer (SWIPT) was introduced [101], which has

attracted significant research attention ever since [57],[102]. In 5G communication systems, the

SWIPT technology can be of fundamental importance for energy and information transmission

across CR networks.

2.2.2 Energy Efficiency by Overhead Reduction

The strength of the cooperative solutions, which reflects in the recorded observations, lies in the

diversity offered by multiple nodes operating at different locations and in a variety of channel

conditions [20]. However, incorporating a large number of sensing devices consumes more

power, and results in only a small fraction of detection improvement. Naturally, reducing the

number of active nodes may result in a small overall probability of detection. Therefore, choosing

the right number of nodes is a way to the improve energy efficiency. This choice depends on

the node selection criterion to reduce the energy consumption with an acceptable constraint on

performance degradation. To address this issue of reducing the cooperative overhead, while

simultaneously taking advantage of cooperative sensing, the authors in [58], proposed a two-step

spectrum sensing scheme, where only one or a few selected sensors are involved in the first step,
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but the second step occurs for cooperative sensing when the outcome of the first step is uncertain

to make a decision in the presence of PUs. This enhances the probability of detection and reduces

consumed energy as well as communication overhead, within a reasonable sensing time. Sensing

overhead generally degrades the throughput performance. The prior work, to resolve this problem,

proposed algorithms either to decrease the time spent in sensing or to decrease the number of SUs

participating in sensing. In [59], the authors proposed a joint resource allocation (RA) strategy

considering the time and energy consumed for spectrum sensing to maximize the throughput while

satisfying the target detection performance. Furthermore, to reduce the additional resources used

in spectrum sensing, the right censored order statistics-based cooperative spectrum sensing scheme

is adopted, which produces the criterion for deciding the set of reporting SUs. By jointly designing

the time and energy for sensing, the proposed joint resource allocation scheme in [59] provides the

improvement of spectral efficiency. In the context of extending the life time of a network, ON/OFF

mode of each sensors can be scheduled in a cooperative manner. However, frequent ON/OFF

switching of sensor nodes will generate an adverse impact and makes the network vulnerable and

unreliable. Thus, optimizing the scheduling order to reduce the switch frequency using greedy

heuristic algorithm is proposed in [60] to obtain the minimum node switch with low computational

complexity.

However, [58–60] foresee that all SUs report their sensing results to an FC, as similar to the CCS

scheme, leading to considerable energy consumption. Hence, reduction of overhead in cooperative

detection by selective reporting has also received considerable research attention [69, 103, 104].

In [69], reporting SUs were chosen based on the best individual detection performance. The best

sensor set selection scheme was proposed as a non-cooperative game in [104]. A key feature that

these works highlight is that the energy inefficiency occurs due to the need to report all the local

decisions to the FC, which increases linearly with the number of SUs [105, 106]. Reduction in the

sensing overhead was successfully mitigated in a spectrum sensing (SS) strategy discussed in [34],

where a network of N sensors carry out SS along with a center SU, but cooperation is employed

only when the center SU decides that the spectrum is vacant. That is, only the sensor with the

highest received SNR reports its decision to the center SU. This scheme is termed as superior

selective reporting (SSR) scheme. However, the study in [34] was restricted to the detection

performance of SSR, where it was shown that the SSR achieves a larger probability of detection

compared to the case where FC employs OR fusion rule.
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A slight variation on the above mentioned work is the censoring algorithm, in which only selected

nodes are permitted to transmit their sensing report, which saves energy during the reporting stage.

Furthermore, the censoring scheme is more consistent when compared to the node selection-based

sensing scheme, because the censoring of nodes are done after performing spectrum sensing by

individual nodes.

Censoring scheme based on the double-detection threshold was proposed in [107] to reduces the

transmission overhead between CR and FC without significantly affecting the receiver operating

characteristics. The performance of the above mentioned CR network has been assessed in terms

of the average number of normalized transmitted sensing bits, the total error probability and the

optimal number of CR users that ensures minimum error probability, where it was shown that the

censoring probability saturates rapidly for an average number of nodes and is independent of the

number of CR nodes leading to low energy consumption [20]. Further investigation on censoring

was proposed in [67], under the constraints on minimum false alarm probability and maximum

detection probability, where censoring and sleeping are adopted. Moreover, a detailed analysis

in [67] on energy consumption in the network based on sleeping rates and optimum censoring

demonstrates that these values complement significant increase in energy savings.

In previous works, efficient node selection criterion is based on the estimated SNR, probability

of detection and correlation to name a few. In [62] and [63], the criterion of efficient node

selection is based on the observed SNR. User selection based on uncorrelated decisions across

SUs was employed in [103], where a dedicated error-free channel was assumed for reporting

individual sensing results. In practical scenario, it is to be noted that, proper estimation of SNR

is not always possible. Moreover, interchanging messages to find the specific SNR value may

not be energy efficient. Hence, in [68, 71] the voting scheme is proposed based on the sensing

result of own decision of the FC, and the global decisions. The voting schemes introduced

in [68], called the confidence voting, work on limiting the unreliable decision transmissions by

demanding each node to compute a confidence metric. The local and global decisions are collated

in a hard decision scenario whereas in the case of co-incidence scenario, the confidence metric

is incremented or decremented [20]. The confidence metrics are computed during the training

period and only the nodes with the highest confidence metrics are allowed to report their decisions

to the fusion center. The authors in [68] claim 40% energy saving for confidence voting algorithm.

Yet another voting scheme presented in [69] is called the collision detection scheme which is
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based on node selection with the highest correctness measure. The correctness measure signifies

the number of times a node gives correct decisions when the global false decision is that the

PU is not absent. Cooperative sensing involves the nodes with the highest correctness. The

main advantage of the voting-based scheme is that it requires limited number of control messages

which reduces the sensing overhead. Since these voting-based scheme relay on the opinion of the

majority, they have a major drawback especially in a scenario where the most of SUs face a bad

channel condition between the PU and themselves. In such scenarios, the FC votes for the decision

of unreliable nodes with a larger confidence resulting in a decision worse than the conventional

scheme. Moreover, the presence of malicious SUs can degrade the performance of voting based

schemes.

Most of the above mentioned work on overhead reduction in CSS have considered throughput

enhancement or energy consumption reduction separately. On the otherhand, it is essential

to consider EE as a comprehensive metric which is capable of jointly taking into account the

achievable throughput, the overall energy consumption and the detection accuracy. Hence,

studying the performance of a CR network based on EE is essential.

2.2.3 Energy Efficient Fusion and Decision Rule

Another approach to reduce energy consumption is to optimize the fusion rule which may decrease

the energy consumption to a greater extent. Hard and soft decision are the two types of decisions,

transfered from nodes to FC. The performance analysis and comparison of hard and soft decision

based approaches for the cooperative spectrum sensing in the presence of reporting channel errors

was carried out in [72], where the soft decision combination is proved to be more robust to channel

impairments. However, in [72], the associated complexity and transmission overhead are not

considered. The energy consumption and detection probability of fusion rules such as likelihood

ratio rule (LR), maximum ratio combining rule (MRC) and equal gain combining rule (EGC) under

parameters such as frame length for each rule, number of nodes and SNR are analyzed in [108].

The results exhibits a better performance for EGC in both energy saving and detection probability

for a short frame length, less number of nodes and low SNR. Energy efficiency maximization by

optimizing number k in the k-out-of-N fusion rule together with detection threshold is proposed in
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[73]. The obtained results presents that the joint optimization of number of users and the decision

threshold, can achieve an energy efficiency of 2 bits/Hz/Joule for various SNRs.

Soft decision combining schemes provide optimal detection performance by combining the actual

sensed information from the SUs, resulting in a high cooperation overhead in terms of time,

computational complexity, and bandwidth. Alternatively, hard decision combining schemes

offer lower cooperation overhead, but achieves sub-optimal detection performance. In order

to utilize the advantage of both soft and hard decision-based cooperative sensing, combined

hard/soft decision-based CCS scheme is presented in [74–76]. The authors in [74] proposed a

method based on the log-likelihood ratio (LLR) based cooperative spectrum sensing scheme with

hard-soft combining at the fusion centre (FC), where the SUs perform a local LLR-based detection

employing two thresholds. If the locally sensed information falls in between the two threshold

values, then the actual sensed information is reported to the FC and weighted soft combining

is performed at FC, else the local binary decisions are reported to FC and hard combining is

performed. Further, a second stage hard combining employing AND/OR rule is performed at FC

considering the previous decisions. The authors concluded that the proposed scheme gives a near

optimal performance with a slight increase in the cooperation overhead.

2.2.4 Sustainable Cognitive Wireless Sensor Networks

The limited power available with each sensor in a WSN usually results in a short life time of WSNs,

which directly affects the sustainability of network. Some solutions are proposed in the literature

to enhance the sustainability, by employing efficient data transmission in a WSN. Wang et al. [109]

proposed a time adaptive schedule algorithm (TASA) for data collection from WSN to cloud along

with a minimum cost spanning tree (MST)-based routing method to save on the transmission

cost. They showed that their proposed method considerably reduces latency and optimizes

energy consumption, which makes the sensor-cloud pair sustainable. To prolong the network

life time, a sustainable WSN has been considered in [110] from the perspective of energy-aware

communication coverage, where the two types of sensor nodes, namely, energy-rich nodes (ERN)

and energy-limited nodes (ELN) are deployed. Throughput-optimal resource allocation policy

design for sustainable energy harvesting-based WSN (EHWSN) has been widely addressed in

[111] and [90]. Xu et al. [111] investigate the utility-optimal data sensing and transmission in
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an EHWSN, with heterogeneous energy sources such as power grids and utilizing the harvested

energy. They also analyzed the tradeoff between the achieved network utility and cost due to the

energy utilized from the power grid. Zhang et al. in [90] developed an optimization framework

to guarantee sensor-sustainability in the EH-based CRN (EHCRSN), where the parameters such

as stochastic energy harvesting, energy consumption, spectrum utilization and spectrum access

processes are designed in an optimal way. An aggregate network utility optimization framework

based on a Lyapunov cost-based optimization was developed for the design of online energy

management, spectrum management and resource allocation. They also demonstrated that the

outcome of the work can be used as a guide for designing a practical EHCRN, which guarantees

PU protection and sensors sustainability at the same time. However, note that these existing

methods only offer sustainability of network and are unable to effectively ensure the balance

between overall performance, reduction in overhead and network resource utilization.

2.2.5 Sensor Scheduling

Energy-aware sensor scheduling in WSN has also attracted significant research attention. In [112],

the authors proposed a new priority-based traffic scheduling for CR communication on smart

grids, considering channel-switch and spectrum sensing errors, and a system utility optimization

problem for the considered communication system was formulated. Such a scheduling scheme

was shown to serve as a new paradigm of the future CR-based smart grid communication network.

More recently, in order to avoid large overhead and delay, smart scheduling of a collaborative

sequential sensing-based wide band detection scheme was proposed in [113] to effectively detect

PU activity in a wide band of interest. A sensor selection scheme was proposed in [69] to find

a set of sensors with the best detection performance for cooperative spectrum sensing, which

does not require a priori knowledge of the PU SNR. The throughput of the CR network is

optimized in [114], by scheduling the spectrum sensing activities based on the residual energy

of each sensor. Liu et al. in [114] proposed an ant colony-based energy-efficient sensor scheduling

algorithm to optimally schedule a set of sensors to provide the required sensing performance

and to increase the overall CR system throughput. It was demonstrated that the proposed

algorithm outperforms a greedy algorithm, and the genetic algorithm, with a lower computational

complexity. However, the sensors employed in the above system model are energy-constrained
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battery powered sensors and not sensors equipped with energy harvesting. These scheduling

strategies do not specifically consider the tradeoff between network performance and resource

spectrum utilization in a CR-based WSN. Moreover, the overhead of network resources caused

by the cooperative sensing strategies is not accounted for in the existing methods, which is a key

factor. Thus, the problem of sensor scheduling in a CR-based WSN needs to be considered in

terms of a collective network utility and efficiency performance.

2.2.6 Energy Efficient Network Organization

With vastly increasing wireless traffic demands, realization of a HWSN suffers from disadvantages

such as severe interference [115], which affects its spectral efficiency. A heuristic solution

to mitigate this problem is to integrate the cognitive radio (CR) technology [2] with HWSN

[116], collectively termed as heterogeneous cognitive radio wireless sensor networks (HCRWSN)

[117]. In an HCRWSN, the deployed sensors periodically scan a primary user spectrum to detect

the availability of vacant channels and the network assigns data transmission over them, while

guaranteeing a given PU interference level [118]. However, the periodic sensing increases the

energy consumption, which is a critical issue in battery operated sensor networks. Therefore,

an HCRWSN with energy harvesting spectrum sensors [119] has been proposed to enhance both

spectrum and energy efficiencies [77–79].

A new spectrum sensing scheme based on spatial-temporal opportunistic detection is proposed in

[120], in which a 2D cognitive wireless sensor network (CWSN) topology model is employed.

It was shown that the proposed scheme not only has a desirable property to process the

spectrum-heterogeneous problem in spatial-temporal 2D sensing environment but satisfactory

detection performance can be achieved with less energy consumption as well. By jointly

considering the constraints on sensing accuracy, efficiency and overhead, which are quantitatively

characterized by the energy consumption, multi-channel CSS strategies, are modeled in [37] to

maximize the aggregate opportunistic throughput of SUs. It was demonstrated that optimal CSS

scheme is effective in improving channel utilization for SUs with low interference to PUs.

A multiband cooperative spectrum sensing and resource allocation framework for the

internet-of-things (IoT) in cognitive 5G networks can significantly reduce energy consumption
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for spectrum sensing compared to the conventional single-band scheme. Towards this end, an

optimization problem was formulated in [121] to determine a minimum number of channels to

be sensed by each IoT node in the multiband approach to minimize the energy consumption

for spectrum sensing while satisfying probabilities of detection and false alarm requirements.

Moreover, a cross-layer reconfiguration scheme (CLRS) for dynamic resource allocation was

proposed in IoT applications with different quality-of-service (QoS) requirements including

data rate, latency, reliability, economic price, and environment cost. The proposed scheme,

i.e., CLRS, efficiently allocates resources to satisfy QoS requirements through opportunistic

spectrum access. In order to increase the detection probability in weak channel conditions,

the neighboring nodes cooperate with each other which includes relaying the sensing messages

by another node to the FC or to a selected node [81],[122, 123]. In [124], an optimization

framework for a wireless sensor network is given whereby, the optimal relay selection and power

allocation are performed subject to signal-to-noise ratio constraints. The proposed approach

determines whether a direct transmission is preferred for a given configuration of nodes, or a

relay-based cooperative transmission should be used. An energy-efficient power allocation for

orthogonal frequency division multiplexing (OFDM) based relay-aided cognitive radio networks

with imperfect spectrum sensing is considered in [82], where the authors show that the proposed

algorithms can obtain a good tradeoff between energy and capacity of the network. In [123],

energy-efficient cooperative spectrum sensing with relay switching over Rayleigh fading channels

is proposed and analyzed. By not activating all the available relays at all time, power and

transmission resources of the relays are saved. In the first scheme, when relaying is activated,

a switch-and-test (SWT) policy based on the energy received from the relaying path is used. To

enhance the detection performance of SWT, in the second scheme, a switch-and-selection-test

(SST) policy is considered. Both SWT and SST schemes integrate the relay switching and

spectrum sensing into one step, which further saves the power and time of relay processing.

Solution proposed in [83, 84], for energy consumption minimization is cluster and forward

scheme, where the nodes are dynamically placed in cluster groups. The node with the best

channel gain, in each group, is opted as the cluster head. In [87], a cluster-based MAC protocol

is designed in which channel sensing scheme is analyzed to reduce the total consumed energy. It

is shown that there is a correlation between the number of sensed channels and EE, and the best

overall performance is guaranteed by cluster-based sensing for three channels. A cluster-based
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collaborative spectrum sensing scheme from the energy efficiency perspective is analyzed in [88],

by considering optimization parameters like the number of clustered CSs, local detection threshold

and time fraction to maximize the energy efficiency under collision constraint and false-alarm

probability constraint.

In this section, the key CSS aspects to maximize energy efficiency were identified. However,

optimization of one parameter increases the detection performance but generally at the expense of

computational complexity. Therefore, the effect of enabling energy efficiency in CR network can

be analyzed from a fundamental tradeoff perspective which is elaborated in the next section.

2.2.7 Fundamental Tradeoffs in CR Networks

This section discusses the ways of achieving higher energy efficiency in CR networks from a

fundamental tradeoffs perspective to achieve a large energy efficiency (EE). In view of EE, the

tradeoffs identified are listed in Table 2.2 as QoS, PU interference, overhead, throughput, energy

consumption, cooperative gain and security, which are the critical network design dimensions.

These tradeoffs are analyzed focusing on the energy efficiency.

2.2.8 Energy Efficiency vs. Quality of Service Trade-off

Mechanisms to improve the QoS may contradict the requirements of the EE. Moreover, there are

other complicating factors such as interference limitations, power budget of the CR system, and

imperfect channel sensing which are inherent in nature, are to be considered in a CR network [1].

Hence, this tradeoff issue is prominent while allocating resources for CRNs [125]. QoS for CRNs

have been examined from an opportunistic spectrum access (OSA) perspective and it is observed

that disruptions from SUs or PUs involved in OSA protocols cause challenges in QoS deployment.

In this regards, the QoS can be realized in three directions, namely,

• PU centric approach

• SU centric approach

• Hybrid approach
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Table 2.2. Fundamental tradeoffs for energy efficiency in cognitive radio networks [1]

Tradeoff Description Reference
Energy efficiency vs. QoS
tradeoff

• EE requirement may be contradictory to
the QoS improvement mechanisms [125]

Energy efficiency vs. PU
interference tradeoff

• Frequent sensing increases the
energy consumption and causes higher
overhead but improves the sensing
performance, which is of major concern
for tuning the EE vs. PU interference tradeoff

[126]

Sensing vs. Throughput
tradeoff

• Maximizing sensing accuracy may be
contradictory to enhancing the network
throughput

[127]-[129]

Overhead vs. Throughput
tradeoff

• More sensing overhead for SUs,
the less throughput the CR network
can achieve.

[130]

Spectral efficiency vs. energy
efficiency tradeoff

• SE improvement due to the involvement
of multiple SU nodes, leads to reduction
in EE.

[93],
[131]- [134]

Energy efficiency vs. security
tradeoff

• Integration of security protocols in CRs
results in additional overhead at both the
transmitter and the receiver which affects
the EE of the network due to increase in
energy consumption.

[135],[136]

PU centric approach focuses to protect the QoS of PUs while employing OSA. In this scenario,

reduction of miss detection probability is very important and EE dimension is not critical [1].

Hence, the main constraint is not to disturb the incumbent users while retaining QoS. The second

approach, SU centric QoS, is where the environment is divided by prioritizing the SUs while

safe guarding the PUs. In this scenario, the solution space of the problem becomes larger as the

interference limitations are relaxed. In this approach, the objective is to reduce the false alarm

probability as much as possible. For both of the above approaches, the specific detection accuracy

can be attained by improving either sensing time and sampling frequency or SNR. Increasing the

sensing time is the only viable solution as the PU’s SNR is beyond the control of the CRN, and the

sampling frequency is device-dependent. However, the periodic nature of sensing results in more

energy consumption of the network. The third approach, hybrid approach, a natural extension of

PU centric approach and SU centric approach, is to have a hybrid situation where the QoS of the

PUs and SUs are evaluated in a more flexible manner and not differentiated categorically.
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2.2.9 Energy Efficiency vs. PU Interference Tradeoff

The CR operation’s fundamental constraint is that the secondary users must not cause harmful

interference to the primary user communication. In other words, the resulting interference due to

SU transmission at nearby PUs must be well below the tolerable interference limits for underlay

CRNs, and the simultaneous transmission time with the PUs must be considerably short for

overlay CRNs [1]. Two scenarios which causes interference to PU are: misdetection of PU and

reappearance of PU. To deal with the first scenario, the CRs must have high detection accuracy

(Pd) which reduces the probability of collision with the PU. This demands for a high Pd, which

can be attained using various techniques such as longer sensing duration, cooperative sensing

and higher sampling frequency. But these high detection accuracy solutions may lead to higher

energy consumption. In the reappearing PU scenario, due to the nature of periodic sensing, the CR

network may interfere with the PU network irrespective of the achieved high detection accuracy.

In the periodic sensing, a reappearing PU does not get detected until the next sensing period. But

frequent sensing increases the energy consumption and sensing overhead which directly affects

the throughput. Hence, EE vs. PU interference tradeoff puts forward a challenge to decide on the

sensing and transmission durations [126]. To cope up with these two scenarios, a CR may choose

to be conservative at the sensing phase and/or at the transmission phase of the cognitive cycle.

The solution to address this challenge is to adjust the sensing accuracy and the sensing duration

by considering the PU traffic pattern [126] and at the transmission phase the solution is to control

the interference by regulating the transmission power.

2.2.10 Sensing vs. Throughput Trade-off

The sensing slot duration is a critical parameter for maximizing the achievable throughput for

the secondary users under the constraint that the primary users is protected to a sufficient level.

The average sensing time should be designed such that the secondary user by maintaining certain

level of detection accuracy can find at least one available out-band channel which improves its

throughput [137]. Based on this fact, a collision-throughput tradeoff problem was formulated

in [127] based on the sensing time requirement and the traffic pattern of primary users to find

optimal value for the frame duration of CR operation so that the throughput of the CR network
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is maximized. It was shown that there exists an optimal frame duration for a given sensing slot

duration to obtain the best tradeoff. Similar sensing throughput tradeoff analysis was carried out in

[128] to maximize both detection accuracy and EE of a CR network. Another adaptive spectrum

sensing scheme is formulated based on the first sensing result to provide better protection for PU.

In other words, when the first sensing result indicates the idle status of PU, the SU performs

spectrum sensing once again to reconfirm the availability of spectrum band. This adaptive

sensing scheme maximizes the energy efficiency in an energy-constrained CR sensor networks,

by adjusting the sensing duration according to the PU activity. The study in [128], confirms that

the proposed scheme improves both the spectrum sensing performance and the EE compared with

other existing methods. Imperfect spectrum sensing and multi-channel access contention impacts

the tradeoff between the interference to PUs and throughput achieved by the SUs. Imperfect

spectrum sensing and multi-channel access contention are jointly considered in [129] in which the

sensing-throughput tradeoff problem is formulated by taking the interference probability as the

optimization constraint. It was concluded that the throughput performance of SUs can be improved

significantly by relaxing the requirement of sensing reliability. Moreover, it was demonstrated that

the throughput performance of SUs when the realistic multi-channel scenario is taken into account

is worse than the single-channel scenario.

2.2.11 Overhead vs. Throughput Tradeoff

Cooperative spectrum sensing is a viable sensing technique to enhance the spectral utilization

efficiency of SUs while ensuring the quality of service of PU. Intuitively, the more SUs are

involved in sensing, the more sensing accuracy the CR can be achieved, whereas the more sensing

overhead the SUs consume, the less throughput the CR network can achieve. Towards this end,

the authors in [130] investigated overhead-throughput tradeoff over Rayleigh-fading channels in a

cooperative CR network that consists of a number of the SUs employing energy detectors and a

single decision fusion center. Considering the tradeoff, the authors proved that there is an optimal

set of the sensing length and the number of SUs that maximize the throughput of an SU network.
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2.2.12 Spectral Efficiency vs. Energy Efficiency Trade-off

Increasing spectrum-efficiency (SE) as well as energy efficiency (EE) has attracted much attention

recently due to the fact that the future wireless networks needs to address the issues of high

throughput and low power consumption. However, the objective for optimizing SE sometimes

conflicts with the one for optimizing EE, and the methods for improving EE may result in a

decrease in SE [131, 132]. The authors in [93], analyzed the problem of joint optimization

of sensing duration and decision threshold by maximizing EE while satisfying SE requirement.

