
Design of Energy Efficient Schedulers for

Multicore Hard Real Time Systems

THESIS

submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

GAWALI SHUBHANGI KRUSHNACHANDRA

under the supervision of

Dr. BIJU K. RAVEENDRAN

and co-supervision of

Prof. BHARAT M. DESHPANDE

BIRLA INSTITUTE OF TECHNOLOGY AND

SCIENCE, PILANI

March 2018

Scanned by CamScanner

Scanned by CamScanner

Dedicated to my family
for their continuous support. . .

Acknowledgement

First and foremost I thank Lord Ganesha and Goddess Saraswati for the

blessings they bestowed upon me and for giving me the strength and wisdom

to achieve this dream.

This doctoral thesis is in its current form due to the assistance and

encouragement of several people. It is a pleasure to express my sincere

thanks to all those who helped me for the success of this study and made it

an unforgettable experience.

I would like to express my deepest gratitude to supervisor, Dr. Biju K.

Raveendran. It has been an honour to be his first Ph.D. student. I appreciate

all his contributions of time, excellent guidance, ideas, care and patience to

make my research journey from start to conclusion an insightful, thought

provoking and motivational learning process. The joy and enthusiasm he has

for his research was contagious and inspirational for me even during tough

times in the Ph.D. pursuit.

I have been extremely lucky to have co-supervisor, Prof. Bharat M.

Deshpande, who has provided his valuable guidance and consistent support

throughout research work. His apt suggestions in completing my thesis are

highly appreciated.

I would like to thank the members of Doctoral Advisory Committee, Dr.

Sanjay K. Sahay and Prof. Neena Goveas, for their valuable time, guidance,

critical suggestions and comments for overall improvement of research work.

I am grateful to Prof. Souvik Bhattacharyya, Vice-Chancellor, BITS Pilani,

Prof. G. Raghurama, Director, BITS-Pilani, K. K. Birla Goa Campus,

Prof. Sasikumar Punnekkat, former Director, BITS-Pilani, K. K. Birla Goa

Campus, Prof. S. K. Verma, Dean, Academic Research Division, BITS-Pilani,

Prof. P. K. Das, Associate Dean, Academic Research Division, BITS-Pilani

K. K. Birla Goa Campus and the members of Doctoral Research Committee

of Dept. of CS&IS, BITS-Pilani, K. K. Birla Goa Campus for providing

administrative support, conducive atmosphere and adequate facilities to

carry out my research efficiently.

Completing this work would have been all the more difficult without in-depth

discussions, any time help of Dr. Ramprasad Joshi, Rajendra Roul and

Geeta Patil.

I owe a lot to all my teachers, colleagues, friends and relatives who have

helped me directly or indirectly at different stages of my research work.

I remain indebted to my parents, Seema and Madhav Ghubade and my

mother-in-law Vandana for their blessings, family support and motivation. I

am thankful to my brothers Nilesh, Nikhil and my sister-in-law Gurpreet for

encouraging me with their best wishes.

From the bottom of my heart I thank my daughter Spandana and my

husband Krushnachandra for their love and encouragement throughout this

work.

Shubhangi

Abstract

Energy efficiency is one of the most important design considerations of

modern battery operated real time systems. Static and dynamic energy

components are the most prominent parameters affecting energy consumption

while scheduling. These energy consumptions are mainly reduced by

slowdown and/or shutdown techniques like Voltage and Frequency Scaling

(VFS) and procrastination respectively. As hard real-time systems are

designed for Worst Case Execution Time (WCET) of jobs, the time

difference between WCET and Actual Execution Time (AET) can be used

dynamically at run time for shutdown/slowdown to save energy further.

Dynamic VFS (DVFS) is a well addressed area of work for uniprocessor

systems. Though many researchers used Dynamic Procrastination (DP)

to improve shutdown duration, still there exist a scope of improvement

without increasing complexity of the scheduler. The real challenge lies in

opting DVFS or DP optimally for combined benefits. In Multi-core (MC)

systems, the optimal energy performance is achievable by accumulating

distributed idle intervals at various cores together and converting it into

shutdown/slowdown. This can be achieved by migrating jobs between cores.

In MC systems, allocation plays an equally important role as scheduling.

Most of the existing allocations are based on optimizing number of cores.

In this work, we propose a task allocation strategy - Modified First Fit Bin

Packing (MFFBP) which considers energy along with number of cores.

Experimental results showed that MFFBP increased the shutdown duration

of ‘Earliest Deadline First with shutdown’ which resulted in 13.43% static

and 8.42% dynamic energy savings. Producing a valid schedule by meeting

all job deadlines with least possible energy consumption is achievable when

the system has minimum idle time. This can be achieved by aggressively

converting idle intervals into shutdown whenever possible and active otherwise.

In this thesis we propose four schedulers for different classes of cores namely

DPS - for the cores supporting shutdown, DPVFS - for the cores supporting

shutdown with DVFS, OASIS - for cores with shutdown and migration and

HandT - for cores with shutdown, DVFS and migration. A new framework

SMART - Simulator for Multicore hArd Real Time systems is designed to

schedule and analyze energy parameter. Experimental result shows that on

an average, DPS offers 10.7%, 4% and 6.2% reduction in static, dynamic and

total energy consumptions respectively in comparison with Conventional DPS

(ConvDPS). DPVFS reduces static, dynamic and total energy by {84.54%,

-1.45%}, {-0.38%, 32.7%}, {33.2%, 18.8%} over ccEDF and DPS algorithms

respectively. OASIS reduces static and overall energy consumptions by {8%,

0.7%} and {3.88%, 1.2%} over ConvDPS and DPS schedulers respectively.

HandT reduces static, dynamic and overall energy by {50%, -3%, 0.83%,

-5.33%}, {-5.5%, 6%, 1.46%, 5.3%}, {23%, 2.4%, 1%, 1.3%} over DPS, DPVFS

and OASIS algorithms respectively. The work presented in this thesis provides

insight of scheduling techniques in MC-HRTS from the perspective of energy

saving and analytical view for further enhancements in the area of real time

system.

Contents

List of Figures xi

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 5

1.3 Problem Statement . 6

1.4 Research Goals . 13

1.5 Contributions . 14

1.6 Thesis Outline . 15

2 Literature Survey 18

2.1 Introduction . 18

2.2 Fundamentals . 20

2.3 Scheduling in Uniprocessor HRTS 23

2.3.1 Shutdown Techniques 24

2.3.2 Slowdown Techniques 25

2.4 Scheduling in MC-HRTS . 27

2.4.1 Task Allocation Methods 29

2.4.2 Task Scheduling Methods 31

vii

viii Contents

2.5 Summary . 40

3 System Model 43

3.1 Introduction . 43

3.2 SMART - A Simulator for MC-HRTS 43

3.3 Platform Model . 44

3.4 Task Model . 44

3.5 Evaluation Parameters . 47

3.6 Energy Model . 51

3.7 Summary . 55

4 Energy Efficient Scheduling in MC-HRTS 56

4.1 Introduction . 56

4.2 Task Allocation . 57

4.2.1 MFFBP Algorithm . 58

4.2.2 Motivating Example 60

4.2.3 Analysis of MFFBP algorithm 61

4.2.4 Experimental evaluation 63

4.3 Energy Efficient Dynamic Schedulers 65

4.3.1 DPS Scheduler . 66

4.3.1.1 Working of Conventional Static and Dynamic

Procrastination Scheduler 67

4.3.1.2 DPS algorithm 69

4.3.1.3 Motivating Example 71

4.3.1.4 Analysis of DPS Algorithm 72

4.3.1.5 Experimental Evaluation 77

4.3.2 DPVFS Scheduler . 84

4.3.2.1 Working of ccEDF 85

ix Contents

4.3.2.2 DPVFS algorithm 86

4.3.2.3 Motivating Example 89

4.3.2.4 Analysis of DPVFS Algorithm 92

4.3.2.5 Experimental Evaluation 96

4.4 Summary . 103

5 Scheduling using Migration 105

5.1 Introduction . 105

5.2 Energy Efficient Dynamic Schedulers 106

5.2.1 OASIS Scheduler . 107

5.2.1.1 OASIS algorithm 108

5.2.1.2 Motivating Example 114

5.2.1.3 Analysis of OASIS Algorithm 118

5.2.1.4 Experimental Evaluation 126

5.2.2 HandT scheduler . 138

5.2.2.1 HandT algorithm 141

5.2.2.2 Motivating Example 147

5.2.2.3 Analysis of HandT Algorithm 153

5.2.2.4 Experimental Evaluation 160

5.3 Summary . 167

6 Conclusion and Future Directions 170

6.1 Summary of results . 170

6.2 Future scope . 173

Publications 176

Biographies 177

x Contents

Bibliography 179

Index 190

List of Figures

2.1 Outline of the Survey . 19

4.1 Percentage of active, idle and shutdown period for varying

utilizations . 64

4.2 Static energy consumption per unit for different utilizations . . 64

4.3 Total energy consumption per unit for different utilizations . . 65

4.4 (a) Schedule using Static Procrastination with AET = WCET

(b) Schedule using Static Procrastination with AET = 80%

WCET (c) Schedule using Conventional DPS 68

4.5 (a) Schedule without procrastination (b) Schedule with DPS . 72

4.6 AP and PI . 73

4.7 Percentage of active, idle and shutdown period for varying

utilizations . 78

4.8 Static energy consumption per unit for different utilizations . . 78

4.9 Total energy consumption per unit for different utilizations . . 79

4.10 Percentage of active, idle and shutdown period for varying

utilizations . 80

4.11 Static energy consumption per unit for different utilizations . . 81

4.12 Dynamic energy consumption per unit for different utilizations 81

4.13 Decision making energy consumption per unit for different

utilizations . 83

xi

xii List of Figures

4.14 Total energy consumption per unit for different utilizations . . 83

4.15 Schedule using ccEDF . 85

4.16 (a) Schedule with DPVFS (b) Schedule with DPS 91

4.17 Static energy consumption per unit time for different utilizations 97

4.18 Dynamic energy consumption per unit time for different

utilizations . 97

4.19 Decision making energy per unit time for different utilizations 98

4.20 Shutdown energy per unit time for different utilizations 100

4.21 Idle state energy per unit time for different utilizations 100

4.22 Total energy consumption per unit time for different utilizations101

4.23 Total energy consumption per unit time for different shutdown

thresholds . 101

5.1 Core State transitions . 116

5.2 Percentage of active, idle and shutdown period for varying

utilizations . 127

5.3 Static energy consumption per unit time for varying utilization

. 128

5.4 Dynamic energy consumption per unit time for varying utilization128

5.5 Number of procrastination decision making points for varying

utilizations . 129

5.6 Shutdown overhead per unit time for varying utilizations . . 131

5.7 Total inactive duration energy consumption per unit time for

varying utilizations . 131

5.8 Total energy consumption per unit time for varying utilizations132

5.9 Percentage of shutdown period over idle period for varying

utilizations . 133

xiii List of Figures

5.10 Static energy consumption per unit time for varying utilizations135

5.11 Dynamic energy consumption per unit time for varying

utilizations . 135

5.12 Number of procrastination decision making points for varying

utilizations . 136

5.13 Shutdown overhead per unit time for varying utilizations . . . 136

5.14 Total inactive duration energy consumption per unit time for

varying utilizations . 137

5.15 Total energy consumption per unit time for varying utilizations 137

5.16 Core State Transitions . 149

5.17 Shutdown duration for different utilizations 161

5.18 Static energy consumption per unit for different utilizations . . 162

5.19 Dynamic energy consumption per unit for different utilizations 162

5.20 Total energy consumption per unit for different utilizations . . 163

5.21 Shutdown duration for different utilizations 164

5.22 Static energy consumption per unit for different utilizations . . 165

5.23 Active duration for different utilizations 165

5.24 Dynamic energy consumption per unit for different utilizations 166

5.25 Total energy consumption per unit for different utilizations . . 166

List of Tables

2.1 Ready reckoner for evaluation metrics in task allocations

algorithms . 41

2.2 Ready reckoner for evaluation metrics in basic energy

scheduling algorithms for uniprocessor system 42

3.1 Algorithms and Techniques used 45

3.2 Dynamic energy . 52

4.1 Task set 1 . 60

4.2 Task set 2 . 90

5.1 Task set 3 . 118

5.2 Task set 4 . 152

6.1 Ready reckoner for choice of algorithm 174

xiv

List of Abbreviations

AET Actual Execution Time

BP Bin Packing

BFBP Best Fit Bin Packing

ccEDF Cycle Conserving Earliest Deadline First

DP Dynamic Procrastination

DVFS Dynamic Voltage/Frequency Scaling

EDF Earliest Deadline First

FFBP First Fit Bin Packing

HRTS Hard Real Time System

MC-HRTS Multicore Hard Real Time System

MFFBP Modified First Fit Bin Packing

NFBP Next Fit Bin Packing

VFS Voltage/Frequency Scaling

WCET Worst Case Execution Time

WFBP Worst Fit Bin Packing

xv

Chapter 1

Introduction

1.1 Background

Energy efficiency at various levels in real-time systems is one of the most

widely addressed research areas as it plays a vital role in prolonging battery

life. Some of these systems are working with hard real-time tasks where

meeting all task deadlines with minimum energy consumption is a major

design consideration [1]. Optimization of energy consumption in uniprocessor,

Multi-Core (MC) and Multiprocessor (MP) hard real-time systems can be

addressed at various levels of design hierarchies such as technology, circuit,

architecture, operating system, compiler and application [1] [2]. Operating

system and architecture level energy consumption can be addressed at process

execution, scheduling, memory, file systems, synchronization, instruction set

architecture, interconnection network, cache memory, voltage and frequency

scaling etc. [3]. This thesis addresses energy consumption during process

execution and scheduling as it accounts for most of the system level energy

consumption.

The major components of energy consumption are dynamic and static.

Dynamic energy is due to switching current and static energy is due to

1

2 1.1. Background

leakage current. Dynamic energy consumption can be reduced by optimizing

platform independent parameters like number of preemptions, cache memory

impacts etc. Dynamic energy consumption can also be controlled by platform

dependent parameters like supply voltage (V) and operating frequency (f) as

dynamic energy consumption of CMOS circuit is proportional to V 2fC and

short-circuit energy consumption where C is the load capacitance [4]. As

dynamic energy consumption has quadratic dependence on supply voltage

and frequency, Voltage and Frequency Scaling (VFS) is one of the best

mechanisms to reduce it. Most of the real-time jobs finish execution well

before its Worst Case Execution Time (WCET). This results in generating

additional slack at run time. This slack can be utilized by Dynamic VFS

(DVFS) techniques to improve dynamic energy saving [5] [6] [7]. The

effectiveness of DVFS scheduler depends on the utilization of idle time

and runtime slack. DVFS saves dynamic energy at the cost of increase in

job execution time. With increase in execution time, the overhead due to

preemptions, cache impacts and other decision making increases. This may

result in deadline misses if the scaled execution time of the job overshoots

the WCET. The cores consume static and dynamic energy in active and idle

state. The dynamic energy consumption of a core in idle state is minimum.

Both the dynamic and static energy components are negligibly small in

shutdown state. Though the switching current reduces with advancement

in CMOS technology, the leakage current exponentially increases. This

makes static energy equally an important component as dynamic energy in

overall energy consumption. Shutting down the core is one of the prominent

mechanisms to save static energy consumption. Saving because of shutdown

3 1.1. Background

is proportional to the length of the shutdown duration as each shutdown

has hidden overheads. This can be achieved with the help of procrastination

techniques [4] [8] [9] [10] [11]. Procrastination uses prior knowledge of the

tasks to postpone their execution without missing any timing constraints.

Dynamic Procrastination (DP) can increase the shutdown duration as it

uses the run time slack for postponement of job execution. It is known that

applying DVFS slims down the chances of future shutdown. In MC systems,

the unused idle durations are utilized by migrating the tasks which may

effectively produce longer idle duration in some cores for shut down and thus

reducing overall energy consumption.

Shutting down the core is effective only if the shutdown duration is beyond a

threshold duration. DVFS is effective during high utilization with actual

execution time lesser than WCET. DVFS is not very effective when the

system utilization is below a threshold as it is practically impossible to reduce

the frequency below a threshold. Combining these approaches will offer

optimal energy saving while satisfying the quality of schedule. In a hard-real

time system, quality of the schedule depends on jobs finishing before their

deadline. Early execution of a job may result in a non-optimal schedule

in terms of energy consumption. Effectively combining DVFS and DP to

achieve optimal overall energy savings in MC systems is still a challenge [4]

[10] [12] [13] [14].

Most of the applications are generally made up of multiple threads, each

performing its intended function. Complex real-time applications like

4 1.1. Background

avionics, automotive and robotics require high performance processors to

guarantee timing constraints which results in high energy consumption

due to clock frequency. An alternate solution to achieve the same

performance is to simultaneously process the threads on multiple cores. This

solution guarantees reduced energy consumption without compromising on

performance. Multi-core/Multiprocessor systems introduces new challenges

like load balancing, load sharing, optimal shutdown, etc. which can be

addressed with the help of an efficient real-time scheduler. Load sharing

and load balancing techniques like job migration improves the performance,

schedulability and fairness of the executing jobs among the cores[15] [16].

Job migration because of load-balancing incurs additional energy and time

overheads due to code/data migrations and local cache invalidations. The

concept of job migration is particularly used in distributed operating systems

and parallel computing domain for fault tolerance and load balancing.

Controlled job migration can also be used effectively in MC systems for

optimizing energy consumption. The energy - performance ratio of a

MC system can be improved on selected cores by combining with various

techniques like DVFS and DP. The dynamic scheduler can minimize the

number of cores in use while maximizing the efficiency of the cores.

In real time systems, it is difficult to satisfy timeliness constraint along

with energy efficiency. The objective of this thesis is to provide solutions to

achieve these goals for processors supporting various modes and techniques.

This thesis proposes techniques for optimizing energy consumption in

homogeneous Multi-Core Hard Real Time System (MC-HRTS) with static

5 1.2. Motivation

and semi-partitioning allocation of hard and soft affine multi-core system

respectively. It uses migration to enhance the effects of DP and DVFS

techniques. This is achieved by migrating jobs to other cores and shutting the

cores down for maximum possible duration. This utilizes the unproductive idle

time of the active core to execute the jobs from other cores and convert idle

time to shut-down duration using procrastination techniques. The run time

slack is utilized to execute jobs at reduced voltage and frequency. Migration

with DP and DVFS helps in increasing the utilization and shutdown duration

which results in saving static and dynamic energy consumptions further.

1.2 Motivation

Over the decades, speed of computing has increased exponentially and so has

the energy requirement. Such increased energy consumptions causes economic,

ecological and technical problems. In critical real time systems, this may cause

some fatal effects. For some highly reliable battery operated critical systems

like avionics, space vehicles, lunar rover etc. the crucial design objective is

not only to meet temporal constraint but also energy consumption. With

advancement in processor technology, there is a shift from uniprocessor system

to multi-core and multiprocessor systems to meet exponentially increasing

performance requirements. This resulted in increasing the static energy

consumption because of more leakage current per transistor and dynamic

energy consumption because of increased number of transistors per core.

Multi-core systems which are more complex than a uniprocessor systems offer

better scope for energy optimization as each core can be executed in different

6 1.3. Problem Statement

state independently at the same time. When one set of cores are powered

down, other set can be with reduced voltage/frequency while remaining cores

execute in full voltage/frequency. Migration can be utilized for improving

energy saving further though it adds more complexity to the system. In

homogeneous MC-HRTS, scheduler plays an important role to produce a valid

sequence of job execution without missing deadlines. The scheduler has to

optimally consume energy especially in battery operated real time systems. A

schedule will be optimal if it offers minimum idle time in a processing system

as idle time consumes both static and dynamic energies for unproductive

work. Existing work in literature addresses this problem with the help of

DVFS and DP. It is much easier to address each core separately with a static

task allocation model like Bin Packing. The cores can implement DVFS

and DP whenever required to optimize the energy consumption. Meeting all

deadline constraints with least possible idle time and minimum overheads to

achieve optimal energy saving is an important research problem to address.

The idle and execution time can be minimum only if the shutdown duration

is maximum. The idle time can also be minimized by maximizing execution

time with least energy consumption. This thesis addresses the problem of

producing a valid schedule with least idle time and maximum shutdown time

to minimize energy consumption.

1.3 Problem Statement

This thesis addresses energy consumption during process execution and

scheduling as it consumes a major portion of the system level energy.

7 1.3. Problem Statement

In MC-HRTS, the design of task allocation and task scheduling policies

significantly affect the energy consumption of the system. The aim of this

thesis is to design energy efficient task allocation and scheduling algorithms

for MC-HRTS by investigating the state of art algorithms existing in this

field of study. This research also aims at improving the energy saving of

MC-HRTS without performance degradation by using various static and

dynamic energy optimization techniques like DP and DVFS. This thesis aims

to minimize the overall energy consumption during real time task execution

and scheduling subject to both schedulability and energy constraints. The five

objectives of this thesis as optimization problem for homogeneous MC-HRTS

with M cores supporting various modes and techniques are expressed as follows:

Objective 1: Task allocation model

To optimize the procrastination duration by providing allocation that

maximizes the probability of core shutdown in homogeneous MC-HRTS.

Formally the problem is defined as:

For some set of cores having higher period tasks,

Maximize

SDj(Plow, Elow) (1.1)

where Plow and Elow are the period and execution time of the lowest period

task allocated to core Cj, SDj is the shutdown duration of core Cj.

Subject to

0 ≤ Uj ≤ 1 ∀ j = 1 to M cores (1.2)

where Uj is the utilization function of core j.

8 1.3. Problem Statement

and for the remaining cores no shutdown is possible.

The tasks should be allocated to the core such that they are schedulable on

a uniprocessor system. This optimization aims to maximize the shutdown

duration of cores by allocating higher period tasks to some set of cores.

In a periodic tasks set, the largest idle duration possible in a schedule is

2Plow − 2Elow. By allocating higher period tasks together, one improves the

chances of maximizing the shutdown duration of cores. This minimizes the

overall energy consumption. This is achieved without increasing the number

of cores required by First Fit Bin Packing allocation. An approximation

algorithm - MFFBP is proposed to achieve the same. MFFBP algorithm is

explained in Chapter 4.

Objective 2: Dynamic Procrastination model

The optimization problem is to minimize overall energy consumption of

system supporting various power modes like active, idle and shutdown for a

MC-HRTS. Formally the problem is defined as:

Maximize
M∑
j=1

SDj(σ) (1.3)

Minimize
M∑
j=1

Ej(V, f) (1.4)

Subject to schedulability condition in each core Cj:

∀JkεCj, Jk.ct ≤ Jk.d (1.5)

9 1.3. Problem Statement

where σ is the dynamic slack produced due to early completion of jobs and

procrastination, V is the supply voltage for different states of core: 0 for

shutdown, Vmin for idle and Vmax for active, f is the fixed operating frequency,

Ej is the energy consumption function of core j, Jk is the job allocated to

core Cj, ct is the completion time and d is the absolute deadline of job Jk.

This optimization aims to maximize the shutdown duration and thus

minimizes the static energy consumption. A scheduling algorithm - DPS is

proposed for achieving the same. The DPS algorithm is explained in Chapter

4.

Objective 3: Dynamic Voltage/Frequency Scaling and

Procrastination model

The optimization problem is to minimize overall energy consumption of

system supporting various power modes and discrete levels of voltage and

frequencies for a MC-HRTS. Formally the problem is defined as:

∀Mj=1 Cj, Maximize

SDj(σ) (1.6)

and Minimize

IDj(σ) (1.7)

where σ is the dynamic slack produced due to early completion and DP of

jobs at discrete voltage/frequency levels.

Overall energy consumption =

10 1.3. Problem Statement

Active state energy + Idle state energy + Shutdown state energy =

M∑
j=1

(Uj/fx).(Ej(Vx, fx)) + E(Vmin, f) ∗
M∑
j=1

IDj(σ) + ∆ ∗No. of shutdowns

(1.8)

Subject to

fmin ≤ fx ≤ fmax (1.9)

Vmin ≤ Vx ≤ Vmax (1.10)

and equation 1.5.

This optimization aims to minimize the overall energy consumption. Due

to scaled voltage and frequency, the overall active duration increases. This

reduces the overall idle duration. Maximizing shutdown duration also

minimizes idle duration. Thus overall idle state energy reduces. Though

active duration increases due to scaled frequency, active state energy remains

low due to scaled voltage. This inherently causes reduction in overall energy

consumption. A scheduling algorithm - DPVFS is proposed for achieving the

same. The DPVFS algorithm is explained in Chapter 4.

Objective 4: Dynamic Procrastination and Migration model

The optimization problem is to minimize overall energy consumption of the

system supporting migration and various power modes like active, idle and

shutdown for a MC-HRTS. Formally the problem is defined as:

For core Cj from where the jobs are migrated,

Maximize

SDj(σ) (1.11)

11 1.3. Problem Statement

For core Ck to which the jobs are migrated,

Minimize

IDk(σ) (1.12)

where σ is the dynamic slack produced due to early completion, DP and

migration of jobs, IDk is the idle duration of core k.

Overall energy consumption =

Active state energy + Idle state energy + Shutdown state energy =

M∑
j=1

Uj.Ej(Vmax, f)+E(Vmin, f)∗
M∑
j=1

IDj(σ)+∆∗No. of shutdowns (1.13)

Subject to equations 1.2 and 1.5.

This optimization aims to minimize the overall energy consumption. Due to

fixed frequency, the active state energy remains same even after migration.

So the overall energy consumption is affected by idle and shutdown state

energy. Even though the shutdown state energy, ∆ is negligibly small, it

consumes some energy for shutting down and waking up the core. Thus

maximizing shutdown duration minimizes idle duration and overall energy.

A scheduling algorithm - OASIS is proposed for achieving the same. The

OASIS algorithm is explained in Chapter 5.