The tradeoff between SE and EE was also illustrated. But the conventional CSS model was

considered for the analysis which increases the sensing overhead as the number of SUs increases.

A general framework to evaluate the tradeoff between energy efficiency and spectral efficiency

in three cognitive radio networks paradigms, namely underlay CRNs (UCRNs), overlay CRNs

(OCRNs), and interweave CRNs (ICRNs), was proposed in [134]. It was shown that the ICRN

can achieve the best SE and the UCRN can achieve the best EE, under the same transmission

requirements. Different from [134], a CR framework is developed in [133] to study the secure

SE and EE in underlay random CR networks. A joint secure SE-EE optimization problem was

formulated with a tradeoff factor which provides the optimal transmission power and intensity of

the SU transmitters. It is proved that with an increase of the preference for secure SE, a relatively

large transmission power and/or intensity are preferred to jointly maximize the secure SE and

EE, and with the increase of the intensity of eavesdroppers, a relatively small transmission power

and/or a relatively large intensity are preferred to jointly maximize the secure SE and EE.

2.2.13 Energy Efficiency vs. Security Trade-off

The effect of multiple malicious users on the energy efficiency of a cognitive radio network

was studied in [135], in which low-overhead security protocol is proposed to address spectrum

sensing data falsification (SSDF) attacks under a tradeoff between energy efficiency and security.

Based on the analytic study in [135], the optimal number of security bits required to maximize

energy efficiency is provided. From the perspective of EE, considerable improvement was shown.

Furthermore, it was shown that optimal number of bits depends explicitly on the selected fusion

rule, the number of malicious users and the number of legitimate users.
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A similar study was conducted in [136] to find an optimal length of message authentication code

(MAC) and an optimal number of cooperative SUs to maximum EE, which is a promising solution

to avoid SSDF attack. It was shown that the cooperative spectrum sensing scheme based on MAC

can resist SSDF attacks as well as improve energy efficiency.

2.3 Chapter Summary

In this chapter, the various methods to increase the EE of cooperative spectrum sensing have been

analyzed. The main points from the literature survey are summarized as follows.

1. Even though several aspects of CSS which can be subject to optimization are identified in the

literature previously, the key challenges in accurate EE modeling and optimization for CSS

network arises from the fact that there exist a plethora of elements that have to be considered

in the optimization process.

2. Optimization of any one parameter increases the reliability of detection at the expense of

computational complexity which further increases the energy consumption.

3. To develop an energy efficient cooperative sensing technique, the overhead in cooperative

sensing has to be reduced without compromising the detection accuracy, so that such

cooperative sensing scheme can be utilized in energy constrained environment.

4. Efforts have been made to improve the performance of CSS with respect to throughput,

energy consumption and energy efficiency. Conventional cooperative sensing scheme is

replaced by the node selective-based sensing scheme which has shown an improvement

in the detection accuracy. Although these techniques have shown improvement in the

detection performance, the analysis of energy efficiency in node selective-based CSS with

optimization of parameters such as detection threshold, sensing time and number of nodes

involved in cooperation has not been explored in the literature.

5. Most of the existing literature focus on methods to improve the detection accuracy or

perfect reconstruction of the received signal after compressed spectrum sensing. Although

the compressed sensing-based cooperative sensing scheme has been analyzed in terms of
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detection errors, energy efficiency analysis of compressed collaborative sensing scheme by

optimizing compression ratio and number of nodes has not been explored in the cooperative

sensing framework. In other words an important question that remained unanswered is

as follows: For a given compression ratio, c, what should be the number of nodes N , to

maximize the energy efficiency?

In this thesis, many of the above questions are successfully answered and a study to improve the

performance of cooperative spectrum sensing in CRN in terms of average achievable throughput,

energy consumption and energy efficiency is presented. To start with, the idea is to improve

energy efficiency by reducing the cooperative overhead and maintaining the detection accuracy

simultaneously. Towards this end, in the next chapter, an analysis of energy efficiency using

superior selective reporting-based cooperative sensing scheme by optimizing detection threshold,

sensing time and number of nodes involved in sensing such that the energy efficiency is

maximized.



Chapter 3

Energy Efficiency Optimization for

Superior Selective Reporting-Based

Spectrum Sensing

3.1 Introduction

In this work, the EE analysis of the SSR scheme proposed in [34] are presented by deriving

the expressions for energy consumption and achievable throughput of the SSR scheme. EE

optimization problem is formulated subjected to several constraints. As this problem is highly

non-convex, some approximations to reduce it to a quasi-convex optimization problem are

presented. Later, it is highlighted that these approximations are sufficiently accurate. The

motivation to consider the SSR scheme is threefold. Firstly, it saves the sensing overhead to

a considerable extent, particularly when the probability of detection of the center SU is high.

Secondly, this scheme does not require a dedicated control channel to forward the decision.

Finally, since all the SUs do not report their decisions, interference to PU system is reduced,

when compared to the conventional cooperative sensing (CCS) scheme. EE of the SSR scheme

has not been considered earlier in the literature. In this work, note that the reporting channels is

assumed to be error-free for analytical simplicity and does not consider the impairments such as

38
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dispersiveness in the reporting channels [138].

The main contributions of this work are as follows:

• The EE of the SSR spectrum sensing scheme is studied, in terms of the detection threshold,

the sensing time allocation factors and the required number of SUs for cooperation.

• The maximization of EE of SSR is posed as a multiple variable, non-convex optimization

problem, and approximations to reduce this to a quasi-convex optimization are discussed.

The tightness of the approximation is studied.

• The optimal detection threshold, time allocation factors and the number of cooperative SUs

are derived.

• Through numerical results, it is shown that the SSR scheme outperforms the conventional

cooperative sensing (CCS) schemes employing the OR and AND-fusion rules.

The remainder of this chapter is organized as follows. The system model and review the CCS

and SSR schemes is presented in Sections 3.2, 3.2.1and 3.2.2 respectively. Performance analysis

of CCS and SSR scheme are provided in 3.2.3. The energy efficiency optimization problem for

the SSR scheme is proposed in Section 3.3, and approximations, reformulation and analysis are

provided in Section 3.4. Results and conclusions are provided in Sections 3.5 and 3.6 respectively.

3.2 System Model

Consider a cognitive radio (CR) network depicted in Figure 3.1, withN co-located nodes (denoted

by C1, . . . , CN ), that carry out spectrum sensing to exploit the under-utilization of the licensed

band of a primary transceiver pair, denoted by (PUtx, PUrx), opportunistically. A separate CR

fusion-node also called as a secondary user (SU) – which aims for an opportunistic communication

at a given time is labeled as the center SU, and is denoted by F . The individual CR nodes

C1, . . . , CN carry out energy-based spectrum sensing, and their decisions are used in a co-operative

manner by the center SU, which will be explained in detail later. The PU signal is assumed to be

a complex-valued PSK signal and the noise to be circularly symmetric Gaussian random variable

with variance σ2 [137]. Let hCiF and hPF denote the fading coefficient of the channel from Ci,
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Data Transmission Link
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Figure 3.1. System model for Superior Selective Reporting (SSR) Scheme

i = 1, . . . , N to the center SU(F), and PUtx and center SU, respectively. Let γCi and γP denote

the signal-to-noise ratio (SNR) over the link from the CR node Ci, i = 1, . . . , N to the center SU

and the link from PU transmitter PUtx, to the center SU respectively. Without loss of generality, it

is assumed that, at a given time, the center SU has a perfect knowledge of noise variance σ2, hCiF ,

hPF , γCi and γP [34]. Next, the superior sensing based reporting schemes and the conventional

cooperative sensing schemes are revisited.

3.2.1 Conventional Cooperative Sensing (CCS) Scheme

Conventional cooperative sensing (CCS) scheme is a common technique, where each time frame of

duration TTotal seconds consists of two phases, namely, the sensing phase (T ) and the transmission

phase (TTotal−T ). Energy-based sensing is employed during the sensing phase for a duration of τ

seconds, where the center SU and all the CR nodes employ sensing. Subsequently, the remaining

duration of the sensing time, that is T − τ , is further divided into N sub-slots for the transmission

of the individual decisions by the nodes {Ci, i = 1, . . . , N} to the center SU [139–141].

To save the sensing overhead, it is assumed that each sensor transmits a one-bit decision over a

dedicated, error free channel. Therefore, as shown in Figure 3.2, the sensing duration adds to
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Figure 3.2. Time slot format for (a) CCS scheme and (b) SSR scheme.

a total of T = τ + Nr units, where r denotes the time-duration of each sub-slots. Hence, the

sensing time T increases linearly with N , which increases the energy consumption and decreases

the throughput. At the end of time slot T , the center SU combines these decisions by using a

suitable fusion rule – such as AND [142], OR [143] or MAJORITY rules [144], and broadcasts its

global decision to all the nodes. The sensing duration of CCS scheme, and the energy consumption

increase with an increase in N . To reduce the sensing time and energy consumption, a selective

reporting based cooperative spectrum sensing scheme, namely superior selective reporting (SSR)

scheme was proposed, which is explained next.

3.2.2 Superior Selective Reporting (SSR) Scheme

The SSR scheme, originally proposed in [34], has multiple advantages over the CCS scheme, as

the center SU receives the decision only from a superior SU, which is selected as described in next

section. It should be noted that in [34], the study of SSR scheme was limited to its detection

performance in comparison to the CCS scheme, whereas in this work its energy efficiency

performance is studied by calculating the achievable throughput and energy consumption. As

shown in Figure 3.2, the SSR scheme has two sensing time allocation factors, namely η and β

[34]. In a given time frame of TTotal seconds, the center SU carries out spectrum sensing for a

duration of T0 seconds. If the decision of the center SU favors hypothesis H1, then the center SU

broadcasts a message saying that the primary user is present, indicating the duration TTotal − T0
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not to be engaged in communication. In this case, no cooperation from other CR nodes is utilized.

In the case when the center SU decides in favor of hypothesis H0, it requests for a cooperation

from the other nodes, and nodes C1, . . . , CN carry out sensing for a duration of T1. Later, among

the nodes that favor H1, the node with the highest SNR reports back its decision to the center

SU, on the same channel, for a time duration of T2 seconds, which is inversely proportional to its

SNR. This node is termed as the superior SU, which is selected as decribed in section 3.2.3.2. For

analytical simplicity, it is assumed that this report is error-free. However, it should be noted that

the performance of SSR would degrade further in the case of dispersive reporting channel errors

[138], and hence the presented performance can be considered as an upper bound for practical

purposes. Also, the mobility aspects of the PU [145] is ignored, since each SU would then require

an exact knowledge of the change in network topology due to the movement of PU, which makes

the analysis more complex. Moreover, as considered in [69],[106], the interference to PUs induced

by final decision reporting can be ignored, since the transmission duration of such reporting is

relatively short in comparison to the duration of the sensing phase. In fact, the final decision

can be declared by using a power control method discussed in [34] to sufficiently protect primary

transmissions.

Algorithm 1 : Selective reporting algorithm
1: Consider the N SU nodes Ci, i = 1, . . . , N .
2: procedure LOCAL SENSING BY CENTER SU, F
3: for time duration T0 do
4: Calculate energy-based test statistic, i.e., TE(y) = 1

M

∑M
n=1 |y(n)|2

5: Calculate threshold, ε, by fixing the probability of false-alarm
6: if (T (r) ≥ ε) then
7: Center SU(F) claims the presence of PU
8: Broadcast local decision and stop spectrum sensing
9: else

10: Local sensing by other SUs (Ci) at time slot T1

11: Form detection set, Φ, as the set of sensors claiming presence of PU
12: if (Φ = empty) then
13: Center SU(F) claims the absence of PU
14: else
15: Select Superior SU as discussed in Sec. 3.2.3.2
16: end if
17: end if
18: Selected Superior SU reports its local decision to center SU, F
19: Broadcast final detection result by center SU, F, to other SUs
20: end for
21: end procedure
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As opposed to the CCS scheme, only a portion 0 ≤ β ≤ 1 of the detection time T is required in

the SSR scheme. The duration βT includes sensing and reporting times, and is divided into the

previously defined T0, T1 and T2, where T0 = T1 = ηβT , for some 0 ≤ η ≤ 1, which indicates the

sensing duration of center SU and the nodes Ci, i = 1, . . . , N and T2 = βT − T0 − T1 indicates

the reporting time of the superior SU. Cooperative sensing procedure in SSR scheme is described

in Algorithm 1.

3.2.3 Performance Analysis with Energy Detection

As mentioned earlier, energy detection (ED) is employed to detect the presence of the PU. In

this section, the performance analysis of energy detection in CCS, SSR and OSSR schemes are

discussed.

3.2.3.1 CCS Scheme

For the CCS scheme, probabilities of signal detection and false-alarm at each SU are given by

[137]

Pf,i = Q

(( εi
σ2
− 1
)√

u0

)
, ϕ(u0, εi), (3.1)

Pd,i = Q

(( εi
σ2
− γi − 1

)√ u0

2γi + 1

)
, ϕ(u0, εi, γi), i = 1, 2, ...N (3.2)

where u0 = τfs, is the time-bandwidth product, i.e., τ is the signal duration, fs is the sampling

frequency, εi denotes the detection threshold at node Ci, and γi denotes the received SNR at

node Ci. Also, Q(·) indicates the complementary cumulative distribution function of a standard

Gaussian random variable. The threshold εi can be computed from (3.1) as

εi = σ2Q−1

(
Pf,i√
u0

)
+ 1 (3.3)

In the CCS scheme, the center SU combines the decisions from all nodes Ci, i = 1, . . . , N using

the AND, OR or MAJORITY rules [142]. Following this, the global probabilities of false-alarm
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and signal detection, for the OR rule, respectively, are given by [143]

P CCS,OR

f =

[
1−

N∏
i=1

(
1− Pf,i

)]
= 1− (1− Pf,i)N (3.4)

P CCS,OR

d =

[
1−

N∏
i=1

(
1− Pd,i

)]
= 1− (1− Pd,i)N (3.5)

For the AND fusion rule, the probabilities are given by [26]

P CCS,AND

f =
N∏
i=1

Pf,i =
(
Pf,i
)N (3.6)

P CCS,AND

d =
N∏
i=1

Pd,i =
(
Pd,i
)N (3.7)

The overall detection probability of the CCS scheme is obtained by fixing Pf,i to a predefined

level. For a comparative study, the CCS scheme with AND and OR fusion rules is discussed in

this chapter, which have associated advantages and disadvantages [26, 143].

3.2.3.2 SSR Scheme

Recall that for the SSR scheme, the sensing duration for the individual SUs are given by T0 =

T1 = ηβT , where T is the sensing duration of the CCS scheme, and is given by T = τ + Nr.

The superior SU is selected from the detection set to report to the center SU, in time T2, when the

decision of the center SU is in favor of H1. Following this, the superior reporting SU node, Csup,

can be described as:

Csup = arg max
CiεΦ

(
γCi |hCiF |2

1 + θγP |hPF |2

)
= arg max

CiεΦ

(
γCi |hCiF |

2

)
, (3.8)

where Φ , {Ci : Ci decidesH1} is the detection set obtained in time slot T2. The scenario

considered for spectrum sensing problem is as follows. The cognitive radio network is assumed to

be far from the primary network, such that the primary SNR at each node is nearly equal. Hence,

γP is same across all nodes. Additionally, CR network is assumed to be clustered in a relative

small area, which makes the quantity |hPF | for each node to be approximately the same. Hence,
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maximization given in the first equality is the same as that given in the second equality, since the

denominator is approximately equal across all nodes.

The procedure to choose the superior SU is as follows. The SUs that detect the presence of PU

constitute a detection set Φ. Each SU {Ci ∈ Φ} sets off a timer at the end of sensing phase, with

each initial values {Ti, Ci ∈ Φ} set inversely proportional to its received SNR γCi |hCiF |2 as in [34].

i.e., Ti = ω

(γCi |hCiF |
2
)
, for some ω ∈ R+. The SU with highest SNR exhausts its timer first and

reports to the center SU. This SU is the superior SU among the cooperative SUs in Φ. Only the

superior SU sends its local decision to center SU in time slot T2. Channel reciprocity 1 is assumed

between center SU and the other SUs [34]. In addition, the selected superior SU transmits a short

duration flag packet, signaling its presence. All other SUs, waiting for their timer to expire, back

off immediately as soon as they receives this flag [146].

The method of calculating the received SNR is as described in [146]. Each SU node carries out

the following procedure to assist the center SU to select the superior SU, in SSR schemes. When

requested for cooperation, each SU at the end of its sensing duration sets a timer which is inversely

proportional to the SNR of the channel between the center SU(F) and other SUs, obtained from

a CTS packet broadcast by center SU. Each SUs in the detection set overhears the CTS packet

and estimates the instantaneous wireless channel SNR between the center SU(F) and other SUs

(Ci). This instantaneous SNR is used to calculate the particular channel gain (hCiF ), which is

used to initialize the timer. Channel reciprocity is assumed between the center SU and other SUs,

and a perfect clock synchronization is assumed across the SUs [34]. In [146], the authors show

that the overhead of such user selection is a small fraction of the coherence interval with collision

probability less than 0.6%. Therefore, the energy consumed during the process of selection of

superior SU is neglected in this analysis.

The probabilities of false-alarm and signal detection at the center SU and other SUs (Ci) using

energy detector are given, respectively, as [147]

P SSR

f,F = P SSR

f,Ci
= Q

(( εi
σ2
− 1
)√

u1

)
= ϕ(u1, εi, 0), i = 1, . . . , N (3.9)

P SSR

d,F = Q

(( εi
σ2
− γF − 1

)√ u1

2γF + 1

)
, ϕ(u1, εi, γF ), P SSR

d,Ci
= ϕ(u1, εi, γCi)(3.10)

1The center SU and other SUs operate in a fixed time-division multiple-access (TDMA) manner, which is
commonly considered in existing studies [34],[69, 103–106] where a common channel is shared between SUs.
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where u1 = ηβTfs, γF is the SNR of center SU and γCi is the SNR of other SUs. As indicated

earlier, only the decision of Csup is reported in the slot T2. From Figure 3.2, T2 = (1 − 2η)βT .

Note that energy detector is used to evaluate the performance of conventional and proposed sensing

scheme. The results obtained in this work is extended to Bayesian detector case which is shown in

Appendix D. Then, the probability that F receives an incorrect decision in favor of H1 from Csup

in T2 slot for SSR is obtained as [34]

P SSR

f,C,1 =
2N−1∑
i=1

[ ∏
Cl∈Φi

P SSR

f,Cl

∏
Cm∈Φ

(1− P SSR

f,Cm)

]
= 1− (1− P SSR

f,Ci
)N . (3.11)

Here Φi is the ith possible combination of elements among the total 2N elements in detection set

Φ, and Φ is the complement of the detection set Φ. Hence, the overall probability of false-alarm at

the center SU in the SSR scheme is given by [34]

P SSR

f = P SSR

f,F + (1− P SSR

f,F )P SSR

f,C,1 (3.12)

Similarly, the probability that the center SU, correctly receives the decisions from other SUs

Ci, i = 1, . . . , N in favor ofH1 in T2 slot is shown to be

P SSR

d,C,1 =
2N−1∑
i=1

[ ∏
Cl∈Φi

P SSR

d,Cl

∏
Cm∈Φ

(1− P SSR

d,Cm)

]
= 1− (1− Pd,Ci)N , (3.13)

following which, the final detection probability of SSR can be calculated as [34]

P SSR

d = P SSR

d,F + (1− P SSR

d,F )P SSR

d,C,1 (3.14)

The main aspect of the SSR scheme is to design the optimal values of η and β. In the earlier work

[34], the optimal values for η and β were designed based on an upper bound and lower bound

constraints on probabilities of false-alarm and signal detection, respectively. In this work, the

optimal values of η, β and N , is designed such that the energy efficiency is maximized.
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3.3 Formulation of Energy Efficiency Optimization for the

SSR Scheme

The ratio of average throughput to the average energy consumption is defined as the energy

efficiency of a CR system [140, 148]. In the following, the average throughput, average energy

consumption for SSR scheme in CR network is discussed and later the governing optimization

problem of designing η, β and N is provided such that the energy efficiency is maximized.

In a CR network with SSR scheme, the average throughput achievable depends on the

communication between PU and SUs, categorized into four scenarios elaborated below.

S1. The first scenario corresponds to the case when PU is present, and the network correctly

identifies its presence. This case can be further divided into two cases which correspond

to the situation where the decision in favor of H1 is made at the end of slot T0 (i.e., by

the center SU), which occurs with probability P (H1)P SSR
d,F and in the case when center SU

incorrectly declaresH0, but is corrected by the node Csup at the end of slot T2, which occurs

with probability P (H1)(1 − P SSR
d,F )P SSR

f,C,1. Observe that in both these cases, the SUs do not

transmit data and the throughput achieved is zero.

S2. The second scenario covers the case when PU is absent but incorrectly declared as present by

the network. Again, this case has two sub-cases. The first case corresponds to the situation

where the center SU makes a false-alarm, which occurs with probability P (H0)P SSR
f,F . The

second case corresponds to the situation where although the center SU correctly observes

the spectrum to be empty, the node Csup incorrectly declares the presence of the PU, which

occurs with probability P (H0)(1−P SSR
f,F )P SSR

f,C,1. Since the CR network misses a transmission

opportunity in this case, the throughput achieved is given by −φC(TTotal − βT ), where φ is

a suitably chosen penalty factor [149].

S3. The third scenario corresponds to the scenario when both center SU and the node Csup

make incorrect decision that the PU is absent, when it is actually present. In this situation,

which occurs with probability P (H0)(1 − P SSR
d,F )(1 − P SSR

d,C,1), the network transmits and

causes interference to the PU. However, even this being the case, a partial throughput of

κcC(TTotal − βT ) units can still be achieved for some 0 ≤ κc < 1.
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S4. The last scenario corresponds to where the achievable throughput is maximum. This covers

the situation when the PU is absent and both center SU and Csup makes correct decisions,

which occurs with probability P (H0)(1 − P SSR
f,F )(1 − P SSR

f,C,1). In this case, the average

throughput for the duration of TTotal − βT is denoted as C(TTotal − βT ) units, where C

denotes the average data rate of SU transmission.

Table 3.1. Energy consumption and throughput achieved by the CRN for different scenarios

CCS Scheme SSR Scheme

Scenario Energy(J)
Throughput
(bitz/Hz) Scenario Energy(J)

Throughput
(bitz/Hz)

P (H1)P CCS
d NPs τ + N Pt r 0

P (H1)P SSR
d,F

P (H1)(1− P SSR
d,F ) P SSR

d,C,1

PsT0

Ps T0+N Ps T1

+PtT2

0

P(H0)P CCS
f NPs τ + NPtr -φC(TTotal - T)

P(H0)P SSR
f,F

P(H0)(1-P SSR
f,F )P SSR

f,C,1

PsT0

Ps T0+N Ps T1

+PtT2

-φC(TTotal - βT)

P(H1)(1-P CCS
d ) NPs τ + NPtr

+Pt(TTotal - τ -Nr) κcC(TTotal - T) P(H1)(1-P SSR
d,F )*(1-P SSR

d,C,1)
Ps T0+N Ps T1

+PtT2+Pt(TTotal - βT ) κcC(TTotal-β T)

P(H0)(1-P CCS
f ) NPs τ + NPtr

+Pt(TTotal - τ -Nr) C(TTotal - T) P(H0)(1-P SSR
f,F )*(1-P SSR

f,C,1)
Ps T0+N Ps T1

+PtT2 +Pt(TTotal - βT ) C(TTotal-β T)

3.3.1 Average Throughput

Considering all the above cases, the average throughput of the SSR scheme is given by

RSSR(ε, η, β,N) = P (H0)
[
(1− P SSR

f,F )(1− P SSR

f,C,1)
]

(TTotal − βT )C

+ κcP (H1)
[
(1− P SSR

d,F )(1− P SSR

d,C,1)
]
C(TTotal − βT )

− φP (H0)
[
P SSR

f,F + (1− P SSR

f,F )(P SSR

f,C,1)
]

(TTotal − βT )C (3.15)

for some 0 ≤ κc < 1, and φ ≥ 0.

Note that for the CCS scheme, the average throughput is given by

RCCS(N, τ) = P (H0)(1− P CCS

f )(T − τ −Nr)C + κcC(TTotal − T )P (H1)(1− P CCS

d )

−φC(TTotal − T )P (H0)P CCS

f . (3.16)
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3.3.2 Energy Consumption

In this section, the energy consumed by the SU network for the above mentioned four scenarios

are discussed. Recall that Ps and Pt denote the power required for each SU node for sensing and

transmission, respectively. The energy consumption for the SSR scheme across all the scenarios

mentioned above along with the achievable throughput and energy consumption for the CCS

scheme are listed in Table. 3.1. Following these cases,

ESSR(ε, η, β,N) = Xs(PsT0) + Ys(PsT0 +NPsT1 + PtT2)

+ Zs(PsT0 +NPsT1 + PtT2 + Pt(TTotal − βT ), with (3.17)

Xs = P (H1)P SSR

d,F + P (H0)P SSR

f,F , (3.18)

Ys = P (H1)(1− P SSR

d,F )P SSR

d,C,1 + P (H0)(1− P SSR

f,F )P SSR

f,C,1, and (3.19)

Zs = P (H1)(1− P SSR

d,F )(1− P SSR

d,C,1) + P (H0)(1− P SSR

f,F )((1− P SSR

f,C,1). (3.20)

On the other hand, the energy consumption for the CCS scheme vide Table 6.1 is given by

ECCS(N, τ) = Xc(NPsτ +NPtr) + Yc(NPsτ + Pt(TTotal − τ)), where (3.21)

Xc = P (H1)P CCS

d + P (H0)P CCS

f , and (3.22)

Yc = P (H1)(1− P CCS

d ) + P (H0)(1− P CCS

f ). (3.23)

3.3.3 Energy Efficiency

First consider the CCS scheme, the energy efficiency, measured in (bits/Hz/J), of the CR network

is expressed as

EECCS(N, τ) =
RCCS(N, τ)

ECCS(N, τ)
. (3.24)

When both P CCS
d and P CCS

f tends to zero, the network decides that PU is absent and starts data

transmission, which improves the average throughput, but with lesser detection accuracy. On the

other hand when both P CCS
d and P CCS

f tends to one, PU is declared to be present and the bandwidth

is not utilized effectively. The energy efficiency maximization for the CCS scheme is given by
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OPCCS : max
ε,τ,N

EECCS(ε, τ,N) (3.25)

s.t.



P CCS
f ≤ Pf ,

P CCS
d ≥ Pd,

0 ≤ τ ≤ T,

1 ≤ N ≤ Nmax,

(3.26)

for some 0 < Pf < Pd < 1. This problem has been earlier considered with AND [26] and OR

fusion rules [150].

On the other hand, in the SSR scheme, since a single SU is required to report its local decision

to the center SU, sensing overhead can be significantly reduced which in turn reduces the energy

consumption. Also, the saved sensing time and energy can be utilized for data transmission by SU,

which potentially enhances the secondary throughput. This leads to the eventual improvement in

energy efficiency in contrast to the CCS scheme. The energy efficiency of the SSR scheme is:

EESSR(ε, η, β,N) =
RSSR(ε, η, β,N)

ESSR(ε, η, β,N)
. (3.27)

The energy efficiency optimization problem governing the SSR scheme is given by,

OPSSR : max
ε,η,β,N

EESSR(ε, η, β,N) (3.28)

s.t.



P SSR
f ≤ Pf

P SSR
d ≥ Pd,

0 ≤ β ≤ 1,

0 ≤ η ≤ 1/3,

1 ≤ N ≤ Nmax,

(3.29)

for some 0 < Pf < Pd < 1. Notice that the constraint 0 ≤ η ≤ 1/3 ensures that T0, T1, T2 ≥ 0.

The IEEE 802.22 standard [151], enforce requirements for the upper bound on the probability of
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signal detection and lower bound on the probability of false-alarm to be 0.9 and 0.1, respectively.

The above mentioned optimization problem is non-convex. For the ease of analysis, the cost

function for the above problem is approximated and the conditions under which the problem can

be reduced to a convex optimization problem is mentioned. The details are provided in the next

section.

3.4 Approximation, Problem Reformulation and Analysis

In this section, an approximation of EESSR is provided and the optimization problem OPSSR is

reformulated. On a general note, the channel detection probability should be large enough to

limit the collision between the primary and cognitive transmission. Therefore, P (H0) > P (H1),

P SSR
d,F > P SSR

f,F , P SSR
d,C,1 > P SSR

f,C,1 , P SSR
d > P SSR

f . For the ease of analysis, the average throughput in

(3.15) can be approximated by the above inequalities, and setting κc = 0 as

R̃SSR ≈ (T − βT )P (H0)C
{

(P SSR

f,F + (1− P SSR

f,F )P SSR

f,C,1)(−Φ) + (1− P SSR

f,F )(1− P SSR

f,C,1)
}

(3.30)

Assuming that P SSR
f,F = P SSR

f,Ci
= Pf ,

R̃SSR ≈ P (H0)C(TTotal − βT )
{
−Φ + (Φ + 1)(1− Pf )N+1

}
. (3.31)

Similarly an approximate expression for ESSR can be written as

ẼSSR ≈ PsT0 − [NPsT1 + PtT2]
{
P (H1)P SSR

d,F + P (H0)P SSR

f,F

}
+

Pt(TTotal − βT )
{
P (H0)(1− P SSR

f,F )(1− P SSR

f,Ci
)
}
. (3.32)

Assuming that P SSR
f,F = P SSR

f,Ci
= Pf , and P SSR

d,F = P SSR
d,Ci

= Pd, further simplification of (3.17) gives

ẼSSR ≈ PsT0 − [NPsT1 + PtT2] {P (H1)Pd

+P (H0)Pf − 1}+ P (H0)Pt(TTotal − βT )(1− Pf )N+1. (3.33)
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Now, the approximated energy efficiency can be written as

ẼESSR(ε, β, η,N) ≈ R̃SSR(ε, η, β,N)

ẼSSR(ε, β, η,N)
. (3.34)

The accuracy of the approximate throughput and energy consumption equations given in (3.31)

and (3.33), respectively, in relation to the actual expressions given in (3.15) and (3.17), and the

consequence of the approximate energy efficiency in (3.34) will be discussed in the Sec. 3.5.

Hereafter, R̃SSR(ε,η,β,N)

ẼSSR(ε,β,η,N)
will be used instead of RSSR(ε,η,β,N)

ESSR(ε,β,η,N)
as an objective function in this

analysis. Consequently, the optimization problem OPSSR can be reformulated as

OP1SSR : max
ε,η,β,N

ẼESSR(ε, η, β,N) =
R̃SSR(ε, η, β,N)

ẼSSR(ε, β, η,N)
(3.35)

s.t.



P SSR
f ≤ Pf

P SSR
d ≥ Pd,

0 ≤ β ≤ 1,

0 ≤ η ≤ 1/3,

1 ≤ N ≤ Nmax,

(3.36)

Next, a detailed analysis on obtaining the optimal detection threshold, the number of cooperative

users and sensing time to maximize the energy efficiency given in OP1SSR is provided.

3.4.1 Optimal Detection Threshold

Here, the optimal value of the detection threshold ε that satisfies the detection performance

constraint is given in problemOP1SSR. Theorem 3.2 gives the expression for the optimal threshold

ε∗ and the required condition corresponding to the optimization problem in OP1SSR. Lemma 3.1

is stated and proved the following lemma before theorem 3.2.

Lemma 3.1. The throughput of the SSR scheme is non-negative, i.e., R̃SSR ≥ 0, if the penalty

factor (φ) is chosen to meet the condition (D1) Φ+1
Φ
≥ 1

[1−Pf (ε)]N+1
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Proof. The proof is straightforward and can be obtained by directly setting R̃SSR ≥ 0 in (3.31)

and rearranging the equation.

Theorem 3.2. The constraint P SSR
d ≥ Pd in the optimization problem OP1SSR is satisfied with

equality. Consequently, the optimal detection threshold is given by

ε∗ = σ2

[
(γ + 1) +

√
2γ + 1

ηβTfs
Q−1

[
1− (1− P̄d)

1
N+1

]]
. (3.37)

Proof. The partial derivative of ẼESSR with respect to ε, after some algebraic simplification, can

be shown to be
∂ẼESSR

∂ε
= −G(ε)

∂Pf
∂ε

, (3.38)

where G(ε) = [V0(ε)−V1(ε)]

E2
SSR(ε)2

, and the functions V0(ε) and V1(ε) are given as

V0(ε) = P (H0)C(TTotal − βT )
[
(φ+ 1)(N + 1)(1− Pf (ε))N

]
ESSR(ε) ≥ 0, and (3.39)

V1(ε) = RSSR(ε)P (H0)
(
[NPsηβT + PtηβT ] + Pt(TTotal − βT )(N + 1)(1− Pf )N

)
. (3.40)

Now, note that the first derivative of Pf (ε) with respect to ε is given by

∂Pf
∂ε

= − 1

σ2

√
ηβTfs

2π
exp

(−( ε
σ2 − 1)2ηβTfs

2

)
≤ 0. (3.41)

Since ∂Pf
∂ε
≤ 0, it is sufficient to prove thatG(ε) = [V0(ε)− V1(ε)] ≥ 0, to establish that ∂ẼESSR

∂ε
≥

0. It is already seen that V0(ε) ≥ 0. Since V1(ε) depends on R̃SSR(β), V1(ε) will be non-negative

if the condition (D1) holds, vide lemma 3.1. Therefore, under the conditions stated in lemma 3.1,

[V0(ε)− V1(ε)] ≥ 0.

Therefore, (∂ẼESSR
∂ε

) ≥ 0. This implies that the optimal threshold to maximize the objective

function OP1SSR should be large, which happens if the constraint P SSR
d = P̄d is satisfied. Any

other smaller ε, must satisfy the constraint P SSR
d > P̄d for a given value of N , β and η. Note that

the constraint P SSR
d = P̄d can still be satisfied when P SSR

d,F and P SSR
f,Ci

are equal. Setting P SSR
d,F =

P SSR
d,Ci

= Pd,i gives P SSR
d = 1− [1−Pd,i]N+1. Following this, the equation for the optimal detection

threshold ε∗ is obtained. This completes the proof.



Chapter 3. Energy Efficiency Optimization for SSR-Based Spectrum Sensing 54

3.4.2 Optimal Values of β and η

In this section, an analysis to find the optimal values of η and β is provided. First, the optimal

value of η is described in the following lemma.

Lemma 3.3. The optimal value of η that maximizes the cost function in the optimization problem

OP1SSR is given by η∗ = 1
3
.

Proof. It is shown in AppendixA that ∂ẼESSR(η)
∂η

≥ 0 for every 0 ≤ η ≤ 1/3. Thus η∗ = 1
3
.

Following the results from Theorem 3.2 and Lemma 3.3, for a given N and β, optimization

problem OP1SSR can be simplified to OP2SSR as:

OP2SSR : max
β,N

EESSR(ε∗, η∗, β,N) (3.42)

s.t.


P SSR
f ≤ Pf ,

0 ≤ β ≤ 1,

1 ≤ N ≤ Nmax.

(3.43)

The following theorem gives the conditions under which optimal β can be obtained.

Theorem 3.4. Let βmin be defined as below. Then, the objective function in OP3SSR is

quasi-concave for all β ∈ (βmin, 1), with

βmin =

Q−1
(

1− (1− P f )
1

N+1

)
(
ε∗

σ2 − 1
)

(
√
ηTfs)

2

. (3.44)

Proof. The first-order derivative of ẼESSR with respect to β can be written as

∂ẼESSR

∂β
= − [V0(β)− V1(β)]

∂Pf
∂β

+ V2(β), (3.45)
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where V0(β), V1(β) and V2(β) are given by

V0(β) = P (H0)C(TTotal − βT )
[
(Φ + 1)(N + 1)(1− Pf )N

]
ẼSSR(β), (3.46)

V1(β) = P (H0)
{

(NPsηβT + (1− 2η)βT ) + Pt(TTotal − βT )(1− Pf )N(N + 1)
}
R̃SSR(β).

(3.47)

V2(β) = −R̃SSR(β)

[
TẼSSR(β)

TTotal − βT
+ PsηT − [NPsηT + Pt(1− 2η)T ](P (H0)(Pd + Pf ) + 1)

−P (H0)PtT (1− Pf )N+1
]

(3.48)

From (3.45), the first-order derivative of Pf with β, i.e., ∂Pf
∂β

is given by

∂Pf (β, ε
∗)

∂β
= −

√
ηTfs
8πβ

(
ε∗

σ2
− 1

)
exp

(
−( ε

∗

σ2 − 1)2ηβTfs

2

)
≤ 0. (3.49)

Therefore, Pf is a monotonically decreasing function of β.

Based on the above analysis, it is shown in Appendix A that, when β → 0, ∂Pf
∂β
→−∞ and hence

[V0(β)− V1(β)] ≥ 0. Thus, when V2(β) is close to 0, lim
β→0

∂EESSR(β)
∂β

≥ 0. On the other hand,

when β → 1, and φ meets the requirement (D1) stated in lemma 3.1, it is shown in Appendix

A that V0(β) is a decreasing function of β and V1(β) is an increasing function of β, in the range

βmin ≤ β ≤ T . Therefore, ∂ẼESSR
∂β

is a decreasing function in β for βmin ≤ β ≤ 1, given that

V2(β) ≤ 0. Hence, ∂ẼSSR
∂β

first increases and then decreases with respect to β ∈ (βmin, 1). In other

words, the cost function in OP2SSR is quasi-concave in β.

Theorem 3.4 establishes that the objective function is quasi-concave in a given range of

β, and hence techniques such as direct search method, golden search method, bi-section,

Newton–Raphson method, etc. [152–154] can be used to calculate the root of the objective in

OP2SSR. Based on the analytic development, a simple search algorithm is proposed to obtain the

optimal values of ε, η, β and N for the optimization problem in OP1SSR, which is summarized in

Algorithm 2. This completes the analysis of energy efficiency of the SSR scheme.
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Algorithm 2 : Optimizing variables ε, β, and N

1: Set Ps, Pt, TTotal, τ, N, β0, P (H0), P (H1), Pf , Pd
2: procedure INITIALIZE β = β0, η = 1/3, P SSR

d = Pd, EESSR(0) = 0 (,)
3: Initialize ζ ∈ R such that EESSR(N + 1)− EESSR(N) < ζ
4: To select optimal ε, β,N
5: for do N = 1 : Nmax

6: Calculate ε using (3.37)
7: Calculate βmin using (3.44)
8: Compute EESSR using (3.28) with ε(N) and βmin(N)
9: Go to Step 5 if EESSR(N + 1)− EESSR(N) > ζ

10: Stop iteration and return the optimal
11: Calculate EESSR(N, ε∗, β∗)
12: end for
13: end procedure
14: Return max(EESSR) and the corresponding N, ε∗, β∗,

3.5 Numerical Results and Discussion

In this section, the performances of SSR, CCS-AND, and CCS-OR schemes are discussed, in

terms of energy efficiency. MATLAB is used as a simulation tool. The parameter values are fixed

as follows. The target probabilities Pd and Pf , are fixed to be 0.9 and 0.1, respectively. The

prior probability P (H0) = 0.75. The total frame duration is assumed to be TTotal = 200 ms. The

sampling frequency at the local SUs is assumed to be fs = 1 MHz, and the sensing power Ps = 0.1

W. The sensing time, τ , and reporting time, r, of CCS scheme is set to 100 µs. The achievable rate

of secondary transmission is chosen to be C = log2(1 + SNRs) = 6.6582 bits/sec/Hz, where the

SNRs for the secondary transmission is assumed to be SNRs = 20 dB. The transmission power

of individual sensors, Pt, is assumed to be 3 W. The number of users, N , is set to minimum of 10

following the condition (D1) in lemma 3.1, unless otherwise stated. Also, κc = φ = 0.5.

Figure 3.3 shows the variation of EESSR(ε∗, η∗, β,N) and ẼESSR(ε∗, η∗, β,N) vs. β for different

values of SNR. It can be observed that all the cost functions are quasi-concave with respect to

β, and that there exists a good match between the actual and approximate cost functions for SSR

in (3.27) and (3.34), respectively. Also, as expected, EE increases as SNR increases. For the

rest of the analysis, we chose number of available SUs, N to be a fixed number for the ease of

analysis. Moreover, we are interested in characterizing the energy efficiency performance for a

fixed value of N . This characterization serves as a corner-case design, for a given value of the

design parameter N.
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Figure 3.4 shows the variation of optimal β, (β∗) as a function of SNR for different values of

N . This curve highlights the fact that the optimal values of β are nearly equal for the actual and

approximate energy efficiency for SSR. The decrease in β∗ with an increase in SNR is intuitive,

since it results in a better detection performance, which in turn results in better throughput and

hence better efficiency. Therefore, in subsequent discussion, performance analysis is considered

only based on the approximated optimization problem for SSR.
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Figure 3.3. Variation of EE with β for SSR scheme.
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In Figure 3.5, the variation of optimal energy efficiency for SSR, CCS-AND and CCS-OR

schemes, with respect to a desired level probability of detection, P d is plotted. The condition

(D1) described in lemma 3.1 dictates that N ≥ 10, and hence N is chosen to be 10. Note that

this small value of N is fair to the CCS-AND rule, which is known to perform well only for low

N . The performance of all the techniques increase with a decrease in P d, since a lower tolerance

on the probability of miss detection improves the average throughput and energy consumption.

However, the rate of improvement in energy efficiency is rather low for around P d ≤ 0.75. Most

importantly, the SSR scheme outperforms both CCS-OR and CCS-AND schemes.

Next, EE of SSR schemes with respect to the penalty factor φ is considered in Figure 3.6. N and

κc are chosen to be N = 13, and κc = 0.5. It is straightforward to see that the energy efficiency

decreases with an increase in φ. Again, the SSR scheme consistently offers the best performance

in comparison with other schemes. In Figure 3.7 the performance of SSR schemes is plotted for

different values of the partial throughput factor κc, for N = 13 and φ = 0.5. An increase in partial

throughput factor indicates that the SSR scheme exploits the maximum channel availability time

to enhance the achievable throughput, for a given SNR.
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Figure 3.6. Variation of optimal energy efficiency with the penalty factor (φ) and N = 13.
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Figure 3.8. Variation of optimal energy efficiency with false alarm probability (P f ) and N = 10.
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Figure 3.8 shows the variation of energy efficiency with the tolerance limit on the false-alarm

probability, P f , with N = 10. As expected, the performance of SSR scheme increase with an

increase in the tolerance limit. As expected, the performance of SSR scheme improves as the SNR

increases.

Figure 3.9 shows the variation of actual and approximate energy efficiency values for SSR scheme

with η, for N = 30. Apart from reiterating on an earlier note that the approximate efficiency is

close to the actual value, this plot also signifies the variation of the performance of SSR with η is

monotone, and hence the choice of η∗ = 1
3

is justified.
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Figure 3.9. Variation of energy efficiency with sensing time allocation factor (η) and N = 30.

3.6 Summary

The energy efficiency of superior selective reporting (SSR)-based scheme for spectrum sensing is

considered, and its achievable throughput, energy consumption and energy efficiency is derived.

The energy efficiency maximization for the SSR scheme is formulated as a non-convex, multiple

variable optimization problem, and approximating it to a quasi-concave optimization problem is
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discussed, and showed that this approximation holds with sufficient accuracy. Through numerical

results, it was shown that the energy efficiency achieved by the SSR scheme is larger as compared

to the conventional cooperative sensing schemes based on OR and AND rules.

However, there is an associated disadvantage with the SSR scheme. The scheme demands

cooperation from the other sensors only when the center user declares the licensed band to be

vacant. Otherwise, the center user does not communicate in the data transmission slot of a

given time frame. The gain in energy efficiency in SSR scheme is related to the reduction in

energy consumption; this comes at the expense of achievable throughput. However, in a typical

CRN, achievable throughput may be of higher priority in comparison to the energy consumption.

Therefore, in the next chapter, novel modification on the SSR scheme, termed as the opportunistic

SSR (OSSR) scheme, is proposed which gives priority to spectrum vacant times – and hence,

the achievable throughput – as opposed to the energy consumption. The energy efficiency of the

OSSR scheme is analyzed and the tradeoff between SSR and OSSR is explored, which is the

implicit tradeoff between the throughput and energy consumption, respectively.



Chapter 4

Opportunistic Superior Selective

Reporting Technique for Energy

Efficient Cooperative Spectrum

Sensing

4.1 Introduction

The gain in energy efficiency in SSR scheme discussed in previous chapter is related to reduction

in energy consumption, which comes at the expense of achievable throughput. However, in a

typical CRN, increasing bit rate or achievable throughput may be of higher priority in comparison

to the energy consumption. Therefore, this chapter tackles the balance between the achievable

throughput and energy consumption of selective reporting based cooperative sensing scheme

in CRN by introducing a novel modification on the SSR scheme termed as the opportunistic

SSR (OSSR) scheme which gives priority to spectrum vacant times and hence, the achievable

throughput – as opposed to the energy consumption.

63
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When the center SU decides that the spectrum is vacant, the network uses the licensed bandwidth

for communication. Cooperative sensing is employed when the spectrum is declared to be

occupied, in the hope that the superior sensor declares the spectrum to be available. Therefore, this

greedy technique gives priority to spectrum vacant times – and hence, the achievable throughput

– as opposed to the energy consumption. Note that since the energy efficiency is defined as the

ratio between achievable throughput and energy consumption, both OSSR and SSR schemes are

expected to follow a trend, where the implicit tradeoff is between the throughput and energy

consumption, respectively. This tradeoff is explored and the scenarios where SSR outperforms

OSSR and vice-versa is described. The main contributions of this chapter are summarized as

below.

• A novel variation on the SSR scheme, namely the OSSR scheme, is proposed in this chapter

and its energy efficiency is studied, in terms of the detection threshold, the sensing time

allocation factors and the required number of SUs for cooperation, that satisfies a given

primary user interference constraint.

• The maximization of energy efficiency of OSSR is posed as a multiple variable, non-convex

optimization problem, and the approximations that reduce this problem to a quasi-concave

optimization are discussed. The tightness of the approximation is studied.

• The optimal detection threshold, time allocation factors and the number of SUs required for

cooperation are derived.

• The tradeoff in energy efficiency of SSR and OSSR schemes are referred to the tradeoff

between energy consumption and the achievable throughput of both the schemes.