Objective 5: DVFS, DP and Migration model

The optimization problem is to minimize overall energy consumption of

system supporting various power modes, discrete levels of voltage/frequencies

and migration for a MC-HRTS. Formally the problem is defined as:

12 1.3. Problem Statement

For core Cj from where the jobs are migrated, Maximize

SDj(σ) (1.14)

For core Ck to which the jobs are migrated and for cores having insufficient

duration for shutdown, Minimize

IDk(σ) (1.15)

where σ is the dynamic slack produced due to early completion of jobs, DP,

migration at discrete voltage/frequency levels.

Overall energy consumption =

Active state energy + Idle state energy + Shutdown state energy =

M∑
j=1

(Uj/fx).(Ej(Vx, fx)) + E(Vmin, f) ∗
M∑
j=1

IDj(σ) + ∆ ∗No. of shutdowns

(1.16)

Subject to

fmin ≤ fx ≤ fmax (1.17)

Vmin ≤ Vx ≤ Vmax (1.18)

and equations 1.2 and 1.5.

This optimization aims to minimize the overall energy consumption. Dynamic

procrastination with migration increases overall shutdown duration. Whenever

it is not possible to shutdown, the core is either kept active by migrating

jobs from other cores or it slowdown. This increases the overall active

duration. Maximizing overall shutdown and active duration reduces the

13 1.4. Research Goals

overall idle duration. This causes reduction in overall idle state energy.

Though active duration increases because of scaled frequency, active state

energy consumption remains low due to scaled voltage. Thus overall energy

consumption reduces. A scheduling algorithm - HandT is proposed to achieve

the same. HandT algorithm is explained in Chapter 5.

1.4 Research Goals

This research focuses on minimizing the energy consumption during task

execution and scheduling in MC-HRTS. Following were the research goals:

Research Goal 1: To design a task allocation algorithm to increase the

shutdown duration for MC systems.

Research Goal 2: To design a scheduling algorithm to reduce static energy

consumption for hard real time tasks having hard affinity.

Research Goal 3: To design a scheduling algorithm to reduce static

and dynamic energy consumption for hard real time tasks having hard affinity.

Research Goal 4: To design a scheduling algorithm to reduce static energy

consumption for hard real time tasks having soft affinity.

Research Goal 5: To design a scheduling algorithm to reduce static and

dynamic energy consumption for hard real time tasks having soft affinity.

14 1.5. Contributions

Research Goal 6: To design a simulator for real time task scheduler for

performance evaluations of developed methods and analyzing various energy

related parameters.

1.5 Contributions

The major contribution of this thesis is the design of new task allocation

mechanism and energy efficient scheduling algorithms for MC-HRTS. The

thesis also offers a framework for analysis of these algorithms. The algorithms

are as follows:

Algorithm 1: MFFBP is designed for achieving Research Goal 1 using

Bin Packing approximation technique. This work contributes to the material

in Chapter 4.

Algorithm 2: DPS is designed for achieving Research Goal 2 using DP

technique. MFFBP and DPS algorithms are published in paper titled “DPS:

A Dynamic Procrastination Scheduler for Multi-core/Multi-processor Hard

Real Time Systems”, International conference on Control, Decision and

Information Technologies (CoDIT), pages 286-291, IEEE, 2016. This work

contributes to the material in Chapter 4.

Algorithm 3: DPVFS is designed for achieving Research Goal 3 using

DP and DVFS techniques. This contribution is published in paper titled

15 1.6. Thesis Outline

“DPVFS: A Dynamic Procrastination cum DVFS Scheduler for Multicore

Hard Real Time Systems”, International Journal of Embedded system

(IJES), Inderscience publication, 2017 (in press). This work contributes to

the material in Chapter 4.

Algorithm 4: OASIS is designed for achieving Research Goal 4 using DP

and migration techniques. This work is under review and contributes to the

material in Chapter 5.

Algorithm 5: HandT is designed for achieving Research Goal 5 using DP,

DVFS and migration techniques. This work is under review and contributes

to the material in Chapter 5.

Simulator: To achieve Research Goal 6, a Simulator for MC hArd Real

Time system (SMART) is developed to analyze the energy efficiency of the

proposed algorithms along with seminal algorithms from literature and a test

bed is developed to verify and validate various algorithms. This work is under

review and contributes to the material in Chapter 3.

1.6 Thesis Outline

Rest of the dissertation is structured as follows:

Chapter 2 - Literature Survey - This chapter explains the state of the

art work in energy aware system and energy consumption issues in it. It

16 1.6. Thesis Outline

presents an extensive work related to DP, DVFS and combination of these

techniques along with migration wherever applicable in uniprocessor and

MC-HRTS.

Chapter 3 - System Model - We present our simulator ‘SMART’ in this

chapter. We also explain the platform, task and energy models designed for

analyzing various scheduling algorithms.

Chapter 4 - Energy Efficient Scheduling in MC-HRTS - This chapter

illustrates the energy efficient approaches in a MC-HRTS. It discusses the

design of proposed allocation algorithm MFFBP and two novel schedulers

DPS and DPVFS. The developed algorithms are analyzed for schedulability,

correctness and complexity. Experimental validation and comparison of

existing and developed algorithms were carried out on SMART. This chapter

also presents details of our experimental results.

Chapter 5 - Energy Efficient Scheduling in MC-HRTS with

Migration - This chapter illustrates the energy efficient approaches in a

MC-HRTS with Migration. This chapter describes the design of two novel

schedulers OASIS and HandT. The developed algorithms are analyzed for

schedulability, correctness and complexity. Experimental validation and

comparison of existing and developed algorithms were carried out on SMART.

This chapter also presents experimental results.

17 1.6. Thesis Outline

Chapter 6 - Conclusion and Future Directions - This chapter

consolidates conclusions of our work, its limitations and future research

scope.

Chapter 2

Literature Survey

2.1 Introduction

In order to understand various techniques used for energy optimization in real

time systems while maintaining the timeliness constraint, extensive survey has

been conducted. In this chapter the features of real time systems, parameters

associated with energy consumption and various issues in it are explained.

This chapter also presents a survey on state-of-the-art techniques for energy

minimization in real time task scheduling. Figure 2.1 shows outline of the

survey where boxes represent primary areas of study. The survey begins with

identifying the significant factors affecting energy consumption, considered in

current work. Followed by this, various energy efficient scheduling techniques

in uniprocessor hard real time systems like clock gating, slowdown and

shutdown are analyzed in detail. Gating and slowdown are considered as

dynamic energy saving techniques and shutdown is considered as static energy

saving technique while scheduling. The survey moves on to MC system. For

MC system, conventional bin packing approximation methods are studied for

task allocation. For task scheduling, slowdown and shutdown techniques are

studied for energy optimization along with conventional scheduling techniques.

These techniques are analyzed for systems that support migration and for

18

19 2.1. Introduction

F
ig

u
re

2.
1:

O
u
tl

in
e

of
th

e
S
u
rv

ey

20 2.2. Fundamentals

the systems which do not support migration. The effect of slowdown and

shutdown techniques are analyzed in detail when combined to save both static

and dynamic energy. The survey ends with summarizing the combined effect

of these techniques adopted in the present work.

2.2 Fundamentals of Energy Efficient Real

Time Systems

Real-time systems are characterized by computational activities with strict

timing constraints to meet in order to achieve the desired behavior. A typical

timing constraint on a real time task is the deadline, which represents the time

before which it should complete its execution without causing any damage to

the system. Depending on the consequences of a missed deadline, real-time

tasks are usually distinguished in three categories: hard, firm and soft [17]. A

real-time task is said to be hard if missing its deadline may cause catastrophic

consequences on the system under control. For e.g. flight control system, air

traffic control system, pace maker, military applications etc. A real-time task

is said to be firm in which the computation becomes obsolete on missing the

deadline. For e.g. weather forecast system. A real-time task is said to be soft

if missing its deadline has still some utility for the system, although causing

a performance degradation. For e.g. electronic games, multimedia systems,

audio-video streaming. Another timing constraint on a real-time task is

based on the regularity of its activation. In particular, tasks can be classified

as periodic, aperiodic and sporadic. Periodic tasks consist of an infinite

sequence of identical activities, called instances or jobs, that are regularly

21 2.2. Fundamentals

activated at a constant rate. The activation of an aperiodic task is an event

to which the task respond. These tasks also have timing constraints with soft

deadlines or sometimes no deadline. Sporadic tasks are also event based with

jobs separated with minimum inter-arrival time, thus with hard deadlines.

Tasks are also categorized based on precedence and resource constraints.

Tasks whose progress is not dependent upon the progress of other tasks are

termed as independent task. Interdependent tasks interact by communication

and precedence relationships. A task is blocked if the requested resource

is unavailable. This work focuses on real time systems with independent

periodic tasks with hard deadlines without any resource constraints. Each

task Ti of a task set T is represented by {φi, Pi, Ci, Di} where φi is phase, Pi

is period, Ci is WCET and Di is relative deadline of the task [18]. All tasks

are assumed to be preemptive, in-phase with Pi = Di. The kth job of task Ti

is represented by Ji,k : {aik, cik, dik} where dik = aik +Di. The utilization of

task Ti is calculated as Ui = Ci/Pi which is the fraction of core time used by Ti.

Design of hard real time systems need to take care of all job deadlines with

minimal energy consumption. Energy consumption while running a system is

because of decision making, preemptions, cache filling/invalidating and job

execution activities. These activities consume static and dynamic energies.

Static energy is due to leakage current and dynamic energy is due to switching

of gate from one state to another. The energy consumption due to charging

and discharging of gates on a CMOS core (Eswitch) and the short-circuit power

consumption (Esc) contribute to dynamic energy consumption (Edynamic) [19].

Eswitch is computed as V 2fC where V is the supply voltage, f is the maximum

22 2.2. Fundamentals

frequency for job execution and C is the load capacitance. Esc is proportional

to the supply voltage [5] [6] [7]. The shorter channels results in exponential

increase in leakage current of the CMOS transistor which increases static

energy consumption [4] [9] [20]. The leakage current is 0.01A/m for the

130nm and is 3A/m for 45nm technology [4]. In [21], authors gives the ratio

of static to dynamic energy for various technologies. They analyzed that

when activity is very low (0.01) ratio of static energy to dynamic energy is

0.3 for V=0.6 volts, and 0.5 for V=1.2 volts. They also observed that even

technologies with reduced leakage currents (PTM 20nm, 16nm, 14nm, and

65nm) have static energy consumption comparable with dynamic energy for

low activity of a gate. Thus static energy is equally an important component

as dynamic energy in overall energy consumption. The major contributors of

static energy are the sub-threshold leakage current (Isub) and the reverse bias

junction current (Irev) which increases significantly with adaptive body bias

voltage (Vbs) [4]. The static energy consumption (Estatic) due to Isub and Irev

is computed as Estatic = V.Isub + Vbs.Irev. In idle state, the cores consume

static energy and nominal dynamic energy. Both the energy components are

negligibly small in shutdown state. As static energy in idle state is to keep the

transistors on, it do not contribute in performing any significant work. Thus it

is preferred to keep the core in shutdown state instead of idle to reduce static

energy consumption. This saving is proportional to the length of shutdown

duration as each shutdown has hidden overheads, like core shutdown, wakeup

energy etc. [4] [8] [9] [10] [11].

23 2.3. Scheduling in Uniprocessor HRTS

2.3 Energy Efficient Scheduling Techniques

in Uniprocessor HRTS

Seminal real time scheduling techniques in use are Rate Monotonic (RM),

Earliest Deadline First (EDF) and Least Laxity First (LLF). RM is task level

fixed priority scheduling algorithm in which the job with smallest period is

given the highest priority for execution. The schedulability condition of RM

is, the total utilization is not more than n(21/n − 1) where n is the number

of tasks. EDF is task level dynamic and job level fixed priority scheduling

algorithm in which the job with earliest deadline is given the highest priority

for execution. LLF is a job level dynamic priority scheduling algorithm in

which the job with least slack time is given highest priority for execution. Both

EDF and LLF offer 100% schedulability. In LLF, run time slack computation

overhead affects the performance of the system. For hard real time systems,

these algorithms aim at completing the execution of all jobs before their

absolute deadlines. Amongst all, deadline driven scheduling policy like EDF

guarantees schedulability of all jobs with comparatively less overhead. Thus

various existing energy aware deadline driven scheduling variants are explored.

Clock gating and power gating are the most common architecture level energy

optimization techniques available [22]. In gating techniques, clock and power

supply of the system are gated off resulting in reduced energy consumption. In

clock gating, the clock of a unit in the system which is left unused is turned off.

This prevents the transistors from switching, leading to zero dynamic energy

consumption. Power gating is one of the techniques to conquer static and

24 Shutdown Techniques

dynamic energy consumptions. In power gating, the supply voltage of unused

units is cut off to prevent the power dissipation due to sub-threshold leakage

current. In MC systems, gating techniques is exploited to gate the power or

clock, of one or multiple cores. These techniques imposes the overhead of

re-enabling the unit which may affect performance of the system.

2.3.1 Shutdown Techniques

The static energy consumed during the idle state of a core is for keeping the

transistors on. This do not contribute in performing any significant work.

In [20], it is reported that the energy consumption when the processor is

in the idle state can be in the order of 103 compared to when the core is

in shutdown state. To reduce static energy, various shutdown techniques

are proposed when cores are not in use [4] [23] [24]. The most widely used

mechanism is ‘Procrastination’ in which the idle bursts are combined to form

sufficient idle duration to shutdown [4] [8] [9] [11] [20] [23] [25] [26] [27] [28]

[29]. Procrastination is one of the most efficient techniques to optimize the

energy consumption during idle period by delaying the task execution and

increasing the shutdown duration while meeting all timing requirements. This

incurs additional time and energy because of shutdown and wakeup overheads.

Procrastination technique is applicable to the system that supports various

core states (active, idle, shutdown, sleep, hibernate etc). Various off-line and

on-line procrastination solutions have been proposed for energy savings in

real-time under different application/device settings [23]. Earlier work on

procrastination is based on precomputed (static) procrastination intervals

by considering WCET [4] [23]. In this method, the latest start time for

25 Slowdown Techniques

every job is precomputed with all timing constraints [4]. Most of the jobs

completes before WCET thereby leaves some slack before its deadline. With

this method, the precomputed idle period for a core is not the maximum

procrastinated interval and thus underestimates the procrastinated shutdown

duration. On-line (dynamic) procrastination algorithms use this slack to

increase shutdown duration of the processor further [9] [10] [11]. In [9], Lee

et al. explained how idle duration can be extended by delaying the active

period by an interval given by the sum of pseudo execution time of all tasks

that are preempted plus the delay of the currently executing earliest deadline

task before the start of active period. In [10], Niu and Quan extended the

idle interval length by computing the latest start time of the job set without

missing the deadline of any future job. Latest start time for every higher

priority jobs is computed and the earliest of all these is considered to be the

start of active job set.

2.3.2 Slowdown Techniques

Due to quadratic dependency of dynamic energy on supply voltage (V) and

operating frequency (f), researchers recommend energy efficient technique

called slowdown technique to reduce overall dynamic energy consumption

while scheduling [5] [6] [7]. In this technique, V and f are scaled down to

minimum required voltage and frequency for job execution without violating

the timing constraints. Thus this technique is also called Voltage and

Frequency Scaling (VFS). The key idea behind VFS is to execute the jobs

for longer duration and reduce the idle time of a schedule. The idle time is

getting generated because of the low utilization of task set and because of the

26 Slowdown Techniques

early completion of jobs than their predicted WCET. The reduction in idle

time results in energy savings. The slowdown methods are applicable to the

system that supports discrete levels of voltage and frequency ranges [5] [6]

[7]. Enhanced Intel SpeedStep Technology supports processor speeds of 600

MHz to 1.6 GHz with a step of 200 MHz [30]. AMD PowerNow! Technology

supports the complete frequency operating range of the processor in use

allowing steps of 33 or 50 MHz from an absolute low of 133 or 200 MHz [30].

In [31], Bambagini et al. described a speed modulation technique to

achieve the required speed using two discrete values. The method selects

the pair of frequencies that minimizes energy consumption. In [5], Pillai

and Shin proposed architecture dependent Static (SVFS) and Dynamic

Voltage/Frequency Scaling (DVFS) techniques to save dynamic energy

consumption during the active period. The SVFS selects the lowest possible V

and f at WCET that allows EDF/RM schedulers to meet all the deadlines for

a given periodic task set [5]. While executing, the jobs may finish well before

its WCET which generates slack. This slack can be utilized by executing

the future jobs at reduced voltage and frequency. DVFS uses this slack to

reduce V and f further. In [5], Pillai and Shin proposed two DVFS variants

of EDF/RM - Cycle Conserving (CC) and Look Ahead (LA). In CC, V and f

are recomputed using the Actual Execution Time (AET) of the finished jobs

and the WCET of jobs which are there in the queue. They showed 20% to

40% energy saving compared to conventional EDF/RM. The LA technique

determines the future computation needs and defers the task execution by

setting the operating frequency as low as possible ensuring future deadlines.

27 2.4. Scheduling in MC-HRTS

2.4 Energy Efficient Scheduling Techniques

in MC-HRTS

Many prospective areas like wireless network applications, cognitive

systems, image recognition units, biomedical systems, automobiles, military

applications, various industrial areas such as transportation, automation

etc. are in need of Multi-core/Multiprocessor (MC/MP) high performance

embedded computing systems. Complex real-time applications like avionics,

automotive and robotics are generally made up of multiple threads, each

performing its intended function and thus require MC system for high

performance with reduced energy consumption. This introduces new

challenges like load balancing, load sharing, optimal shutdown etc. which can

be addressed with the help of an efficient real-time scheduler. The task sets

with total utilization more than 100% needs to be scheduled on MC system.

Scheduling problem in MC system is solved in two phases - task allocation

and job scheduling [32]. In task allocation, for each task, a core is identified

in which the task has to be executed. Several schemes for task allocation

on MC system have been proposed. These schemes are broadly classified

as global, partitioned and semi-partitioned scheduling schemes [32] [33] [34].

In global scheme, a global ready queue is used and the jobs are allowed to

migrate between cores [35]. In this scheme, affinity of a job to a core is

very weak which results in increased cache invalidations. The additional

overhead because of cache invalidation may result in deadline misses and/or

exceeding energy budget of the embedded system. In partitioned scheme,

the non-migratable tasks are statically partitioned and assigned to a specific

28 2.4. Scheduling in MC-HRTS

core for execution [35]. Each core maintains a local ready queue. Due to

non-migratable nature, the job remains with the same core on preemption.

Due to this, some of the cores may remain idle even when jobs are ready for

execution. The worst case timing analysis of partitioned approach is much

tighter than the global approach as migration related overheads like cache

thrashing are eliminated. Semi-partitioned scheme is a hybrid approach in

which, initially the tasks are assigned to cores [36] [37] [38] [39]. During

scheduling, the jobs of tasks are allowed to migrate from one core to other.

This improves the core utilization and balances the workload among cores.

The tightness of worst case timing analysis of semi-partitioned approach lies

between global and partitioned approach. The migration in semi-partitioned

scheme requires coordination between the cores yielding to high decision

making and cache invalidation cost. In real time systems due to timeliness

constraint, the overhead of communication between cores need to be avoided.

Thus we prefer to use partitioned scheme for jobs having hard affinity and

semi-partitioned scheme for the jobs having soft affinity.

In scheduling, the jobs of the allocated tasks are scheduled according

to the core’s scheduling policy. These policies can be well known uniprocessor

scheduling algorithms like RM, EDF, LLF etc. The energy aware scheduling

algorithms using slowdown and shutdown techniques can also be applied for

the systems that support discrete voltage levels and frequency ranges and

multiple modes of core. These techniques are further supported to increase

energy saving with migration technique.

29 Task Allocation Methods

2.4.1 Partitioned and Semi-Partitioned Task

Allocation Methods

The main objective of task allocation algorithms in MC systems is to find the

optimal number of cores required for the given task set and assign tasks to the

cores. It is considered as packing problem and can be solved as combinatorial

optimization. Packing methods like knapsack, utilization balancing algorithm,

buddy algorithm, myopic, bin packing, linear programming etc. are some

of the popular task assignment algorithms [40]. The allocation of tasks to

the core can be achieved using on-line, semi-on-line or off-line algorithms

[41]. In on-line algorithms, the task is assigned to the core as soon as it

arrives to the system by considering all the tasks which already arrived

[41]. This is achieved by carrying out a schedulability test for the newly

arrived task with all the allocated tasks. If the newly arrived task passes the

schedulability test, it is admitted to the core. The semi-on-line algorithms

follow on-line algorithms by keeping an upper bound on rearrangements

of allocated tasks [41]. The schedulability test conducted in on-line and

semi-on-line algorithms causes run time overhead while scheduling. The

off-line algorithms are static algorithms where the number of tasks in the

task set and the order in which they are assigned to the core is fixed. Classic

Bin Packing approximation is one of the most efficient off-line task allocation

used in MC systems where the set of cores are regarded as bins [9]. In this

technique, a set of tasks, a set of cores and the utilization of each core are

given as input parameters. It divides the task set into sub task sets based

on core utilization and allocates it to the cores for scheduling. The optimal

30 Task Allocation Methods

Bin Packing is one of the classic NP-complete problems. The widely used

polynomial-time Bin Packing approximation algorithms are First-Fit (FF),

Best-Fit (BF), Best-k-Fit (BkF), Next-Fit (NF) and Worst-Fit (WF) [32] [34]

[41]. FF allocates a new task to a non-empty core with the lowest index, such

that the utilization of the new task along with the utilization of the tasks

already allocated to that core, do not exceed the capacity of that core [32]

[41]. BF allocates a new task to the non-empty core with smallest capacity

available, in which this task can be allocated with a tie braking strategy

as index number [24] [42]. WF is similar to BF, with the difference that it

allocates tasks to the cores with the largest capacity available, in which task

can be feasibly allocated [24] [42]. FF, BF and WF algorithms allocate the

new task to a new core only if it is not fitting in any of the cores whose

allocation already started. BkF allocates like BF but considers only the last k

open cores for allocation [43]. It allocates the new task to a new core only if

it is not fitting in any of the last k cores. In NF, if the new task can fit in the

last allocated core, it is allocated to the core. Otherwise a new core is chosen

and the task is allocated to that core. Some of the on-line versions of Bin

Packing algorithms are First Fit Decreasing (FFD), Refined FFD (RFFD),

Modified FFD (MFFD), Best Fit Decreasing (BFD) and Group-X Fit grouped

(GXFG) [41]. The performance metric of these algorithms is the ratio of

number of cores in approximation algorithms over optimal method. Among

all the methods mentioned above, FF has best performance ratio of 11/9 [41].

The task assignment can be improved to optimize not only the number of

cores but also the energy consumption. Algorithm proposed by Tarek and

Hakan allocates tasks to the core and computes CPU speed assignments for

31 Task Scheduling Methods

minimizing the total energy consumption [44].

2.4.2 Task Scheduling Methods

Most of the MC energy efficient schedulers use DVFS and DP techniques.

These techniques are further explored to apply migration technique in MC

systems.

Dynamic Voltage and Frequency Scaling (DVFS) technique:

Hakan et al. explained two DVFS schedulers - Dynamic Reclaiming

and Aggressive Speed Reduction [6]. In [7], Yang et al. proposed an

approximation algorithm for DVFS scheduling on multiprocessor system.

In [45], Aydin et al., proposed DRA and AGR algorithms. DRA keeps

track of dispatch times of tasks. During runtime, if a task is dispatched

earlier, the processor is slowed down to prolong the execution time till the

original completion time. AGR estimates the task completion time from

the past history and computes the lowest processor speed. In [19], Nassiffe

et al. proposed similar solution but assumed that CPU frequency can be

selected continuously within a given range. In [46], Chen et al. considered

two types of processor models - one with a finite number of discrete processor

speeds, and other with an infinite number of continuous processor speeds.

They proposed a 2-approximation algorithm and a fully polynomial time

approximation scheme. In [47], Ishihara and Yasuura considered DVFS on

uniprocessor system with very few discretely variable voltages. They showed

the problem of optimizing voltage and frequency in polynomial time with at

most two voltages. In [48], Yao et al. considered the energy optimization for

32 Task Scheduling Methods

independent jobs with arrival times, deadlines, and WCET on a uniprocessor

with variable speeds under the assumption that energy is a convex function

of the processor speed. They also considered the case of discretely available

processor speeds. They gave an O(N log 2N) time optimal off-line algorithm

where N is the number of jobs. They also proposed some heuristics for the

on-line version of the problem. In [49], Chen et al. applied DVFS method

for the jobs with precedence constraints. They considered the case in which

speed change is not allowed in the middle of processing a job. They gave

fully polynomial-time approximation schemes for two special cases of the

problem and also proved the problem to be NP-Complete. For high end

compute intensive applications to optimize, make-span Genetic Algorithm

(GA) and Immune Genetic Algorithm (IGA) are used in computational grid

[50] [51] [52]. These works applies IGA and BAT algorithm to schedule the

submitted jobs on the grid nodes for the optimal make span.

In [7], Yang et al. considered the problem of minimizing energy consumption

for a chip-multiprocessor with DVFS that can use continuously varying

processor speeds with no upper bound. The energy consumed by the

processor was assumed to be proportional to the cube of the processor

speed. They proposed 2.371-approximation algorithm for DVFS scheduling

in MP system. In [53], Zhang et al. considered scheduling on MP system

with dependent tasks on fixed number of processors with variable voltage.