• Through numerical results, it is shown that the SSR and OSSR schemes outperform

the conventional cooperative sensing (CCS) schemes employing the popular OR and

AND-fusion rules. In particular, it is highlighted that SSR outperforms all the other schemes

in several scenarios and it is shown that minimizing the energy consumption takes a priority

over maximizing the achievable throughput in a CRN, in several scenarios.

The remainder of this chapter is organized as follows. The OSSR scheme is proposed and its

performance is studied in Section 4.2. The energy efficiency formulation, approximations, and
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analysis of the OSSR scheme are presented in Sections 4.3, 4.4 and 4.5. The results and discussion

are presented in Section 4.6 and concluding remarks are provided in Section 4.7.

4.2 Opportunistic Superior Selective Reporting (OSSR)

Scheme

As discussed earlier in the SSR scheme, the cooperation among the SUs is employed (in terms

of the superior SU) when the decision of the center SU favors hypothesis H0; otherwise, it is

not utilized. Note that the SSR approach, reduces the energy consumption, and is pessimistic.

To elaborate, if the center SU incorrectly declares in favor of H1 given the true hypothesis to

be H0, an opportunity to transmit for a duration of TTotal − T0 is not exploited, even though it

results in lesser energy consumption. To overcome this disadvantage, a slightly modified version

of the SSR scheme, called the opportunistic SSR (OSSR) scheme is proposed in this chapter. The

system model and the time-slot structure for OSSR remains the same as that of the SSR scheme

(Figure 3.1), with the following change in the strategy. In time slot T0, the center SU utilizes the

cooperation from the other nodes when it favors H1 in contrast to H0 in case of SSR, and does

not employ cooperation when it decides in favor of H0. Therefore, in OSSR scheme, emphasis

is on the achievable throughput in contrast to the emphasis on the energy consumption as in SSR

scheme. In other words, the energy efficiency performance of SSR scheme vis-á-vis OSSR scheme

is the tradeoff between achievable throughput and energy consumption.

4.2.1 Performance Analysis of OSSR with Energy Detection

Energy detection (ED) is employed to detect the presence of the PU. In this section, the

performance analysis of energy detection in OSSR schemes is discussed.
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The probabilities of detection and false-alarm for CCS scheme employing OR and AND fusion

rules are respectively given by

P CCS,OR

f =

[
1−

N∏
i=1

(
1− Pf,i

)]
= 1− (1− Pf,i)N , (4.1)

P CCS,OR

d =

[
1−

N∏
i=1

(
1− Pd,i

)]
= 1− (1− Pd,i)N , (4.2)

and

P CCS,AND

f =
N∏
i=1

Pf,i =
(
Pf,i
)N (4.3)

P CCS,AND

d =
N∏
i=1

Pd,i =
(
Pd,i
)N
. (4.4)

The overall detection probability of the CCS scheme is obtained by fixing Pf,i to a predefined level.

Similarly, for the SSR scheme, the probabilities of detection and false-alarm are respectively given

by

P SSR

f,C,1 =
2N−1∑
i=1

[ ∏
Cl∈Φi

P SSR

f,Cl

∏
Cm∈Φ

(1− P SSR

f,Cm)

]
= 1− (1− P SSR

f,Ci
)N . (4.5)

Here Φi is the ith possible combination of elements among the total 2N elements in detection set

Φ, and Φ is the complement of the detection set Φ. Now, the overall probability of false-alarm at

the center SU in the SSR scheme is given by [34]

P SSR

f = P SSR

f,F + (1− P SSR

f,F )P SSR

f,C,1 (4.6)

Similarly, the probability that the center SU, F , correctly receives the decisions from other SUs

Ci, i = 1, . . . , N in favor ofH1 in T2 slot is shown to be

P SSR

d,C,1 =
2N−1∑
i=1

[ ∏
Cl∈Φi

P SSR

d,Cl

∏
Cm∈Φ

(1− P SSR

d,Cm)

]
= 1− (1− Pd,Ci)N , (4.7)

following which, the final detection probability of SSR can be calculated as [34]

P SSR

d = P SSR

d,F + (1− P SSR

d,F )P SSR

d,C,1 (4.8)
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Following the analysis similar to the SSR scheme, the probability that F receives an incorrect

decision in favor ofH0 from Csup in T2 slot for OSSR is obtained as

POSSR

f,C,1 =
2N−1∑
i=1

[ ∏
Cl∈Φi

P SSR

f,Cl

∏
Cm∈Φ

(1− P SSR

f,Cm)

]
= 1− (1− Pf,i)N . (4.9)

Now, the overall probability of false-alarm at the center SU in the OSSR scheme is given by

POSSR

f = 1−
{

(1− POSSR

f,F ) + POSSR

f,F (1− POSSR

f,C,1 )
}

(4.10)

Similarly, the probability that F correctly receives the decisions from other SUs {Ci, i = 1, . . . , N}

in favor ofH0 in T2 slot is shown to be

POSSR

d,C,1 =
2N−1∑
i=1

[ ∏
Cl∈Φi

(1− POSSR

d,Cl
)
∏
Cm∈Φ

POSSR

d,Cm

]
= 1− (1− Pd,Ci)N , (4.11)

following which, the final detection probability of OSSR can be calculated as

POSSR

d = 1−
{

(1− POSSR

d,F ) + POSSR

d,F (1− POSSR

d,C,1 )
}

(4.12)

In the next section, the main contributions of this chapter is discussed, i.e., analysis on the

achievable throughput, energy consumption and energy efficiency of the OSSR scheme which

follows the same trend corresponding to the SSR scheme considered in the previous chapter.

4.3 Formulation of Energy Efficiency Optimization for the

OSSR Scheme

As mentioned earlier, energy efficiency is defined as the ratio of average throughput to the average

energy consumption of a CR system [140, 148]. In the following, the details on the average

throughput, average energy consumption for the CR network with OSSR scheme is described and

later the governing optimization problem of designing η, β and N is provided such that the energy

efficiency is maximized.
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Table 4.1. Energy consumption and throughput achieved by the OSSR for different scenarios

Scenario Energy(joules) Throughput(bits/Hz)
P (H1) POSSR

d,F POSSR
d,C,1 Ps T0+N Ps T1 0

P (H0) POSSR
f,F POSSR

f,C,1 Ps T0+N Ps T1 −φC(TTotal − βT )
P (H1) (1− POSSR

d,F ) Ps T0 + Pt(TTotal − T0) κcC(TTotal − T0)
P (H1) POSSR

d,F (1-POSSR
d,C,1 ) Ps T0+N Ps T1+PtT2 + Pt(TTotal − βT ) κcC(TTotal − βT )

P (H0) (1− POSSR
f,F ) Ps T0 + Pt(TTotal − T0) C(TTotal − T0)

P (H0)(POSSR
f,F ) (1− POSSR

f,C,1 ) Ps T0+N Ps T1+PtT2 + Pt(TTotal − βT ) C(TTotal − βT )

In a CR network with OSSR scheme, the average throughput achievable depends on the

communication between PU and SUs, and is categorized into four scenarios elaborated below.

S1. The first scenario corresponds to the case when PU is present, and the network correctly

identifies its presence. This case corresponds to the situation where the decision is in favour

of H1 is made at the end of time slot T0 (i.e., by the center SU), and as a result it seeks

cooperation from the other nodes, where node Csup will also make a correct decision that

the PU is present at the end of slot T2, which occurs with probability P (H1) POSSR
d,F POSSR

d,C,1 .

Observe that in this scenario, the SU do not transmit data and the throughput achieved is

zero.

S2. The second scenario covers the case when PU is absent but incorrectly declared as present

by the network. This case corresponds to the situation where the the center SU make a false

alarm, which favours H1 at the end of time slot T0 by the center SU, and again it seeks

cooperation from the other nodes, where node Csup will also make an incorrect decision that

the PU is present at the end of slot T2, which occurs with probability P (H0) POSSR
f,F POSSR

f,C,1 .

Since the CR network misses a transmission opportunity, the throughput achieved in this

case is given by −φC(TTotal − βT ), where φ is a suitably chosen penalty factor [149].

S3. The third case corresponds to the scenario when both center SU and the node Csup make

incorrect decision that the PU is absent, when it is actually present. This case can be further

divided in to two cases which corresponds to the situation where the decision in favour of

H0 is made at the end of slot TTotal by the center SU, which occurs with the probability

P (H1) (1−POSSR
d,F ) and in the case when center SU correctly declaresH1, but the node Csup

incorrectly declaresH0 with the probability P (H1) POSSR
d,F (1-POSSR

d,C,1 ). However, even when

this is the case, a partial throughput of κcC(TTotal − βT ) units can still be achieved for some

0 ≤ κc < 1.
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S4. The last case corresponds to where the achievable throughput is maximum. Again this case

has two sub-cases. The first case corresponds to the situation where the center SU make a

correct decision of absence of PU which occurs with probaility P (H0) (1 − POSSR
f,F ). The

second case corresponds to the situation where although center SU incorrectly declares the

presence of PU, the node Csup correctly declares the spectrum to be empty. This covers the

situation when the PU is absent and both center SU and Csup makes correct decisions, which

occurs with probability P (H0)(POSSR
f,F ) (1−POSSR

f,C,1 ). In this case, the average throughput for

the duration of TTotal − βT is denoted as C(TTotal − βT ) units, where C denotes the average

data rate of SU transmission.

4.4 Energy Efficiency Analysis for the OSSR Scheme

Similar to the analysis in SSR, the achievable throughput and the energy consumption of the OSSR

scheme can be divided into various scenarios, as detailed in Table. 4.1. It can be shown that the

equations for the average throughput and energy consumption for OSSR are given by

ROSSR(ε, η, β,N) = C(TTotal − T0)
{
P (H1)(1− POSSR

d,F )κc + P (H0)(1− POSSR

f,F ))
}

+ C(TTotal − βT )
{
P (H1)POSSR

d,F (1− POSSR

d,C,1 )κc + P (H0)POSSR

f,F (1− POSSR

f,C,1 )

−φP (H0)POSSR

f,F POSSR

f,C,1

}
, (4.13)

EOSSR(ε, η, β,N) = PsT0 +NPsT1

{
P (H1)POSSR

d,F + P (H0)POSSR

f,F

}
+ [PtT2 + Pt(Ttotal − βT )]

{
P (H1)POSSR

d,F (1− POSSR

d,C,1 ) + P (H0)(POSSR

f,F )
}

(1− POSSR

d,C,1 ) + Pt(Ttotal − T0)
{

1 + P (H1)POSSR

d,F − P (H0)POSSR

f,F

}
. (4.14)

Recall that Ps and Pt denote the power required for each SU node for sensing and transmission,

respectively. The energy consumption and average throughput for the OSSR scheme across all the

scenarios mentioned are listed in Table 4.1.

The energy efficiency for the OSSR scheme is given by

EEOSSR(ε, η, β,N) =
ROSSR(ε, η, β,N)

EOSSR(ε, η, β,N)
(4.15)
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Now, the energy efficiency optimization problem governing the OSSR scheme is given by

OPOSSR : max
ε,η,β,N

EEOSSR(ε, η, β,N) (4.16)

s.t.



POSSR
f ≤ Pf ,

POSSR
d ≥ Pd,

0 ≤ β ≤ 1,

0 ≤ η ≤ 1/3,

1 ≤ N ≤ Nmax,

(4.17)

for some 0 < Pf < Pd < 1. Yet again, the above mentioned optimization problem is non-convex,

and for the ease of analysis, the cost function of the above problem as in the SSR case is

approximated. The details are provided in the next section.

4.5 Approximation and Problem Reformulation

Using the same set of assumptions as in the SSR case, the approximate throughput for OSSR

scheme can be written as

R̃OSSR(ε, η, β,N) ≈ C(TTotal − T0)
{
P (H0)(1− POSSR

f,F )
}

+ C(TTotal − βT ){
P (H0)POSSR

f,F (1− POSSR

f,C,1 )− φP (H0)POSSR

f,F POSSR

f,C,1

}
. (4.18)

Assuming that POSSR
f,F = POSSR

f,Ci
= Pf ,

Further simplification gives

R̃OSSR(ε, η, β,N) ≈ C(TTotal − T0) {P (H0)(1− Pf )}+ C(TTotal − βT ){
P (H0)Pf (−φ+ (φ+ 1)(1− Pf )N

}
. (4.19)
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Similarly approximate ẼOSSR can be written as

ẼOSSR(ε, η, β,N) ≈ PsT0 +NPsT1[P (H1)POSSR

d,F + P (H0)POSSR

f,F ]

+ [PtT2 + Pt(TTotal − βT )][P (H0)P SSR

f,F (1− POSSR

f,C,1 )]

+ Pt(TTotal − T0)[1− P (H1)POSSR

d,F − P (H0)POSSR

f,F ]. (4.20)

Assuming that POSSR
f,F = POSSR

f,Ci
= Pf , and POSSR

d,F = POSSR
d,Ci

= Pd,

Further approximation gives

ẼOSSR(ε, η, β,N) ≈ PsT0 +NPsT1[P (H1)Pd + P (H0)Pf ]

+ [PtT2 + Pt(TTotal − βT )][P (H0)Pf (1− Pf )N ]

+ Pt(TTotal − T0)[1− P (H1)Pd − P (H0)Pf ]. (4.21)

Finally, the approximate energy efficiency can be written as

ẼEOSSR(ε, η, β,N) ≈ R̃OSSR(ε, η, β,N)

ẼOSSR(ε, η, β,N)
, (4.22)

and the optimization problem OPOSSR can be reformulated as

OP1OSSR : max
ε,η,β,N

ẼEOSSR(ε, η, β,N) =
R̃OSSR(ε, η, β,N)

ẼOSSR(ε, β, η,N)
(4.23)

s.t.



POSSR
f ≤ Pf ,

POSSR
d ≥ Pd,

0 ≤ β ≤ 1,

0 ≤ η ≤ 1/3,

1 ≤ N ≤ Nmax,

(4.24)

The following theorem gives the optimal detection threshold that maximizes the objective function

in OP1OSSR.
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Theorem 4.1. The constraint POSSR
d ≥ Pd in the optimization problem OP1OSSR is satisfied with

equality. Consequently, the optimal detection threshold is given by

ε∗ = σ2

(γ + 1) +

√
2γ + 1

ηβTfs
Q−1

√Pd
N

 (4.25)

Proof. See Appendix B.

Now, by similar arguments used in the SSR case in the previous chapter, it can be shown that it is

sufficient to choose the detection threshold such that the constraint POSSR
d ≥ Pd is satisfied with

equality. Since

POSSR

d = Pd = Pd{1− [1− Pd]N}, (4.26)

the expression for the optimal detection threshold ε∗ can be obtained directly.

Following the above result, the problem OP1OSSR can be simplified in to OP2OSSR as given by

OP2OSSR : max
ε∗,η,β,N

ẼEOSSR(ε∗, β, η,N) (4.27)

s.t.



POSSR
f ≤ Pf ,

0 ≤ β ≤ 1,

0 ≤ η ≤ 1/3,

1 ≤ N ≤ Nmax.

(4.28)

For the OSSR case, it is not straightforward to obtain closed form expression for ∂EEOSSR
∂β

, and

therefore, the optimal values β∗ and η∗ have to be numerically calculated. However, similar to the

case of SSR scheme, βmin has a closed form expression and is given by

βmin =

 1(
ε∗

σ2 − 1
)

(
√
ηTfs)

Q−1

√Pd
N

2

(4.29)
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Based on the analytic development, search algorithm use in SSR scheme is used here to obtain the

optimal values of ε, η, β and N for the optimization problem in OP1OSSR, which is summarized

in Algorithm 3.

Algorithm 3 : Optimizing variables ε, β, and N

1: Set Ps, Pt, TTotal, τ, N, β0, P (H0), P (H1), Pf , Pd
2: procedure INITIALIZE β = β0, η = 1/3, POSSR

d = Pd, EEOSSR(0) = 0 (,)
3: Initialize ζ ∈ R such that EEOSSR(N + 1)− EEOSSR(N) < ζ
4: To select optimal ε, β,N
5: for do N = 1 : Nmax

6: Calculate ε using (4.25)
7: Calculate βmin using (4.29)
8: Compute EEOSSR using (4.16) with ε(N) and βmin(N)
9: Go to Step 5 if EEOSSR(N + 1)− EEOSSR(N) > ζ

10: Stop iteration and return the optimal
11: Calculate EEOSSR(N, ε∗, β∗)
12: end for
13: end procedure
14: Return max(EEOSSR) and the corresponding N, ε∗, β∗,

4.6 Numerical Results and Discussion: SSR vs. OSSR

In this section, the performances of OSSR in terms of energy efficiency is discussed and compared

with that of SSR scheme analyzed in the previous chapter and the CCS schemes such as

AND-based CCS, and OR-based CCS schemes, in terms of energy efficiency. MATLAB is

used as a simulation tool. The parameter values are fixed as follows. The target probability of

detection, Pd, and false-alarm probability, Pf , was chosen to be 0.9 and 0.1, respectively. The prior

probabilities P (H0) and P (H1) was set to 0.75 and 0.25, respectively. The total frame duration

was assumed to be TTotal = 200 ms. The sampling frequency at the local SUs was assumed to be

fs = 1 MHz, and the sensing power Ps = 0.1 W. The sensing time, τ , and reporting time, r, of

CSS scheme was set to 100 µs. The achievable rate of secondary transmission was chosen to be

C = log2(1 + SNRs) = 6.6582 bits/sec/Hz, where the SNRs for the secondary transmission was

assumed to be SNRs = 20 dB. The transmission power of individual sensors, Pt, was assumed

to be 3 W. The number of available users, N , was set to minimum of 10 following the condition

(D1) in lemma 3.1, unless otherwise stated. Also, the partial throughput factor, κc, and the penalty

factor, φ, was set to be 0.5 each.
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Figure 4.1. Variation of energy efficiency with β for SSR and OSSR schemes.

Figure 4.1 shows the variation ofEESSR(ε∗, η∗, β,N), ẼESSR(ε∗, η∗, β,N),EEOSSR(ε∗, η∗, β,N)

and ẼEOSSR(ε∗, η∗, β,N) versus β for different values of SNR. N is set as 10. It can be

observed that all the cost functions are quasi-concave with respect to β, and the good match

between the actual and approximation cost functions for SSR in (3.27) and (3.34), respectively, and

those corresponding to OSSR validate the argument of considering the optimization of functions

ẼESSR(ε∗, η∗, β,N) and ẼEOSSR(ε∗, η∗, β,N). Also, as expected, the energy efficiency in all

cases increases with an increase in SNR. For the rest of the analysis, we chose number of available

SUs,N to be a fixed number for the ease of analysis. Moreover, we are interested in characterizing

the energy efficiency performance for a fixed value of N . This characterization serves as a

corner-case design, for a given value of the design parameter N.
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Figure 4.2. Variation of the optimal sensing time allocation factor (β) with SNR (dB).

Figure 4.2 shows the variation of β∗, the optimal β, as a function of SNR for different values

of N . This curve highlights the fact that the optimal values of β are nearly equal for the actual

and approximate energy efficiency for both SSR and OSSR. The decrease in β∗ with an increase

in SNR is intuitive, since it results in a better detection performance, which in turn results in

better throughput and better efficiency. From Figures. 4.1 and 4.2, the performance analysis

was considered only based on the approximated optimization problems for SSR and OSSR for

subsequent discussions.
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Next, the performance of all the schemes with respect to the penalty factor φ is considered in Figure

4.3. N is chosen to be 13, and κc = 0.5. It is evident that the energy efficiency decreases with an

increase in φ, across all schemes. Again, the SSR scheme consistently offers the best performance

in comparison with other schemes. However, the situation depicted in Figure 4.4 favors OSSR,

where the performance of all the schemes are plotted for different values of the partial throughput

factor κc, for N = 13 and φ = 0.5. Since the OSSR scheme exploits the channel availability time

to enhance the achievable throughput, for a given SNR, there exists a nontrivial κc above which

OSSR outperforms SSR as well as the other schemes. Note that the improvement in the efficiency

of the CCS-AND rule is due to the fact that it saves largely on energy consumption with a reduced

throughput.
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Figure 4.6. Variation of energy efficiency with sensing time allocation factor (η) and N = 30.

Figure 4.5 shows the variation of energy efficiency with the tolerance limit on the false-alarm

probability, P f , with N = 10. As expected, the performance of all schemes increase with an

increase in the tolerance limit. The SSR scheme performs the best as the SNR increases. At

low SNRs, OSSR outperforms SSR, but offers no significant gain as SNR increases. The CCS

methods also do not offer significant performance gain with SNRs, but outperform both SSR and

OSSR schemes for low values of P f . This increase in energy efficiency is due to the saving in

energy consumption.

Figure 4.6 shows the variation of actual and approximate energy efficiency values for SSR and

OSSR schemes with η, for N = 30. Apart from reiterating on an earlier note that the approximate

efficiency is close to the actual value, this plot also signifies the following. The variation of the

performance of SSR with η is monotone, and hence the choice of η∗ = 1
3

is justified. However, it

can be observed that η∗ for OSSR can be arbitrary, and has to be chosen as η∗ = max{η∗, 1/3} to

ensure the non-negativity of time slots T0, T1 and T2.
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Finally, the tradeoff between the optimal performances of SSR and OSSR schemes are discussed.

The achievable throughput and energy consumption for the optimal ε∗, η∗, and N on both SSR

and OSSR schemes with respect to parameter β are shown in Figures. 4.7 and 4.8, respectively.

For each value of SNR, as expected, the OSSR scheme yields a larger throughput, at the expense

of larger energy consumption, as opposed to the SSR scheme which saves the consumed energy at

the loss of throughput.
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Figure 4.9. Variation of achievable throughput with detection probability (P f ) and N = 30.

A similar trend can be seen in Figures. 4.9 and 4.10, where the throughput and energy consumption

performance comparison is carried out for different values of P d. Interestingly, the throughput

reduction and an increase in energy saving occurs at a faster rate in SSR as opposed to

OSSR. Based on these trends, one would expect that the energy efficiency performance of

both the schemes to be comparable in many cases. However, as seen in the previous plots

(Figures. 4.3–4.6), the SSR scheme outperforms OSSR in many scenarios. This indicates that the

energy consumption gets a larger priority in a CRN, as opposed to the achievable throughput. In

other words, in the scenarios such as green cognitive radio communication systems, SSR scheme
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is a better choice. However, in the scenarios where the saving of sensing and transmission energy

is not a main concern, OSSR scheme could be employed.
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Figure 4.10. Variation of optimal energy consumption with detection probability (P f )and N =
30.

4.7 Summary

A variant of the SSR scheme called the opportunistic superior selective reporting (OSSR) scheme

was proposed, and its energy efficiency analysis was carried out. Through numerical results, it

was shown that the SSR and OSSR techniques outperform the conventional AND and OR fusion

rule-based energy efficient schemes, and discussed the regimes where OSSR is preferred over

SSR and vice-versa, in terms of the energy efficiency. It is shown that the trade off between the

performances of SSR and OSSR schemes is the implicit trade off between the energy consumption

and average throughput. Moreover, it is shown that the SSR scheme outperforms OSSR scheme

in many scenarios. This indicates that the energy consumption gets a larger priority in a CRN, as

opposed to the achievable throughput and therefore, in the scenarios such as green cognitive radio
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systems, SSR scheme is a better choice. However, in the scenarios where the saving of sensing

and transmission energy is not a main concern, OSSR scheme could be employed.

Another possibility of introducing energy efficiency in CCS is by optimally assigning a subset

of nodes for spectrum sensing for a given PU channel. Therefore, it is beneficial to find optimal

subset of nodes for spectrum sensing especially in energy constrained multichannel heterogeneous

cognitive radio sensor network (HCRWSN). Towards this end in the next chapter, the performance

of a multichannel heterogeneous cognitive radio network which employs energy harvesting nodes

is analyzed and their relative advantages and tradeoffs are discussed.



Chapter 5

Throughput Efficient Selective

Reporting based Spectrum Sensing

in Heterogeneous Cognitive Radio

Networks with Energy Harvesting

Nodes

5.1 Introduction

Heterogeneous wireless sensor networks (HWSN) are envisioned to tailor the recent growth of

wireless data services [155],[156]. With vastly increasing wireless traffic demands, realization of

HWSN suffers from disadvantages such as drastic interference [115], which affects its spectral

efficiency. A heuristic solution to mitigate this problem is to integrate the cognitive radio (CR)

technology [2] with HWSN [116], collectively termed as heterogeneous cognitive radio wireless

sensor networks (HCRWSN) [117]. In an HCRWSN, the deployed sensors periodically scan a

primary user (PU) spectrum to detect the availability of vacant channels and the network assigns

83
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data transmission over them, while guaranteeing a given PU interference level [118]. However,

the periodic sensing increases the energy consumption, which is a critical issue in battery operated

sensor networks. Thus energy harvesting (EH) is considered as one of the effective approaches

for improving the energy efficiency of WSNs. EH-enabled sensors can harvest energy from either

radio signals or ambient energy sources which enable them to operate continuously without battery

replacement. Since spectrum sensors perform spectrum scanning at a much higher rate than data

sensing which depletes the battery energy much faster than the data sensors, the average energy

efficiency can be improved by using energy harvested spectrum sensors. Therefore, an HCRWSN

with energy harvesting (EH) spectrum sensors [119] has been proposed to enhance both spectrum

and energy efficiencies [77],[78],[79],[80].

In this chapter, an analysis on the throughput performance of an SSR-based, multi-channel

HCRWSN is presented, and an optimization problem that maximizes the average achievable

throughput is formulated to find the best sensor-to-channel assignment vector, subject to energy

harvesting and interference constraints. Throughput analysis of a multi-channel HCRWSN,

utilizing the SSR-based scheme has not been considered earlier in the literature.

The main contributions of this chapter are summarized as below.

• The average achievable throughput of an SSR-based, multi-channel HCRWSN is analyzed

in terms of channel available time and detection accuracy.

• The problem of finding an optimal set of spectrum sensors scheduled for spectrum sensing

for each channel such that the average network throughput is maximized, is formulated and

solved by employing the cross entropy (CE) algorithm. The advantages of the CE algorithm

in contrast to the exhaustive search algorithm, and a greedy algorithm are established.

• Through numerical results, it is shown that as the number of sensors increases, the

SSR-based scheme outperforms the optimal CCS scheme in terms of average achievable

throughput.

• A tradeoff between the average achievable throughput of SSR and CCS schemes is studied,

which is the inherent tradeoff between the channel available time and detection accuracy.

In other words, it is shown that as the number of spectrum sensors increases, the channel

available time gets a larger priority in a HCRWSN than the detection accuracy.
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The remainder of this chapter is organized as follows. The system model for multi-channel

HCRWSN employing the SSR scheme is presented in Section 5.2. The spectrum sensor scheduling

problem that maximizes the average achievable throughput for the SSR scheme is formulated and

analyzed in Section 5.3. The results and discussions are presented in Section 5.4, and conclusions

are provided in Section 5.5.

5.2 System Model

Primary user 

receiver
Primary user 

base station

Energy harvesting 

enabled spectrum 

sensors

sink
Battery enabled 

data sensors

Figure 5.1. System model of the HCRWSN.

Consider a heterogeneous cognitive radio wireless sensor network (HCRWSN) with the following

three types of nodes: M EH-enabled spectrum sensors, N battery powered data sensors and

a sink or a fusion center, FC [117] as shown in Figure 5.1. It is assumed that the PUs are

distributed within the coverage area of the HCRWSN. The licensed spectrum is divided into K

non-overlapping channels of equal bandwidth W . The data sensors utilize the vacant channels

declared by the spectrum sensors, on a priority basis. The FC controls the scheduling of both the

spectrum sensors and data sensors. The scheduling of spectrum sensors is considered in this work.

The set of spectrum sensors for each channel is assigned using the cross entropy (CE) algorithm,

as discussed in [117]. It is assumed that each spectrum sensor can sense multiple orthogonal

channels simultaneously [157, 158]. For cooperation in sensing, the superior selective reporting
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(SSR) scheme [34] is used, which is explained in the next section. Later, the sink assigns the

available channels to the data sensors for data transmission.
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Figure 5.2. Frame structure of the HCRWSN for (a) CCS scheme and (b) SSR scheme.
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The frame structure of HCRWSN is as shown in Figure 5.2. Periodic sensing is carried out with

a frame period of TTotal seconds. Each frame duration is divided into two phases, namely, sensing

phase and data transmission phase, given by τs and TTotal − τs units, respectively. In the sensing

duration τs, a preassigned optimal subset of the M spectrum sensors, denoted by M (k), k =

1, 2, . . . , K, simultaneously sense the presence of PU for a time ts, and one among these M (k)

sensors is selected based on their SNR to report its decision to the sink during reporting time slot

tr, corresponding to each channel. The advantage of employing the SSR scheme is that it increases

the throughput and reduces the sensing overhead, when compared to conventional cooperative

sensing (CCS) scheme using the OR rule [92]. Meanwhile, the data sensors collect information,

and when the sink identifies all the available channels, the data sensors transmit data by utilizing

all the available channels in the data transmission phase for a duration TTotal − τs.

5.2.1 Conventional Cooperative Sensing (CCS) Scheme

Conventional cooperative sensing (CCS) scheme is a common technique employed during the

sensing phase for a duration of ts seconds, where a set of spectrum sensors are assigned to sense

kth channel for sensing. Subsequently, the remaining duration of the sensing time, that is τs − ts,

is further divided into M (k) sub-slots for the transmission of the individual decisions by the nodes

{M (k)
m ,m = 1, . . . ,M, k = 1, . . . , K} to the sink (fusion center) [139–141]. To save on the

sensing overhead, it is assumed that each sensor transmits a one-bit decision over a dedicated,

error free channel. Therefore, as shown in Figure 5.2(a), the sensing duration adds to a total of

τs = ts +M (k)tr units, where tr denotes the reporting time-duration of each sub-slots. Hence, the

sensing time τs increases linearly withM (k), which decreases the channel available time and hence

the average achievable throughput. At the end of time slot τs, the sink collects the sensing results

from all the scheduled spectrum sensors and combines these decisions by using a suitable fusion

rule such as the AND rule [142], OR rule [143] or the L-out-of-M rule [144], and estimates the

availability of the channels. In this work, the L-out-of-M rule is considered, since it is known to

be Bayesian optimal [159]. The sensing duration of CCS scheme increases with M (k). To reduce

the sensing overhead, a selective reporting based cooperative spectrum sensing scheme, namely

superior selective reporting (SSR) scheme has been proposed [34], which is briefly explained next.
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5.2.2 Superior Selective Reporting (SSR)-Based Sensing Scheme

The SSR scheme, originally proposed in [34], has multiple advantages over the CCS scheme that

employs the OR rule, as the sink receives the decision only from the superior sensor, denoted

by M (k)
sup = arg max

Mm∈Φk

(
γMm |hMm,FC|2

)
, m = 1, . . . ,M , which is selected based on the received

SNR between the FC and sensors across all sensors. The set of spectrum sensors M (k) that detect

the presence of PU constitute a detection set Φk, k = 1, . . . , K. Each sensor {Mm ∈ Φk} sets

off a timer at the end of sensing phase, with each initial values {Tm,Mm ∈ Φk} set inversely

proportional to its received SNR γMm |hMm,FC|2 [34], where γMm and hMm,FC denote the SNR

and the fading coefficient of the channel from the FC to Mm, m = 1, . . . ,M , respectively, i.e.,

Tm = µ/(γMm |hMm,FC|
2), for some µ ∈ R+. The sensor with highest SNR, termed as the superior

sensor, exhausts its timer first and reports to the FC. Hence, only the superior sensor sends its local

decision to sink in time slot tr by transmitting a short duration flag packet, signaling its presence.

All other sensors, waiting for their timer to expire, back off immediately as soon as they hear this

flag packet[146].

5.2.3 Performance Analysis with Energy Detection

As mentioned earlier, energy detector (ED) is employed in this work to detect the presence of the

PU. In this section, the performance analysis of energy detection strategies that employ CCS and

SSR schemes are discussed.

5.2.3.1 CCS Scheme

For the CCS scheme, probabilities of signal detection and false-alarm at mth sensor sensing kth

channel are given by [117]

Pf (m, k) = Q

(( ε
σ2
− 1
)√

U

)
, Pf , (5.1)

Pd(m, k) = Q

(
Q−1(Pf )−

√
Uγmk√

2γmk + 1

)
, (5.2)
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where Q(·) is the complementary CDF of the standard Gaussian distribution, and γmk denotes the

received SNR from the PU at the kth channel by themth sensor. U is the average number of samples

of the received signal at the mth spectrum sensors on the kth channel. The PU signal is assumed to

be a complex-valued PSK signal and the noise is circularly symmetric complex Gaussian with zero

mean and variance σ2 [160]. Without loss of generality, the detection threshold ε is set to be the

same for all the sensors. The overall probabilities of false-alarm and detection at the kth channel

for the CCS scheme [140] is obtained by fixing Pf (m, k) to a predefined level Pf ∈ (0, 1), as

Gccs

f (k) =
M(k)∑
n=L(k)

(
M (k)

n

)
Pf (m, k)(1− Pf (m, k))M

(k)−n

=
M(k)∑
n=L(k)

(
M (k)

n

)
Pf (1− Pf )M

(k)−n (5.3)

Gccs

d (k) =
M(k)∑
n=L(k)

(
M (k)

n

)
Pd(m, k)(1− Pd(m, k))M

(k)−n, (5.4)

where the total number of cooperating sensors for sensing kth channel is M (k), and the value of L

determines the fusion rule used. The optimum value of L is given by [159]

L
(k)
opt = min

M (k),


log
(

P (H0)
1−P (H0)

)
+M (k) log

(
1−Pf (m,k)

Pm(m,k)

)
log
{(

1−Pm(m,k)
Pf (m,k)

)(
1−Pf (m,k)

Pm(m,k)

)}

 , (5.5)

where only those Pf (m, k) and Pm(m, k) values for m ∈ M (k) are used to evaluate (5.5) for

each k = 1, . . . , K. If L(k) is chosen as either M (k), 1 or dM (k)/2e, the L-out-of-M rule reduces

to the AND, OR or Majority fusion rules, respectively. As mentioned previously, the optimum

fusion rule with L as given in (5.5) is considered. However, for a comparative study, the CCS

scheme with AND and OR rules are considered later, which have their associated advantages and

disadvantages [26, 143].
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5.2.3.2 SSR Scheme

The method of choosing the superior SU and calculating the received SNR is followed as described

in [34, 92]. The probabilities of false-alarm, Gf (k), and signal detection, Gd(k), at the FC are

given, respectively, as [147]

Gf (k) =
2M

(k)−1∑
j=1

[ ∏
m∈Φj,k

P SSR

f,Cl

∏
m∈Φj,k

(1− P SSR

f,Cm)

]
(5.6)

= 1−(1−Pf )M
(k)

, (5.7)

Gd(k) = 1−
M(k)∏
m=1

(1−Pd(m, k))M
(k)

. (5.8)

Here, Φj,k is the j th nonempty sub-collection of detection set Φk, and Φj,k is the complement

of Φj,k. In contrast to the optimal CCS scheme with L-out-of-M fusion rule, the advantage of

the SSR scheme is in saving the reporting time tr, which increases the channel available time

for data transmission vide Figure 5.2, and thereby improving the average achievable throughput

for secondary transmission over the kth channel. Next, the main contribution of this chapter is

considered, i.e., an optimization problem is formulated for finding the best subset of spectrum

sensors per channel, M (k), to maximize the network throughput for a given PU interference

constraint.

5.3 Problem Formulation: Optimal Scheduling

The average number of bits transmitted by the data sensors across all K channels in one time

duration is defined as the average achievable throughput of a HCRWSN [117]. Consider a

sensor-to-channel assignment matrix J ∈ {0, 1}M×K . Let the (m, k)th element [J]m,k, m =

1, . . . ,M , k = 1, . . . , K of 1 indicate that the sensor m is scheduled for spectrum sensing for

channel k, and 0 otherwise. This work aims to find the optimal J that maximizes the average

throughput in the considered HCRWSN. The average achievable throughput depends on the

available time for data transmission, probability that favors the inactive state of PU, P (H0)(k),

of the kth channel, Pf (m, k), Pd(m, k), and the channel capacity, C. The PU dynamics over each
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channel is modeled as a stationary exponential ON-OFF random process [117], with the average

available time of the kth channel being the product of stay-over time and the stationary probability.

Let T (k)
ON = 1/λ

(k)
0 and T (k)

OFF = 1/λ
(k)
1 be the average values of the stay-over time of the ON state

and OFF state of kth channel respectively, where λ(k)
0 denotes the transition rate from the ON state

to OFF state on the kth channel and λ(k)
1 denotes the transition rate in the opposite direction. The

stationary probabilities of the ON and OFF states of PU on each channel are given by [117]

P (H1)(k) =
λ

(k)
1

λ
(k)
1 + λ

(k)
0

, P (H0)(k) =
λ

(k)
0

λ
(k)
1 + λ

(k)
0

. (5.9)

The average achievable network throughput under four possible scenarios are as listed as below.

S1. In this scenario, the spectrum sensors successfully detect the absence of PUs with

probability P (H0)(k) (1 − Gf (k)). The throughput for this scenario is expressed as

P (H0)(k)
[
1− P̄f

]∑M
m=1[J ]m,k

I
(k)
d,SSR C(k)(TTotal−τs), where I(k)

d,SSR is a binary variable introduced as a constraint to satisfy

the PU protection requirement are respectively, defined as

I
(k)
d,SSR =

1 if 1−Gd(k) < PM thr,

0 otherwise.
(5.10)

Similarly, the throughput for the CCS case can be obtained for this scenario (Table 5.1) via

the corresponding indicator function defined as:

I
(k)
d,CCS =

1 if 1−Gccs
d (k) < PM thr,

0 otherwise.
(5.11)

That is, in both cases, if the probability of miss of the kth channel exceeds a predefined

threshold PMthr ∈ (0, 1), the decision is said to be unreliable for communication over the

kth channel.

S2. Here, the sensors correctly detect the PU as active, with probability P (H1)(k)Gd(k), which

results in no throughput. Similarly, no throughput can be achieved in the CCS case.
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S3. In this scenario, the sensors falsely detect the PU to be present, with probability

P (H0)(k)Gf (k). Here, since the CR network misses a transmission opportunity, the

throughput achieved is given by P (H0)(k)
[
1− (1− P f )

∑M
m=1[J]m,k

]
I

(k)
d,SSR C(k) (TTotal −

τs)(−φ), where φ ∈ (0, 1) is a suitably chosen penalty factor.

S4. In this scenario, the sensors make an incorrect decision that the PU is absent, with probability

P (H1)(k)(1−Gd(k)). The network causes interference to the PU, with a partial throughput

of κ P (H1)(k) [1− Pd(m, k)]
∑M
m=1[J]m,k I

(k)
d,SSR C(k) (TTotal − τs), with some κ ∈ (0, 1).

The throughput achieved due to the CCS and SSR schemes across all the scenarios are listed in

Table . 5.1. Following these cases, average achievable throughput of the SSR scheme is given by:

RSSR =
K∑
k=1

{
P (H0)(k)

[
1−P f

] M∑
m=1

[J]m,k− φP (H0)(k)

[
1−(1−P f )

M∑
m=1

[J]m,k

]
+P (H1)(k)

[1−Pd(m, k)]

M∑
m=1

[J]m,k
κ

}
I

(k)
d,SSR C(k)(TTotal−τs), (5.12)

for some 0 ≤ κ < 1, and φ ≥ 0. On the other hand, the average achievable throughput for the

CCS scheme vide Table. 5.1 is given by
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For the spectrum sensor scheduling problem, the constraints are set related to the energy harvesting

(EH) dynamics to facilitate the sustainability of the sensors. In a given frame TTotal, the energy

consumption of each sensor should not exceed the EH rate, i.e.,
(∑K

k=1[J]m,k
)
es ≤ δm TTotal ∀m,

where δm is the EH rate. Now, the problem to find the optimum J that maximizes RSSR can be

formulated as follows:

OPSSR : max
J

RSSR (5.13)

s.t.


(∑K

k=1[J]m,k
)
es ≤ δm TTotal, ∀m

[J]m,k = {0, 1}, ∀m, k
(5.14)

Similarly, the throughput optimization problem governing the CCS scheme is given by

OPCCS : max
J

RCCS (5.15)

s.t.


(∑K

k=1[J]m,k
)
es ≤ δm TTotal, ∀m

[J]m,k = {0, 1}, ∀m, k
(5.16)

From (5.12), it is clear that as more channels are assigned to a given set of sensors, i.e., as∑K
k=1[J]m,k increases, the value of (1 − P f )

∑M
m=1[J]m,k decreases, and Id,SSR tends to unity.

Therefore, there is a tradeoff between the values of (1 − P̄f )
∑M
m=1[J]m,k and Id,SSR. As a

consequence, as M increases, there exist a tradeoff between the detection accuracy and the

channel available time, which affects the average achievable throughput of the network. The

optimization problem OPCCS and OPSSR, are integer programming problem, that can be solved

by using exhaustive search method. However, this leads to a search space of 2MK elements

which are computationally expensive. Hence, the cross entropy (CE) algorithm is applied as

discussed in [117]. Therefore, the problemOPSSR is transformed into the following unconstrained

optimization problem, by applying a penalty of ω ∈ R+ for violating any of the constraints [117]:

max
J

RSSR − ωI( K∑
k=1

[J]m,kes>δmTTotal

)
,

(5.17)
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The unconstrained optimization problem for CCS case can be written as

max
J

RCCS − ωI( K∑
k=1

[J]m,kes>δmTTotal

)
,

(5.18)

where I(·) is the indicator function. When the solution violates the constraints, the objective

function evaluates to a negative value, which is discarded. The CE algorithm is implemented

as discussed below [117]. Initially, the iteration counter is set as i = 1 to imax ∈ Z+. Let C

be the set of all possible K-dimensional binary vectors, with |C| = 2K . To begin with, the

row vectors of J are drawn from the matrix C. Now, Z samples of channel matrix, defined as

V(z) = v
(z)
m,c, 1 ≤ m ≤ M, c ∈ C, z = 1, . . . , Z of size M × 2K . Here, v

(z)
m,c denotes the cth

column vector or V(z). These column vectors are generated based on a probability mass function

(PMF) matrix Q(i) = q
(i)
m,c, 1 ≤ m ≤ M, c ∈ C, where q

(i)
m,c denotes the probability vector that

the sensor m is scheduled to sense the channel k in vector C. Now, the cost function in (5.17)

is calculated for each sample z, and arrange them in descending order.ρ (0 ≤ ρ ≤ 1) fraction

of sorted objective function values OP(z)
SSR are retained and all other values are discarded. Let

the smallest chosen value of the objective function be η, corresponding to the index dρZe. In

each step, the PMF matrix is updated as q
(i+1)
m,c =

∑Z
z=1 v(z)m,cI(Oz≥η)

dρZe . The algorithm is stopped

after imax iterations, and the resultant V(z) is selected to map the solution, i.e., the optimal J.

To summarize, each iteration of the CE algorithm consists of the steps described in Algorithm 4.

Similar procedure is carried out to evaluate the optimal J for the CCS scheme.

5.4 Results and Discussion

In this section, the performance of SSR-based sensing scheme in HCRWSN is discussed in terms

of average achievable throughput, and compare its performance with the CCS scheme following

the L-out-of-M rule, with an optimum L chosen as in [159]. We evaluate the performance of

the CE algorithm in the spectrum-sensing phase through performing simulations using MATLAB.

The parameter values are set as mentioned in Table. 5.2. The sensors are randomly placed in a

circular area where the primary user coexists. The channel gain from PU transmitter to the sensor

is calculated as 1/Dα, where D is the distance between PU and the spectrum sensors and α is the
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Algorithm 4 : Cross Entropy (CE) algorithm
1: procedure INITIALIZATION

2: Step 1:
3: for i← 1 to imax do
4: q

(1)
m,c = 1/|C| = 1/2K

5: for z← 1 to Z do
6: Step 2: Generate Z samples of matix V(z) based on PMF matix Q(i) = q

(i)
m,c

7: end for
8: Step 3:
9: for z← 1 to Z do

10: Calculate the Objective function in (5.17) OP(z)
SSR

11: end for
12: Step 4: Arrange {OP(z)

SSR, z = 1, . . . , Z} in the decreasing order
13: Step 5:
14: Retain 0 ≤ ρ ≤ 1 fraction of sorted values {OP(z)

SSR} and discard others.
15: Let the smallest chosen value of OP(z)

SSR be η, corresponding to the index dρZe.
16: Step 6:
17: for j← 1 to M do
18: for c = 1 : C do Update qi+1

m,c using

19: q
(i+1)
m,c =

∑Z
z=1 v(z)m,cI(Oz≥η)

dρZe .
20: end for
21: end for
22: end for
23: Step 7:
24: Return V(z)

25: Step 8:
26: The channels-to-sensors assignment in V(z) is mapped to the channels-to-sensors

assignment in J which is a solution to the original optimization problem OP(z)
SSR.

27: end procedure

path-loss exponent. The achievable rates by data sensors are chosen to be C = log2(1 + SNR) =

6.658 bits/sec/Hz [117].
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Table 5.2. Parameter Settings

Parameters Settings

Number of spectrum sensors M 10
Number of data sensors N 30
Target false alarm probability P̄f 0.1
Target miss- detection probability P̄m 0.1
Number of Licensed channel 7
Bandwidth of the licensed channel W 6MHz
Path-loss exponent α 3.5
Transition rate of PU from ON state to OFF state λk0 0.6,0.8,1,1.2,1.4,1.6,1.8
Transition rate of PU from OFF state to ON state,λk1 0.4,0.8,0.6,1.6,1.2,1.4,1.8
Total frame length TTotal 100msec
Sampling rates of spectrum sensors U 6000
Duration of spectrum sensing phase τs 7msec
Duration of spectrum sensing by
assigned sensors on each channel ts 6msec
Duration of reporting sensing results to sink tr 1msec
Sensing power of spectrum sensors Ps 0.1W
Transmission power of data sensors Pt 0.22W
Energy consumption per spectrum sensing 0.11mJ
Fraction of samples retained in CE algorithm ρ 0.6
Stopping threshold ε 10−3

partial throughput factor κ 0.5
Penalty factor for miss detection φ 0.5
SNR of secondary transmission 20dB
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Figure 5.3. Average achievable throughput vs Number of channels for SSR based
CE-algorithm,random assignment and exhaustive search method.

The variation of throughput with different number of licensed channels,K, is shown in Figure. 5.3.