They described task scheduling phase as voltage selection and formulated

it as integer-programming problem that can be solved in polynomial time

for the system with continuous voltages. In [54], Shieh and Pong also

33 Task Scheduling Methods

provided IP formulation by taking into account the overheads in transition

between different voltage levels. They also proposed an on-line heuristic

algorithm and compared it with the optimal off-line algorithm. In [55],

Chen et al. considered DVFS for shared resources in MC processors. They

proposed a method for DVFS of networks-on-chip and last level caches in MC

processor designs, where the shared resources form a single voltage/frequency

domain. In [56], Min-Allah et al. proposed energy efficient rate monotonic

scheduling for MC systems. Their method is to first find the lowest core

speed to satisfy deadline to minimize energy. Then it shifts the lightest

tasks to different cores to maximize the core utilization. In [57], Zhu et al.

considered DVFS for heterogeneous cluster. They proposed an Adaptive

Energy-Efficient Scheduling (AEES) for aperiodic and independent real-time

tasks on heterogeneous clusters with DVS. The AEES algorithm adjusts the

voltages according to the workload conditions of a cluster. When the cluster

is heavily loaded, the AEES algorithm considers voltage levels of the new

tasks as well as the tasks running currently to meet the deadlines. When the

cluster is lightly loaded, the AEES algorithm reduces the voltage levels to

conserve energy while satisfying all the deadlines. In [58], Bergamaschi et al.

considered an integrated power management unit in a MC processor, which

monitors the performance and energy of each core dynamically and change

the individual voltages and frequencies to maximize the system performance

under a given energy budget.

In [59], Kim et al., noticed that DVFS technique increases the number of

preemptions, leading to a higher system utilization and, therefore, higher

34 Task Scheduling Methods

energy consumption. To resolve this, they proposed two preemption control

DVFS techniques. In [60] and [61], authors reported that DVFS techniques

which frequently slows down the execution may result into deadline misses

due to voltage switching overheads. All slowdown methods discussed here

reduces dynamic energy at the cost of increased execution time which

inherently reduces static energy saving. Static energy may also increase if

the supply voltage is scaled down beyond threshold. In [62], authors studied

the impact of DVFS on core and uncore elements. The uncore is Intels term

for the CPU components that are outside but closely associated with the

cores (e.g., the last-level cache, memory controller, and interconnect). The

authors showed that contrary to conventional wisdom, it is not always energy

efficient to run applications at the lowest frequency. This happens because

the uncore energy accounts for 74% of the total, out of which uncore static

energy constitutes 61% of the total. The frequency at which an application

spends the lowest energy depends on how memory bound it is and how

many concurrent threads it uses [62]. As per [4], the critical speed for 70nm

technology is 0.4 which means that the static energy consumption increases if

the supply voltage is scaled beyond 0.4. This enforces limitation on reducing

the supply voltage which does not allow minimizing the dynamic energy

consumption further.

Dynamic Procrastination (DP) technique: In [63], Yang et al.

considered the problem of energy efficient real time task scheduling with

temperature dependent leakage on a processor [64] [65]. They propose a

pattern based approach in which they divide the given time horizon into

35 Task Scheduling Methods

several time segments with the same length. In each time segment the

processor is in the active mode at the beginning for a fixed amount of time,

and it is in the dormant mode at the end for the remaining amount of time.

In the active mode the computation is advanced, while the dormant mode is

used to reduce the temperature by cooling as well as by reducing leakage

energy consumption. Shutdown is feasible only if the procrastinated duration

is beyond threshold otherwise the associated overhead of processor shutdown

and wakeup can overkill the saving made by shutting down the processor.

In [66], Meisner et al., explained how PowerNap concept outperform DVFS

approach in realistic applications. In [25], Chen and Kuo proposed a method

to simulate the execution of periodic tasks to compute the idle time available

until the next deadline. This idle time is used for postponing the tasks to shut

the system down. They also proposed virtual blocking which is the maximum

blocking that tasks can suffer to extend the procrastination interval. In [67],

Awan and Petters proposed accumulation of execution slack and switch the

processor off during such intervals under EDF. In [68], Huang et al., proposed

an offline analysis that combines DPM and Real-Time Calculus. This

method estimates job arrivals, computes CPU idle intervals and modulates

between active and sleep states at runtime. In both these methods, the tasks

are always executed at the maximum speed. In [69], Energy Saving-Rate

Harmonized Scheduler (ES-RHS) is proposed for uniprocessor and MC

systems. ES-RHS is based on the notion of harmonization, that aggregates

all the processor idle durations together. This allows the processor to be put

into shutdown for all idle durations, thus enabling optimal energy savings. In

[70], Dsouza et al. proposed ES-RHS+ to enhance the schedulability and

36 Task Scheduling Methods

feasibility conditions due to the reduction in the blocking faced by tasks.

The basic Rate-Monotonic scheduler is extended in [70] to use a periodic

energy saver task, that executes at the highest priority with its execution

time. In [71], Fu et al. focuses on reducing the energy consumption of the

shared main memory in MC processors by putting it into sleep state when all

the cores are idle.

Combination of slowdown and shutdown techniques: Slowdown or

shutdown alone does not offer optimal energy saving. To balance both static

and dynamic energy consumptions, sometimes the tasks are required to be

executed at reduced speed and sometimes executing at maximum speed

results in increasing idle intervals [10]. In [10], Niu and Quan proposed

DVSLK which finds the latest start time of jobs and merges the scattered

idle intervals into larger ones such that no jobs misses their deadlines. This

algorithm uses static schedule with reduced voltage and frequency for each job

defined statically and procrastinates only when no job is ready for execution.

In [12], Pagani and Chen adopted a simple and linear-time strategy called

Single Frequency Approximation (SFA) on MC system. SFA executes all jobs

at critical frequency along with the procrastination scheme. In [4], Jejurikar

et al., proposed off-line method Critical Speed DVS with Procrastination

(CS-DVS-P) based on the critical speed and task procrastination. CS-DVS-P

sorts the tasks by non-decreasing order of relative deadlines and computes

the maximum amount of time (Zi) each job can spend in sleep state within

its period without leading to any deadline miss. At runtime, when there is

no pending job, the core is put in the deepest low-power state until next job

37 Task Scheduling Methods

arrival. When a job arrives and the core is still in sleep mode, the core is

kept in sleep state for minimum of remaining estimated sleep time and Zi

of the new job. Both SFA and CS-DVS-P algorithms give optimal result

only when all tasks execute for their worst case. In [9], Lee et al. proposed

LC-EDF (Leakage-Control EDF), an on-line scheduler. At each job arrival,

LC-EDF computes the maximum delay a job can suffer without missing its

deadline. When the core becomes idle, LC-EDF computes the maximum

extension (k) that the first arriving task (Tk) can exploit to fully utilize the

processor. Then, the sleep time is extended for k units. If another task Tj

with absolute deadline earlier than Tk arrives when the core is in sleep state,

the procedure is repeated. In [72], Irani et al. extended VFS to include

the case in which a processor can go into a sleep state. In sleep state, the

processor speed and its energy consumption are 0, but a constant amount of

energy is required to bring back the processor into a non-sleep mode. They

proposed a 3-approximation algorithm for SVFS. They also proposed an

on-line algorithm for VFS.

During low processor utilization, finishing all ready to run jobs at

maximum frequency will increase the shutdown duration. During high

processor utilization, executing job with reduced voltage and frequency

results in dynamic energy saving but it slims down the chances of future

shutdown. Combining these approaches will offer optimal energy saving while

satisfying the quality of schedule. To effectively combine DVFS and DP to

achieve the optimal overall energy savings in MC system is still a challenge

[4] [10] [12] [13] [14]. This research worked focuses on combining DVFS and

38 Task Scheduling Methods

DP techniques to save both dynamic and static energies while maintaining

the schedulability in MC systems.

Scheduling soft affine tasks:

The ability of OS to bind a task to a core or range of more cores is

called as affinity. There are two types of CPU affinity - soft and hard.

Jobs with soft affinity are allowed to migrate from one core to another

whereas jobs with hard affinity are not. Migration of jobs at runtime helps

improving utilization if the jobs are cache cold. The migration points depends

on compatibility among cores. Binary level compatibility allows jobs to

migrate at any point as all the cores will be homogeneous with respect to

ISAs. Heterogeneous cores follow source level compatibility with predefined

migration points. Unlike distributed systems, cores of MC systems share

a common memory and these systems follow internal migration [33] [73].

The data blocks of the migrated job is invalidated in the local cache of the

previous core when it gets modified in the new core. The code blocks will

never be modified as they are read only. The migration policy of the system

tries to address the basic questions like (a) when to migrate the jobs? (b)

which jobs to be considered for migration? and (c) where to migrate these

jobs? The migration policy should take care of the larger objectives of the

system like improving performance utilization, improving response time,

fault-tolerance, thermal balancing etc. Most widely used migration strategies

are ‘Push migration’ and ‘Pull migration’ [33]. Push migration is initiated

by the core when it has more workload compared to other cores. [74] The

39 Task Scheduling Methods

job satisfying the migration policy is selected for transferring to other core.

Pull migration is initiated by the core when it is heavily under utilized.

It finds the core from where job(s) can be migrated with least migration

overhead. Depending on the code transfer across the cores especially cached

data, migration can be whole cache migration or regional cache migration

[33]. The overhead of the whole cache migration is very high as it copies the

complete code where as the regional migration copies only a part of the code.

The remaining part of the code is loaded on demand by the target core.

As energy consumption is becoming an important factor of an embedded

system, it is worth an attempt to try migration for energy consumption.

The distributed idle/shutdown intervals within a core can be combined

together with the help of procrastination techniques. In MC system, the

idle/shutdown intervals spread across multiple cores cannot be combined

with procrastination. The only way to increase the procrastination duration

is to allow migration of jobs. In [75], Chen et al. proposed an optimal

polynomial-time scheduling algorithm for the minimization of energy

consumption with job migration. They also proposed approximation

algorithms for processors with/without constraints on the maximum

processor speed. They showed that when there is an upper bound on

processor speeds, an artificial-bound approach can be taken to minimize

the energy consumption. Migrating current/upcoming jobs aim at reducing

overall idle intervals and increasing shutdown duration. The migration

helps in reducing idle duration either by executing the migrated job(s) or

by converting it into shutdown by migrating some jobs from that core.

40 2.5. Summary

Though these techniques work well independently, combining these to get

optimized overall energy consumption in MC systems is a challenge. This

research worked on optimizing energy consumption using migration with DP

and DVFS techniques in homogeneous MC systems with semi-partitioning

allocation of tasks having soft affinity.

2.5 Summary

A precise survey was conducted to understand the parameters for improving

energy savings in real time systems is compiled in this chapter. This chapter

explained the features of real time systems, parameters associated with

energy consumption, significant factors affecting energy consumption and

various issues associated with it. It also presented a survey on state-of-the-art

techniques for energy minimization in real time allocation and scheduling.

Amongst all, the widely used techniques - DP and DVFS as shutdown and

slowdown respectively are studied in detail for uniprocessor and MC systems.

For MC system, conventional bin packing approximation methods are studied

for task allocation. This work also studied migration technique combined

with DP and DVFS techniques for task scheduling. Table 2.1 summarizes

the complexity analysis of bin packing approximation algorithms. Table

2.2 summarizes the key papers that has described the basic energy saving

scheduling algorithms for uniprocessor system.

41 2.5. Summary

Table 2.1: Ready reckoner for evaluation metrics in task allocations algorithms

Bin Packing
Approximation

Algorithm
[32] [34] [41]

Performance ratio Complexity
(Sorting)

First Fit 11/9 = 1.2 O(NlogN)

Best Fit 4/3 times FF = 1.6 O(NlogN)

Worst Fit 2 O(NlogN)

Next Fit 2 O(NlogN)

42 2.5. Summary

T
ab

le
2.

2:
R

ea
d
y

re
ck

on
er

fo
r

ev
al

u
at

io
n

m
et

ri
cs

in
b
as

ic
en

er
gy

sc
h
ed

u
li
n
g

al
go

ri
th

m
s

fo
r

u
n
ip

ro
ce

ss
or

sy
st

em

E
v
a
lu

a
ti

o
n

M
e
tr

ic
s

A
lg

o
ri

th
m

E
n
e
rg

y
p
a
ra

m
e
te

r
S
ch

e
d
u
la

b
il

it
y

C
lo

ck
G

at
in

g
an

d
P

ow
er

G
at

in
g

[2
2]

S
ta

ti
c

an
d

D
y
n
am

ic
N

A

S
ta

ti
c

P
ro

cr
as

ti
n
at

io
n

[4
]

[2
3]

S
ta

ti
c

an
d

D
y
n
am

ic
sc

h
ed

u
la

b
il
it

y
of

b
as

e
al

go
ri

th
m

(E
D

F
/R

M
)

D
y
n
am

ic
P

ro
cr

as
ti

n
at

io
n

[9
]

[1
0]

[1
1]

S
ta

ti
c

an
d

D
y
n
am

ic
sc

h
ed

u
la

b
il
it

y
of

b
as

e
al

go
ri

th
m

(E
D

F
/R

M
)

S
ta

ti
c

V
F

S
[5

]
D

y
n
am

ic
sc

h
ed

u
la

b
il
it

y
of

b
as

e
al

go
ri

th
m

(E
D

F
/R

M
)

cc
E

D
F

,
cc

R
M

,
L

A
E

D
F

,
L

A
R

M
[5

]
D

y
n
am

ic
sc

h
ed

u
la

b
il
it

y
of

b
as

e
al

go
ri

th
m

(E
D

F
/R

M
)

Chapter 3

System Model

3.1 Introduction

This chapter describes the simulator designed for real time scheduler to

schedule the real time task set and measure energy parameters. This chapter

also describes the platform model, task model and energy model used for

validating the existing and proposed algorithms and analyzing the system

performance in terms of energy consumption. Various energy aware EDF

versions are implemented, tested and analyzed with this simulator. The test

bench for experimental evaluations are synthetically generated using standard

benchmark suites. The computation of major energy components affecting

the overall energy consumption while scheduling is also explained in this

chapter.

3.2 SMART - A Simulator for MC-HRTS

A new framework named SMART - Simulator for MC hArd Real Time

system is designed and implemented to find the schedule and measure energy

parameters, idle and shutdown duration, number of scheduling decisions,

number of preemptions and cache impacts. Various existing and proposed

43

44 3.3. Platform Model

algorithms are designed and implemented using SMART to produce the

schedules. Various energy aware versions of EDF algorithm developed for

various MC platforms using SMART are shown in table 3.1. Each scheduler

is designed to execute in critical section so as to take the scheduling decision

for a single core.

3.3 Platform Model

SMART is designed for homogeneous symmetric MC systems that support

multiple discrete voltage levels and operating frequencies. The experiment

is conducted using 8 discrete voltage levels common to all the cores ranging

between 0 volt to 1 volt for different states of core. For shutdown state, it is

considered as zero. For idle state, 50% of maximum voltage is chosen and

for the active state of core, the voltage levels chosen are 50%, 60%, 70%,

75%, 80%, 90% and 100% of maximum voltage. The energy components are

considered for 70nm technology Transmeta Crusoe processor reported by [4].

According to [4], the maximum frequency at 1 volt is 3.1 GHz with 0.43 nF

of capacitance. SMART is designed for the system that support multiple

modes like shutdown, idle and active and system that allows migration of

jobs between cores.

3.4 Task Model

SMART is designed for CPU bound, periodic, independent, tasks with hard

deadlines that do not share resources other than processor/core. SMART is

45 3.4. Task Model

Table 3.1: Algorithms and Techniques used

No. Algorithm DVFS
technique

DP
technique

Migration
Support

1 MFFBP (Modified First
Fit Bin Packing)

- - -

2 EDF (EDF without
shutdown)

No No No

3 FFEDF SD (Earliest
Deadline First with
shutdown and FFBP)

No No No

4 MFFEDF SD (Earliest
Deadline First with
shutdown and MFFBP)

No No No

5 ccEDF (cycle conserving
EDF)

Yes No No

6 ConvDPS (Conventional
Dynamic Procrastination
Scheduler)

No Yes No

7 DPS (Dynamic
Procrastination Scheduler)

No Yes No

8 DPVFS (Dynamic
Procrastination cum
Voltage/Frequency Scaling)

Yes Yes No

9 OASIS (Optimal stAtic
energy Scheduler with
mIgration and dynamic
procraStination)

No Yes Yes

10 HandT (Hare AND
Tortoise scheduler)

Yes Yes Yes

46 3.4. Task Model

designed to validate the existing and proposed scheduling algorithms with

synthetically generated benchmark program suites. Similar to [4] [9] [10] [11],

the experiment is conducted using several randomly generated task sets, each

containing 20 tasks. Such randomly generated tasks are used as the common

validation methodology in real time scheduling. Based on [4], tasks were

assigned a random period between the range [250 ms, 8000 ms] and Worst

Case Execution Time (WCET) between 35% and 80% of the period such that

the total utilization of the task set varies from 140% to 305% in a set of 2, 3

and 4 cores. The experiments obtain the actual execution times (AET) using

Gaussian distribution with mean, =(WCET+AET)/2 and standard deviation

= (WCET-AET)/no of tasks. The AET of the task is varied between 10%

and 100% of its WCET in steps of 10%. All tasks are simulated to execute

till hyper-period, i.e. least common multiple of periods of all tasks in the task

set since the pattern of the schedule repeats after hyper-period. All these

algorithms follow Modified First Fit (MFF) and First Fit(FF) Bin Packing

approximation methods for task allocation.

47 3.5. Evaluation Parameters

3.5 Evaluation Parameters

The significant parameters measured as part of SMART simulator are

described in this section.

1. Hyperperiod: The hyperperiod duration is computed as least

common multiple of periods of all tasks. For an in-phase task set, the

pattern of schedule repeats every hyperperiod. Thus the task set is

scheduled for a hyperperiod duration. All parameters are analysed in

this duration which guarantees successful completion of all the released

jobs of all tasks.

2. Number of scheduling decisions: The scheduling decisions are the

events when scheduler has to decide the next job to be executed by

selecting the highest priority ready job from the queue and dispatching

it to the core. These events are arrival of job and completion of job.

3. Number of preemptions: The arrival of job sometimes may result

into preemption of running job. Each preemption results into context

switching and cache impact overheads.

4. Number of context switches: The switching between two jobs

causes time and energy consumption in changing the context. Apart

from the context switching due to preemption, on job completion, if

48 3.5. Evaluation Parameters

the ready queue is non-empty there exist a context switch between

completed job and next high priority job.

5. Number of cache impacts: Each context switch results into cache

impact.

6. Number of procrastination decisions: On job completion, when

the ready queue is empty, the schedulers decide upon procrastination.

Some of these decisions may not result into procrastination as it

depends on procrastination duration and shutdown threshold. In

this case, the scheduler decides upon push migration and expands its

computation for procrastination duration. This computation consumes

more time and energy than the scheduling decisions on non-empty

ready queue.

7. Number of push migrations: The push migration decisions which

results into procrastination consumes time and energy in performing

the push migration and finding the next scheduler invocation for cores

involved in migration.

8. Number of shutdown and wakeup decisions: These are the

events when core is shutdown. This consume energy in shutting down

and waking up the core.

49 3.5. Evaluation Parameters

9. Total shutdown duration (SD): The duration for which the core

remains in shutdown state without any energy consumption. It is used

for finding the amount of energy saved over the shutdown duration

produced by other algorithms.

10. Number of idle decisions: When the procrastination decision do

not result into shutdown, the scheduler decide upon pull migration and

expands its computation for set of pullable jobs.

11. Number of pull migrations: The non-empty set of pullable jobs

results in performing the pull migration and finding the next scheduler

invocation for cores involved in migration which consumes time and

energy.

12. Total idle duration (ID): The duration for which the core remains

in idle state with minimum energy consumption. It is used for finding

the amount of energy saved over the idle duration produced by other

algorithms.

13. Number of voltage and frequency scaling decisions: On job

completion, when the ready queue is non-empty, the scheduler decides

upon voltage/frequency scaling at which the next high priority job

can be executed. This decision depends upon the slack available in

the core. Some of these decisions may not result in reducing the

50 3.5. Evaluation Parameters

voltage/frequency due to less slack availability. In this case the jobs are

executed at maximum voltage/frequency.

14. Number of times the voltage/frequency are scaled: The

voltage/frequency scaling decisions which results in saving the energy

by reducing the voltage/frequency causes the transition between voltage

levels which consumes time and energy.

15. Total Inactive Duration: Inactive duration is the time when the

core is in idle or shutdown state. It is used in finding the amount of

unproductive energy consumed by the core.

16. Total Active Duration: When the core is in active state it

consumes static and dynamic energy. This includes the scaled active

duration whenever the jobs are executed at scaled voltage and frequency.

17. Percentage of total shutdown duration over inactive duration:

To find how much duration of idle period is converted into shutdown,

percentage of total shutdown over inactive is computed as (SD/(SD +

ID)).

51 3.6. Energy Model

3.6 Energy Model

The energy model used to compute the energy consumption during scheduling

is described in this section. We use the energy model and the technology

parameters described in [4] [19]. The total energy consumption during

execution is measured by considering the following energy components while

executing with various scheduling algorithms:

1. Total static energy (Etot static)

The major contributors of static energy are the sub-threshold leakage

current (Isub) and the reverse bias junction current (Irev) which increases

significantly with adaptive body bias voltage (Vbs) [4]. The static energy

consumption (Estatic) due to Isub and Irev is given by

Estatic = V.Isub + Vbs.Irev (3.1)

where V is the supply voltage.

According to [4], Estatic is assumed to be 22 nJ per cycle. The total

static energy Etot static is computed as

Etot static = total active duration ∗ Estatic (3.2)

2. Total dynamic energy (Etot dynamic)

Dynamic energy is the energy due to switching activity in a circuit.

The energy consumption due to charging and discharging of gates on

a CMOS core (Eswitch) and the short-circuit power consumption (Esc)

52 3.6. Energy Model

contribute to dynamic energy consumption (Edynamic) [19]. It is given

by

Edynamic = Eswitch + Esc (3.3)

where

Eswitch = V 2.f.C (3.4)

where V is the supply voltage, f is the maximum frequency for job

execution and C is the load capacitance. Esc ∝ V

The total dynamic energy Etot dynamic is computed as

Etot dynamic = total active duration ∗ Edynamic (3.5)

Based on [4], the experiments are performed at various voltage levels

and frequencies, the dynamic energy is considered in the range 11 nJ to

44 nJ per cycle as shown in table 3.2.

Table 3.2: Dynamic energy

Voltage level (% of Vmax) Dynamic energy (nJ)

50 11
60 15.84
70 21.56
75 24.75
80 28.16
90 35.64
100 44

3. Total core shutdown and wakeup energy (Etot psd)

Core shutdown and wakeup energy is the energy due to flushing of

53 3.6. Energy Model

data cache during shutdown and memory accesses during wakeup. It

is computed as the product of number of shutdown decisions (N) and

shutdown overhead (Esdo).

Etot psd = N ∗ Esdo (3.6)

The shutdown overhead is estimated by considering the on chip cache

and other storage infrastructures. The cache size of the processor is

assumed to be 32KB I-cache and 32KB D-cache. It is assumed that

20% lines of D-cache are dirty before shutdown which results in 6554

memory writes. By considering 13nJ of energy per memory write, the

total energy requires for flushing the data cache is 85µJ. The energy

and latency of saving the registers is assumed to be negligibly small.

When a task resumes its execution, the locality of reference changes

which causes cache misses. This additional cache misses is assumed

to be 10% of the cache size in both I-cache and D-cache. This causes

the total overhead of 6554 cache misses on wakeup. By considering

15nJ of energy per memory access, the total energy required for reading

from memory and writing into cache is 98µJ. The energy required for

updating TLBs and BTBs is assumed to be negligibly small. The energy

required for charging the circuit logic is assumed to be 300µJ. Thus

the total energy required to switch the processor between active and

shutdown state is 85 + 98 + 300 = 483µJ.

Energy saved ≥ 3 times Energy consumed

i.e. (idle state energy + static energy) * SDT ≥ 3 * 483µJ

i.e. (22nJ + 22nJ) * SDT ≥ 1449µJ. Thus SDT duration ≥ 3659 units.

54 3.6. Energy Model

4. Total scheduler decision making energy (Etot sched)

The priority driven scheduler is invoked on job arrival, core wakeup

and job completion. The energy consumed for decision making at every

scheduler invocation (Esched) is given by

Esched = Edecision + Ev/f + Ecio + Ejob dispatch (3.7)

where Edecision is the energy requires for computing the procrastinated

idle duration whenever the core is idle or for selecting the highest priority

job from ready queue and allocating it to the core and/or checking for

job(s) migration.

Ev/f is the energy for voltage and frequency selection for task execution,

Ecio is the cache impact overhead caused due to context switching after

task completion or preemption and

Ejob dispatch is the energy required for dispatching the job.

It is assumed to be 2µJ energy for voltage and frequency selection, 2µJ

for procrastination decisions, 2µJ for migration, 98µJ for cache impact

and 40µJ for job dispatcher. According to [18], the feasible shutdown

interval threshold considered is 2ms.

The total scheduler decision making energy (Etot sched) is computed as

the product of total number of scheduler invocations (S) and Esched.

Etot sched = S ∗ Esched (3.8)

5. Total idle duration energy (Etot idle)

The core consumes static energy and minimum dynamic energy even

55 3.7. Summary

when it is idle. Thus the idle duration energy (Eidle) is given by

Eidle = Estatic + Edynamic (3.9)

Estatic for idle duration is considered same as that for active duration,

i.e. 22nJ. Edynamic for idle duration is computed using minimum voltage.

Thus Edynamic is considered as 11nJ.

The total idle duration energy Etot idle is computed as.

Etot idle = total idle duration ∗ Eidle (3.10)

Thus the total energy consumption (Etotal) is computed as

Etotal = Etot stat + Etot dyn + Etot psd + Etot sched + Etot idle (3.11)

3.7 Summary

The system model used for development and experimentation of the existing

and proposed algorithms is explained in this chapter. This includes the

description of SMART simulator, platform model, task model and energy

model. The computation of energy components affecting overall energy

consumption is also explained.