For illustration purposes, M = 3 is chosen, so that a solution using the exhaustive search can

be quickly evaluated. The average achievable throughput of SSR-based approach using the CE
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algorithm is compared with the random assignment and exhaustive search. Set of all possible

assignments are considered in exhaustive search to find the optimal set, whereas a licensed channel

is randomly assigned to spectrum sensors in random assignment. As shown in Figure. 5.3, the

average achievable throughput obtained by the SSR-based CE algorithm is about 75%–90% of

that obtained by the exhaustive search. In contrast, the total elapsed time for the evaluation using

the exhaustive search method is about 14 times larger than that using the CE algorithm, when K is

increased to 4. As K further increases, the elapsed time increases exponentially for the exhaustive

search. Thus, the SSR-based CE algorithm attains the maximum throughput with much lesser

computation time when compared to exhaustive search. Figure 5.4 shows the comparison between

the performance of the CE algorithm and that of a greedy algorithm [161], for different values

of EH rates. The greedy algorithm assigns channel to each sensor sequentially that gives the

maximum achievable throughput. It is shown that the CE algorithm outperforms greedy algorithm

in terms of achievable throughput, over a range of EH rates.

3 5 7

EH rate in mW  (
m

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v
e

ra
g

e
 a

c
h

ie
v
a

b
le

 t
h

ro
u

g
h

p
u

t 
(B

it
s
/H

z
)

SSR-Greedy

SSR-CE

Figure 5.4. Comparison of CE algorithm and greedy algorithm performance for a range of EH
rates.

The stability of CE-algorithm with respect to the average throughput is shown in Figure. 5.5.

Here, the convergence of CE algorithm with the number of iterations can be seen, for different EH

rate values. As expected, the average throughput increases with EH rate. Figure 5.6 shows the

convergence result of CE algorithm with respect to the sensing phase duration τs ranging from as

low as 2 ms to a relatively high value such as 15 ms, for a fixed EH rate of 7 mW. Note that the

achievable throughput first increases with an increase in τs and later decreases as τs is increased
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further. This concave behavior is due to the sensing-throughput tradeoff [160]. Figure 5.7 shows

the impact of the fine-tuning CE algorithm parameter, i.e., fraction of samples retained, ρ, on the

number of iterations and average throughput. It is evident from both the plots that CE on SSR

performs better than CE on L-out-of-M rule. Moreover, the CE algorithm converges quickly with

small ρ.
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Now, for a network with M = 15 and K = 7, the average achievable throughput of SSR-based

CE algorithm is compared with conventional fusion rules such as OR, AND, and L-out-of-M rule,

as shown in Figure. 5.8. In the SSR scheme, since only one sensor reports its decision to the sink,

it performs better than the CCS scheme employing L-out-of-M, OR and AND rules. As expected,

the L-out-of-M rule performs the best among the CCS schemes, when optimum value of L is

chosen [159]. Finally, the tradeoff between the optimal performances of SSR-based multichannel

scheme with that of the L-out-of-M rule based CCS scheme is discussed. The variation of average

achievable throughput with M , for different sensing times τs is shown in Figure. 5.9. When M

is less, the L-out-of-M rule yields a larger throughput due to the better detection accuracy at the

expense of relatively less channel available time, as opposed to the SSR scheme which saves the

channel available time, but loses out on detection accuracy. Interestingly, as M increases, the SSR

scheme outperforms the CCS scheme, since even though the detection accuracy of the CCS scheme

increases, it loses out on the channel available time. Hence, this tradeoff yields a regime where

SSR is preferred over L-out-of-M rule-based CCS scheme. Inherently, this tradeoff is between the

detection accuracy and channel available time for secondary data transmission. Therefore, as M

increases, the channel available time gets a larger priority as opposed to the detection accuracy in

the HCRWSN, resulting in SSR scheme as a better choice. However, in the scenario where the

detection accuracy is a main concern, L-out-of-M rule can still be employed.
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5.5 Summary

The maximum achievable throughput of SSR-based spectrum sensing in a multichannel HCRN

is considered. The impact of EH rate on maximum achievable throughput of SSR scheme is

investigated. It is shown that the achievable throughput increases with EH rate by optimally

scheduling the spectrum sensors to sense a particular channel. Through numerical results,

it is shown that SSR-based multichannel scheduled sensing scheme outperforms the CCS

scheme employing the optimal L-out-of-M rule, and the tradeoff between the average achievable

throughput of both schemes are analyzed. It is shown that this tradeoff is the inherent tradeoff

between the channel available time and the detection accuracy, and the regime where SSR is

preferred over CCS scheme is also discussed. The results show that the SSR scheme outperforms

CCS scheme when the number of spectrum sensors is large, and therefore, the channel available

time gets a larger priority in a HCRWSN than the detection accuracy. Hence, in a scenario where

spectral efficiency needs to be improved, SSR is a better choice; CCS should be employed in the

scenario where the PU protection and detection accuracy are important.

Further increase of energy efficiency can be achieved by employing compressive sensing where

sampling rate is reduced at the sub-Nyquist-rate and takes a shorter sensing duration which

promotes energy saving but at the cost of performance degradation which directly affects the

achievable throughput. One way to overcome this degradation is by employing collaborative

sensing. Thus next chapter gives a complete analysis of energy efficiency of compressed

conventional collaborative sensing (CCCS) scheme focusing on balancing the tradeoff between

energy efficiency and detection accuracy in cognitive radio environment.



Chapter 6

Energy Efficiency Analysis of

Compressive Collaborative Sensing

Scheme in Cognitive Radio

Networks

6.1 Introduction

The energy consumption in spectrum sensing, mainly caused by the analog-to-digital converter

(ADC), is proportional to the sensing time duration and the sampling rate [51],[52]. However,

at any instance of time, only a minority of channels are occupied by PUs in WSS, making the

wideband spectrum sparser in the frequency range. Such sparsity of wideband spectrum is taken

as an advantage in compressed sensing (CS) and recently been proposed to reduce the sampling

rate below the Nyquist rate [50]. Thus compressed sensing, when compared to the conventional

WSS, reduces the sampling rate at the sub-Nyquist rate [54] which further reduces the sensing

time duration and greatly favors energy saving. For this reason, the CS-based spectrum sensing

methods have been proposed as an efficient approach for improving the energy efficiency [55] in

cognitive radio network.

103
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Despite its attractiveness as an energy efficient sensing technique, CS suffers from a few major

drawbacks which limit its applicability in practice. A CS based sensing scheme incurs a certain

performance loss due to compression, when compared to the conventional sensing scheme, while

detecting non sparse signals. This performance loss can be seen as sacrifice to improve energy

efficiency in terms of detection performance. Thus to compensate the performance loss due to

compression, the authors in [53] proposed collaborative compressive detection (CCD) framework

in which group of spatially distributed nodes sense the presence of PU independently and send

a compressed summary of observations to the fusion center (FC) where a global decision is

made. It was shown that through collaboration the performance loss due to compression can

be recovered. However, the study [53], never addressed energy efficiency and was restricted to the

detection performance of CCD, where it is evident that an increase in either the compression ratio

c (keeping number of collaborative nodes N fixed) or the N (keeping c fixed), the probability of

error decreases exponentially.

In this work, it is shown that a similar trend can be seen with energy efficiency as a metric. In

particular, expressions for energy consumption and achievable throughput of the Collaborative

Compressive Conventional Detection (CCCS) scheme is derived. Next, an expression for energy

efficiency of CCCS is derived, and an optimization problem that maximizes the energy efficiency

subjected to constrain on detection and false alarm probability is formulated. As this problem

is highly non-convex, some approximations to reduce it to a convex optimization problem is

provided. Later, it is shown that these approximations are sufficiently accurate.

The motivation to consider the CCCS is threefold. First, it reduces the sampling rate at the sub

Nyquist rate and takes a shorter sensing duration which promotes energy saving. Second, since

it utilizes collaborative sensing scheme the achievable detection performance can be maintained

to a target limit. Finally, since it promotes energy saving and ensures detection performance, the

energy efficiency is guaranteed. In the process of determining optimal system parameters such as

optimal compression ratio and number of active nodes, an attempt is made to answer the question

: For a given compression ratio, c, what should be the number of nodes N, to maximize the energy

efficiency ?

Energy efficiency of compressed sensing in wideband cognitive radio networks was studied in

[162], where the authors showed that by optimizing the sampling rate, energy efficiency can be

maximized. It is proved that sparser the wideband spectrum, higher the energy efficiency and
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lower the energy consumption. But their analysis was restricted to compressed sensing in sparse

signal condition. However in this work both compressed and collaborative sensing was considered

to guarantee both dimensionality reduction and detection performance that favors improvement

in energy efficiency to a greater extend. An analysis on EE for the CCCS scheme has not been

considered earlier in the literature. The main contributions of this chapter are summarized as

below.

• The energy efficiency of the CCCS spectrum sensing scheme is studied in terms of the

required number of sensors involved in collaboration and the compression ratio that satisfies

a given primary user detection constraints.

• The maximization of energy efficiency of CCCS is posed as a non-convex optimization

problem, that optimizes the compression rate c, and number of sensors involved for

cooperation.

• The Number of sensors required (N) and the compression ratio (c) are derived in terms of

SNR and the required detection accuracy.

• The tradeoff between reducing the number of samples in a compressive sensing based

measurement scheme and achievable energy efficiency of CCCS considering different signal

models such as deterministic and random signal are studied. In both cases, it is shown

that the energy efficiency is improved by either increasing the compression ratio c or by

increasing the number of collaborative nodes N.

• Through numerical result, it is shown that in comparison with the uncompressed sensing

scheme, the compressed sensing scheme reduces the sampling rate and take a shorter sensing

and reporting time duration both of which are greatly favorable to energy saving which

improves the energy efficiency of the system to a greater extent. In other words, it also tells

us how many nodes are needed to collaborate to compensate for the loss due to compression.

Moreover it was inferred that the improvement in energy efficiency can be obtained by

optimizing either the compression ratio c (keeping N fixed) or the number of collaborating

nodes N (keeping c fixed).

The remainder of this chapter is organized as follows. The system model for CCCS scheme is

proposed and review of CCCS and CCS schemes for random signal case is provided in Secs. 6.2.
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The energy efficiency optimization problem for the CCCS scheme is proposed in Section 6.3,

and approximations, reformulation and detailed analysis are provided in Section 6.4. The energy

efficiency formulation, approximations, and analysis for deterministic signal case is presented in

Section 6.5. The results are presented in Section 6.6 and concluding remarks are provided in

Section 6.7.

6.2 System Model

z3 =f y3 zN= f yN  z2 =f y2

y2  yN y1

z1 =f y1

 y3

FC

PU

. . .

. . .

C1 C2 C3
CN

(a)

. . .

TTotal

Frame 2 Frame  LFrame 1

Sensing 

by all C i

Reporting 

by  C 1

Reporting 

by C 2

Reporting

 by  CN

 cts ctr ctr ctr

. . . Data Transmission

cTs= c(ts  +Ntr) TTotal -Ts

(b)

Figure 6.1. (a) System model for Collaborative Compressive Conventional Detection (CCCS)
Scheme ; (b) Time slot structure for CCCS Scheme
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Consider a cognitive radio (CR) network (CRN) – as depicted in Figure 6.1(a) – with N CR nodes

denoted by C1, . . . , CN that record P observations each from a licensed band owned by a primary

user (PU). First the conventional cooperative sensing (CCS) framework is described. The CR

nodes forward their observation vectors over a lossless link to a fusion center (FC), where these

observations are fused to make an overall decision on the availability of the primary spectrum.

The hypothesis testing problem governing this scenario is:

H0 : y(n) = w(n)

H1 : y(n) = x(n) + w(n), n = 1, . . . , N, (6.1)

where w(n) represents the P × 1 noise vector, whose entries are assumed to be independent

and identically distributed (i.i.d.), Gaussian random variables with zero mean and variance σ2
w,

and x(n) represents the P × 1 primary signal vector, whose statistics is also assumed to be

i.i.d. Gaussian with zero mean and variance σ2
x. In other words, if N (µ,Σ) denotes a Gaussian

random vector with mean vector µ and covariance matrix Σ, then w(n) ∼ N (0, σ2
wIP ), and

x(n) ∼ N (0, σ2
xIP ), where IP is a P × P identity matrix.

Now, the conventional compressive collaborative sensing (CCCS) framework is considered. Here,

instead of P × 1 vector y(n), each node sends an M × 1 compressed vector z(n) to the FC,

with M < P . The collection of these M -length universally sampled observations is given by

{z(n) = φy(n), n = 1, . . . , N}, where φ is an M × P compression matrix, which is assumed to

be same across all nodes. With this setup, the hypothesis testing problem in (6.1) reduces to:

H0 : z(n) = φw(n)

H1 : z(n) = φx(n) + φw(n), n = 1, . . . , N, (6.2)

The FC receives the observation matrix Z = [z(1) · · · z(N)], and makes a decision on the

availability of the primary spectrum.
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6.2.1 Performance Analysis of CCCS Scheme

Let π0 be the prior probability that the channel is vacant. Upon collecting the observation matrix

Z, the FC employs likelihood ratio test (LRT), which is optimal. The LRT is devised as follows.

N∏
n=1

f(z(n);H1)

f(z(n);H0)

H1

≷
H0

λL, (6.3)

where f(z(n);H0) and f(z(n);H1) represent the PDF of z(n) under H0 and H1, respectively,

given by

f(z(n);H0) =
exp

(
−zT (n)(σ2

wφφT )−1z(n)
2

)
(2π)M/2|σ2

wφφ
T |1/2

, and (6.4)

f(z(n);H1) =
exp

(
−zT (n)((σ2

x+σ2
w)φφT )−1z(n)
2

)
(2π)M/2|(σ2

x + σ2
w)φφT |1/2

. (6.5)

Substituting in (6.3) and simplifying gives

[
|σ2
wφφ

T |1/2

|(σ2
x + σ2

w)φφT |1/2

]N
exp

[
−

N∑
n=1

(
zT (n)(φφT )−1z(n)

2(σ2
x + σ2

w)

−zT (n)(φφT )−1z(n)

2σ2
w

)]
H1

≷
H0

λL. (6.6)

Recalling that z(n) = φy(n), it is easy to see that the above test reduces to the form

T (Y) ,
N∑
n=1

yT (n)φT (φφT )−1φy(n)
H1

≷
H0

λ, (6.7)

where λ the detection threshold, which is chosen based on either the Neyman-Pearson criterion

[163], or the Bayesian criterion [164, 165]. In this work, the Neyman-Pearson framework is

considered, where the errors are controlled independently. For the ease of characterizing the

performance of the above test in (6.6), it is assumed that the linear mapping φ satisfies the

ε-embedding property, as considered in [53]. Designing aφ that satisfies the ε-embedding property

is beyond the scope of current study. Let γ , σ2
x

σ2
w

denote the average received SNR at a CR node,

and P̂ , φT (φφT )−1φ denote the orthogonal projection matrix. For large value of the product
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NM , it can be shown that the test statistic under bothH0 andH1 is distributed as [53]

T (Y)

σ2
k

NM→∞∼

 N (NM, 2NM), underH0

N (NM, 2NM), underH1

(6.8)

where k = 0, 1, that is, σ2
0 = σ2

w, and σ2
1 = σ2

x + σ2
w.

Following (6.8), the probability of false-alarm at the FC can be written as [53]

P CCCS

f , P (T (Y) > λ|H0)

= Q

(
λ
σ2
w
−NM
√

2NM

)
= Q

(
λ

Pσ2
w
− cN

√
2cNP

)
. (6.9)

Similarly, the probability of detection at the FC can be written as [53]

P CCCS

d = P (T (Y) > λ|H1)

= Q

(
λ

σ2
x+σ2

w
−NM

√
2NM

)
= Q

(
λ

P (σ2
x+σ2

w)
− cN

√
2cNP

)
. (6.10)

Note that the expressions for P CCCS
f and P CCCS

d depend on the value of c, which dictates the loss

in the detection accuracy due to the compressed measurements {z(n), n = 1, . . . , N}. Since the

detection accuracy is also a function ofN , it can be improved by increasingN . In other words, the

loss in detection due to compression can be recovered by increasing the number of collaborative

nodes. This observation is shown in Figure 6.2, where the variation of P CCCS
d across γ is plotted,

with P CCCS
f = 0.1, for different values of c and N . The case of c = 1 corresponds to Nyquist

sampling, i.e., the CCS approach. As c decreases, P CCCS
d decreases, which can be increased to

a desired level by increasing N . Interestingly, as N increases, even though the probability of

detection – and consequently, the achievable throughput of the secondary network – increases, the

total energy consumption in the secondary network also increases, thereby decreasing the energy

efficiency. Hence, a study of design of the optimal system parameters c and N , that maximize

the energy efficiency is of interest. In other words, an attempt has been made to seek answers to

the following questions. Given that the secondary network uses a compression ratio c, how large

should N be such that the energy efficiency is maximized? Also, given a secondary setup with N

nodes, how small can be the compression ratio c, such that the energy efficiency is maximized?
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Figure 6.2. Variation of probability of detection, PCCCS
d , for different values of average SNR, γ.

Probability of false-alarm, PCCCS
f = 0.1. Note that as c decreases, PCCCS

d decreases. However,
PCCCS
d can be increased to a desired level by increasing N .

To answer these questions – the main contribution of this chapter, the expressions for the average

achievable throughput, average energy consumption and energy efficiency of the CR network was

derived, and formulated the governing optimization problem in the next section.

6.3 Energy Efficiency and Problem Formulation

As mentioned in the previous section, the objective is to find the optimal number of the

compression ratio c for a givenN (and the optimalN for a given c), such that the energy efficiency

in the CR network is maximized, subject to constraints on sensing errors. In this section, the

governing optimization problem is formulated. Before that, the average achievable throughput

and the average energy consumption in the CR network in each time slot is derived, and later the

energy efficiency of the network is derived.
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Table 6.1. Achievable throughput and energy consumption by the CR network employing CCCS,
for scenarios S1-S4.

Scenario Probability Energy Consumed (J) Achievable
Throughput
(bits/Hz)

S1 π1 P
CCCS
d NPscτs+NPtcτr 0

S2 π0 P
CCCS
f NPscτs+NPtcτr −φC(TTotal−cTs)

S3 π1 (1− P CCCS
d ) NPscτs+NPtcτr +Pt(TTotal−cTs) κcC(TTotal − cTs)

S4 π0 (1− P CCCS
f ) NPscτs+NPtcτr +Pt(TTotal−cTs) C(TTotal − cTs)

In a CR network with CCCS, the average achievable throughput and the average energy

consumption depend on the communication link between the PU node and the sensing nodes,

which can be calculated based on four scenarios denoted by S1-S4, detailed below.

S1. The first scenario corresponds to the case when PU is present, and the FC correctly declares

its presence, which occurs with probability π1P
CCCS
d . Hence, the CR nodes do not transmit

data and the throughput achieved is zero.

S2. The second scenario covers the case when PU is absent but incorrectly declared as present by

the FC, which occurs with probability π0P
CCCS
f . Since the CR network misses a transmission

opportunity in this case, the achievable throughput in this case is calculated as−φC(TTotal−

cTs), where Ts = (τs + Nτr), C is the capacity of the secondary link, and φ ∈ (0, 1) is a

suitably chosen penalty factor [149].

S3. In the third scenario, FC makes an incorrect decision that the PU is absent, when it is

actually present, which occurs with probability π0(1−P CCCS
d ). In this case, the CR network

transmits and causes interference to the PU. Even with the interference to the PU, the CR

communication achieves a partial throughput of κcC(TTotal−cTs) units, for some κc ∈ [0, 1).
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S4. The last scenario corresponds to the case when the PU is absent and the FC declares

it correctly, which occurs with probability π1(1 − P CCCS
f ). In this case, the achievable

throughput is maximum, and is given by C(TTotal − cTs) units.

The achievable throughput, along with the energy consumed in each of the above scenarios are

listed in Table 6.1, where Ps and Pt denote the power required for each SU node for sensing and

data transmission, respectively.

Considering all the above cases, the average throughput of the CCCS scheme is given by

RCCCS(λ, c, N)=π0(1− P CCCS

f )(TTotal − cTs)C

+ κcC(TTotal − cTs)π1(1− P CCCS

d )

− φC(TTotal − cTs)π1P
CCCS

f . (6.11)

Similarly, the average energy consumption for the CCCS scheme vide Table. 6.1 is given by

ECCCS(λ, c, N)=(NPscτs +NPscτr)

+ Pt(TTotal − Ts)
(
1− π1P

CCCS

d − π0P
CCCS

f

)
. (6.12)

The energy efficiency, measured in (bits/Hz/J), of the CR network is given by

EECCCS(λ, c, N) ,
RCCCS(λ, c, N)

ECCCS(λ, c, N)
. (6.13)

The goal here is to design the system parameters – λ and c, for a given N , or λ and N , for a given

c, such that the energy efficiency EECCCS(λ, c, N) is maximized, subject to constraints on the

sensing errors.

For a given c, the governing optimization problem is:

OP(N)
CCCS : max

λ,N
EECCCS(λ, c, N) (6.14)

s.t.

P
CCCS
f ≤ P f ,

P CCCS
d ≥ P d,

(6.15)



Chapter 6.Energy Efficiency Analysis of Compressive Collaborative Sensing Scheme in CRN 113

and for a given N , the governing optimization problem is:

OP(c)
CCCS : max

λ,c
EECCCS(λ, c, N) (6.16)

s.t.

P
CCCS
f ≤ P f ,

P CCCS
d ≥ P d,

(6.17)

for some 0 ≤ P f < P d ≤ 1. The IEEE 802.22 standard [151], for e.g., enforces requirements

for the upper bound on the probability of signal detection and lower bound on the probability of

false-alarm to be 0.9 and 0.1, respectively.

The problems given in (6.14) and (6.16) are hard to solve, because the expression for

EECCCS(λ, c, N) calculated from (6.13) is lengthy. Hence, for the ease of analysis, the cost

function in the above problems are approximated, and mention the conditions under which the

problem can be reduced to a convex optimization problem. Later, in Sec. 6.6, it is highlighted that

the errors due to these approximations are negligible.

6.4 Approximation, Reformulation and Analysis

In this section, an approximation of EECCCS is provided and optimization problems (6.14) and

(6.16) are reformulated. On a general note, the apriori probability of channel availability should

be large enough to maintain the detection accuracy. That is, it is assumed that π0 > π1, and

P CCCS
d > P CCCS

f , which is justified in a typical CR scenario [31],[166]. Following this, the average

throughput in (6.11) can be approximated by the above inequalities and setting κc = 0 as

R̃cccs(λ, c, N) ≈ π0C(TTotal − cTs)
(
1− (1 + φ)P CCCS

f

)
. (6.18)

Similarly ECCCS(λ, c, N) can be approximated as

Ẽcccs(λ, c, N)≈(NPscτs +NPscτr)

+ Pt(TTotal − cTs)π0(1− P CCCS

f ). (6.19)
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Consequently, EECCCS(λ, c, N) can be approximated as

ẼEcccs(λ, c, N) =
R̃cccs(λ, c, N)

Ẽcccs(λ, c, N)
, (6.20)

and the optimization problems OP(N)
CCCS and OP(c)

CCCS can be respectively reformulated as

OP1
(N)
CCCS : max

λ,N
ẼEcccs(λ, c, N) =

R̃cccs(λ, c, N)

Ẽcccs(λ, c, N)
(6.21)

s.t.

P
CCCS
f ≤ P f ,

P CCCS
d ≥ P d,

(6.22)

and

OP1
(c)
CCCS : max

λ,c
ẼEcccs(λ, c, N) =

R̃cccs(λ, c, N)

Ẽcccs(λ, c, N)
(6.23)

s.t.

P
CCCS
f ≤ P f ,

P CCCS
d ≥ P d.

(6.24)

Later, in Sec. 6.6, it is shown that the errors due to these approximations are negligible.

Note that P CCCS
d and P CCCS

f are dependent on c and N , only through their product cN . The

following theorem provides the solution to the optimal threshold, λ∗, for the optimization problems

in (6.21) and (6.16).

Theorem 6.1. The optimal threshold λ∗ for the optimization problems OP1
(N)
CCCS and OP1

(c)
CCCS

satisfies the constraint P CCCS
d ≥ P d with equality, and is given by

λ∗ = σ2
w(1 + γ)

{√
2cNPQ−1(P d) + cNP

}
. (6.25)

Proof. See Appendix C.1.

As a consequence of the above theorem, it is shown that the other constraint in (6.21) and (6.23),

namely P CCCS
f ≤ P f , reduces to an upper bound on the product cN . By substituting λ = λ∗ in
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the constraint P CCCS
f ≤ P f , P f is given by

P f ≥ Q

 σ2
w(1+γ){√2cNPQ−1(P d)+cNP}

σ2
w

− cNP
√

2cNP

 . (6.26)

Rearranging the above equation, this condition reduces to

cN ≤ 2

γ2P

{
Q−1(P f )− (1 + γ)Q−1(P d)

}2
. (6.27)

Now, the optimization problems OP1
(N)
CCCS and OP1

(c)
CCCS given in (6.21) and (6.23) can be

respectively reformulated as

OP2
(N)
CCCS : max

N
ẼEcccs(λ

∗, c, N) (6.28)

s.t. N ≤ Nmax ,
2
{
Q−1(P f )− (1 + γ)Q−1(P d)

}2

γ2cP
, (6.29)

and

OP2
(c)
CCCS : max

c
ẼEcccs(λ

∗, c, N) (6.30)

s.t. c ≤ cmax ,
2
{
Q−1(P f )− (1 + γ)Q−1(P d)

}2

γ2NP
. (6.31)

In the next theorem, the problem (6.31) is considered in particular, and shown that the

corresponding objective function is monotonically increasing (and concave) for c ∈ (0, cmax),

for a given N . Therefore, the optimal c∗ which maximizes ẼEcccs(λ
∗, c, N) for a given N is given

as c∗ = cmax.

Theorem 6.2. For a given N , the objective function in the optimization problem OP2
(c)
CCCS is

monotonically increasing in c ∈ (0, cmax). Therefore, optimal c, c∗ = cmax.

Proof. See Appendix C.2.

A similar argument can be made for the problem in (6.29), vide the following theorem.
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Theorem 6.3. For a given c, the objective function in the optimization problem OP2
(N)
CCCS is

monotonically increasing in N ∈ (0, Nmax). Therefore, optimal N, N∗ = Nmax.

Proof. The proof is in similar lines to that of Theorem 6.2, and is omitted for brevity.

This completes the analysis on finding the optimal c, (c∗) for a given N , or to find the optimal N ,

(N∗) for a given c, such that the energy efficiency of the CRN is maximized. In the next section,

the performance analysis of the CRN with a deterministic PU signal is considered.

6.5 Performance with Deterministic PU Signal

In this section, the EE performance of the CR network is considered for the case when PU signal is

deterministic. Although unrealistic in practice, performance study of a CRN with a deterministic

PU signal has been studied earlier in the context of capacity analysis [167], spectrum sensing

[168], etc., which serves as an upper bound on the performance of a system employed in practice.

In the case of a deterministic PU signal, asymptotic distribution of the test statistic at the FC under

either hypotheses can be written as [53]

T (X) ,∼

 N (0, σ2
wN‖P̂x‖2

2), underH0

N (N‖P̂x‖2
2, σ

2
wN‖P̂x‖2

2) underH1

, (6.32)

where ‖P̂x‖2
2 , xTφT (φφT )−1φx. From (6.32), the probabilities of false-alarm and signal

detection at the FC following the CCCS scheme with deterministic PU signal are given by

P CCCS,det

f , P (T (X) > λ|H0) = Q

 λ−Ncγσ2
w√

σ2
wN‖P̂x‖2

2)

 (6.33)

P CCCS,det

d = P (T (X) > λ|H1) = Q

 λ−Ncγσ2
w√

σ2
wN‖P̂x‖2

2)

 (6.34)
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As discussed in the random signal case, using the concept of ε-stable embedding, for larger value

of NM the approximation ‖P̂x‖2
2 ≈ M

P
‖x‖2

2 = c‖x‖2
2 [53]. Therefore,

P CCCS,det

f =Q

(
λ

σ2
w

√
Ncγ

)
, P CCCS,det

d =Q

(
λ−Ncγσ2

w

σ2
w

√
Ncγ

)
(6.35)

It is easy to show that the detection threshold λ = N
2
xTφT (φφT )−1φx = N

2
‖P̂x‖2

2 = N
2
cγσ2

n.

Therefore, the final expressions for P CCCS,det

f and P CCCS,det

d are given by

P CCCS,det

f = Q

(√
cNγ

2

)
, P CCCS,det

d = Q

(
−
√
cNγ

2

)
(6.36)

Note that the expressions for average achievable throughput, average energy consumption and the

energy efficiency expressions across all four scenarios S1− S4 for the deterministic case remains

similar to the random case, except that P CCCS
f and P CCCS

d are replaced by P CCCS,det

f and P CCCS,det

d ,

respectively. The approximations discussed in the previous case also hold for the deterministic

case. For a given c, the corresponding optimization problem for the deterministic case can be

written as

OP1
(N)
CCCS,det : max

N
ẼEcccs,det(c, N) =

R̃cccs,det(c, N)

Ẽcccs,det(c, N)
(6.37)

s.t.

P
CCCS,det

f ≤ Pf ,

P CCCS,det

d ≥ Pd,

(6.38)

and the optimization problem for given N is given by

OP1
(c)
CCCS,det : max

c
ẼEcccs,det(c, N) =

R̃cccs,det(c, N)

Ẽcccs,det(c, N)
(6.39)

s.t.

P
CCCS,det

f ≤ Pf ,

P CCCS,det

d ≥ Pd,

(6.40)

for some 0 < P CCCS,det

f < P CCCS,det

d < 1. Later, it is shown that the errors due to these

approximations are negligible. Again, note that both P CCCS,det

f and P CCCS,det

d depend on c and

N through the product cN .
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Theorem 6.4. The optimal threshold λ∗ for the optimization problems OP1
(N)
CCCS,det and

OP1
(c)
CCCS,det satisfies the constraint P CCCS

d ≥ P d with equality, and is given by

λ∗ = σ2
w

√
Ncγ

{
Q−1(P d) +

√
Ncγ

}
. (6.41)

Proof. See Appendix C.3.

Similar to the previous case, as a consequence of the above theorem, it is shown that the other

constraint in (6.37) and (6.39), namely P CCCS
f ≤ P f , reduces to an upper bound on the product

cN . By substituting λ = λ∗ in the constraint P CCCS
f ≤ P f , P f is given by

P f ≥ Q

(√
cNγσ2

w(Q−1(P d) +
√
Ncγ)

σ2
w

√
cNγ

)
(6.42)

Rearranging the above equation, this condition reduces to

cN ≤ 1

γ

{
Q−1(P f )−Q−1(P d)

}2
. (6.43)

Now, the optimization problems OP1
(N)
CCCS,det and OP1

(c)
CCCS,det given in (6.37) and (6.39) can be

respectively reformulated as

OP2
(N)
CCCS,det : max

N
ẼEcccs(λ

∗, c, N) (6.44)

s.t. N ≤ Nmax ,

{
Q−1(P f )−Q−1(P d)

}2

γc
, (6.45)

and

OP2
(c)
CCCS,det : max

c
ẼEcccs(λ

∗, c, N) (6.46)

s.t. c ≤ cmax ,

{
Q−1(P f )−Q−1(P d)

}2

γN
, (6.47)

In the next theorem, the problem (6.47) is considered in particular, and shown that the

corresponding objective function is monotonically increasing (and concave) for c ∈ (0, cmax),

for a given N .
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Theorem 6.5. For a given N , the objective function in the optimization problem OP1
(c)
CCCS,det is

monotonically increasing in c ∈ (0, cmax), and hence optimal c, c∗ = cmax.

Proof. See Appendix C.4.

A similar argument can be made for the problem in (6.45).

Theorem 6.6. For a given c, the objective function in the optimization problem OP1
(N)
CCCS,det is

monotonically increasing in N ∈ (0, Nmax), and hence optimal N , N∗ = Nmax.

Proof. The proof is in similar lines to that of Theorem 6.2, and is omitted for brevity.

6.6 Numerical Results and Discussion

In this section, the performance of the CCCS technique is studied in comparison with the CCS

technique, in terms of energy efficiency and validate the analysis, through numerical techniques.

MATLAB is used as a simulation tool. The parameter values are fixed as follows. The

target probability of detection, P d, and false-alarm probability, P f , are fixed to be 0.9 and 0.1,

respectively. The prior probabilities π0 and π1 are set to be 0.5 each. The total frame duration

is assumed to be TTotal = 200 ms. The sampling frequency at the local SUs is assumed to be

fs = 1 MHz, and the sensing power Ps = 0.1 W. The length of the uncompressed received signal

vector, P = 100. The sensing time, τs, and reporting time, τr, for the CCCS scheme are set to

30 ms and 100 µs, respectively. The achievable rate of secondary transmission is chosen to be

C = log2(1 + SNRs) = 6.6582 bits/sec/Hz, where the SNRs for the secondary transmission is

assumed to be SNRs = 20 dB. The transmission power of individual sensors, Pt, is assumed to be

3 W. Also, the partial throughput factor, κc, and the penalty factor, φ, are set to be 0.5 each.

Figure 6.3 shows the variation of energy efficiencies for the random and deterministic signal cases,

as a function of parameters c and N . Observe that the energy efficiency is concave in both c and

N . Furthermore, it can be seen that as N increases, c decreases, which means indicates a better

compression. Also, the maximum energy efficiency can also be improved with N .



Chapter 6.Energy Efficiency Analysis of Compressive Collaborative Sensing Scheme in CRN 120

Figures 6.4 (a) and 6.4 (b) show the variation of the optimal compression ratio c∗ for the CCCS

scheme, as a function of N for different values of SNR γ. First, note that the optimal values of c

are nearly equal for the actual and approximate energy efficiency values, thereby establishing the

earlier claim on approximating the energy efficiency. The decrease in c∗ with an increase in N is

intuitive, since the loss due to compression is recovered in CCCS by increasing N , which results

in a better throughput, and consequently, a better energy efficiency. Similarly, in Figure 6.5 (a)

and 6.5 (b), the variation of optimal N for different values of c is considered.
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Figure 6.3. Energy efficiency as a function of number of sensors N and compression ratio c for
(a) deterministic signal case, (b) random signal case.
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Figure 6.4. Variation of the optimal number of sensors (N∗) with compression ratio c∗ for (a)
deterministic signal case (b) random signal case.
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Figure 6.5. Variation of the optimal compression ratio (c∗) with number of sensors N for (a)
deterministic signal case (b) random signal case.
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Figures 6.6 (a) and 6.6 (b) show the variation of optimal energy efficiency values with the

actual and approximate expressions, for different values of N . Note that for low values of N ,

performances of both CCS and CCCS schemes are similar, due to the fact that c∗ = 1 for

sufficiently low N . As N increases, the system achieves a better compression, and therefore,

the performance of CCCS scheme becomes better than that of the CCS scheme. Also, the energy

efficiency for both CCS and CCCS schemes increase with an increase in SNR. Moreover, the loss

due to the energy efficiency approximation is negligible. Therefore, in the subsequent results, only

the approximated energy efficiency values are considered.

The reason for a better energy efficiency of the CCCS scheme in comparison to the CCS

scheme can be either because CCCS achieves a better throughput, or it achieves a lower energy

consumption. For a given N (or c), since the detection performance of the CCS scheme is

better than that of CCCS scheme, the achievable throughput of the CCS scheme will be higher as

compared to the CCCS scheme. Therefore, the improvement in the energy efficiency of the CCCS

scheme must be due to a significant reduction in energy consumption in comparison to the CCS

scheme. Figures 6.7 and 6.8 corroborate this argument. In Figure 6.7, the achievable throughput of

CCS and CCCS schemes are compared, where the former is found to be better. For larger values

of N , the detection probability and hence the throughput of the CCS scheme improves faster.

However, as shown in Figure 6.8, the energy consumption of the CCS scheme also increases

rapidly with N , as opposed to the CCCS scheme, where the increase is much slower since c∗

decreases with N . This is true for both random signal and deterministic signal cases. Hence, in

scenarios where the energy consumption has a larger priority in a signal detection scenario CCCS

scheme could be preferred. However, in the scenario where the sensing accuracy is a main concern,

CCS scheme yields a better performance, in terms of energy efficiency.
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Figure 6.6. Variation of optimal energy efficiency with number of sensors N for (a) deterministic
signal case (b) random signal case.
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Figure 6.7. Variation of optimal achievable throughput with number of sensors N for (a)
deterministic signal case (b) random signal case.
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Figure 6.8. Variation of optimal energy consumption with number of sensors N for (a)
deterministic signal case (b) random signal case.
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6.7 Summary

The energy efficiency of compressed conventional collaborative sensing (CCCS) scheme is

considered focusing on balancing the tradeoff between energy efficiency and detection accuracy

in cognitive radio environment. First the existing CCCS scheme in the literature is considered ,

and the achievable throughput, energy consumption and energy efficiency is derived. Next, the

energy efficiency maximization for the CCCS scheme is posed as a non-convex, optimization

problem. The optimization problem is approximated to reduce it to a convex optimization

problem, and showed that this approximation holds with sufficient accuracy in the regime of

interest. The tradeoff between dimensionality reduction and collaborative sensing of CCCS

scheme is analytically characterized as the implicit tradeoff between energy saving and detection

accuracy, and shown that by combining compression and collaboration the loss due to one can

be compensated by the other which improves the overall energy efficiency of the cognitive radio

network.



Chapter 7

Conclusions and Future Work

In this chapter, the conclusions drawn from research work carried out are summarized and scope

for future work is presented. Spectrum sensing plays a crucial role in the successful deployment

of cognitive radio networks. To further improve the spectrum sensing performance, spectral and

energy efficient cooperative spectrum sensing schemes, that reduces the sensing overhead, need

to be employed. In most of the previous work, sequential sensing is employed for cooperative

spectrum sensing wherein the same set of cooperating users sense a single channel in each

sensing period to increase the sensing accuracy. However, this approach greatly limits the sensing

efficiency and can result in a large cooperation overhead. In this thesis, more efficient cooperative

spectrum sensing techniques are considered and the tradeoff between detection accuracy and

energy efficiency at global detection level is analyzed to best leverage the achievable cooperative

gain.

7.1 Conclusions

In this thesis, energy and throughput efficient cooperative spectrum sensing techniques are

considered and efficient solutions at local sensing level and fusion level to best leverage the

achievable cooperative gain are proposed. The main focus of this thesis was to theoretically

analyze efficient cooperative spectrum sensing techniques for cognitive radio networks to

maximize the achievable throughput, energy efficiency and reduce the energy consumption

129
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while limiting the incurred cooperation overhead and sensing errors. Towards this end, initially

the energy efficiency performance was studied for two selective reporting based cooperative

sensing scheme namely SSR and its novel variation, OSSR scheme, to reduce the reporting

overhead and extended the analysis to multichannel heterogeneous CR scenario. Later energy

efficiency in collaborative compressed sensing scheme was considered. The main focus of

this study is on three important design issues for energy efficient cooperative spectrum sensing

which are selective reporting based cooperative user selection techniques, user scheduled based

multichannel cooperative sensing technique and collaborative compressed sensing technique in

the detection performance constraints.

In Chapter 2, the most common spectrum sensing techniques for cognitive radio networks

is reviewed in energy efficiency perspective and detailed their advantages and disadvantages. To

address the limitations of the spectrum sensing techniques by a single secondary user, cooperative

spectrum sensing and its main elements and limiting factors have been discussed.

In Chapter 3, the energy efficiency of superior selective reporting (SSR)-based scheme for

spectrum sensing is considered, and derived its achievable throughput, energy consumption and

energy efficiency is derived. The energy efficiency maximization problem for the SSR scheme

was formulated as a non-convex, multiple variable optimization problem and approximating it to a

quasi-concave optimization problem is discussed, and showed that this approximation holds with

sufficient accuracy. Through numerical results, it is shown that the energy efficiency achieved by

the SSR scheme is larger as compared to the conventional cooperative sensing schemes based on

OR and AND rules.

In Chapter 4, a variant of the SSR scheme called the opportunistic superior selective reporting

(OSSR) scheme is proposed and its energy efficiency analysis is presented. Through numerical

results, it is shown that the SSR and OSSR techniques outperform the conventional AND and OR

fusion rule-based energy efficient schemes, and discussed the regimes where OSSR is preferred

over SSR and vice-versa, in terms of the energy efficiency. It is shown that the trade off between the

performances of SSR and OSSR schemes is the implicit trade off between the energy consumption

and average throughput, and the results shows that the SSR scheme outperforms OSSR scheme

in many scenarios. This indicates that the energy consumption gets a larger priority in a CRN, as
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opposed to the achievable throughput and therefore, in the scenarios such as green cognitive radio

systems, SSR scheme is a better choice. However, in the scenarios where the saving of sensing

and transmission energy is not a main concern, OSSR scheme could be employed.

Sensing accuracy, in terms of probability of detection is essential to improve the average

throughput, which can be achieved by using the optimal L-out-of-M rule [159]. However, as

the number of sensors increases, the average throughput decreases due to an increase in reporting

overhead, even though the sensing accuracy increases. Towards this end, methods to increase the

channel available time by reducing the sensing overhead has also received considerable research

attention. From Chapter 4, it follows that the SSR scheme reduces the decision reporting overhead,

since only one selected node reports its decision to a center node/sink. Therefore, the SSR scheme

results in a better data transmission time which enhances the achievable network throughput.

Hence, a CR system incorporating the SSR scheme with energy harvesting nodes achieves a

major improvement in the channel available time and network throughput in an HCRWSN, for

a given primary interference constraint. Towards this end, in Chapter 5, the maximum achievable

throughput of SSR-based spectrum sensing in a multichannel HCRN is considered. The impact

of EH rate on maximum achievable throughput of SSR scheme is investigated and the average

achievable throughput for multichannel HCRN is derived. The problem of maximizing the average

throughput for multichannel HCRN is formulated. To solve this formulated optimization problem,

the cross entropy (CE) algorithm is employed and is shown that the algorithm converges to an

optimal value obtained through exhaustive search with fewer number of iterations. It is also

shown that the achievable throughput increases with EH rate by optimally scheduling the spectrum

sensors to sense a particular channel. Through numerical results, it is shown that SSR-based

multichannel scheduled sensing scheme outperforms the CCS scheme employing the optimal

L-out-of-M rule, and discussed the tradeoff between the average achievable throughput of both

schemes. It is shown that this tradeoff is the inherent tradeoff between the channel available time

and the detection accuracy, and discussed the regime where SSR is preferred over CCS scheme.

The results show that the SSR scheme outperforms CCS scheme when the number of spectrum

sensors is large, and therefore, the channel available time gets a larger priority in a HCRWSN than

the detection accuracy. Hence, in a scenario where spectral efficiency needs to be improved, SSR

is a better choice; CCS should be employed in the scenario where the PU protection and detection

accuracy are important.
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In Chapter 6, the energy efficiency of compressed conventional collaborative sensing (CCCS)

scheme is considered focusing on balancing the tradeoff between energy efficiency and detection

accuracy in cognitive radio environment. First, the existing CCCS scheme is considered,

and derive the achievable throughput, energy consumption and energy efficiency. The energy

efficiency maximization for the CCCS scheme is posed as a non-convex, optimization problem.

The optimization problem is approximated to reduce it to a convex optimization problem, and

showed that this approximation holds with sufficient accuracy in the regime of interest. The

tradeoff between dimensionality reduction and collaborative sensing of CCCS scheme is analysed

as an implicit tradeoff between energy saving and detection accuracy, and show that by combining

compression and collaboration the loss due to one can be compensated by the other which

improves the overall energy efficiency of the cognitive radio network.

7.2 Future work

Following are some of the topics which can be explored further in the context of work carried out

in this thesis :

Throughout this thesis, several techniques that contributed to the spectral and energy efficient

design of cooperative spectrum sensing schemes for cognitive radio networks is proposed and

analyzed. Various existing tradeoff in CSS such as tradeoff between achievable throughput and

energy consumption, tradeoff between channel available time and detection accuracy is identified

and shown that there is high degree of freedom in the optimization of the energy efficiency in

CSS network. These issues are addressed by focusing on some selected key aspects of CSS

such as overhead reduction (Chapter 3, 4), improving the channel available time (Chapter 5) and

employing compressed sensing in CSS (Chapter 6). However, there are some relevant issues that

warrant further consideration in the future work.

• Dispersiveness in the reporting channel: The reporting channels are assumed to

be error-free throughout this thesis, for analytical simplicity and do not consider the

impairments such as dispersiveness in the reporting channels, which is unrealistic in practice

[138, 169]. However the performance of SSR would degrade further in the case of dispersive
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reporting channel errors [138], and hence the presented performance in this work can be

considered as an upper bound for practical purposes.

• Impact of PU mobility: Another interesting idea for future work is to incorporate the

impact of mobility of PU on the spectrum sensing performance with the objective to

determine the parameters that affect the sensing performance. In this work, mobility aspects

of the PU [145] is ignored, since each SU would then require an exact knowledge of the

change in network topology due to the movement of PU, which makes the analysis more

complex.

A detailed analysis on the EE performance of SSR and OSSR schemes in the presence of

dispersive reporting channel errors, and the impact of PU mobility on the performance are

some directions in which this study can be extended in future.

• Impact of fading channel: In this work, the performance of cooperative spectrum sensing

over the additive white Gaussian noise channel is examined. It will be beneficial to study

the performance of the energy efficiency of CSS techniques over fading channels such as

Rayleigh, Rician or Nakagami-m channels which results in more practical performance

analysis. Depending on the fading model, the average probability of detection, achievable

throughput, energy consumed and energy efficiency can be evaluated. Although this

analysis exhibits performance degradation for cooperative spectrum sensing when fading

is considered, this needs to be confirmed through analysis and simulations.

The effect of topological aspects of nodes such as location of nodes, positioning of nodes

in energy efficiency analysis is yet another interesting direction in which this work can be

extended in future.

• Incorporation of Ambient Backscatter Communication (ABC): In overlay CR network,

the performance of secondary systems is still much dependent on the activity of a primary

channel. i.e., when the primary transmitter occupies the channel for most of the time, the

secondary transmitter has less opportunity for data transmission during the limited channel

idle period. As a result, the network performance of the secondary system is severely

deteriorated. This scenario of existence of PU for a long period has not been considered

in any of the analysis in this work. This problem can be further investigated and extended

by incorporating Ambient Backscatter Communication (ABC) which is a novel and more
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energy efficient communication technique. Since this will further increase the achievable

throughput of CR network, efficient methods to integrate ABC technique in the system

model considered in this work should be developed.