Chapter 4

Energy Efficient Scheduling in

MC-HRTS

4.1 Introduction

This chapter focuses on energy efficient scheduling for MC Hard Real Time

System at task allocation and scheduling phases. It explains the proposed

task allocation method - Modified First Fit Bin Packing (MFFBP). MFFBP

is the variant of conventional Bin Packing approximation method - First Fit

Bin Packing (FFBP) used for task allocation. This chapter also elaborates

the design of two dynamic schedulers - Dynamic Procrastination Scheduler

(DPS) and Dynamic Procrastination cum Voltage/Frequency Scaling (DPVFS)

scheduler. In DPS, MFFBP and dynamic procrastination techniques are

combined to reduce static and dynamic energy consumptions of the schedule.

DPS is applicable for MC-HRTS supporting shutdown. DPS is extended

to DPVFS for the systems supporting discrete operational voltages and

frequencies to further reduce the dynamic energy consumption by combining

it with DVFS technique. In this chapter, the schedulers designed using

DPS and DPVFS (with FFBP and MFFBP as allocation) are compared

with schedules of NO procrastination (MFFNOPRO), static procrastination

56

57 4.2. Task Allocation

(MFFSTATICPRO) and Cycle Conserving Earliest Deadline First (ccEDF)

to evaluate the performance and energy consumption.

4.2 Task Allocation for Energy

Minimization

Widely used task allocation methods are on-line, semi-on-line and off-line

[41]. On-line and semi-on-line methods are suitable for tasks having sporadic

release time that can be scheduled with existing task set without missing

deadlines. Off-line methods are best suited for fixed task set having temporal

parameters known a priori. Unlike on-line and semi-on-line, off-line method

gives scope of rearranging the task set. This work considers off-line allocation

as it is dealing with task set having only periodic tasks with implicit deadlines.

Bin Packing approximation is one of the most efficient off-line task allocation

method used in MC systems [9]. Widely used polynomial-time Bin Packing

approximation algorithms are FFBP, Best-Fit, Next-Fit and Worst-Fit [32]

[34] [41]. Amongst these FFBP has the best performance ratio of 11/9 [41].

FFBP arranges the tasks in non increasing order of utilizations and finds

the optimal number of cores required for the given task set [32] [41]. Several

variants of these algorithms are designed like Best-K-fit, First-Fit Decreasing,

Best-Fit Decreasing etc [41]. The arrangement of tasks based on utilization

gives optimal number of cores but does not help in increasing shutdown

duration of the schedule. This work aims at increasing the shutdown duration

and optimizing energy consumption of the schedule. This is done by a new

allocation algorithm - Modified FFBP (MFFBP).

58 MFFBP Algorithm

4.2.1 MFFBP Algorithm

Task allocation of MFFBP is explained in Algorithm [1].

The data structures used in the algorithms are:

• T[] - global task set,

• C[] - set of cores,

• Si[] - sub taskset allocated to core Ci.

The abbreviations used in the algorithms are:

• util - utilization

• remutil - remaining utilization

MFFBP works in two phases - sorting and packing. MFFBP arranges the

tasks in non-decreasing order of their periods. Then it allocates a new task

Ti to the first (lowest indexed) core Cj into which it can fit. Thus if Cj is

partially filled with utilization UCj
, Ti can be allocated to Cj iff UCj

+UTi ≤ 1.

Otherwise Ti is allocated to a new core. Thus lower period tasks are allocated

to same set of cores which cannot be considered for shutdown as maximum

shutdown possible for core is 2*Plow - 2*Elow where Plow and Elow are the

period and WCET of lowest period task in the task set respectively. The cores

having higher period tasks will be able to shutdown for a longer duration

depending on the AETs of the jobs at run time.

59 MFFBP Algorithm

Algorithm 1: MFFBP

Input: Task set T[T1, T2,..TN] arranged in non-decreasing order of

periods, set of cores C[C1, C2,..CM]

Output: P=Minimum no. of cores, ∀i=1 to P sub taskset Si[]

1 P=1

2 foreach task Ti ∈ T [] do

3 flag=0

4 foreach k = 1 to P do

5 if (Ck.remutil ≥Ti.util) then

6 Sk[]←Ti

7 Ck.remutil − =Ti.util

8 flag=1 and break

9 end

10 end

11 if (flag is 0) then

12 P=P+1

13 if (P > M) then

14 Error: Insufficient cores and Exit

15 SP []←Ti

16 P.remutil − =Ti.util

17 end

18 end

19 return P, ∀i=1 to P sub taskset Si[]

60 Motivating Example

Table 4.1: Task set 1

Taskno Period WCET

T0 40 9.4
T1 60 15
T2 50 20
T3 80 19
T4 100 20
T5 140 25
T6 120 20

4.2.2 Motivating Example

Consider a task set consisting of seven periodic hard real-time tasks with

temporal parameters shown in table 4.1. In FFBP, the tasks are first arranged

based on non-increasing order of their utilization. The resultant order is

FFT = { T2, T1, T3, T0, T4, T5, T6}. The tasks in FFT are allocated to different

cores based on FFBP algorithm. In this example task set, the minimum

number of cores is 2 and the sub task sets are FS1 = {T2, T1, T3} and FS2

= {T0, T4, T5, T6} allocated to cores C1 and C2 respectively. The task set

in MFFBP is first arranged based on non-decreasing order of their periods.

The resultant order is MFFT = { T0, T2, T1, T3, T4, T6, T5 }. The tasks in

MFFT are allocated to different cores based on MFFBP algorithm. The task

allocation in MFFBP guarantees that the higher period tasks are allocated

to the last core. In this example task set, the minimum number of cores is

2 and the sub task sets are MS1 = {T0, T2, T1 } and MS2 = {T3, T4, T6, T5}
allocated to cores C1 and C2 respectively. To have uniformity in analysis, the

utilization of FS2 is made almost same as MS2 which is approximately 78%.

In case of FFBP, maximum shutdown durations possible for cores C1 and C2

61 Analysis of MFFBP algorithm

are 60 and 61.2 respectively where as in MFFBP, it is 60 and 122 respectively.

Assuming shutdown threshold of 100, cores C1 and C2 can never be shutdown

in FFBP where as core C2 can be shutdown in MFFBP.

4.2.3 Analysis of MFFBP algorithm

This section describes schedulability and complexity analysis of MFFBP

algorithm.

Schedulability analysis

Theorem 4.2.1 Any periodic task set T with N tasks having implicit

deadlines can be feasibly scheduled on M identical cores by dynamic priority

scheduling algorithm on satisfying the following condition [76].

Utot ≤M(1− Umax) + Umax (4.1)

where Utot =
∑N

i=1 Ui, Umax = MAX(Ti.WCET/Ti.P), Ti ε T, i = 1 to N

Proof: Since the MC system follows static task allocation for a periodic

task set, schedulable utilization of the task set can be found using equation

4.1. It gives the sufficient schedulability condition for a system containing M

identical cores, each scheduled on dynamic priority basis.

Theorem 4.2.2 Any periodic task set T with N tasks having implicit

deadlines satisfying Equation 4.1 can be feasibly allocated to at most M

identical cores, each executing a dynamic priority scheduling algorithm, using

MFFBP allocation method such that the overall shutdown duration is high.

62 Analysis of MFFBP algorithm

Proof: MFFBP arranges the tasks in non-decreasing order of periods and

allocates the lower period tasks to initial K cores as first set of cores and

higher period tasks to remaining K+1 to M cores as second set of cores.

Utot =
K∑
i=1

Ui(Plow) +
M∑

j=K+1

Uj(Phigh) (4.2)

Equation 4.2 shows this allocation does not allow first set to shutdown

but increases the probability of shutdown in second set of cores. Thus the

overall shutdown duration is high in MFFBP. Since MFFBP considers task

level dynamic priority scheduling algorithms with 100% utilization in each

core, it maintains the schedulability condition of each core after task allocation.

Complexity analysis: MFFBP involves two steps. First step is to

arrange the tasks in non-decreasing order of period which takes O(NlogN)

time where N is total number of tasks. Second step is to allocate the next task

to the first possible core by scanning the cores in the order C1, C2, C3....CM .

If a new core is needed, it increments the count of number of cores. The first

task requires a scan of C1 only. Second task requires scanning at most C1 and

C2, third task scans at most C1, C2 and C3; etc. Thus the total number of

scans takes O(N ∗M) time. The run time complexity of MFFBP algorithm

is Max {O(NlogN), O(NM) } = O(NlogN) as logN is larger than M due

to limited number of cores.

63 Experimental evaluation

4.2.4 Experimental evaluation

Experimental setup: The experimentation is conducted using the task

model described in Chapter 3. A new framework named Multi-Core Bin

Packing (MCBP) is designed and implemented to measure the performance

of MFFBP task allocation with EDF scheduling algorithm in comparison

with seminal algorithms. The task sets are allocated using FF and MFF

Bin Packing methods. They are scheduled using EDF with shutting down

the core whenever the idle duration is more than the shutdown threshold

(EDF SD). The framework evaluates FFEDF SD and MFFEDF SD scheduling

algorithms based on shutdown duration, static and total energy consumptions.

Experimental results: Let SFFEDF SD and SMFFEDF SD be the schedules

using FFEDF SD and MFFEDF SD schedulers respectively.

Figure 4.1 shows percentage of active, idle and shutdown period in SFFEDF SD

and SMFFEDF SD for utilizations 210%, 240%, 295% and 305% for 3, 3, 4,

4 cores respectively. On an average, MFFEDF SD produces 183% of more

shutdown period than FFEDF SD schedule.

Figure 4.2 shows the static energy consumption for different utilizations.

MFFEDF SD consumes less static energy compared to FFEDF SD. This is

because the static energy is inversely proportional to the shutdown duration.

On an average, MFFEDF SD reduces the static energy by 13.43% over

FFEDF SD algorithm.

64 Experimental evaluation

Figure 4.1: Percentage of active, idle and shutdown period for varying
utilizations

Figure 4.2: Static energy consumption per unit for different utilizations

65 4.3. Energy Efficient Dynamic Schedulers

Figure 4.3: Total energy consumption per unit for different utilizations

Figure 4.3 shows the total energy consumption for different utilizations.

MFFEDF SD consumes less total energy compared to FFEDF SD as it

consumes less static energy. On an average, MFFEDF SD reduces the total

energy by 8.42% over FFEDF SD algorithm.

4.3 Energy Efficient Dynamic Schedulers

Once the tasks are allocated to the corresponding cores using allocation

algorithms, they are scheduled independently on each core. As each instance

of the task (job) has varied execution time and most of the jobs has lesser

core utilization than worst case, we preferred to use dynamic schedulers. The

deadline driven methods like EDF are more suitable to design energy efficient

scheduler over RM because of its high schedulability and over Least Laxity

First (LLF) because of its reduced complexity. This section describes two

novel energy aware schedulers - DPS and DPVFS. These schedulers (i) select

66 DPS Scheduler

the highest priority job and dispatches it to the core for execution, (ii) find

the corresponding voltage/frequency for its execution and (iii) decide the

state of core to be active, idle or shutdown.

4.3.1 Dynamic Procrastination Scheduler

In systems which is not supporting power down, the cores remain in idle state

whenever they are not active. During this period, the core consumes both

static and dynamic energy for unproductive work. The unproductive energy

consumption of the cores can be reduced by shutting it down if it supports

power down when the idle duration is longer. Procrastination is one of the most

efficient techniques to optimize the energy consumption during idle period. In

procrastination, the task executions are delayed to increase the idle durations

so as to convert it into a longer shutdown duration. Static and Dynamic

variants are the most widely used procrastination techniques. Various off-line

(static) and on-line (dynamic) procrastination solutions have been proposed

under different application/device settings. Static Procrastination is based

on precomputed procrastination intervals on considering their WCET. As

most of the jobs complete before their WCET, static procrastination may not

offer optimal solution. The slack left due to early completion, is utilized by

dynamic methods to increase the idle duration. Dynamic Procrastination is

more aggressive in terms of shutdown duration and energy saving. Dynamic

Procrastination Scheduler (DPS) is designed to aggressively find idle duration

and shut the core whenever it is beyond shutdown threshold.

67 Working of Conventional Static and Dynamic Procrastination Scheduler

4.3.1.1 Working of Conventional Static and Dynamic

Procrastination Scheduler

Consider the task set shown in table 4.1. Consider jobs of tasks in MS2 =

{T3, T4, T6, T5} formed in Section 4.2.2 allocated to core C2 and shutdown

threshold (SDT) as 40 units. In static procrastination, the procrastination

time of every job is precomputed and stored in a table data structure. The

procrastination time of jobs {J42, J33, J62, J52, J43, J34, J63, J53, J44 and J35}
are computed as {220, 276.5, 294.7, 346, 336.4, 344, 386, 494.7, 425.2, 421}
respectively using the portion of WCET of jobs executing between the arrival

and deadline of particular job. For e.g. the procrastination time of job J33 is

computed by considering the portion of execution of jobs {J33, J43, J52, J62}
executing between the release time and deadline of J33 i.e between 240 and

320. Thus the procrastination time for J33 = 320 - (19 + 4 + 7.14 + 13.33)

= 276.5.

Figure 4.4 (a) shows the resultant schedule using static procrastination with

AET same as WCET. At time 187, when there is no job ready for execution,

looking at the precomputed table, the upcoming job can be procrastinated till

the smallest procrastination time i.e. 220. As this produces the slack of 220 -

187 = 33 units which is less than the SDT, the scheduler do not procrastinate

the upcoming job. Thus the core remains idle for 13 units i.e. till 200. At

220 the upcoming job is procrastinated till smallest procrastination time i.e.

276.5 and the core is shutdown for 56.5 units.

Figure 4.4 (b) shows the resultant schedule using static procrastination with

AET less than WCET. Consider AET of jobs {J42, J33, J62, J43, J34 and J52}
as 80% of estimated WCET i.e.{16, 15.2, 16, 16, 15.2, 20}. As J42 needs only

68 Working of Conventional Static and Dynamic Procrastination Scheduler

1
8
7

2
0
0

2
2
0

2
7
6
.5

2
9
5
.5

3
1
5
.5

3
3
5
.5

3
5
4
.5

3
7
9
.5

J
5
1

id
le

J
4
2

sh
u
td

o
w
n

(5
6
.5

u
n
it
s)

J
3
3

J
6
2

J
4
3

J
3
4

J
5
2

T
im

e
→

(a
)

1
8
7

2
0
0

2
1
6

2
7
6
.5

2
9
1
.7

3
0
7
.7

3
2
3
.7

3
3
9

3
5
9

3
6
0

J
5
1

id
le

J
4
2

sh
u
td

o
w
n

(6
0
.5

u
n
it
s)

J
3
3

J
6
2

J
4
3

J
3
4

J
5
2

id
le

T
im

e
→

(b
)

1
8
7

2
0
0

2
1
6

2
7
6
.5

2
9
1
.7

3
0
7
.7

3
2
3
.7

3
3
9

3
5
9

3
6
0

J
5
1

id
le

J
4
2

sh
u
td

o
w
n

(6
0
.5

u
n
it
s)

J
3
3

J
6
2

J
4
3

J
3
4

J
5
2

id
le

T
im

e
→

(c
)

F
ig

u
re

4.
4:

(a
)

S
ch

ed
u
le

u
si

n
g

S
ta

ti
c

P
ro

cr
as

ti
n
at

io
n

w
it

h
A

E
T

=
W

C
E

T
(b

)
S
ch

ed
u
le

u
si

n
g

S
ta

ti
c

P
ro

cr
as

ti
n
at

io
n

w
it

h
A

E
T

=
80

%
W

C
E

T
(c

)
S
ch

ed
u
le

u
si

n
g

C
on

ve
n
ti

on
al

D
P

S

69 DPS algorithm

16 units instead of 20, the core becomes idle at 216. At 216, the upcoming

job is procrastinated till 276.5 looking at the precomputed procrastinated

time and the core is shutdown for 60.5 units. At 359, when there is no job

ready for execution, looking at the precomputed table, the upcoming job

can be procrastinated till the smallest procrastination time i.e. 386. As this

produces the slack of 386 - 359 = 27 units which is less than the SDT, the

scheduler do not procrastinate the upcoming job. Thus the core remains idle

for 1 unit i.e. till 360.

Figure 4.4 (c) shows the resultant schedule using Conventional DPS

(ConvDPS). In ConvDPS, when core becomes idle at 187, the procrastination

duration is computed using portion of execution of jobs arriving before the

deadline of highest priority job i.e. J33. The jobs arriving between 240 and

320 are {J33, J62, J52, J43}. Thus the procrastination time = 320 - (19 + 4 +

7.14 + 13.33) = 276.5. As the slack produced is more than SDT, the core is

shutdown till 276.5 for 60.5 units.

4.3.1.2 DPS algorithm

Like other priority driven schedulers, DPS also has job arrival and job

completion as decision points. On each job arrival, the scheduler compares its

priority with the executing job. The executing job is preempted if the newly

arrived job has higher priority, otherwise the new job joins the ready queue.

On job completion, if the ready queue is non empty, highest priority job is

selected for execution. If ready queue is empty, DPS decides to procrastinate

the job executions. DPS offers the maximum idle duration possible by taking

70 DPS algorithm

Algorithm 2: DPS

Input: time t when Ci.RQ is empty, sub taskset SP []

Output: SIT,

TRUE for shutdown / FALSE otherwise

1 J ← Job with earliest deadline(Dnext1) after t

2 if (Dnext1 − t− J.WCET <SDT) then

3 SIT=next job arrival time

4 return SIT,FALSE

5 end

6 Dnext2 ← deadline of lowest priority job arriving before Dnext1

7 L[]← list of jobs releasing between t and Dnext2 arranged in

non-increasing order of their absolute deadlines

8 SIT=Dnext2

9 foreach job Ji ∈ L[] do

10 if (Ji.d > Dnext2) then

11 NSI -= ((Dnext2 - Ji.r)*(Ji.WCET / Ji.P)*Up)

12 else

13 NSI -= Ji.WCET

14 if ((Ji != lastjob) && (SIT > Ji+1.d)) then

15 SIT = Ji+1.d

16 end

17 end

18 if (SIT-t < SDT) then

19 SIT=next job arrival time

20 return SIT,FALSE

21 end

22 return SIT,TRUE

71 Motivating Example

care of all job deadlines. In DPS, the Procrastinated Idle Duration (PID)

is calculated by considering the executions of jobs arriving between current

time t and Dnext, where Dnext is the deadline of the lowest priority job

arriving before the nearest deadline. For all the jobs with deadline before

Dnext, WCET is considered, and for the jobs whose deadlines are after Dnext,

only a portion of their executions before Dnext is considered. DPS decides

whether to shutdown the core or keep it in idle state based on PID and

shutdown threshold (SDT). If PID is more than SDT, the core is shutdown for

Procrastinated Idle Duration after backing up the relevant data. Otherwise

the core is kept idle until the next job arrival. DPS scheduler is explained in

Algorithm [2].

4.3.1.3 Motivating Example

Consider the task set shown in table 4.1. Consider jobs of tasks in MS2 =

{T3, T4, T6, T5} formed in Section 4.2.2 allocated to core C2 with AET same

as estimated WCET. Figure 4.5 (a) shows the resultant schedule without

procrastination. In EDF schedule without procrastination, at time 187, when

there is no job ready for execution, the core is kept idle till next job arrival, i.e.

till time 200. Figure 4.5 (b) shows the resultant schedule using DPS. In DPS,

when core becomes idle at 187, the procrastination duration is computed.

This is done by finding the job with earliest deadline, i.e. job J42 having

WCET as 20 and deadline as 300. Assuming slack (300 - 187 - 20) is more

than shutdown threshold (SDT), the algorithm decides to compute maximum

procrastination duration. Job J62 with deadline 420 is the lowest priority

job arriving before 300. Thus Dnext is 420. List of jobs arriving between 200

72 Analysis of DPS Algorithm

187 200 220 240 259 279 300 320 339 360

J51 idle J42 idle J33 J62 J52 J43 J34 J52 idle

Time →
(a)

187 278.25 298.25 317.25 337.25 362.25

J51 shutdown J42 J33 J62 J52

Time →
(b)

Figure 4.5: (a) Schedule without procrastination (b) Schedule with DPS

and 420 sorted based on deadline are { J44, J53, J35, J62, J43, J34, J52, J33 and

J42 }. By iterating through all these jobs, DPS finds the latest time to start

executing next job as 278.25. As slack (278.25 - 187) is much higher than

SDT, the scheduler decides to shutdown core C2 till 278.25.

4.3.1.4 Analysis of DPS Algorithm

This section describes schedulability, correctness and complexity analysis of

DPS algorithm.

Schedulability analysis

Theorem 4.3.1 Any periodic task set Ti with implicit deadlines having less

than or equal to 100% utilization is DPS schedulable on a core C.

Proof: DPS is a task level dynamic priority scheduling algorithm for

individual core with decision points as job arrivals, job completions and

73 Analysis of DPS Algorithm

wakeup. For a given task set Ti on core C, DPS offers a valid schedule if it

satisfies the utilization bound given in Equation 4.3.

UC =
N∑
i=1

Ui ≤ 1 (4.3)

where Ui = Utilization of Ti ε T

The procrastination decisions in DPS make sure it maintains the schedulability

bound. Consider Figure 4.6. Let AP and PI denote Active Period and

Procrastination Interval respectively. The shutdown decision is made at time

Figure 4.6: AP and PI

t when the ready queue is empty, i.e. at the end of AP (currentAPend). It

is decided to shutdown only if the PI is more than the shutdown threshold.

Assume that all the jobs in nextAP are arranged in chronological order such

that job ji has higher priority than job jj, job jj has higher priority than

job jk and so on. At time t, procrastination duration Zk of job jk (job with

earliest deadline after t) is computed using the following equation:

jk.WCET + Zk +X + Y ≤ PI + nextAP (4.4)

74 Analysis of DPS Algorithm

where

X =
∑

∀jiεJi:i 6=k&ji.r,ji.d≤D

ji.WCET (4.5)

Y =
∑

∀jlεJl:l 6=k&jl.r≤D,jl.d≥D

D − jl.r (4.6)

D is the absolute deadline of job having release time jj.r < jk.d and deadline

jj.d > jk.d,

Ji is the set of jobs in next active period (nextAP) released before D and

having deadline before D,

Jl is the set of jobs in nextAP released before D and having deadline after D.

On procrastination, all the tasks in nextAP will be executed with full frequency.

Equation 5.5 shows that no job will miss its deadline due to postponement of

job execution and the task set remains schedulable with procrastination.

Correctness analysis

Theorem 4.3.2 The overall shutdown duration produced by the DPS

scheduler is greater than or equal to the one produced by EDF scheduler.

Proof: Let SDPS and SEDF be the schedules produced by DPS and EDF

scheduling algorithms respectively. Let SDDPS and SDEDF be the total

shutdown duration in SDPS and SEDF respectively. EDF keeps the core in

shutdown state till next job arrival if the idle duration is more than the

shutdown threshold. DPS algorithm procrastinates the execution of future

jobs and merges the intermediate idle intervals within same core which results

75 Analysis of DPS Algorithm

into longer shutdown duration. Thus

SDDPS ≥ SDEDF (4.7)

Theorem 4.3.3 The schedule produced by the DPS scheduler offers better

energy saving compared to EDF scheduler with shutdown.

Proof: Let IDDPS and IDEDF be the total idle duration in SDPS and SEDF

respectively. The objective of DPS to keep the core in shutdown state instead

of idle to produce overall less idle duration compared to EDF. As active

duration is constant in both the approaches,

SDDPS + IDDPS = SDEDF + IDEDF (4.8)

Eq.(4.8) =⇒

total shut down duration ∝ 1

total idle duration
(4.9)

Eqs.(4.7) and (4.9) =⇒
IDDPS ≤ IDEDF (4.10)

Let SEDPS, SEEDF be the static energy consumed and DEDPS, DEEDF be

the dynamic energy consumed while scheduling SDPS and SEDF respectively.

Eq.(4.7) and (4.10) =⇒
SEDPS ≤ SEEDF (4.11)

and

DEDPS ≤ DEEDF (4.12)

76 Analysis of DPS Algorithm

Let NSDDPS and NSDEDF be the number of shutdowns, SDEDPS and SDEEDF

be the shutdown and wakeup energy in SDPS and SEDF respectively. The

prolonged shutdown duration in DPS gives less number of shutdown intervals

compared to EDF. Thus Eq.(4.7) =⇒

NSDDPS ≤ NSDEDF (4.13)

Eq.(4.13) =⇒
SDEDPS ≤ SDEEDF (4.14)

Let ENERGYDPS and ENERGYEDF be the overall energy while scheduling

SDPS and SEDF respectively.

Eqs.(4.11), (4.12) and (4.14) =⇒

ENERGYDPS ≤ ENERGYEDF (4.15)

Thus the overall energy consumption with DPS scheduling algorithm is less

in comparison with EDF approach.

Complexity analysis

Complexity of maintaining priority queue isO(N logN) where N is the number

of tasks allocated to the core. Selecting next job to run from a priority queue

is a constant (C1) time operation. Preemption includes backing-up/restoring

the critical data. Though preemption is considered as a major parameter,

in experimental analysis it is considered as a constant (C2) time operation

for complexity analysis. Thus the run time complexity of scheduler on job(s)

77 Experimental Evaluation

arrival is N logN + C1 + C2. In asymptotic notation it is O(N logN). The

computation time complexity of PID is O(K) where K is the number of

jobs arriving between t and Dnext. Transition from active to shutdown and

vice versa includes backing-up/restoring the critical data. This is considered

as constant (C2) time operation as explained above. Thus the run time

complexity of scheduler on job completion when ready queue is empty is

O(K) +C2 and C1 when ready queue is non empty. In asymptotic notation it

is O(K). Thus the run time complexity of DPS is Max{O(N logN),O(K)}
= O(N logN).