• Efficient optimization Algorithm: Cross entropy (CE) algorithm was used to maximize

the channel available time under PU protection constraint in Chapter 5. Although the

performance bound of the CE algorithm remains an open theoretical issue, it has been

shown effective in solving a similar combinatorial optimization problem. This optimization

problem can be further investigated and extended by in cooperating efficient heuristic

optimization algorithm which can be considered as a future research direction.
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Appendix for Chapter 3

A.1 Proof of Theorem 3.4 : To show that [V0(β)− V1(β)] ≥ 0,

for β → 0

To show that [V0(β)− V1(β)] ≥ 0, when β → 0, [V0(β)− V1(β)] can be expressed as

[V0(β)− V1(β)] = V 0
0 (β)ẼSSR(β)− V 0

1 (β)R̃SSR(β), where (A.1)

V 0
0 (β) = P (H0)C(TTotal − βT )

{
(φ+ 1)(N + 1)(1− Pf )N

}
, (A.2)

V 0
1 (β) = P (H0)

{
(NPsηβT + (1− 2η)βT ) + Pt(TTotal − βT )(1− Pf )N(N + 1)

}
. (A.3)

Observe that both V 0
0 (β) ≥ 0 and V 0

1 (β) ≥ 0, as β → 0. Following the condition (D1)
¯

in lemma

3.1, when Φ+1
Φ

< 1
[1−Pf (ε)]N+1 , R̃SSR(β) < 0, and ẼSSR(β) ≥ 0. Therefore, [V0(β)− V1(β)] ≥ 0,

which implies that lim
β→0

∂ESSR)

∂β
> 0.
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A.2 Proof of Theorem 3.4: To show that [V0(β)− V1(β)] ≤ 0,

for β → 1

When β → 1, it can be seen that since ∂Pf
∂β
≤ 0, it is sufficient to prove that [V0(β)− V1(β)] is a

decreasing function of β. Towards this end, it suffices to show that V0(β) is decreasing, and V1(β)

is an increasing function of β. Now, ∂V0(β)
∂β

can be expressed as:

∂V0(β)

∂β
= V 0

0 (β)
∂ẼSSR(β)

∂β
+ ẼSSR(β)

∂V 0
0 (β)

∂β
, where (A.4)

∂ESSR(β)

∂β
= −([NPsηT + Pt(1− 2η)T ][P (H1)Pd + P (H0)Pf − 1]

+ [NPsT1 + PtT2] + [P (H0)Pt(1− PN+1
f T ]− PsηT ), (A.5)

∂V 0
0 (β)

∂β
= −P (H0)C(φ+ 1)(N + 1)

{
(TTotal − βT )N(1− Pf )N−1(

∂Pf
∂β

) + (1− Pf )NT
}
.

(A.6)

Since V 0
0 (β) ≥ 0 and ẼSSR(β) ≥ 0, it is easy to show that V0(β) ≤ 0. Thus ∂V0(β)

∂β
is a decreasing

function of β. Similarly,

∂V1(β)

∂β
= V 0

1 (β)
∂RSSR(β)

∂β
+RSSR(β)

∂V 0
1 (β)

∂β
, where (A.7)

∂RSSR(β)

∂β
= −V 0(β)

∂Pf
∂β

+
[
φ− (φ+ 1)(1− Pf )N+1

]
P (H0)CT, (A.8)

∂V 0
1 (β)

∂β
= −P (H0)

{
Pt(N + 1)

{
(TTotal − βT )N(1− Pf )N−1∂Pf

∂β
+ (1− Pf )NT

}
−(NPsηT + (1− 2η)T )} . (A.9)

Since ∂Pf
∂β

is a decreasing function of β, ∂R̃SSR(β)
∂β

≥ 0. Also, when R̃SSR ≤ 0 and ∂V 0
1 (β)

∂β
≤ 0, then

V1(β) is an increasing function of β. Therefore, if φ meets the requirement (D1)
¯

in lemma 3.1,

V0(β) and V1(β) are monotonically decreasing and increasing in β, respectively. According to the

constraints on β and P SSR
f , βmin can calculated by considering the optimal detection threshold,

and can be shown as

βmin =

[
1(

ε∗

σ2 − 1
)

(
√
ηTfs)

Q−1
(

1− (1− P f )
1

N+1

)]2

. (A.10)
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Hence, [V0(β)− V1(β)] is monotonic decreasing in βmin ≤ β ≤ 1.

Since the energy efficiency is quasi- concave in β, it is shown that the first derivative is

positive as β → 0 and negative as β → 1. This indicates that there could be multiple points

between 0 and 1, for which the first derivative is zero. The global optimum will be picked by

the algorithm used to solve this problem. However, in case of a concave function, the point at

which the first derivative is zero will be unique, and this existence of a unique maximum can be

established by considering the second derivative.

A.3 Proof of Lemma 3.3 : To Show that ∂ẼESSR
∂η ≥ 0

The first order derivative of the cost function with respect to η can be expressed as

∂ẼESSR

∂η
= − [V0(η)− V1(η)]

∂Pf
∂η
− V2(η), (A.11)

where ∂Pf
∂η

is given by

∂Pf
∂η

= −1

2

√
βTfs
2πη

( ε
σ2
− 1
)

exp

(−( ε
σ2 − 1)2ηβTfs

2

)
. (A.12)

It is straightforward to see that ∂Pf
∂η
≤ 0, i.e., Pf is a monotonic decreasing function with η. Now,

V0(η) = V 0(η)ẼSSR(η), where (A.13)

V 0(η) =
{
P (H0)C(TTotal − βT )

[
(Φ + 1)(N + 1)(1− Pf )N

]}
. (A.14)

Also,

V1(η) = RSSR(η)V 1(η), where (A.15)

V 1(η) = P (H0)
{

(NPsηβT + Pt(1− 2η)βT )− Pt(TTotal − βT )(1− Pf )N(N + 1)
}
. (A.16)
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Similarly, V2(η) can be expressed as

V2(η) = RSSR(η)(PsβT − P (H1) [NPsβT − 2PtβT ]

− [NPsηβT + Pt + Pt(1− 2η)βT ]PfP (H0)− [NPsβT + 2PtβT ]). (A.17)

It can be seen from the above expressions that when 0 ≤ η ≤ 1/3, ∂Pf
∂η
→ −∞ and

[V0(η)− V1(η)] ≥ 0, provided that V2(η) ≤ 0. Hence, ∂ẼSSR
∂η
≥ 0 for all η.
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Appendix for Chapter 4

B.1 Proof of Theorem 4.1

The proof technique is similar to the SSR scheme. ∂ẼEOSSR
∂ε

can be expressed as

∂ẼEOSSR

∂ε
=

[
−(V1(ε)ẼOSSR(ε) + V2(ε))

]
Ẽ2
OSSR(ε)

∂Pf
∂ε
−ROSSR(ε)V3(ε)

∂Pd
∂ε

+ V4(ε), with (B.1)

V1(ε) = C(TTotal − T0)P (H0) + C(TTotal − βT )P (H0)
{
φ+ (φ+ 1)POSSR

f,F N(1− POSSR

f,F )N−1
}

− (1− POSSR

f,F )N , (B.2)

V2(ε) = NPsT1P (H0) + PtT2 + Pt(TTotal − βT )(1− Pf )N + Pt(TTotal − βT )(1− Pf )N

+ Pt(TTotal − T0)P (H0), (B.3)

V3(ε) = NPsT1P (H1)− Pt(TTotal − T0)P (H1), and (B.4)

V4(ε) = (PtT2 + Pt(TTotal − βT ))(P (H0)PfN(1− Pf )N−1 + Pf , (B.5)

each of which are greater than or equal to zero. Also, it can be shown that

∂Pf
∂ε

= − 1

σ2

√
ηβTfs

2π
exp

(−( ε
σ2 − 1)2ηβTfs

2

)
≤ 0. (B.6)

∂Pd
∂ε

= − 1

σ2

√
ηβTfs

2π(2γ + 1)
exp

(
−ηβTfs

4γ + 2

( ε
σ2
− γ − 1

)2
)
≤ 0. (B.7)
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Appendix for Chapter 6

C.1 Proof of Theorem 6.1

To establish that P CCCS
d ≥ P d is satisfied with equality, it is shown that ∂ẼEcccs(λ,c,N)

∂λ
≥ 0, for all

λ. Observe that

∂ẼEcccs(λ, c, N)

∂λ
=

∂R̃cccs(λ)
∂λ

Ẽcccs(λ)− R̃cccs(λ)∂Ẽcccs(λ)
∂λ

Ẽ2
cccs(λ)

, (C.1)

where

∂R̃cccs(λ, c, N)

∂λ
= −∂Pf

∂λ
(1 + φ)π0C(TTotal − cTs), (C.2)

and

∂Ẽcccs(λ, c, N)

∂λ
= −∂Pf

∂λ
π0Pt(TTotal − cTs). (C.3)

Upon further simplification, ∂Ẽcccs(λ,c,N)
∂λ

is given by

∂Ẽcccs(λ, c, N)

∂λ
= −∂Pf

∂λ
V1(λ, c, N), (C.4)
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where

V1(λ, c, N) =

[
(1 + φ)π0C(TTotal − cTs)Ẽcccs(λ, c, N)

Ẽ2
cccs(λ, c, N)

−π0Pt(TTotal − cTs) ∗ R̃cccs(λ, c,N)

Ẽ2
cccs(λ, c, N)

]
(C.5)

Now, to show that ∂EECCCS(λ,c,N)
∂λ

≥ 0, it is enough to show that V1(λ, c, N) ≥ 0, since

∂Pf
∂λ

= − 1

2σ2
w

√
cNPπ

exp

−
(

λ
σ2
w
− cNP

)2

(4cNP )

 ≤ 0.

In general, it is hard to analytically show that V1(λ, c, N) ≥ 0. However, since R̃cccs(λ, c, N) ≥

0 and Ẽcccs(λ, c, N) ≥ 0, the parameters φ, C, TTotal and Ts can be chosen such that (1 +

φ)π0C(TTotal − cTs)Ẽcccs(λ, c, N) ≥ π0Pt(TTotal − cTs)R̃cccs(λ, c, N). Later, in Sec. 6.6, it can be

seen that the above condition is satisfied for those parameter values which are of practical interest.

Therefore,

P d = Q

(
λ∗

σ2
x+σ2

w
− cNP

√
2cNP

)
= Q

 λ∗

σ2
w

(
1

1+γ

)
− cNP

√
2cNP

 . (C.6)

Rearranging the equation gives the expression for λ∗.

C.2 Proof of Theorem 6.2

Note that

∂ẼEcccs(λ, c, N)

∂c
=

∂R̃cccs(c)
∂c

Ẽcccs(c)− R̃cccs(c)∂Ẽcccs(c)
∂c

Ẽ2
cccs(c)

. (C.7)

As c→ 0, it can be shown that

lim
c→0

∂ẼEcccs(λ, c, N)

∂c
≥ lim

c→0

{
−∂Pf
∂c

(
C
Pt

)
+ V2(c, N)

}
, (C.8)
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where

V2(c, N) =
[NPsτs +NPtτr] π0C

P 2
t

≥ 0 (C.9)

Also, note that

∂Pf
∂c

= − 1√
π

exp(
( λ

∗

σ2
w
− cNP )2

4cNP
)[

− NP

2
√
cNP

−
NP (( λ

∗

σ2
w
− cNP ))

4(cNP 3/2)

]
(C.10)

Therefore, Pf is a monotonically decreasing function of c. When c → 0, it can be shown that
∂Pf (λ,c,N)

∂c
→ −∞. Since V2(c, N) is a positive constant, lim

c→0

∂ẼEcccs(λ,c,N)
∂c

= +∞. Furthermore,

using a well-known bound on the Q function, the following lower bound Pf is obtained and is

given by

Pf ≥

[
1− 2cNP

( λ
σ2
w
− cNP )2

]
exp

[
−

( λ
σ2
w
− cNP )2

4cNP

]
, (C.11)

which can be used to get a lower bound on the first derivative of ẼEcccs(λ, c, N) as

∂ẼEcccs(λ, c, N)

∂c
≥ (BA−BD −BC − cAC)︸ ︷︷ ︸

,X1

+ (BC + cAC − 2BA+ 2BD)

[
1− 2cNP

( λ
σ2
w
− cNP )2

]
exp

[
−

( λ
σ2
w
− cNP )2

4cNP

]
︸ ︷︷ ︸

,X2

+ (BA−BD)

[
1− 2cNP

( λ
σ2
w
− cNP )2

]2

exp

[
−

( λ
σ2
w
− cNP )2

4cNP

]
︸ ︷︷ ︸

,X3

− (AC)
∂Pf (λ, c, N)

∂c︸ ︷︷ ︸
,X4

, (C.12)

where A = π0C [TTotal − cTs], B = π0PtTs, C = NPscτs +NPtcτr, D = Pt [TTotal − cTs] π0
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As seen earlier, ∂Pf
∂c

is negative, and it is easy to show that BC +AE − 2BA+ 2BD > 0, BA−

BD > 0, and consequently, X2 ≥ 0, X3 ≥ 0 and X4 ≥ 0. Now,

∂ẼEcccs(λ, c, N)

∂c
≥ X1 +X2 +X3 +X4

≥ X1

= BA−BD −BC − AE

= (π2
0PtTs)π0C(TTotal − cTs)− (π2

0P
2
t Ts)(TTotal − cTs)

− (π0PtTs)(NPscτs +NPtcτr)

−π0C(TTotal − cTs)(NPsτs +NPtτr))

= π0

{
PtTsC − P 2

t Ts − C(NPsτs +NPtτr)
}︸ ︷︷ ︸

,W

(TTotal−cTs)

− cπ0PtTs(NPsτs +NPtτr)︸ ︷︷ ︸
,Y

(C.13)

To ensure that ∂ẼEcccs(λ,c,N)
∂c

≥ 0, the right hand side of (C.13) has to be ≥ 0. Rearranging

(C.13), observe that this is true when c ≤ cUB , TTotalW
TsW+Y

. In other words, it is shown that
∂ẼEcccs(λ,c,N)

∂c
≥ 0 whenever c ∈ (0, cUB). Finally, to establish that c∗ = cmax, it is required

to show that cmax ≤ cUB. Although hard to show analytically, it is verified to be indeed true

numerically, for moderate values of N and for low SNR, which is of practical relevance.

C.3 Proof of Theorem 6.4

Note that the first derivative of Pf is negative as given below.

∂Pf
∂λ

= − 1

σ2
w

√
2πcNγ

exp

[
−λ2

(2cNγσ4
w)

]
≤ 0 (C.14)

As mentioned earlier, since the expressions for average achievable throughput, average energy

consumption and the energy efficiency expressions across all four scenarios S1 − S4 for the

deterministic case remains similar to the previous case, and similar set of arguments hold true

for the deterministic case too. These can be used to prove that the first derivative of ẼEcccs is
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greater than or equal to 0. Therefore,

P d = Q

(
λ∗ − cNσ2

w

σ2
w

√
cNγ

)
. (C.15)

Rearranging the above equation gives the expression for λ∗.

C.4 Proof of Theorem 6.5

Note that the first derivative of P CCCS,det

f with respect to c from (6.36) is given by,

∂Pf (λ,N, c)

∂c
= −

exp(−( λ2

2Nγσ4
w

)Nγλ

2
√

2π(cNγ)3/2σ2
w

≤ 0. (C.16)

Therefore, lim
c→0

∂Pf (λ,c,N)

∂c
→ −∞. Similar arguments given in Sec. C.2 can be used to show that

c∗ = cmax, even in this case.



Appendix D

Detection Performance of SSR

Scheme

D.1 Bayesian Detector

Performance of Bayesian detector are better when compared to energy detector in terms of

spectrum utilization and secondary user throughput. According to binary hypothesis testing, test

statistics of Bayesian rule is to compute the likelihood ratio and compare with the threshold δ

[170]. The probability ratio test (PRT) of the hypothesis H1 and H0 for the received signal r(t) can

be defined as

TPRT (r) =
P (r/H1)

P (r/H0)
(D.1)

Finally, the probability ratio test TPRT (r) is compared with a threshold δ that depends on the cost

function, which is properly chosen to reduce the estimated posterior cost defined as

C =
∑1

i=0

∑1

j=0
Cijp(Hj)p(Hi|Hj) (D.2)
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Thus based on [13], it is known that at low SNR the detection probability and false alarm

probability of Bayesian detector are respectively given as

PD = Q

(
ln δ − 2Nγ2

γ
√

2N(1 + 4γ)

)
(D.3)

PF = Q

(
ln δ

γ
√

2N

)
(D.4)

Usually the threshold is calculated by fixing individual false alarm probability and is given by

δ = exp(γ
√

2NQ−1(PF )) (D.5)

Where Q−1 is the inverse function of marcum-Q function. Thus by using (5) on (3), individual

detection probability using Bayesian detector is obtained.

D.2 Detection Performance Analysis of Proposed BD-SSRCS

Scheme

Performance analysis of BD-SSRCS in terms of detection probability, false alarm probability and

average sensing time is considered in this section.

D.2.1 Overall detection Probability of BD-SSRCS strategy

Overall, SSR probability of false alarm and probability of detection are evaluated as

P SSR
f = P SSR

f,F +
(
1− P SSR

f,F

)
P SSR
f,F,1 (D.6)

P SSR
d = P SSR

d,F +
(
1− P SSR

d,F

)
P SSR
d,F,1 (D.7)

Figure.D.1 plots probability of detection versus false alarm probability (Pf ) for both Bayesian and

energy based detectors. It is apparent that SSR scheme with Bayesian detector outperforms other

strategies by providing improved detection performance.The reason is of two fold; one is due to
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Figure D.1. Detection Probability versus false alarm probability for the traditional, RSR and SSR
Scheme.

the fact that sensing by individual SUs are carried out by Bayesian detector which performs well

under low SNR. Secondly due to the selection of superior reporting SU. SSR combined with BD

results in 16.71% increase in detection probability. While the increase in RSR is 8.32%, traditional

case exhibits 19.65% increase in detection probability. Improvement of probability of detection

using Bayesian detector in suggested cooperative sensing scheme is listed in Table. D.1.

Table D.1. Probability of detection (Pd) for different sensing scheme for both Bayesian and energy
detector for SNR=-6dB, (Pf = 0.1)

Cooperative sensing Scheme Local Sensing Pd % of improvement in Pd

Traditional
BD 0.599

19.65%
ED 0.4025

RSR
BD 0.9392

8.32%
ED 0.856

SSR
BD 0.9946

16.71%
ED 0.8275

Figure.D.2 show influence of η on miss detection probability. Modification of η to an optimal

value lessens miss detection probability for a given β. Incrementing η ensures an increment in

local detection time, thus decreasing miss detection probability. However, more time allotment

to sensing phase decreases reporting time which leads to reporting performance degradation.

Hence there exists a trade-off between local decision performance and decision reporting for the
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Figure D.2. Miss detection Probability versus η for the traditional,RSR and SSR Scheme for β=1

Table D.2. Percentage reduction in miss detection probability using Bayesian in different sensing
scheme with different values of β

Cooperative sensing Scheme Local Sensing Pm % reduction of Pm
β = 1 β = 0.5 β = 1 β = 0.5

Traditional
BD 0.302 0.416

68.98% 56.68%
ED 0.975 0.961

RSR
BD 0.048 0.369

48.63% 56.79%
ED 0.534 0.855

SSR
BD 0.0009 0.006

99.20% 99.25%
ED 0.117 0.855

proposed strategy. Improvement of local detection probability by using Bayesian detector ensures

improvement in overall reporting performance at reduced β value. This in turn reduces overall

miss detection probability. Percentage reduction in miss detection probability using Bayesian in

suggested cooperative sensing scheme with different values of β is listed in Table D.2.

Table D.3. AST for BD-SSRCS and ED-SSRCS for different values of γP and σ2
PF

γP σ2
PF

Average Sensing Time % reduction of
Average Sensing TimeSSR-BD SSR-ED

-10 0.6 1.738 1.894 8.23%

-6 0.6 1.189 1.699 30.01%

-6 1 1.045 1.559 32.96%
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Figure D.3. AST versus false alarm probability for SSR scheme for different γp and σ2
PF values

Table D.4. AST for different sensing scheme using energy detector and Bayesian detector with
η=0.25 , σ2

PF=1 , γP = -6dB , Pf = 0.01

β Sensing Scheme AST % reduction in AST

0.5
SSR/RSR-BD 1.533

48.27%
SSR/RSR-ED 2.964

1
SSR/RSR-BD 2.328

52.18%
SSR/RSR-ED 4.869

D.2.2 Average Sensing Time (AST)

Average Sensing Time (AST) is the time needed to arrive at a final conclusion about the existence

of PU in a sensing phase. In the conventional case, cooperative SUs use up all the subslots to

report their local decisions. The total sensing time for the traditional scheme is

t̄Tra = N + 1 (D.8)



Appendix D. Detection performance for SSR using Bayesian detector 150

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Sensing time allocation factor 

0

1

2

3

4

5

6

7

A
ve

ra
ge

 s
en

si
ng

 ti
m

e 
in

 m
se

c

Conventional Case(ED)

RSR(ED) with =1

SSR(ED) with =1

Conventional Case(BD)

RSR(BD) with =1

SSR(BD) with =1

Figure D.4. Average Sensing Time versus false alarm probability for the traditional, RSR and SSR
scheme for β=1

In SSR strategies, detection of presence of PU by center SU merely requires time slot T0, else T1

and T2 add to the time. Hence the AST of SSR is expressed as

t̄SSR = β(N + 1)
(
1− P SSR

d,F + ηP SSR
d,F

)
(D.9)

Above equations distinctly claim that when local detection by center SU(F) is high, i.e. when P SSR
d,F

tends to 1, it does not need assistance from other cooperative SUs for sensing, which reduces the

AST of BD-SSRCS scheme. Furthermore, when F cannot detect presence of PU by itself, i.e

when P SSR
d,F tends to 0, the suggested schemes use up to (N + 1) subslots. Even in this worst case

scenario, the suggested schemes have lower ASTs as compared to the conventional scheme since

η is considered to be a small value.

From the simulation results, it is evident that ASTs for the suggested methods can be minimized

by choosing appropriate η for any given β value.Figure D.3 Probability of false alarm plot for SSR

schemes under different values of SNR and noise variance for both energy detector and Bayesian

detector. From the time slot structure it is clear that AST depends on sensing time allocation
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Figure D.5. Average Sensing Time versus false alarm probability for the traditional, RSR and SSR
scheme for β=0.5

factor β, η and the local detection probability of center SU. Since the local detection is carried

by Bayesian detector which works well under low SNR regime this improves the local sensing

probability of center SU which further reduces the AST of BD-SSRCS scheme. Table. D.3. shows

quantitative comparison of BD-SSRCS and ED-SSRCS based on γP and σ2
PF . It is observed that

AST is reduced in BD-SSRCS when compared to ED-SSRCS. Also it can be noticed that average

sensing time is deceased as γP grows or when channel quality from Primary user, P to center SU,

F is improved. This situation avoids cooperation of other SUs since center SU (F) itself will detect

the presence of PU. Figures.D.4 and D.5 shows the influence of β and η on AST. Increase in β

and η results in longer sensing time. Fig.6 illustrates that choosing an optimum value of η leads to

minimization of average sensing time. Moreover, since AST in SSR and RSR depends on β,η and

the local detection probability of F, ASTs of both the scheme are nearly identical to each other.

It is understood from (D.9) that AST of the proposed BD-SSRCS scheme reduces as P SSR
d,F tends

to 1. Therefore, in this scenario F seldom needs assistance from cooperative SUs for spectrum

sensing. Although β increases, higher local detection probability leads to decrease in AST of the

proposed scheme. Table D.4 illustrates the reduction in AST when Bayesian detector is used for

local sensing when compared to energy detector. It can be concluded that by adjusting β and η

AST can be minimized.
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