4.3.1.5 Experimental Evaluation

Experimental setup: The experimentation is conducted using the task

model described in Chapter 3. The task sets are allocated using MFFBP

method described in Section 4.2.1. The framework SMART described in

Chapter 3 is used to find the schedule and measure the performance of

DPS algorithm in comparison with seminal algorithms. The task sets are

scheduled using MFFBP with Static Procrastination (MFFSTATICPRO),

FFBP with Conventional DPS (FFConvDPS), FFBP with DPS (FFDPS),

and MFFBP with DPS (MFFDPS) algorithms. The framework evaluates

these scheduling algorithms based on shutdown duration, procrastination

decision points, static, dynamic and total energy consumptions.

Experimental results: Figures 4.7, 4.8 and 4.9 show the effect of dynamic

procrastination over static. Let SMFFSTATICPRO and SMFFDPS be the

schedules using MFFSTATICPRO and MFFDPS schedulers respectively.

78 Experimental Evaluation

Figure 4.7: Percentage of active, idle and shutdown period for varying
utilizations

Figure 4.8: Static energy consumption per unit for different utilizations

79 Experimental Evaluation

Figure 4.7 shows percentage of active, idle and shutdown period in

SMFFSTATICPRO and SMFFDPS for utilizations 210%, 240% with 3 cores and

295%, 305% with 4 cores. MFFDPS outperforms MFFSTATICPRO because

of the difference in WCET and AET. On an average, MFFDPS produces

63.42% more shutdown period than MFFSTATICPRO schedule.

Figure 4.8 shows the static energy consumption for different utilizations.

MFFDPS consumes the least static energy compared to MFFSTATICPRO.

This is because the static energy is inversely proportional to the shutdown

duration. On an average, MFFDPS reduces the static energy by 18.3% over

MFFSTATICPRO algorithm.

Figure 4.9: Total energy consumption per unit for different utilizations

Figure 4.9 shows the total energy consumption for different utilizations.

80 Experimental Evaluation

MFFDPS consumes the least static energy compared to MFFSTATICPRO.

On an average, MFFDPS reduces the total energy by 10.7% over

MFFSTATICPRO algorithm.

Figures 4.10, 4.11, 4.12, 4.13 and 4.14 show the effect of MFFBP and DPS

methods over FFBP and Conventional DP methods. The experiments are

carried out for utilizations 210%, 225%, 240% with 3 cores and 285%, 295%,

305% with 4 cores. Let SConvDPS, SFFDPS and SMFFDPS be the schedules

using Conventional Dynamic Procrastination, FFDPS and MFFDPS

schedulers respectively.

Figure 4.10: Percentage of active, idle and shutdown period for varying
utilizations

Figure 4.10 shows percentage of active, idle and shutdown period in SConvDPS,

SFFDPS and SMFFDPS. On an average, MFFDPS produces 18.35% and 9.22%

more shutdown duration than ConvDPS and FFDPS schedule respectively.

81 Experimental Evaluation

Figure 4.11: Static energy consumption per unit for different utilizations

Figure 4.12: Dynamic energy consumption per unit for different utilizations

Figure 4.11 shows the static energy consumption for different utilizations.

MFFDPS consumes the least static energy compared to ConvDPS and

FFDPS. This is because the static energy is inversely proportional to the

82 Experimental Evaluation

shutdown duration. It is also observed that the static energy consumption

increases with increase in utilization because of the shorter shutdown period.

On an average, MFFDPS reduces the static energy by 10.7% and 5.33% over

ConvDPS and FFDPS algorithms respectively.

Figure 4.12 shows the dynamic energy consumption for different utilizations.

MFFDPS outperforms other algorithms as it produces more shutdown

duration and less idle duration. On an average, MFFDPS reduces the

dynamic energy by 4% and 1.8% over ConvDPS and FFDPS algorithms

respectively.

Figure 4.13 shows the decision making energy consumption for different

utilizations. In procrastination approach, when job queue is empty, energy

is consumed in computing the procrastinated idle duration and taking a

decision whether to procrastinate the job execution or keep the core idle.

On an average, MFFDPS has 1.8% and 1.67% more decision making energy

compared to ConvDPS and FFDPS algorithms respectively.

Figure 4.14 shows the total energy consumption for different utilizations.

The total energy consumption follows the same trend as static and dynamic

energy consumptions. The energy consumption increase with increase

in utilization. This is mainly because of the static and dynamic energy

components and less chance for shutting down in all procrastination based

algorithms. Irrespective of utilizations, MFFDPS offers the least energy

consumption followed by FFDPS and ConvDPS. On an average, MFFDPS

83 Experimental Evaluation

Figure 4.13: Decision making energy consumption per unit for different
utilizations

Figure 4.14: Total energy consumption per unit for different utilizations

84 DPVFS Scheduler

reduces total energy consumption by 3.1% and 6.2% over FFDPS and

ConvDPS algorithms respectively.

Conclusion: Along with the primary constraint of timeliness for real time

tasks, MFFDPS scheduler also minimizes overall static and dynamic energy

consumptions over MFFSTATICPRO, ConvDPS and FFDPS algorithms.

It is applicable to the MC system supporting various power modes like

shutdown, idle and active.

4.3.2 DPVFS Scheduler

The schedule produced by DPS may have some unused idle intervals consuming

energy. These idle intervals can be converted into active by executing

the jobs at reduced voltage and frequency. This is done using Dynamic

Procrastination cum Voltage and Frequency Scaling (DPVFS)

scheduler. DPVFS use DVFS technique to save dynamic energy and DP

technique to save static and dynamic energy. It uses Cycle Conserving

Earliest Deadline First (ccEDF) [5] method as DVFS technique and DPS

method as DP technique. In DPVFS, before executing a job, the Next Idle

Duration (NID) is computed using DPS. DPS helps in increasing the NID by

converting the distributed short idle intervals to longer duration and finds

the procrastinated idle duration (PID). Based on PID, DPVFS recommends

a choice of slowing down the core or shutting down the core. If significant

length of PID is available in future, the current job is executed at maximum

voltage and frequency. Otherwise the scaled voltage and frequency for the job

is computed and the job execution is extended for the available idle duration.

85 Working of ccEDF

Thus the unused idle intervals are converted into active by executing the jobs

at reduced voltage and frequency. DVFS incurs energy overhead due to voltage

transitions and programming the clock frequency. Though these techniques

work well independently, combining them to get optimized overall energy

consumption without negatively affecting the performance of an application

in MC system is still a challenge. This introduces challenges like optimal

shutdown, optimal voltage/frequency scaling, trade off between static and

dynamic energy consumption, preemption, cache impact overheads etc. To

obtain optimal energy consumption, this work systematically incorporates

DVFS and DP to balance the dynamic and static energy savings for the

architectures that support multiple voltage and frequency levels and core

shutdown.

4.3.2.1 Working of ccEDF

640 675.3 700 720 780 800 840 880 900

0.8
0.9
1

id
le

J2,8 J0,13 J2,8 J1,11 J0,14 J1,12 J2,9 J0,15 J
1
,1
3

J0,16 J2,10 J1,14 J0,17 J2,11

Time →

V
o
lt
a
g
e
(
v
)

Figure 4.15: Schedule using ccEDF

Consider scheduling of jobs of tasks { T0, T1, T2 } with {Period, WCET} as

{50,20}, {60,15} and {80,19} respectively. Figure 4.15 shows the resultant

schedule using cycle-conserving EDF (ccEDF). Consider AET of jobs shown

in figure as 80% of estimated WCET i.e.{16, 12, 15.2} for tasks T0, T1 and T2

respectively. In ccEDF, at each decision point i.e. on job arrival and on job

completion, the scaled voltage is computed based on AET of finished jobs

86 DPVFS algorithm

and WCET of other jobs.

At time 640, when the core becomes idle, the scaled voltage is computed

using WCET of all tasks i.e. 0.9v. The highest priority job J28 is executed at

0.9v and scaled frequency. On its completion, the scaled voltage is computed

by considering its AET and WCET of other tasks i.e. 0.8v. The next highest

priority job J1,11 is executed at 0.8v and scaled frequency. Similar scaled

voltage is computed at each decision points.

4.3.2.2 DPVFS algorithm

Algorithms [3] and [4] show Selector and DPVFS algorithms respectively.

The data structures used in the algorithms are:

• Si[] - sub taskset allocated to core Ci,

• W[] - an array of all jobs of tasks in Si ready at t.

The abbreviations used in the algorithms are:

• WT - Wakeup Time

• NJAT - Next Job Arrival Time

• AP - Active Period

• ID - Idle Duration

• SDT - ShutDown Threshold

• SV - Scaled Voltage

• SF - Scaled Frequency

• NID - Next Idle Duration

• R - Running Job

Algorithm SELECTOR: The Selector algorithm takes task set

allocated to the core as input and finds the active period (AP). If AP is zero,

it sets Ci.SV to maximum. Otherwise it calls DPS algorithm to compute

87 DPVFS algorithm

Algorithm 3: SELECTOR

Input: sub taskset Si[] allocated to core Ci

Output: Ci.SV

1 foreach job Ji ∈ W [] do

2 Ci.AP = Ci.AP + Ji.WCET

3 W[] ← jobs arriving between t and Ci.AP

4 end

5 if (Ci.AP == 0) then

6 Ci.SV = MAX VOLTAGE

7 Ci.NID = DPS(t+Ci.AP) - t

8 if (Ci.NID < SDT) then

9 Ci.SV = nearest higher voltage than (Ci.AP/(Ci.AP + Ci.NID))

10 return Ci.SV

next idle duration (NID). DPS algorithm is described in Algorithm [2]. If

NID is less than SDT, it computes the appropriate voltage and frequency

using AP, NID and available voltage/frequency level and returns the scaled

voltage for the core.

Algorithm DPVFS: The DPVFS algorithm takes task sets of all cores as

input and generates the valid schedule with voltage scaling or procrastination.

The task sets are allocated to the cores using Modified First Fit Bin Packing

(MFFBP) described in Section (4.2). It schedules the jobs on following two

events:

Event 1: On job arrival: On job arrival, it updates the execution time

of running job, AP, NID and inserts new job in priority queue. If AP is

88 DPVFS algorithm

Algorithm 4: DPVFS

Input: ∀i=1 to P sub taskset Si[]
Output: Schedule with voltage scaling or procrastination

1 Event1: On Arrival of job J
2 Update R.WCET, Ci.AP and Ci.NID with R.AET in SF
3 if (Ci.AP == 0) then
4 SELECTOR(Ci)

5 Execute job J at Ci.SV;

6 end
7 else
8 Execute highest priority job at Ci.SV
9 End Event1

10 Event2: On Completion of job J
11 Update R.WCET, Ci.AP & Ci.NID with R.AET in SF
12 if ((Ci.AP == 0) && (Ci.NID == 0)) then
13 SELECTOR (Ci)

14 if (Ci.NID ≥ SDT) then
15 if (Ci.RQ is empty) then
16 Keep core Ci in shutdown state till t+Ci.NID
17 Ci.SV = MAX VOLTAGE

18 end
19 else
20 Execute highest priority job at MAX VOLTAGE

21 end
22 else
23 if (Ci.RQ is empty) then
24 Keep core Ci in idle state till next job arrival
25 Ci.SV = MIN VOLTAGE

26 end
27 else
28 Ci.AP = Ci.AP * Ci.SV
29 Ci.SV = nearest higher voltage of (Ci.AP - J.AET in

SF)/(Ci.AP - J.AET in SF + Ci.NID)
30 Ci.AP = Ci.AP/Ci.SV
31 Execute highest priority job at Ci.SV

32 end

33 end
34 End Event2

89 Motivating Example

completed, the scheduler invokes SELECTOR to find the appropriate

voltage and frequency for job execution and executes the highest priority

ready job at scaled voltage and frequency. If the AP has not completed,

the scheduler executes the highest priority job at previously set voltage and

frequency.

Event 2: On job completion: On job completion, it updates the

execution time of running job, AP and NID. If AP and NID are zero, the

scheduler invokes SELECTOR algorithm to find the appropriate voltage

and frequency for job execution. SELECTOR also finds the Procrastinated

Idle Duration (PID) as Ci.NID. If Ci.NID is more than SDT, it checks the

ready queue. If ready queue is empty, it shuts down the core for PID and

sets Ci.SV to maximum voltage. If ready queue is not empty, it executes the

highest priority job at maximum voltage and frequency. If Ci.NID is less

than SDT, it checks for jobs in ready queue. If ready queue is empty it keeps

the core idle till Ci.NID and sets Ci.SV to minimum voltage. If ready queue

is not empty, it computes the appropriate voltage and frequency using AP,

NID and available voltage/frequency levels.

4.3.2.3 Motivating Example

Consider a task set consisting of seven periodic hard real-time tasks with

temporal parameters shown in table 4.2. According to MFFBP, two cores are

required to execute this task set. Based on period, the tasks are ordered as {
T0, T1, T2, T4, T3, T6 and T5 }. The task set is divided into two sub task sets

S1: { T0, T1, T2 } and S2: { T4, T3, T6, T5 }. S1 and S2 are allocated to the

90 Motivating Example

Table 4.2: Task set 2

Taskno Period WCET

T0 50 20
T1 60 15
T2 80 19
T3 110 15
T4 100 20
T5 140 25
T6 120 20

cores C1 and C2 respectively for scheduling. Consider scheduling of jobs of

tasks in S1 with AET same as estimated WCET. At the beginning of the

active period, i.e. at t=640, the Selector algorithm is called. The jobs in

W are { J2,8, J0,13, J1,11 }. The Selector algorithm finds C1.AP as 54. It

guarantees the initialization of scaled voltage value at the end of each active

period. It calls DPS algorithm to compute C1.NID at t = 640 + 54 = 694.

In this case, DPS returns 6 as C1.NID. Assuming C1.NID is more than SDT,

it decides to slowdown the core and the C1.SV is calculated as 54/(54+6)=

90% of the maximum voltage and frequency. The jobs J0,13, J2,8 and J1,11

are executed with reduced voltage and frequency between 640 and 700. At t

= 700, the next active period begins with only one job J0,14 in W. There is

no idle time before 700 + J0,14.WCET = 720. Thus job J0,14 executes with

maximum voltage and frequency till 720. At t=720, C1.AP = 54. At t =

720 + 54 = 774, DPS computes C1.NID as 30 by procrastinating the job

that arrives at 780. Assuming C1.NID ≥ SDT, C1.SV is set to maximum

voltage and the tasks are executed with full voltage and frequency from

t = 700 till 774. Core C1 is switched to shutdown state from t=774 till

91 Motivating Example

804. Thus the jobs in active period before core shutdown are executed at

maximum voltage and frequency. Using the same method, C1.SV is computed

as maximum voltage till t=920, 90% of maximum voltage till t=950 and

maximum voltage till t=1039. Core C1 remains idle till 1040. The resultant

schedule using DPVFS and DPS till time 1040 are shown in Figure 4.16 (a)

and (b) respectively.

640 700 774 804 950 1039

0.9
1

id
le

jobset1 jobset2 shutdown jobset3 jobset4 idle

Time →

V
o
lt
a
g
e
(
v
)

(a)

640 694 700 774 804 950 1039

0.9
1

id
le

jobset1 idle jobset2 shutdown jobset3 jobset4 idle

Time →

V
o
lt
a
g
e
(
v
)

(b)

jobset1: j0,13, j2,8, j1,11
jobset2: j0,14, j1,12, j2,9, j0,15
jobset3: j0,16, j2,10, j1,13, j1,14, j0,17, j2,11, j0,18, j1,15
jobset4: j0,19, j1,16, j2,12, j0,20, j1,17

Figure 4.16: (a) Schedule with DPVFS (b) Schedule with DPS

92 Analysis of DPVFS Algorithm

4.3.2.4 Analysis of DPVFS Algorithm

This section describes schedulability, correctness and complexity analysis of

DPVFS algorithm.

Schedulability analysis

Theorem 4.3.4 Any periodic task set Ti with implicit deadlines having less

than or equal to 100% utilization is DPVFS schedulable on a core C.

Proof: DPVFS is a task level dynamic priority scheduling algorithm for

individual core with decision points as job arrivals, job completions and core

wakeup. For a given task set Ti on core C, DPVFS offers a valid schedule if

it satisfies the utilization bound given in Equation 4.3 after slowing down the

core.

UC =
N∑
i=1

Ui/f ≤ 1. (4.16)

The slowdown decisions in DPVFS make sure it maintains the schedulability

bound. Consider figure 4.6. The slowdown decision is made at the beginning

of the AP (currentAPbegin) and on completion of job if it finishes earlier than

its WCET thereby leaving slack before the end of AP (currentAPend). It is

decided to slowdown only if the PI is less than the shutdown threshold. The

slack produced by the jobs is utilized to slowdown other jobs till the beginning

of next active period (nextAPbegin). Thus it does not affect the schedulability.

The frequency of the core chosen for execution of jobs in currentAP is

f =
∑
∀jiεJ

ji.AET +
∑
∀jkεK

jk.WCET ≤ currentAP + PI (4.17)

93 Analysis of DPVFS Algorithm

where J is the set of completed jobs before t in current active period and K

is the set of incomplete jobs in remaining active period.

Equation 4.17 shows that no higher priority job in currentAP will miss its

deadline due to extension of lower priority jobs. Thus the task set remains

schedulable after voltage and frequency scaling. Theorem 4.3.1 shows that no

job will miss its deadline due to postponement of job execution and the task

set remains schedulable with procrastination.

Correctness analysis

Theorem 4.3.5 DPVFS produces a valid and feasible schedule if there exist

one.

Proof: For periodic task set with implicit deadlines having hard affinity, any

priority driven scheduler is invoked on job arrival and completion. DPVFS

also has these decision points but it has to not only select the highest

priority job from ready queue but also has to decide the state of the core

(slowdown/shutdown). Theorem 4.3.4 shows that a job can be feasibly

scheduled even on executing for longer duration without any deadline misses.

Theorem 4.3.1 shows that a job can be feasibly scheduled even after postponing

its execution without any deadline miss. Thus DPVFS produce a valid and

feasible schedule if there exist one in voltage/frequency scale down and

procrastination decision.

Theorem 4.3.6 DPVFS produces a schedule with equal or lesser energy

consumption compared to EDF, DVFS and DPS algorithms.

94 Analysis of DPVFS Algorithm

Proof: Let SEEDF , SEDV FS, SEDPS and SEDPV FS be the static energy

consumed and DEEDF , DEDV FS, DEDPS and DEDPV FS be the dynamic

energy consumed while scheduling. The trend of static and dynamic energy

consumptions of the algorithms is as follows:

SEDPS ≤ SEDPV FS ≤ {SEEDF , SEDV FS}

DEDV FS ≤ DEDPV FS ≤ DEDPS ≤ DEEDF

DVFS algorithm takes care of only dynamic energy optimization whereas

DPS algorithm takes care of static energy optimization. Since DPVFS follows

shutdown whenever possible and slowdown otherwise, it gets advantage of

both static and dynamic energy. This results in overall energy reduction

compared to other approaches. Thus the overall energy consumption in

DPVFS will be lesser than or equal to EDF, DVFS and DPS.

Complexity analysis

DPVFS is a task level dynamic priority scheduling algorithm with decision

points as (i) job(s) arrival, (ii) core wakeup and (iii) job completion. When

the core is awake, on job(s) arrival, the job(s) joins the ready queue which

is maintained as priority queue in N logN time where N is the number of

tasks allocated to the core. Selecting next job to run with same voltage and

frequency is a constant (C1) time operation. Thus the run time complexity

of job scheduling on job(s) arrival when core is awake is O(N logN).

95 Analysis of DPVFS Algorithm

If the job(s) arrives when the ready queue is empty, the active period and

next idle duration is computed after the job insertion. The active period is

computed by considering WCET of all the jobs which arrives before the end

of active period. It is seen experimentally that the number of jobs varies

from 1 to 2*N. Thus it takes O(2N) time to compute active period. The

idle duration from the end of active period is computed by considering the

WCET of jobs between earliest release time of job after the end of current

active period and deadline of the lowest priority job arriving before the

nearest deadline (Dnext). It takes O(L logL) for finding and arranging the

jobs based on their deadline where L is the number of jobs arriving between

end of active period and Dnext. Thus it takes O(L logL) time to compute

next idle duration. Thus the run time complexity of job scheduling when

ready queue is empty is O(N logN + L logL).

Though the transition from shutdown to active is time consuming, for

complexity calculation it is considered as constant (C2) time operation.

When the core wakes up from shutdown, all the pending jobs joins

the priority ready queue in N logN times. Selecting next job to run

with maximum voltage and frequency is a constant (C1) time operation.

Thus the run time complexity of job scheduling on core wake up is O(N logN).

On job completion, the active and idle periods are updated in constant (C3)

time. Then a decision to slowdown or procrastinate is taken in constant

time (C4). Accordingly the core is transited to shutdown or idle state and

96 Experimental Evaluation

appropriate voltage level setting in constant (C2) time. If the ready queue

is non-empty and the decision is shutting down the core when it becomes

idle, the voltage level is set to MAX VOLTAGE. If the decision is to slow

down, the appropriate voltage and frequency is computed. Thus like other

seminal dynamic priority algorithms, DPVFS also takes constant (C5) time

for scheduling a job on job completion. Thus the run time complexity of

DPVFS on job completion is O(1). The worst case run time complexity of

DPVFS is MAX { O(N logN +L logL), O(N logN), O(1) }. In asymptotic

notation it is O(N logN + L logL).

4.3.2.5 Experimental Evaluation

Experimental setup: The experimentation is conducted using the task

model described in Chapter 3. The task sets are allocated using MFFBP

algorithm described in Section 4.2.1. The framework SMART described in

Chapter 3 is used to find the schedule and measure energy parameters using

DPVFS, ccEDF and DPS scheduling algorithms.

Experimental results:

Figure 4.17 shows the static energy consumption per unit time for different

utilizations. DPS consumes the least static energy followed by DPVFS and

ccEDF. This is because the static energy consumption is inversely proportional

to the shutdown duration. The shutdown duration is more in DPS algorithm

compared to DPVFS and ccEDF. This is because DVFS reduces the chance

of shutdown as it increases the execution time of jobs. The DPVFS algorithm

offers very close performance in comparison with pure procrastination based

97 Experimental Evaluation

Figure 4.17: Static energy consumption per unit time for different utilizations

Figure 4.18: Dynamic energy consumption per unit time for different
utilizations

98 Experimental Evaluation

algorithms which show its conversion accuracy from idle to shutdown. On an

average, DPVFS reduces the static energy by 84.54% over ccEDF and has

1.45% more static energy consumption over DPS.

Figure 4.18 shows the dynamic energy consumption per unit time for different

utilizations. Irrespective of the utilizations, ccEDF offers the least dynamic

energy consumption followed by DPVFS and DPS algorithms. The DPVFS

algorithm offers very close performance in comparison with ccEDF which is

because of its aggressive shutdown and slowdown strategies. DPVFS increases

dynamic energy by 0.38% over ccEDF and saves 32.7% over DPS.

Figure 4.19: Decision making energy per unit time for different utilizations

Figure 4.19 shows the decision making energy per unit time for different

utilizations. In procrastination with voltage scaling approach, at the beginning

of every active period, current active duration and next available idle duration

is computed. Based on this idle duration, active period and scaled voltage

is computed. The idle duration computation is also carried out when there

99 Experimental Evaluation

are no jobs in ready queue. This adds into the decision making overhead.

Thus DPVFS consumes more energy in decision making compared to DPS. In

ccEDF, at every arrival and completion of job, the scaled voltage is computed

and thus has more number of decision points compared to DPVFS. DPVFS

has decision making overhead of 2.44% over DPS and 5.38% saving over

ccEDF respectively.

Figure 4.20 shows the shutdown energy per unit time for different utilizations.

The chance of converting inactive period into active period by voltage scaling

approach lessens the chance of shutting down the core. DPVFS reduces

the shutdown overhead by 4.43% over DPS. Though the decision making

and context switching energy are less in procrastination schedulers, it is not

significant as compared to static and dynamic energy reductions.

Figure 4.21 shows the idle state energy consumption per unit time for

different utilizations. DPVFS consumes the least energy in idle state followed

by DPS and ccEDF. This is because DPVFS converts most of the inactive

periods into either active or shutdown and leaves very less idle duration

whereas ccEDF converts inactive period into active or idle and DPS converts

it into shutdown wherever possible. On an average, ccEDF and DPS produces

72% and 56.8% more idle energy respectively than DPVFS.

Figure 4.22 shows the total energy consumption per unit time for different

utilizations with shutdown threshold as 500 time units. DPVFS consumes

least energy compared to ccEDF and DPS. With the increase in utilization

100 Experimental Evaluation

Figure 4.20: Shutdown energy per unit time for different utilizations

Figure 4.21: Idle state energy per unit time for different utilizations

101 Experimental Evaluation

Figure 4.22: Total energy consumption per unit time for different utilizations

Figure 4.23: Total energy consumption per unit time for different shutdown
thresholds

102 Experimental Evaluation

for same shutdown threshold, the chance of shutting down the core reduces

since active duration increases. This increases the static energy consumption

in DPS algorithm and both static and dynamic energy consumption in

ccEDF compared to DPVFS algorithm. Thus DPVFS gives significant saving

in total energy compared to DPS algorithm. On an average, DPVFS reduces

total energy by 33.2% and 18.8% over ccEDF and DPS respectively.

Figure 4.23 shows the total energy consumption per unit time with

different shutdown thresholds for task set having 275% utilization. With the

increase in threshold, DPVFS offers significant saving in total energy compared

to DPS algorithms. ccEDF has no impact with shutdown threshold as it never

allows the core to shutdown. DPVFS saves 54.14% and 0.15% of energy over

ccEDF and DPS when shutdown threshold is set to 100. It saves 28.84% and

25.06% of energy over ccEDF and DPS when shutdown threshold is set to 700.

Conclusion: Along with the primary constraint of timeliness of real time

task, DPVFS scheduler also minimizes overall energy consumption while

scheduling by reducing the static and dynamic energy consumption over

ccEDF and DPS schedulers with MFFBP task allocation. It is applicable to

the MC system supporting various power modes and having discrete levels of

voltages and frequencies.

103 4.4. Summary

4.4 Summary

In this chapter MFFBP - an energy aware task allocation method, DPS - a

Dynamic Procrastination Scheduler and DPVFS - a Dynamic Procrastination

cum Dynamic Voltage and Frequency Scaling scheduler for MC-HRTS

are described, analyzed and evaluated in detail. MFFBP arranges the

tasks before allocation such that core with higher period tasks gets more

chance for shut down. DPS increases the chances of shutting down by

postponing the task execution without violating the timing constraints. Thus

saves static and dynamic energy in the schedule. DPS can be applied to

the systems that support shutdown and single operational voltage level.

DPVFS balances the static and dynamic energy consumption by suggesting

the appropriate option of voltage/frequency scaling and procrastination.

DPVFS can be applied to the systems that support shutdown and discrete

operational voltage levels. Since both the schedulers are dynamic, optimal

shutdown duration / optimal voltage scaling can be obtained. The detailed

analysis of these algorithms is done based on schedulability, correctness and

complexity. DPS and DPVFS produces a valid and feasible schedule on

procrastination and voltage/frequency scaling. The run time complexity of

DPS algorithm is O(N logN) and that of DPVFS is O(N logN + L logL).

The schedules produced using DPS and DPVFS with MFFBP task allocation

consume less or same energy as various scheduling algorithms- FFEDF SD,

MFFSTATICPRO, ConvDPS, FFDPS and ccEDF. It is observed that DPS

algorithm produces schedule with least energy compared to other algorithms

for system with single voltage and frequency and DPVFS algorithm produces

104 4.4. Summary

schedule with least energy than other algorithms for system supporting

multiple voltage and frequency levels.

Chapter 5

Energy Efficient Scheduling in

MC-HRTS using Migration

5.1 Introduction

This chapter focuses on energy efficient scheduling for MC-HRTS using

migration. This chapter elaborates the design of two dynamic schedulers -

OASIS and HandT for homogeneous MC systems supporting migration. In

OASIS scheduler, job migration and dynamic procrastination techniques are

combined to reduce the static and dynamic energy consumptions. OASIS is

applicable for systems supporting shutdown. OASIS scheduler is extended

to HandT for the systems supporting discrete operational voltages and

frequencies to further reduce the dynamic energy consumption. In HandT

scheduler, DVFS technique is combined with procrastination and migration. In

this chapter, the schedulers designed using OASIS and HandT are compared

with EDF, EDFSD, DPS and ccEDF to evaluate the performance and energy

consumption.

105

106 5.2. Energy Efficient Dynamic Schedulers

5.2 Energy Efficient Dynamic Schedulers

Widely used task scheduling schemes in MC system are broadly classified as

global, partitioned and semi-partitioned [32] [34]. In global scheme, a global

ready queue is used and the tasks are allowed to migrate between cores [35]. In

this scheme, affinity of a job to a core is very weak which results in increased

cache invalidations. The additional overhead because of cache invalidation

may result in deadline misses and/or exceeding energy budget of the system.

In partitioned scheme, the non-migratable tasks are statically partitioned

and assigned to a specific core for execution [35]. Each core maintains a

local ready queue. Due to non-migratable nature, the job remains with the

same core on preemption. Due to this, some of the cores may remain idle

even when jobs are ready available for execution in other cores. The worst

case timing analysis of partitioned approach is much tighter than the global

approach as migration related overheads like cache invalidation are eliminated.

Semi-partitioned scheme is a hybrid approach in which, initially the tasks

are assigned to cores [38] [39]. While scheduling, the jobs are allowed to

migrate from one core to other depending on their affinity. This improves the

core utilization and balances the workload among cores. The migration in

semi-partitioned scheme requires coordination between the cores yielding to

high decision making and cache invalidation cost. In real time systems due

to timeliness constraint, the overhead of communication between cores need

to be avoided. Thus we prefer to use semi-partitioned scheme for OASIS and

HandT schedulers. The migration policy not only helps in improving the

performance but also in reducing the energy consumption. OASIS scheduler

107 OASIS Scheduler

is designed to reduce the static energy consumption by reducing the idle

duration and increasing the shutdown duration. HandT scheduler is designed

to reduce static and dynamic energy consumption by further reducing the

idle durations in the schedules produced by OASIS scheduler.

5.2.1 OASIS Scheduler

Motivated with the fact that there is no advantage in completing a

job with a hard deadline early, the job execution can be procrastinated.

Dynamic Procrastination (DP) is one of the most efficient techniques to

optimize the energy consumption during idle period. The distributed

idle/shutdown intervals within a core can be combined together with the help

of procrastination. DP is effective only when the idle duration is beyond

the shutdown threshold. In MC system, the idle intervals are spread across

multiple cores which makes it impossible to combine with procrastination.

The only possible solution to this problem is to combine procrastination with

migration. OASIS - an Optimal stAtic energy Scheduler with mIgration and

dynamic procraStination is designed for the same. OASIS aims at optimizing

static energy consumption by combining idle intervals spread across cores

to longer idle duration. When the source core (CS) becomes idle, OASIS

scheduler tries to increase the idle duration by pushing the upcoming jobs to

other core(s) where it has sufficient slack for execution. For the job which

cannot be migrated, OASIS scheduler tries to procrastinate upcoming job

execution to further increase the idle duration. If the push and procrastinate

action benefits in producing the idle duration more than the shutdown

threshold, the scheduler shuts down the core. This shutdown duration helps

108 OASIS algorithm

in effective static energy saving. If push migration and procrastination do

not benefit in shutdown duration, the core has to remain idle till the next job

arrival. The core consume energy during this unused idle duration. OASIS

scheduler converts these idle durations into active by pulling and executing

the jobs from other cores. This helps in increasing the utilization of active

core(s). The conversion of idle period into active helps in effective energy

saving. The accumulated idle time in other core(s) can be converted into

shutdown using procrastination. The decision of migrating the jobs to/from

other cores is done using Push - Procrastinate - Pull (P3) policy. P3 policy

is designed to dynamically recommend the choice of pushing or pulling of

jobs based on the available idle duration and the shutdown threshold.

5.2.1.1 OASIS algorithm

Algorithms [5], [6], [7], [8] and [9] shows OASIS, P 3 policy,

FindPushableJobs, Procrastinate and FindPullableJobs

respectively.

The data structures used in the algorithms are:

• Lcores[] - list of cores

• Ci.MQ - Migrated queue of core Ci that holds the migrated jobs

• Ci.Ljobs[] - list of jobs in core Ci in non-decreasing order of release time

• Ci.LMJ[] - list of migratable jobs and the corresponding target core CT

to/from which jobs are migrated

The abbreviations used in the algorithms are:

• Ci.PID - Procrastinated Idle Duration in core Ci

109 OASIS algorithm

• Ci.SIT - Scheduler Invocation Time in core Ci

• SDT - ShutDown Threshold

• CS - Source core

• CT - Target core

In Push migration, the core from which the job is migrated is represented

as source core CS and the core to which the job is pushed is represented as

target core CT . In Pull migration, the core to which the job is migrated is

represented as source core CS and the core from which the job is pulled is

represented as target core CT .

Algorithm OASIS: OASIS algorithm takes task sets and migrated queue

of all cores as input and takes scheduling decision. On arrival of a job J, it

updates the execution time of running job, inserts J in priority queue and

selects the highest priority job from the queue for execution. Similarly on

core wake up and on job completion, OASIS scheduler selects the highest

priority job from the ready queue for execution. On job completion, if the

ready queue is empty, OASIS follows P 3 policy. Based on the state of core,

OASIS keeps the core either in idle state or in shutdown state till the next

scheduler invocation time.

P 3 Policy: P 3 calls Algorithm [7]: FindPushableJobs to get the

list of migratable jobs. It calls Algorithm [8]: Procrastinate to get the

PID. Based on this duration, P 3 decides whether to push these migratable

jobs or to pull the jobs from other cores. If significant length of idle duration

110 OASIS algorithm

Algorithm 5: OASIS

Input: ∀i=1 to m Ci.MQ[], CS.RQ[] TCi

Output: feasible schedule if ∀UCi
≤ 1

1 Event1: On Arrival of job J

2 Update Running Job’s (R) remaining execution time

3 Insert job J in priority ready queue CS.RQ[]

4 Select the highest priority job from CS.RQ[]

5 End Event1

6 Event2: On core CS wake up

7 Select the highest priority job from CS.RQ[]

8 End Event2

9 Event3: On Completion of job J

10 if (CS.RQ[] is nonempty) then

11 Select the highest priority job from CS.RQ[]

12 else if (CS.RQ[] is empty) then

13 CS.state = Call P 3(CS, t)

14 if (CS.state == Shutdown) then

15 Keep core CS in shutdown till CS.SIT

16 else if (CS.state == Idle) then

17 Keep core CS in Idle state till CS.SIT

18 end

19 End Event3

111 OASIS algorithm

is available, the migratable jobs are pushed to corresponding target cores,

the SIT of target cores is updated and the state of the source core CS is set

to shutdown. Otherwise P 3 calls Algorithm [9]: FindPullableJobs to get

the list of migratable jobs from other cores. It pulls the migratable jobs

from corresponding target cores to migrated queue of CS, updates the SIT of

target cores and sets the state of core as idle. P 3 returns the state of source

core and SIT.

Algorithm 6: Push-Procrastinate-Pull (P 3) Policy

Input: ∀i=1 to m Ci.MQ[], TCi

Output: CS.state

1 CS.LMJ[] = FindPushableJobs(CS, t)

2 CS.PID = Procrastinate(CS,CS.LMJ[],t)

3 if (CS.PID ≥ SDT) then

4 CT .MQ[]←CS.LMJ[] and update CT .SIT

5 CS.state = shutdown

6 CS.SIT = t + CS.PID

7 end

8 else

9 < CS.LMJ [], CS.SIT > = FindPullableJobs(CS, CS.SIT)

10 CS.MQ[] ← CS.LMJ[] and update CT .SIT

11 CS.state = idle

12 end

13 return CS.state and CS.SIT

112 OASIS algorithm

Algorithm FindPushableJobs: FindPushableJobs algorithm takes

task sets allocated and migrated queue of all cores. It finds the utilization of

each core and sorts the list of cores in non-increasing order of their utilization.

For each job, it finds the appropriate core having sufficient slack. If the job

cannot be migrated due to insufficient slack, the scheduler stops to find the

pushable job. The slack is computed by considering the portion of execution

times of running job, ready jobs, migrated jobs and future jobs. It returns

the list of migratable jobs with corresponding target cores.

Algorithm 7: FindPushableJobs

Input: CS.Ljobs[], ∀i=1 to m Ci.MQ[], TCi

Output: CS.LMJ []

1 Find utilization of each core

2 Sort cores in non-increasing order of utilization and store in Lcores[]

3 foreach job Ji ∈ CS.Ljobs[] do till migratable

4 foreach core CT ∈ Lcores[] do

5 if (CT .state is shutdown) then

6 r=CT .CWT

7 else

8 r= Ji.r

9 compute CT .slack between r & Ji.d

10 if (CT .slack ≥ Ji.WCET) then

11 CS.LMJ [] ← Ji and break

12 end

13 end

14 return CS.LMJ []

113 OASIS algorithm

Algorithm 8: Procrastinate

Input: CS.Ljobs[], CS.LMJ [] and time t when CS became idle

Output: CS.PID - Procrastinated idle duration of CS

1 ND1 ← absolute deadline of highest priority job after t

2 if (ND1 − t− J.WCET <SDT) then

3 SIT = next job arrival time

4 end

5 else

6 ND2 ← deadline of lowest priority job arriving before ND1

7 L[]← list of jobs releasing between t and ND2 and 6 ε CS.LMJ [],

arranged in non-increasing order of their absolute deadlines

8 foreach job Ji ∈ L[] do

9 if (Ji.d > ND2) then

10 SIT -= ((ND2 - Ji.r)*(Ji.WCET / Ji.P)*Up)

11 else

12 SIT -= Ji.WCET

13 if (Ji != lastjob & SIT > Ji+1.d) then

14 SIT = Ji+1.d

15 end

16 end

17 end

18 CS.PID = SIT - t

19 return CS.PID

114 Motivating Example

Algorithm Procrastinate: Procrastinate algorithm takes list of

migratable jobs and the task sets allocated to each core and computes the

slack for highest priority job. If the slack is not sufficient to shutdown the core,

it sets next job arrival time as the SIT. Otherwise it tries to procrastinate

the execution of upcoming jobs. It computes PID by considering the jobs

arriving between current time t and ND2, where ND2 is the deadline of the

lowest priority job arriving before the nearest deadline ND1. The jobs in the

list of pushable jobs are not considered while computing PID. All the jobs

having deadline before ND2 are considered with their WCET. For the jobs

having deadlines after ND2, only a portion of their executions before ND2

are considered. Procrastinate algorithm returns PID.

Algorithm FindPullableJobs: FindPullableJobs algorithm takes

SIT of source core CS, list of jobs released before SIT in sorted order of their

release times, task sets allocated and migrated queue of all cores. It finds the

utilization of each core and sorts the cores in non-increasing order of their

utilization. It finds the list of jobs from other cores having sufficient slack in

CS. With these migratable jobs, it finds the next job arrival as the SIT for

CS. It returns the list of migratable jobs with corresponding target cores and

SIT of CS.

5.2.1.2 Motivating Example

Consider a task set consisting of six periodic hard real-time tasks with temporal

parameters shown in table 5.1. The tasks T0, T1 T2 and T4 are allocated to

core C1 and tasks T3 and T5 are allocated to core C2 for scheduling. Consider

115 Motivating Example

Algorithm 9: FindPullableJobs

Input: CS.SIT , ∀i=1 to m Ci.Ljobs[], Ci.MQ[], TCi

Output: CS.LMJ [], CS.SIT

1 Find utilization of each core

2 Sort cores in non-decreasing order of utilization and store in Lcores[]

3 foreach core CT ∈ Lcores[] do

4 foreach job Ji ∈ CT .Ljobs[] : Ji.r < CS.SIT do

5 compute CS.slack between Ji.r & Ji.d

6 if (CS.slack ≥ Ji.WCET) then

7 CS.LMJ []←Ji

8 end

9 end

10 CS.SIT = next job release time

11 return CS.LMJ [] and CS.SIT

scheduling of jobs with AET as 70% of estimated WCET. At t=28, core C2

becomes idle. The next job J3,1 arrives at 40. Assuming the idle duration

(40 - 28 = 12) is less than SDT (40), OASIS invokes FindPushableJobs.

FindPushableJobs finds core C1 with sufficient slack for next arriving job

J3,1. The next arriving job J3,2 cannot be migrated due to insufficient slack.

The FindPushableJobs invokes Procrastinate. Procrastinate finds

ND1 and ND2 = 120 and procrastinates job J3,2 till 105. It computes PID

as 105 - 28 = 77 units. It returns job J3,1 as migratable job on core C1 and

PID as 77 units. As PID is more than SDT, OASIS scheduler decides core

C2 to shutdown till 105. At t=115.5, core C2 becomes idle. OASIS invokes

FindPushableJobs to find slack for next arriving job J0,9 in core C1. Core

C1 do not have sufficient slack. The FindPushableJobs returns empty list

116 Motivating Example

13
.5

17
.9

52
.5
2

56
.9

0.
51

T
im

e
→

Voltage(v)

(a
)

co
re

0
in

C
o
n
v
D

P
S

sc
h
e
d
u
le

5.
5

10
.5

17
.5

22
.5

29
.0
5

34
.5

41
.5

46
.5

53
.0
5

58
.5

0.
51

T
im

e
→

Voltage(v)

(b
)

co
re

1
in

C
o
n
v
D

P
S

sc
h
e
d
u
le

F
ig

u
re

5.
1:

C
or

e
S
ta

te
tr

an
si

ti
on

s

117 Motivating Example

7.
2

15
.4

19
27

.5
43

.8
53

.5

0.
51

T
im

e
→

Voltage(v)

(c
)

co
re

0
in

O
A

S
IS

sc
h
e
d
u
le

2.
8

10
.5

18
22

.5
30

.3
42

.5
54

.7
62

.5

0.
51

T
im

e
→

Voltage(v)

(d
)

co
re

1
in

O
A

S
IS

sc
h
e
d
u
le

F
ig

5.
1

C
or

e
S
ta

te
tr

an
si

ti
on

s

118 Analysis of OASIS Algorithm

Table 5.1: Task set 3

Taskno Period WCET

T0 40 6
T1 50 10
T2 60 15
T3 40 15
T4 100 20
T5 120 25

of migratable jobs and PID of 4.5 units. As PID is less than SDT, OASIS

invokes FindPullableJobs. FindPullableJobs computes slack in C2

for next arriving jobs in ready queue, migrated queue and future jobs of C1.

It finds sufficient slack for jobs J0,3, J1,3 and J4,2. No migrated jobs are to

be checked for pulling since there have been already some jobs pushed by

C2. FindPullableJobs returns these three jobs as migratable jobs on core

C2 and its SIT as 120. OASIS computes SIT of C1 as 118.2. The resultant

core state transitions using Conventional Dynamic Procrastination Scheduler

(ConvDPS) [26] and OASIS for one hyper-period are shown in Figures 5.1 (a),

(b), (c) and (d). The state of core is represented as shutdown, idle and active

when voltage is 0v, 0.5v and 1v respectively as shown on y axis. It can be

observed that the shutdown duration in schedule with OASIS has increased

and idle duration has reduced than the schedule with ConvDPS.

5.2.1.3 Analysis of OASIS Algorithm

Schedulability analysis

Theorem 5.2.1 For a periodic task set with implicit deadlines having soft

affinity, OASIS produces a valid and feasible schedule if there exist a feasible

119 Analysis of OASIS Algorithm

schedule by any dynamic priority driven scheduling approach.

Proof: Since each core in OASIS follows static task allocation and dynamic

priority scheduling, a periodic task set with implicit deadlines can be feasibly

scheduled on the core to which it is allocated such that it follows eq.(4.3).

The task set remains schedulable on migration and procrastination if each

core follows eq.(5.1).

UC =
∑
∀JikεTi

Uik +
∑

∀JpkεLMJ []

Upk ≤ 1. (5.1)

The necessary and sufficient condition for migrating any job JS that belongs

to source core CS is to have sufficient slack in the core to which it is allocated.

Thus

CT .slack ≥ J.WCET (5.2)

where

CT .slack = JS.d− JS.r +
∑

∀JT εCjobs[]

JT .WCET (5.3)

JT .WCET =
(min(JS.d, JT .d)−max(JS.r, JT .r, CT .wakeuptime))

JT .p
∗RET

(5.4)

Cjobs[] = (CT .running job if any) + (jobs in CT .MQ,CT .RQ) + (CT .future

jobs releasing before J.d)

and RET = remaining execution time of JT

120 Analysis of OASIS Algorithm

Push and Pull migration in OASIS do not affect schedulability of the task

set if each target core follows eq.(4.3) and (5.2) after push and/or pull

migration. The push, procrastinate and pull decisions in OASIS scheduler

make sure it maintains the schedulability bound after following P 3 policy.

On procrastination, all the tasks in next active period will be executed with

full frequency.

jk.WCET + Zk +X + Y ≤ PI + nextAP (5.5)

where

X =
∑

∀jiεJi:i 6=k&ji.r,ji.d≤D

ji.WCET (5.6)

Y =
∑

∀jlεJl:l 6=k&jl.r≤D,jl.d≥D

D − jl.r (5.7)

D is the absolute deadline of job having release time jj.r < jk.d and deadline

jj.d > jk.d,

Ji is the set of jobs in next active period (nextAP) released before D and

having deadline before D,

Jl is the set of jobs in nextAP released before D and having deadline after D.

Equation 5.5 shows that no job will miss its deadline due to postponement of

job execution and the task set remains schedulable with procrastination. The

pull migration decision is made if PID is not sufficient for shutdown. The

tasks are migrated to the source core only if it follows equation 5.1. Thus the

task set remains schedulable after applying P 3 policy.

Correctness analysis

121 Analysis of OASIS Algorithm

Theorem 5.2.2 The overall shutdown duration produced by the OASIS

scheduler is greater than or equal to the one produced by DPS and EDF

scheduling algorithms.

Proof: Let SDPS and SOASIS be the schedules produced by DPS and OASIS

scheduling algorithms. Let SDDPS and SDOASIS be the total shutdown

duration in SDPS and SOASIS respectively. DPS algorithm procrastinates the

execution of future jobs and merges the intermediate idle intervals within

same core which results into longer shutdown duration. The migration of jobs

from other cores and procrastination of upcoming jobs by OASIS increases the

procrastinated idle duration to get better overall shutdown duration. Thus

SDOASIS ≥ SDDPS (5.8)

Eq.(4.7) and (5.9) =⇒

SDOASIS ≥ SDDPS ≥ SDEDF (5.9)

Theorem 5.2.3 The schedule produced by the OASIS scheduler offers better

energy saving compared to DPS and EDF scheduling algorithms.

Proof: Let IDDPS and IDOASIS be the total idle duration in SDPS and SOASIS

respectively. The objective of OASIS to keep the core in shutdown state

instead of idle or execute the jobs from other cores in idle period is to produce

overall less idle duration compared DPS. As active duration is constant in

both the approaches,

SDDPS + IDDPS = SDOASIS + IDOASIS (5.10)

122 Analysis of OASIS Algorithm

Eq.(5.10) =⇒

total shut down duration ∝ 1

total idle duration
(5.11)

Eqs.(5.8) and (5.11) =⇒

IDOASIS ≤ IDDPS (5.12)

Let SEDPS, SEOASIS be the static energy consumed and DEDPS, DEOASIS be

the dynamic energy consumed while scheduling SDPS and SOASIS respectively.

Eq.(5.8) and (5.12) =⇒
SEOASIS ≤ SEDPS (5.13)

and

DEOASIS ≤ DEDPS (5.14)

Let NSDDPS, NSDOASIS be the number of shutdown intervals and SDEDPS,

SDEOASIS be the shutdown and wakeup energy in SDPS and SOASIS

respectively. The prolonged shutdown duration in OASIS due to migration

gives less number of shut down intervals compared DPS. Thus Eq.(5.8) =⇒

NSDOASIS ≤ NSDDPS (5.15)

Eq.(5.15) =⇒
SDEOASIS ≤ SDEDPS (5.16)

Let ENERGYDPS, ENERGYEDF and ENERGYOASIS be the overall energy

while scheduling SDPS, SEDF and SOASIS respectively. Equations (4.11),

123 Analysis of OASIS Algorithm

(5.13), (4.12), (5.14), (4.14) and (5.16) =⇒

ENERGYOASIS ≤ ENERGYDPS ≤ ENERGYEDF (5.17)

Thus the overall energy consumption with OASIS scheduling algorithm is

less in comparison with DPS and EDF approaches.

Theorem 5.2.4 In high utilization scenarios, OASIS offers better system

utilization over all static allocation methods.

Proof: Due to semi-static partitioning in task allocation, (i) OASIS gives

better system utilization compared to any static partitioning approach in

MC system and (ii) In high utilization situated, OASIS is adaptive to utilize

the idle time whenever not feasible to covert into shutdown by migrating

jobs from other cores. Thus OASIS offers better energy savings without

compromising on utilization compared to other approaches in MC system.

Complexity analysis

OASIS is a task level dynamic priority scheduling algorithm with

events as (i) job(s) arrival (ii) core wakeup and (iii) job completion. The run

time complexity of OASIS is Max{ A1, A2, A3 } where A1, A2 and A3 are the

run time complexities of events i, ii and iii respectively.

Run time complexity of Event (i): A1 is with reference to lines

2 to 4 of OASIS algorithm, A1 is the time required for updation, maintaining

priority ready queue and selection which is N logN + constant time.

124 Analysis of OASIS Algorithm

Run time complexity of Event (ii): A2 is with reference to line

7 of OASIS algorithm, A2 is the time taken for selection of job which is a

constant time operation(C).

Run time complexity of Event (iii): A3 is with reference to lines 10 to

17 of OASIS algorithm, A3 = Max {(complexity of lines 10,11),(complexity of

lines 12 to 17)} = Max{(constant time), (A4 + constant time)} = A4, where

A4 is the run time complexity of P 3 algorithm.

Run time complexity of A4: With reference to P 3 algorithm,

Line 1: run time complexity of FindPushableJobs as A5.

Line 2: run time complexity of Procrastinate algorithm as A6.

Lines 3 to 12: A7 as Max{(lines 3 to 6),(lines 7 to 11)},
A7 = Max{(constanttime), (A8 + constanttime)} = A8 where

A8 is the run time complexity of FindPullableJobs algorithm,

So, A4 = A5 + A6 + A8

Run time complexity of A5: With reference to FindPushableJobs

algorithm,

Line 1: Finding utilization of P cores, each with N tasks - PN

Line 2: Sorting based on utilization - P logP

Lines 5 to 9: The slack for job j is computed by considering the remaining

execution time of running job, WCET of ready jobs and WCET of

125 Analysis of OASIS Algorithm

migrated/future jobs that arrives before the deadline of job j. It is seen

experimentally that the number of jobs considered for slack calculation

varies from 1 to 2N. Thus run time complexity for slack calculation is 2N +

constant C.

Lines 10 and 11: On finding sufficient slack, the job is added to the list of

migratable jobs in constant time.

Lines 4 to 12: The work has restricted to check the slack for 2*N migratable

jobs.

Lines 3 to 13: The slack is checked in P cores.

So, A5 = PN + P logP + P ∗ (2N + C) + C = PN + PN2

Run time complexity of A6: Run time complexity A6: With reference to

Procrastinate algorithm,

A6 = line 1 + Max{(lines 2 to 4),(lines 5 to 17)} + line 18,

Line 1: Finding absolute earliest deadline among L jobs - L

Lines 2 to 4: Checking for sufficient idle duration and finding scheduler

invocation time in constant time C.

Lines 5 to 17: L + Computation of procrastinated idle duration using L jobs

+ L = 2L + L logL

Line 18: constant time for computation of possible idle duration

So, A6 = L+Max{(C), (2L+ L logL)}+ C = 3L+ L logL+ C = L logL

Run time complexity of A8: With reference to FindPullableJobs

algorithm,

Line 1: Finding utilization of P cores, each with N tasks - PN

126 Experimental Evaluation

Line 2: Sorting based on utilization - P logP

Line 5: Slack computation in 2N + C time

Lines 6 and 7: On finding sufficient slack, the job is added to the list of

migratable jobs in constant time

Lines 4 to 8: The work has restricted to check the slack for 2*N migratable

jobs

Lines 3 to 9: The slack is checked in P cores

So, A8 = NP + P logP + 2N ∗ P ∗ (2N + C) + C = 2NP +N2P

So, A3 = A4 = A5 + A6 + A8 = (NP +N2P) + (L logL) + (2NP +N2P) =

N2P + L logL

Thus the run time complexity of OASIS =Max{A1, A2, A3} = Max{N logN,

C, PN2 + L logL} = PN2 + L logL. In asymptotic notation it is

O(PN2 + L logL).

5.2.1.4 Experimental Evaluation

Experimental setup: The experimentation is conducted using the task

model described in Chapter 3. The framework SMART described in Chapter

3 is used to find schedule and measure energy parameters like inactive, static,

dynamic and total energy consumptions by schedules produced using EDF,

EDF with shutdown (EDFSD), Conventional DPS (ConvDPS), DPS, and

OASIS schedulers.

Experimental results: Let SEDF , SEDFSD, SConvDPS and SOASIS be the

schedules using EDF without shutdown, EDFSD, ConvDPS and OASIS

127 Experimental Evaluation

Figure 5.2: Percentage of active, idle and shutdown period for varying
utilizations

schedulers. Figure 5.2 shows percentage of active, idle and shutdown period

in SEDFSD, SConvDPS and SOASIS for utilizations 210%, 255% and 305% for 3,

4 and 4 cores respectively. Migration in OASIS increases the procrastination

duration and converts idle duration into shutdown duration. On an average,

OASIS produces 38.24% and 6.8% shutdown period over EDFSD and

ConvDPS schedules respectively.

128 Experimental Evaluation

Figure 5.3: Static energy consumption per unit time for varying utilization

Figure 5.4: Dynamic energy consumption per unit time for varying utilization

Figure 5.3 and Figure 5.4 shows the total static energy consumption and total

dynamic energy consumption per unit time respectively by SEDF , SEDFSD,

129 Experimental Evaluation

SConvDPS and SOASIS for varying utilizations. Irrespective of utilizations,

SEDF consumes same static energy. SOASIS consumes the least static and

dynamic energy followed by SConvDPS, SEDFSD and SEDF . In OASIS, most

of the inactive idle durations are converted into shutdown or active due

to procrastination and migration. This increases the overall shut down

duration and reduces the overall idle duration. As static and dynamic energy

is directly proportional to shutdown and idle duration, overall static and

dynamic energy in OASIS reduces. On an average, OASIS reduces the

static energy by 116.5%, 44.2% and 8% over EDF, EDFSD and ConvDPS

algorithms respectively. On an average, OASIS reduces the dynamic energy

by 32.22%, 12.22% and 2.18% over EDF, EDFSD and ConvDPS algorithms

respectively.

Figure 5.5: Number of procrastination decision making points for varying
utilizations

Figure 5.5 shows the energy consumption for procrastination decisions in

130 Experimental Evaluation

OASIS and ConvDPS for varying utilizations. In ConvDPS and OASIS, the

procrastination decision is taken when there are no jobs in ready queue. This

decision is based on the idle duration computed by procrastinating the future

jobs and the shutdown threshold. In OASIS, the idle duration computation

also includes procrastination duration due to push migration. Whenever

push migration is not beneficial, the idle duration is computed based on

pulled jobs. OASIS also includes re-computation of scheduler invocation

time of cores to-which/from-where the jobs are migrated. This adds into the

procrastination decision making overhead in OASIS and ConvDPS. Migration

in OASIS merges inactive states and reduces the overall procrastination

decision points. Thus OASIS consumes less energy in procrastination

decision making compared to ConvDPS. On an average, OASIS reduces

procrastination decision energy by 29.11% over ConvDPS algorithm.

Figure 5.6 shows the energy consumption of OASIS, ConvDPS and EDFSD

due to shutdown and wakeup activities. The chance of converting idle period

into shutdown by procrastination and migration approach increases the

chance of shutting down the core. Procrastination with migration approach

of OASIS reduces overall shutdown states over ConvDPS approach. Thus the

shutdown overhead in OASIS is 28.2% more than EDFSD but 1.6% less than

ConvDPS.

Figure 5.7 shows the total energy consumption per unit time by EDF, EDFSD,

ConvDPS and OASIS during inactive duration for varying utilizations which

includes static, dynamic, procrastination decision making, shutdown and

131 Experimental Evaluation

Figure 5.6: Shutdown overhead per unit time for varying utilizations

Figure 5.7: Total inactive duration energy consumption per unit time for
varying utilizations

132 Experimental Evaluation

wakeup energy. OASIS schedule has less idle duration and more shutdown

duration compared to all other schedules. Thus OASIS schedule consumes

the least energy in inactive duration followed by ConvDPS, EDFSD and

EDF schedules. On an average, OASIS schedule consumes 517%, 196.4%

and 40.04% less energy in inactive period than EDF, EDFSD and ConvDPS

schedules respectively.

Figure 5.8: Total energy consumption per unit time for varying utilizations

Figure 5.8 shows the total energy consumption per unit for varying

utilizations. Due to increase in overall shutdown duration, the static and

dynamic energy consumptions are reduced in OASIS compared to EDF

and ConvDPS approaches. On an average, OASIS reduces overall energy

consumption by 53.44%, 20.7% and 3.88% over EDF, EDFSD and ConvDPS

respectively.

133 Experimental Evaluation

Figure 5.9: Percentage of shutdown period over idle period for varying
utilizations

134 Experimental Evaluation

Let SDPS be the schedule produced using proposed DPS scheduler (described

in Chapter 4). Figure 5.9 shows percentage of shutdown period over idle

period in SDPS and SOASIS for varying utilizations. Migration in OASIS

increases the procrastination duration and converts idle duration into

shutdown duration. As most of the idle duration in SOASIS is either converted

into shutdown or active, it has more shutdown duration compared to idle

duration in complete schedule. On an average, OASIS produces 2.22%

shutdown period DPS schedule.

Figure 5.10 and Figure 5.11 show the total static energy consumption and

total dynamic energy consumption per unit time respectively by SDPS and

SOASIS for varying utilizations. On an average, OASIS reduces the static and

dynamic energy by 2.55% and 0.7% respectively over DPS algorithm.

Figure 5.12 shows the energy consumption for procrastination decisions in

SOASIS and SDPS for varying utilizations. On an average, OASIS reduces

procrastination decision energy by 12.33% over DPS algorithm.

Figure 5.13 shows the energy consumption in OASIS and DPS due to shutdown

and wakeup activities. The shutdown overhead in OASIS is 1.11% less than

DPS schedules.

Figure 5.14 shows the total energy consumption per unit time by DPS and

OASIS during inactive duration for varying utilizations. On an average,

OASIS schedule consumes 13.37% less energy in inactive period than DPS

135 Experimental Evaluation

Figure 5.10: Static energy consumption per unit time for varying utilizations

Figure 5.11: Dynamic energy consumption per unit time for varying
utilizations

136 Experimental Evaluation

Figure 5.12: Number of procrastination decision making points for varying
utilizations

Figure 5.13: Shutdown overhead per unit time for varying utilizations

137 Experimental Evaluation

Figure 5.14: Total inactive duration energy consumption per unit time for
varying utilizations

Figure 5.15: Total energy consumption per unit time for varying utilizations

138 HandT scheduler

schedules.

Figure 5.15 shows the total energy consumption per unit for varying

utilizations. On an average, OASIS reduces overall energy consumption by

1.2% over DPS schedule. It can be observed that OASIS algorithm gives

closer values to proposed DPS algorithm but better than Conventional DPS

algorithm.

Conclusion: Along with the primary constraint of timeliness on real time

tasks, OASIS scheduler also minimizes overall energy consumption by reducing

the static and dynamic energy consumption over EDF, EDF with shutdown,

ConvDPS and DPS algorithms. It is applicable to the MC systems supporting

various operating modes and migration.

5.2.2 HandT scheduler

OASIS improves static energy saving using dynamic procrastination technique

and migration. This effectively executes the tasks at maximum voltage and

frequency. Motivated with the same concept that there is no advantage

in completing a job with a hard deadline early, the run time slack can be

utilized by slowing down the job executions at reduced voltage till it is

safe to do. This method of scaling down the supply voltage and operating

frequency (DVFS) effectively reduces dynamic energy consumption. DVFS

can be done in systems that support multiple voltage levels and frequencies.

The scaled voltage/frequency is computed with WCET. In practice small

idle intervals may get formed because of run time slack and non-availability

139 HandT scheduler

of continuous voltage and frequency levels. In MC system, these unused

idle durations can be utilized by applying job migration techniques. This

may effectively produce longer idle duration in some cores for shutdown

and thus reduces overall energy consumption further. The concept of task

migration is particularly used in distributed operating systems and parallel

computing domain for fault tolerance and load balancing. Controlled job

migration can also be used effectively in MC system for optimizing energy

consumption. HandT (Hare AND Tortoise) scheduler is designed for

homogeneous MC-HRTS supporting discrete voltage and frequency levels

and multiple power modes like active, idle and shutdown. This work also

considers semi-partitioned task allocation with soft affinity.

HandT scheduler adopts the mechanisms followed by hare and tortoise of

Aesop’s fables to complete all the jobs without deadline miss. If the system

has prolonged inactive time, HandT scheduler adopt hare policy of finishing

all the existing jobs at the earliest to go for a long nap, i.e. to shut down

for a longer duration to save both static and dynamic energy. When the

system has only short bursts of inactive periods, it follows tortoise policy of

reducing the speed, thus energy consumption. HandT scheduler use DP

and shutdown as techniques to implement hare policy. It uses DVFS as a

technique to implement tortoise policy. HandT uses job migration along

with DP and DVFS techniques for optimizing energy consumption. This is

achieved by migrating the jobs to other cores and shutting the cores down

for maximum possible duration. The unproductive idle time is utilized by

slowing down the core or by migrating and executing the jobs from other

140 HandT scheduler

cores so as to shutdown the other cores if possible. Migration with DP

and DVFS helps in increasing the core utilization and shutdown duration

which results in saving static and dynamic energy consumption. DVFS

incurs energy overhead due to voltage transitions. Though these techniques

work well independently, combining them to get optimized overall energy

consumption without negatively affecting the performance of an application

in MC system is still a challenge. The energy-performance ratio of a MC

system can be improved on selected cores by combining various techniques

like DVFS and DP along with migration. This introduces challenges like

meeting deadlines, dynamic job migration, optimal shutdown duration,

optimal voltage/frequency scaling, optimal static and dynamic energy

consumption, energy consumption due to preemptions and cache impact etc.

At the start of active period, HandT scheduler uses Recommender

algorithm to decide whether to execute jobs in active period at maximum

voltage/frequency or scaled down voltage/frequency. Recommender

algorithm computes the idle duration at the end of active period by considering

the WCET of jobs in active period. If idle duration is sufficient for shutting

down the core, Recommender sets the scaled voltage to maximum. If idle

duration is not sufficient for shutting down the core, it finds the jobs that can

be pushed to other cores and procrastinate the non migratable job such that

the push and procrastinate action can increase the idle duration. If the push

migration and procrastination does not give sufficient time for shutting down

the core, Recommender finds the jobs from the end of active period that can

be pushed to other cores and helps in increasing the idle duration. If there is

141 HandT algorithm

sufficient increase in duration to shutdown the core, Recommender sets the

scaled voltage to maximum. If the idle duration by push and procrastination

is not sufficient to shutdown the core, Recommender finds the appropriate

voltage and frequency for job executions and scales down the voltage/frequency

accordingly. The scheduler executes the jobs in active period at the voltage

set by Recommender. The increased shutdown duration helps in static

energy saving. As most of the jobs completes before the estimated WCET,

the ready to run jobs can be executed at reduced voltage and frequency.

Utilizing the idle period effectively reduces the dynamic energy consumption.

Recommender algorithm dynamically suggests HandT scheduler whether

to execute the jobs in active period at maximum voltage or slow down the

core, without violating the timing constraints. When the core becomes idle,

HandT scheduler decides the state of the core using P3 policy described in

section (5.2.1.1).

5.2.2.1 HandT algorithm

Algorithms [10], [11] and [12] shows HandT, Recommender and

FindPushableJobsReverse algorithms respectively.

The data structures used in the algorithms are:

• Lcores[] - list of cores

• Ci.MQ - Migrated queue of core Ci that holds the migrated jobs

• Ci.Ljobs[] - list of jobs in core Ci in non-decreasing order of release time

• Ci.LMJ[] - list of migratable jobs and the corresponding CT to/from

which jobs are migrated

142 HandT algorithm

The abbreviations used in the algorithms are:

• Ci.AP - Current Active Period in core

• stolenAP - Stolen Active Period

• EAP - End of Active Period

• Ci.NID - Next Idle Duration in core Ci at EAP

• NSAP - Next Start of Active Period

• Ci.PID - Procrastinated Idle Duration in core Ci

• Ci.SIT - Scheduler Invocation Time in core Ci

• SDT - ShutDown Threshold

Algorithm HandT: HandT algorithm takes task set and migrated queue

of all cores as input and generates the valid schedule with voltage scaling or

procrastination. It schedules the jobs on following four events:

Event 1: Beginning of active period: At the beginning of active period,

the scheduler calls Recommender algorithm to find scaled voltage CS.SV.

HandT executes the highest priority ready job at CS.SV.

Event 2: Job arrival: On job arrival, it updates the execution time of

running job, active period (AP), next idle duration (NID) and inserts new job

in priority queue. If AP is completed, the scheduler invokes SELECTOR

algorithm to find the appropriate voltage and frequency for job execution

and executes the highest priority ready job at scaled voltage and frequency.

The SELECTOR algorithm is described in Section 4.3.2. If the AP has not

143 HandT algorithm

Algorithm 10: HandT

Input: ∀i=1 to m Ci.MQ[], TCi
Output: Schedule with voltage scaling or procrastination

1 Event1: At the start of active period
2 CS .SV = Call Recommender(CS)
3 Execute highest priority job J at CS .SV
4 End Event1
5 Event2: On Arrival of job J
6 Update R.WCET, CS .AP and CS .NID with R.AET in SF
7 Insert job J in priority ready queue CS .RQ[]
8 if (CS .AP == 0) then
9 SELECTOR(CS)

10 Execute job J at CS .SV;

11 end
12 else
13 Execute highest priority job at CS .SV
14 End Event2
15 Event3: On core wake up
16 Execute the highest priority job from CS .RQ[] at maximum voltage and

frequency
17 End Event3
18 Event4: On Completion of job J
19 if (CS.RQ is empty) then
20 CS .state = Call P 3(CS , t)
21 if (CS.state == Shutdown) then
22 Keep core CS in shutdown till CS .SIT
23 else if (CS.state == Idle) then
24 Keep core CS in Idle state till CS .SIT

25 end
26 else
27 Update R.WCET, CS .AP & CS .NID with R.AET in SF
28 if ((CS.AP == 0) && (CS.NID == 0)) then
29 SELECTOR (CS)

30 CS .AP = CS .AP * CS .SV
31 CS .SV = nearest higher voltage of (CS .AP - J.AET in SF)/(CS .AP -

J.AET in SF + CS .NID)
32 CS .AP = CS .AP/CS .SV
33 Execute highest priority job at CS .SV

34 end
35 End Event4

144 HandT algorithm

completed, the scheduler executes the highest priority job at previously set

voltage and frequency.

Event 3: Core wake up: On core wake up, HandT scheduler executes

the highest priority ready job at maximum voltage and frequency.

Event 4: Job completion: On job completion, if the ready queue is

empty, HandT follows P 3 policy. P 3 policy is described in Section (5.2.1.1).

P 3 returns the state of the source core and SIT to HandT. Based on the

state of core, HandT keeps the core either in idle or shutdown state till

CS.SIT. If the ready queue is non empty on job completion, the HandT

scheduler updates the AP and NID. If both are zero, the scheduler invokes

SELECTOR algorithm to find the appropriate voltage and frequency for job

execution and executes the highest priority job at scaled voltage and frequency.

Algorithm Recommender: The Recommender algorithm computes AP

and NID. If NID is more than SDT, it sets CS.SV to maximum. Otherwise it

calls the Algorithm [7]: FindPushableJobs. The FindPushableJobs

returns the list of migratable jobs with corresponding target cores.

Recommender calls the Algorithm [8]: Procrastinate to compute

Procrastinated Idle Duration (PID). Recommender algorithm computes

Next Start of Active Period (NSAP). Based on PID, Recommender decides

whether to push these migratable jobs or needs to find some more jobs to

be pushed. If significant length of idle duration is available, the migratable

145 HandT algorithm

Algorithm 11: RECOMMENDER

Input: ∀i=1 to m Ci.MQ[], TCi

Output: CS.SV
1 Compute CS.AP and CS.NID
2 if (CS.NID ≥ SDT) then
3 CS.SV = MAX VOLTAGE
4 end
5 else
6 Compute end of active period EAP = t + CS.AP
7 CS.LMJ[] = FindPushableJobs(CS, t)
8 CS.PID = Procrastinate(CS,CS.LMJ[],t)
9 Compute next start of active period NSAP = EAP + CS.PID

10 if (CS.P ID ≥ SDT) then
11 CT .MQ[]←CS.LMJ[] and update CT .SIT
12 CS.NID=CS.PID

13 end
14 else
15 ReqdExtraID=SDT-Ci.PID
16 stolenAP=FindPushableJobsReverse(CS, ReqdExtraID)

17 if (stolenAP ≥ ReqdExtraID) then
18 CT .MQ[]←CS.LMJ[]
19 CT .MQ[]←CS.LMJReverse[]
20 Recompute CS.AP
21 Compute CS.NID=NSAP-(t+CS.AP)

22 end

23 end
24 if (CS.NID ≥ SDT) then
25 CS.SV = MAX VOLTAGE
26 end
27 else
28 CS.SV = nearest higher voltage of (CS.AP)/(CS.AP + CS.NID)
29 end

30 end
31 return CS.SV

146 HandT algorithm

jobs are pushed to corresponding target cores. The scheduler invocation

time of target cores is updated and sets NID as computed PID. Otherwise

Recommender calls the Algorithm [12]: FindPushableJobsReverse

to compute the extra idle duration (ReqdExtraID) required for shutting

down the core. It returns the CS.LMJReverse[] and stolen active period

(stolenAP). If stolenAP is more than the ReqdExtraID, the jobs from

CS.LMJ [] and CS.LMJReverse[] are migrated to the corresponding

target cores and the CS.AP and CS.NID is updated. If CS.NID is

more than SDT, Recommender sets CS.SV to maximum. Otherwise

it sets CS.SV to available appropriate voltage. It returns scaled voltage CS.SV.

Algorithm FindPushableJobs: The FindPushableJobs algorithm

finds the utilization of each core and sorts the list of cores in non-increasing

order of their utilization. For each job, it finds the appropriate core having

sufficient slack. If the job cannot be migrated due to insufficient slack,

the scheduler stops to find the pushable job. The slack is computed by

considering the portion of execution times of running job, ready jobs,

migrated jobs and future jobs. It returns the list of migratable jobs with

corresponding target cores.

Algorithm Procrastinate: The Procrastinate algorithm takes

the list of migratable jobs and task sets allocated to each core. It computes

the slack for highest priority job. If the slack is not sufficient to shutdown

the core, it sets the scheduler to invoke on next job arrival. Otherwise it tries

to procrastinate the execution of upcoming jobs. Procrastinate algorithm

147 Motivating Example

computes the Procrastinated Idle Duration (PID) by considering the jobs

arriving between current time t and ND2. ND2 is the deadline of the lowest

priority job arriving before the nearest deadline ND1. The jobs in the list

of pushable jobs are not considered while computing the procrastination

duration. All the jobs having deadline before ND2 are considered with their

WCET. For the jobs whose deadlines are after ND2, only a portion of their

executions before ND2 are considered. Procrastinate algorithm returns

PID.

Algorithm FindPushableJobsReverse:

The FindPushableJobsReverse algorithm takes list of migratable jobs

and the task sets allocated to each core. It finds the list of migratable jobs in

active period from the end of active period (Ci.LMJReverse[]). With this

list, it computes the stolenAP as summation of WCET of migratable jobs. It

returns the Ci.LMJReverse[] and stolenAP.

5.2.2.2 Motivating Example

Consider a task set T consisting of six periodic hard real-time tasks with

temporal parameters shown in table 5.2. The tasks T0, T1 T2 and T4 are

allocated to core C1 and tasks T3 and T5 are allocated to core C2 for scheduling.

Consider scheduling of jobs with AET as 70% of estimated WCET. At t=0,

the scheduler calls Recommender. Recommender computes AP as 88 and

NID as 12 units. Assuming NID < SDT (40), it calls FindPushableJobs

and Procrastinate which could not find sufficient idle duration for shutting

down the core. It computes extra idle duration required for shutting down

148 Motivating Example

Algorithm 12: FINDPUSHABLEJOBSREVERSE

Input: ∀i=1 to m Ci.MQ[], TCi, ReqdExtraID

Output: CS.LMJReverse[]

1 stolenAP=0

2 foreach job Ji ∈ CS.AP in reverse order of release time do till

migratable

3 foreach core CT ∈ Lcores[] in decreasing order of utilization do

4 compute CT .slack between Ji.r & Ji.d

5 if (CT .slack ≥ Ji.WCET) then

6 CS.LMJReverse[]←Ji

7 stolenAP+=Ji.WCET and break

8 end

9 end

10 end

11 return Ci.LMJReverse[], stolenAP

149 Motivating Example

57
99

16
4

21
5

27
2

31
4

37
5

42
5

0.
4

0.
6

0.
81

T
im

e
→

Voltage(v)

(a
)

co
re

0
w

it
h

D
P

S
sc

h
e
d
u
le

50
10

5
17

0
22

5
29

0
34

5
41

8
46

5

0.
4

0.
6

0.
81

T
im

e
→

Voltage(v)

(b
)

co
re

1
w

it
h

D
P

S
sc

h
e
d
u
le

F
ig

u
re

5.
16

:
C

or
e

S
ta

te
T

ra
n
si

ti
on

s

150 Motivating Example

72
.2

11
4

15
0

21
5

25
7.
5

30
5

34
0.
7

38
8

45
0.
5

50
5

0.
4

0.
6

0.
81

T
im

e
→

Voltage(v)

(c
)

co
re

0
w

it
h

O
A

S
IS

sc
h
e
d
u
le

28
10

5
17

4.
7

22
4

28
5

34
0

41
0.
5

45
9

50
0

0.
4

0.
6

0.
81

T
im

e
→

Voltage(v)

(d
)

co
re

1
w

it
h

O
A

S
IS

sc
h
e
d
u
le

F
ig

u
re

5.
16

:
C

or
e

S
ta

te
T

ra
n
si

ti
on

s

151 Motivating Example

35
.7

13
4

17
6.
7

23
6

27
8.
7

34
5

45
8

0.
4

0.
6

0.
81

T
im

e
→

Voltage(v)

(e
)

co
re

0
w

it
h

H
A

N
D

T
sc

h
e
d
u
le

21
4

26
5

34
1

38
1.
5

42
3

46
5

0.
4

0.
6

0.
81

T
im

e
→

Voltage(v)

(f
)

co
re

1
w

it
h

H
A

N
D

T
sc

h
e
d
u
le

F
ig

u
re

5.
16

:
C

or
e

S
ta

te
T

ra
n
si

ti
on

s

152 Motivating Example

Table 5.2: Task set 4

Taskno Period WCET

T0 40 6
T1 50 10
T2 60 15
T3 40 15
T4 100 20
T5 120 25

as ReqdExtraID = 28. It calls FindPushableJobsReverse and passes

ReqdExtraID. FindPushableJobsReverse finds the list of pushable jobs

as J0,1, J0,2, J1,1, J2,2 and returns it with corresponding target cores and

stolenAP to Recommender. Since stolenAP is more than the ReqdExtraID,

Recommender pushes the jobs to corresponding target cores, computes

AP, NID period and sets the scaled voltage to maximum. It return the

scaled voltage value to the scheduler HandT. HandT executes the highest

priority job at set voltage. The resultant core state transitions using Dynamic

Procrastination Scheduler (DPS) (described in Chapter 4), OASIS (described

in Section 5.2.1) and HandT for one hyper-period are shown in Figure 5.16

a, b, c, d and e, f respectively. The voltage levels for shutdown and idle states

of core is represented by 0v and 0.4v respectively on y axis. The voltage

levels for active state of core ranging between 0.4v to 1v is shown on y axis.

It can be observed that the shutdown duration in schedule with HandT has

increased and idle duration has reduced followed by the schedules with DPS

and OASIS.

153 Analysis of HandT Algorithm

5.2.2.3 Analysis of HandT Algorithm

Schedulability analysis

Theorem 5.2.5 For a periodic task set with implicit deadlines having soft

affinity, HandT produces a valid and feasible schedule if there exist one by

any dynamic priority driven scheduling approach.

Proof: Since each core in HandT follows semi-static task allocation and

dynamic priority scheduling, a periodic task set with implicit deadlines can

be feasibly scheduled on the core to which it is allocated such that it follows

equation (4.3). The necessary and sufficient condition for migrating a job

J is to have sufficient slack in the core to which it is allocated. The slack

is computed by equation 5.2. The slowdown and shutdown decisions in

HandT make sure it maintains the schedulability bound after following

Recommender algorithm and P 3 policy if each core follows equation (4.16)

after voltage scaling and equation (5.1) after migration and procrastination.

With reference to figure 4.6, Recommender sets the value for supply voltage

and operating frequency at the beginning of AP (currentAPbegin). It is decided

to slowdown till the beginning of next active period (nextAPbegin) only if the

PI formed by pushing and procrastinating is less than the shutdown threshold.

The scheduler also decides to slow down on completion of job if it finishes

earlier than its WCET. Thus it does not affect the schedulability. Equation

(4.17) shows that the mechanism of extending lower priority job execution

time by taking care of higher priority job deadlines will not affect higher

priority jobs in currentAP. Thus the tasks in source core remains schedulable

after voltage and frequency scaling. The tasks are migrated to the target

154 Analysis of HandT Algorithm

cores only if it follows equation 5.1. Thus the task set remains schedulable

after following Recommender algorithm. Theorem 5.2.1 shows that the

task set remains schedulable after applying P 3 policy.

Correctness analysis

Theorem 5.2.6 The overall shutdown duration produced by the HandT

scheduler is greater than or equal to the one produced by DPS and EDF

scheduling algorithms.

Proof: Let SDPS, SEDF , SOASIS and SHandT be the schedules produced by

DPS, EDF, OASIS and HandT scheduling algorithms. Let SDDPS, SDEDF ,

SDOASIS and SDHandT be the total shutdown duration in SDPS, SEDF , SOASIS

and SHandT respectively. DPS algorithm procrastinates the execution of future

jobs and merges the intermediate idle intervals within same core which results

into longer shutdown duration. The migration of jobs from other cores and

procrastination of upcoming jobs by HandT increases the procrastinated

idle duration to get better overall shutdown duration. Thus

SDHandT ≥ SDDPS (5.18)

The pull migration in OASIS may give chance to shutdown other cores. The

slowing down of core in HandT reduces the idle duration and thus reduces

the chance to perform pull migration. This reduces the number of shutdown

states which inherently reduces the shut down overhead (SDO).

SDOASIS ≥ SDHandT (5.19)

155 Analysis of HandT Algorithm

and

SDOHandT ≤ SDOOASIS (5.20)

Eq.(4.7), (5.18) and (5.19) =⇒

SDOASIS ≥ SDHandT ≥ SDDPS ≥ SDEDF (5.21)

Theorem 5.2.7 The overall idle duration produced by HandT scheduler

is less than or equal to the one produced by DPS and OASIS scheduling

algorithms.

Proof: Let IDDPS, IDOASIS and IDHandT be the total idle duration and

ADDPS, ADOASIS and ADHandT be the total active duration in SDPS, SOASIS

and SHandT respectively. When the idle duration is less than shutdown

threshold, DPS algorithm keeps the core idle. Whereas OASIS migrates the

jobs from other cores without changing the overall active period. This may

increase the overall shutdown duration in OASIS schedules. Thus

ADOASIS = ADDPS (5.22)

Equations 5.21 and 5.22 =⇒

IDOASIS ≤ IDDPS (5.23)

HandT also migrates the jobs from other cores when idle duration is less

than shutdown threshold and no job is ready in that core’s ready queue. If

156 Analysis of HandT Algorithm

there are ready jobs and next idle interval is less than the shutdown threshold,

HandT executes the jobs at reduced voltage and frequency. Thus converts

the unused idle interval into active duration. Thus

ADHandT ≥ ADOASIS (5.24)

and

IDHandT ≤ IDOASIS (5.25)

Equations (5.23) and (5.25) =⇒

IDHandT ≤ IDOASIS ≤ IDDPS (5.26)

Equations (5.22) and (5.24) =⇒

ADHandT ≥ ADOASIS = ADDPS (5.27)

Theorem 5.2.8 The schedule produced by the HandT scheduler offers better

energy saving compared to any dynamic priority scheduling algorithm.

Proof: Let SEDPS, SEOASIS and SEHandT be the total static energy in SDPS,

SOASIS and SHandT respectively. Eq.(5.21) =⇒

SEOASIS ≤ SEHandT ≤ SEDPS (5.28)

Let DEDPS, DEOASIS and DEHandT be the total dynamic energy in SDPS,

SOASIS and SHandT respectively. Though Eq.(5.27) implies that the active

157 Analysis of HandT Algorithm

period of HandT schedule is more than OASIS and DPS, the jobs are

executed at reduced voltage and frequency. Thus

DEHandT ≤ DEOASIS ≤ DEDPS (5.29)

Let ENERGYDPS, ENERGYOASIS and ENERGYHandT be the overall energy

while scheduling SDPS, SOASIS and SHandT respectively. As dynamic energy

consumption is multi-fold higher than static energy consumption, the overall

energy of HandT is much lesser than other algorithms, i.e.

ENERGYHandT ≤ ENERGYOASIS ≤ ENERGYDPS (5.30)

Complexity analysis

HandT is a task level dynamic priority scheduling algorithm with

events as (i) beginning of active period (ii) job(s) arrival (iii) core wakeup

and (iv) job completion. The run time complexity of HandT is Max{
A1, A2, A3, A4 } where A1, A2, A3 and A4 are the run time complexities of

events i, ii, iii and iv respectively.

Run time complexity of Event (i): A1 = A5 + constant time for selection

of job from ready queue for execution where A5 is run time complexity of

Recommender algorithm.

Run time complexity of Event (ii): A2 = time required for updations,

158 Analysis of HandT Algorithm

maintaining priority queue + A6 + constant time for selection of highest

priority job, where A6 is run time complexity of SELECTOR algorithm.

A2 = N logN + A6 + C

from section (4.3.2.4), A6 = N logN + L logL

So A2 = N logN + N logN + L logL + C = 2N logN + L logL+ C

Run time complexity of Event (iii): A3 = selection of job from ready

queue and execution is a constant time operation = C.

Run time complexity of Event (iv): A4 = Max { (time for P 3), (A2)}
From section (5.2.1.3), run time complexity of P 3 policy is PN2 + L logL

So A4 = Max {(PN2 + L logL),(2N logN + L logL)}
A4 = PN2 + L logL

Run time complexity A5: With reference to Recommender algorithm,

A5 = time required for computing AP and NID + Max{(lines 2 to 4), (lines

5 to 30)}
Lines 2 to 4: setting scaled voltage for source core is constant time operation.

Lines 5 to 30: constant time for computing EAP + A7 + A8 + constant time

for computing NSAP + Max{(lines 10 to 13),(lines 14 to 23)} + Max{(24 to

26) ,(lines 27 to 39)}
= C + A7 + A8 + C + Max{C, (A9 + C)} + Max{C, C} = A7 + A8 + A9,

where A7, A8 and A9 are the run time complexities of FindPushableJobs,

Procrastinate and FindPushableJobsReverse algorithms.

So A5 = N logN + Max{(C),(A7 + A8 + A9)} = N logN + A7 + A8 + A9

159 Analysis of HandT Algorithm

So A1 = N logN + A7 + A8 + A9

From section (5.2.1.3), A7 = NP + PN2 and A8 = L logL

So A1 = N logN + NP + PN2 + L logL + A9

Run time complexity A9:

With reference to FindPushableJobsReverse algorithm,

Line 2: sorting jobs based on release time - N logN .

Line 3: Finding utilization of P cores, each with N tasks and sorting based

on utilization - PN + P logP .

Line 4: The slack for job j is computed by considering the remaining execution

time of running job, WCET of ready jobs and WCET of migrated/future

jobs that arrives before the deadline of job j. It is seen experimentally that

the number of jobs considered for slack calculation varies from 1 to 2N. Thus

run time complexity for slack calculation is 2N + constant C.

Lines 5 to 8: On finding sufficient slack the job is added to the list of

migratable jobs and stolenAP is computed in constant time.

Lines 2 to 10: The work has restricted to check the slack for 2*N migratable

jobs.

Lines 3 to 9: The slack is checked in P cores.

So, A9 = N logN + PN + P logP + P * (2N + C) + C = N logN + PN

+ PN2

So A1 = N logN + PN + PN2 + L logL + N logN + PN + PN2 = 2(PN

+PN2 + N logN) + L logL

Thus the run time complexity of HandT = Max{A1, A2, A3, A4} =

160 Experimental Evaluation

Max{(2(PN +PN2 +N logN) +L logL), (2N logN +L logL), (C), (PN2 +

L logL)}
= 2(PN +PN2 + N logN) + L logL

In asymptotic notation it is O(PN + PN2 +N logN + L logL) = PN2.

5.2.2.4 Experimental Evaluation

Experimental setup: The experimentation is conducted using the task

model described in Chapter 3. The framework SMART described in Chapter

3 is used to find the schedule and measure the performance of HandT

algorithm in comparison with seminal algorithms. The task sets are scheduled

using ccEDF, DPS, DPVFS, OASIS and HandT algorithms. The framework

evaluates these scheduling algorithms based on shutdown duration, static,

dynamic, inactive duration and total energy consumptions.

Experimental results: Figures [5.17], [5.18], [5.19] and [5.20] show the

effect of DP and migration techniques over DVFS technique by comparing

HandT with ccEDF. It also shows the effect of DVFS and migration

techniques over DP technique by comparing HandT with DPS. It shows the

effect of migration technique over the combined effect of DP and DVFS by

comparing HandT with DPVFS.

Figure 5.17 shows the shutdown duration for different utilizations. Migration

in HandT increases the shutdown duration than DPVFS but scaled active

duration in HandT sometimes reduces the chances of shutting down the

core. On an average, HandT scheduler reduces shutdown duration by 2.76%

161 Experimental Evaluation

over DPS and increase by 0.84% over DPVFS schedules.

Figure 5.18 shows the static energy consumption for different utilizations.

Irrespective of the utilization, ccEDF consumes constant static energy since it

do not shutdown the core. On an average, HandT algorithm reduces static

energy by 50% over ccEDF. Since static energy is inversely proportional to

the shutdown duration, on an average, HandT increases the static energy by

3% over DPS and reduces by 0.83% over DPVFS algorithm.

Figure 5.17: Shutdown duration for different utilizations

Figure 5.19 shows the dynamic energy consumption for different utilizations.

On an average, HandT increases the dynamic energy consumption by 5.5%

over ccEDF and reduces by 6% and 1.46% over DPS and DPVFS algorithms

respectively.

162 Experimental Evaluation

Figure 5.18: Static energy consumption per unit for different utilizations

Figure 5.19: Dynamic energy consumption per unit for different utilizations

163 Experimental Evaluation

Figure 5.20: Total energy consumption per unit for different utilizations

Figure 5.20 shows the total energy consumption for different utilizations. On

an average, HandT reduces the total energy consumption by 23%, 2.4% and

1% over ccEDF, DPS and DPVFS algorithms respectively.

Figures 5.21, 5.22, 5.23, 5.24 and 5.25 shows the combined effect of DP,

DVFS and migration techniques over DP with migration by comparing

HandT with OASIS algorithm.

Figure 5.21 shows the shutdown duration for different utilizations. The scaled

active duration in HandT sometimes reduces the chances of shutting down

the core. On an average, HandT scheduler reduces shutdown duration by

4.8% over OASIS schedule.

Figure 5.22 shows the static energy consumption for different utilizations.

Since static energy is inversely proportional to the shutdown duration, on

164 Experimental Evaluation

an average, HandT increases the static energy consumption by 5.33% over

OASIS algorithm.

Figure 5.21: Shutdown duration for different utilizations

Figure 5.23 shows the active duration for different utilizations. In

HandT, to utilize the inactive idle duration, the jobs are executed at

reduced voltage and frequency. On an average, the active duration in

HandT schedule increases and thus the voltage/frequency scales down by

6.73% over the schedules produced by DPS and OASIS algorithms respectively.

Figure 5.24 shows the dynamic energy consumption for different utilizations.

Since dynamic energy depends on voltage and frequency during active and

idle duration, on an average, HandT scheduler reduces the dynamic energy

consumption by 5.3% over OASIS algorithm.

165 Experimental Evaluation

Figure 5.22: Static energy consumption per unit for different utilizations

Figure 5.23: Active duration for different utilizations

166 Experimental Evaluation

Figure 5.24: Dynamic energy consumption per unit for different utilizations

Figure 5.25: Total energy consumption per unit for different utilizations

167 5.3. Summary

Figure 5.25 shows the total energy consumption for different utilizations. On

an average, HandT reduces the total energy consumption by 1.3% over

OASIS algorithm.

Conclusion: Along with the primary constraint of timeliness on real time

tasks, HandT scheduler also minimizes overall energy consumption while

scheduling by reducing the static and dynamic energy consumption over DPS,

ccEDF, DPVFS and OASIS algorithms. It is applicable to the MC system

supporting various operating modes and having discrete levels of voltages and

frequencies.

5.3 Summary

In this chapter OASIS - an Optimal stAtic energy Scheduler with mIgration

and dynamic procraStination scheduler, HandT - Hare AND Tortoise

scheduler are described, analyzed and evaluated in detail. These algorithms

are designed for making homogeneous MC-HRTS energy efficient that follows

semi-partitioning allocation of tasks having soft affinity. OASIS scheduler

uses P 3 policy to dynamically decide push or pull migration. By adopting

Migration with Dynamic Procrastination technique, it increases the chances

of shutting down the core. Migration also helped HandT to utilize the

unused idle duration of the core by executing the jobs from other cores

and making chances of shutdown in other core. Thus reduces static and

dynamic energy consumption in the schedule. HandT uses Migration

along with DP and DVFS techniques for optimizing energy consumption.

168 5.3. Summary

HandT scheduler optimizes the static and dynamic energy consumption

using Recommender algorithm and P 3 policy which recommends the choice

between appropriate voltage/frequency scaling and procrastination. If the

system has prolonged inactive time, HandT scheduler adopt hare policy

of finishing all the existing jobs at the earliest to shut down for a longer

duration. To increase the shutdown duration it migrates some of the jobs

to active cores. Thus reduces both static and dynamic energy consumption.

When the system has only short bursts of inactive periods, it follows tortoise

policy of reducing the speed. The unproductive idle time is utilized by

slowing down the core or by migrating and executing the jobs from other

cores so as to shutdown the other cores if possible. This results in saving

static and dynamic energy consumption. HandT is applicable to the MC

system that supports discrete voltage and frequency levels and multiple

modes of core like active, idle and shutdown. Since both the schedulers

are dynamic, optimal shutdown duration / optimal voltage scaling can

be obtained. The detailed analysis of these algorithms is done based on

schedulability, correctness and complexity. OASIS and HandT can produce

a valid and feasible schedule on procrastination and voltage/frequency

scaling. The run time complexity of OASIS algorithm is O(PN2 + L logL)

and that of HandT is O(PN2). The schedules produced using OASIS and

HandT reduces energy consumption in comparison with various scheduling

algorithms - EDF, EDFSD, Conventional DPS, proposed DPS, ccEDF and

DPVFS. It is observed that OASIS algorithm produces schedule with least

energy consumption compared to other algorithms designed for system that

supports migration and has no DVFS support. HandT algorithm produces

169 5.3. Summary

schedule with least energy than other algorithms designed for systems that

support migration and has multiple voltage and frequency levels.

Chapter 6

Conclusion and Future

Directions

This chapter consolidates remarks on conducted research work, its limitations

and future directions in energy efficient scheduling techniques. It also

summarizes the results obtained and observations made after performing

the experimentation with seminal and proposed scheduling algorithms.

6.1 Summary of results

Motivated by the fact that performance requirement demands increase in

number of cores at the cost of high energy consumption which causes fatal

effects in real time systems. This thesis addresses energy minimization

in MC system for hard real time tasks. This work also addressed energy

consumption during process execution and scheduling at operating system

level. In order to understand various techniques used for energy minimization

while maintaining the timeliness constraint in real time systems, a survey was

carried out. The major components of energy consumption identified from

the literature are static energy due to leakage current and dynamic energy

due to switching current. The technology advancement has made static

170

171 6.1. Summary of results

energy equally an important component contributing to the overall energy

consumption as dynamic energy. During idle state of core, it consumes

static and dynamic energy without performing any significant activity. Any

schedule can be energy efficient if the core remains idle for minimum time and

shutdown for maximum time. The increase in shutdown duration effectively

reduces static and dynamic energy consumption. Widely used method in

literature for static energy savings is dynamic procrastination. This thesis

has addressed maximization of shutdown duration at task allocation as well

as task scheduling stages of MC system. A modified version of First Fit Bin

Packing is developed as an energy efficient task allocation method named

MFFBP. For testing the results, EDF algorithm is used for scheduling with

FFBP and MFFBP allocation, allowing to shutdown the core whenever

possible. Experimental results show that MFFEDF SD reduces the static

and dynamic energy by 13.43% and 8.42% respectively over FFEDF SD

algorithm. At scheduling stage, DPS algorithm is designed to increase

the shutdown duration for static energy saving. For producing the test

schedule and analysis purpose, a simulator named SMART is developed.

To observe the effect of DPS algorithm over static procrastination method,

MFFSTATICPRO and MFFDPS algorithms are simulated and compared

using SMART. Experimental result shows that MFFDPS reduces the static

energy consumption by 18.3% and overall energy consumption by 10.7% over

MFFSTATICPRO algorithm. To see the combined effect of MFFBP task

allocation and DPS algorithm, MFFDPS is compared with conventional

DPS method and DPS with FF allocation. Experimental result shows that

MFFDPS reduces the static energy by 10.7%, 5.33%, dynamic energy by 4%,

172 6.1. Summary of results

1.8% and total energy by 6.2%, 3.1% over ConvDPS and FFDPS algorithms

respectively. DPS method is designed for tasks having hard affinity towards

the core of the MC system having multiple modes of core operating with

single frequency.

This thesis addressed static and dynamic energy minimization using a

combination of DP and DVFS techniques. DPVFS algorithm is designed to

dominate procrastination over voltage/frequency scaling. It tries to reduce

the idle time by first converting into shutdown. The idle time is further

reduced by applying DVFS. To observe the combined effect of procrastination

and voltage/frequency scaling, DPVFS algorithm is compared with pure

DVFS method- ccEDF and pure procrastination method - DPS. Experimental

results show that DPVFS reduces the static energy by 84.54% over ccEDF

and increases marginally by 1.45% over DPS. DPVFS increases dynamic

energy marginally by 0.38% over ccEDF and saves 32.7% over DPS. DPVFS

reduces total energy by 33.2% and 18.8% over ccEDF and DPS respectively.

DPVFS is specifically designed for MC system which support multiple voltage

and frequency levels and have tasks with hard affinity towards the cores.

The shutdown duration can also be increased by merging the idle intervals

spread across the cores. This is possible if the migration of jobs is allowed.

A solution is provided by this thesis is OASIS algorithm. In OASIS, we

applied migration along with procrastination to increase the shutdown

duration and to minimize the idle duration. To see the effect of migration

over procrastination OASIS is compared with conventional procrastination

173 6.2. Future scope

and DPS methods. Experimental results show that OASIS reduces static and

overall energy by 8%, 0.7% and by 3.88%, 1.2% over ConvDPS and DPS

methods respectively.

The leftover idle intervals by OASIS can be reduced by applying DVFS

to reduce dynamic energy consumption. This thesis addresses static and

dynamic energy savings using migration along with DP and DVFS techniques.

HandT algorithm is designed to first apply migration with DP. Whenever

this do not produce effective shutdown duration, it applies DVFS or migration.

To see the effect of combined effect of DP, DVFS and migration techniques,

HandT is compared with DPS, DPVFS and OASIS. Experimental results

shows that HandT reduces static energy by 0.83%, 5.33% over DPVFS

and OASIS algorithms respectively. HandT reduces dynamic energy by

6%, 1.46% and 5.3% over DPS, DPVFS and OASIS algorithm respectively.

HandT reduces overall energy by 2.4%, 1% and 1.3% over DPS, DPVFS

and OASIS algorithms respectively.

To schedule the real time tasks with minimum energy consumption in MC

system supporting different technologies, a ready reckoner is provided in table

6.1 to choose the appropriate scheduling algorithm.

6.2 Future scope

This thesis considered independent, processor bound, periodic hard real time

tasks with implicit deadlines. We plan to extend this work by considering

174 6.2. Future scope

Table 6.1: Ready reckoner for choice of algorithm

Techniques Supported Affinity

DVFS Shutdown Hard Soft

× ×
RM, Util < 80%

EDF, Util > 80%

X × ccEDF

× X DPS OASIS

X X DPVFS HandT

mixed task set with sporadic and aperiodic tasks along with periodic. To

execute sporadic job along with the existing periodic jobs, the sporadic job

has to pass through the acceptance test so as to avoid deferred execution of

existing periodic job and already accepted sporadic jobs. Sporadic tasks can

be treated same as periodic tasks if the inter arrival time between consecutive

jobs are periodic. In practice, occurrence of sporadic jobs are much lesser

than its periodic arrivals. This challenges investigating the number of cores

required, number of cores in active and shutdown state etc. The acceptance

test can be eased by profiling the sporadic jobs based on past history. The

aperiodic job can be executed along with periodic and sporadic jobs by using

slack stealing methods to improve the response time of it.

We are also in the process of exploring job level dependency and sharing

among jobs of various tasks. The dependency and sharing among jobs will be

explored with respect to resource bound tasks where we intend to consider

memory, memory mapped I/O and serial I/O resources. The future scope

also includes considering preemptive and non-preemptive resources by adding

175 6.2. Future scope

block time due to resource dependency. Our proposed methods aimed at

energy savings for tightly coupled homogeneous MC systems. We intend to

extend this work for tightly coupled heterogeneous MC systems. The concepts

of energy saving through DVFS, DP and migration can be further extended

for distributed MP [homogeneous and heterogeneous] environment. The

challenges are availability and fault tolerance in real time system to manage

loosely coupled processing elements with data and resource dependency. In

Internet of Things (IOT), we intend to extend these schedulers for mixed

criticality real time systems where criticality and resource sharing are equally

important as priority of the task.

Publications

C1: DPS: A Dynamic Procrastination Scheduler for Multi-core/

Multi-processor Hard Real Time Systems, Shubhangi K. Gawali, Biju K.

Raveendran, In IEEE International Conference on Control, Decision and

Information Technologies (CoDIT), pages 286 - 291, 2016.

J1: DPVFS: A Dynamic Procrastination cum DVFS Scheduler for Multicore

Hard Real Time Systems, Shubhangi K. Gawali, Biju K. Raveendran,

International Journal of Embedded system (IJES), Inderscience publication,

2017.

176

A brief biography of the

candidate

Shubhangi is a Ph.D. candidate with particular interests in Operating

systems and Real time systems. She is a lecturer in CS/IS department of

BITS Pilani, K. K. Birla Goa Campus. Prior to enrolling at BITS Pilani

University, she worked for eight years as a lecturer in engineering institutes.

She holds a Masters degree in Computer Engineering from NMIMS University,

Mumbai and Bachelors degree in Computer Engineering from the University

of Mumbai. When at home, she enjoys to sketch pictures in company of her

daughter Spandana.

177

Brief biography of supervisors

Dr. Biju K. Raveendran is currently serving as Assistant Professor in

the Department of Computer Science and Information Systems, BITS

Pilani K. K. Birla Goa campus, Goa, India. He received his Ph.D. degree

from BITS Pilani, Pilani campus, Rajasthan in the year 2009. He heads

the Computer Center Unit at Goa campus which is responsible for the

central networking and computing facilities of the campus. His research

areas include Energy Efficient Multi-core/Many-core Real-time Scheduling

and Memory Architecture for Embedded Systems etc. He is a recipient

of Microsoft young faculty award in year 2009. He is also a recipient of

Best Faculty Award by BITSAA in the year 2013. He is actively involved

in collaborative projects with industries like Microsoft, Aditya Birla Group etc.

Prof. Bharat M. Deshpande is heading the Department of Computer Science

and Information Systems, Bits Pilani K. K. Birla Goa Campus, Goa, India.

He received his Ph.D. degree from IIT Mumbai in the year 1998. After which

for a year he worked as postdoctoral fellow in Department of Atomic Energy.

His research interests are in areas of Complexity Theory, Parallel Algorithms,

and Data Mining. Over the years he has supervised numerous masters and

doctoral students. He has many national and international publications to

his credit.

178

Bibliography

[1] O. S. Unsal and I. Koren. System-level power-aware design techniques

in real-time systems. volume 91, pages 1055–1069, 2003.

[2] N. K. Jha. Low power system scheduling and synthesis. In

IEEE/ACM International Conference on Computer Aided Design

(ICCAD). IEEE/ACM Digest of Technical Papers, pages 259–263, 2001.

[3] L. Luo. Designing Energy and User Efficient Interactions with Mobile

Systems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA,

2008.

[4] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage

scaling for real time embedded systems. In 41st IEEE Design Automation

Conference, pages 275–280, 2004.

[5] P. Padmanabhan and S. Kang. Real-time dynamic voltage scaling for

low-power embedded operating systems. volume 35, pages 89–102, 2001.

[6] H. Aydin, R. Melhem, D. Mosse, and Pedro. Power-aware scheduling

for periodic real-time tasks. In IEEE Transactions on Computers, pages

584–600, 2004.

[7] C. Yang, J. Chen, and T. Kuo. An approximation algorithm for

energy-efficient scheduling on a chip multiprocessor. In IEEE Design,

Automation and Test in Europe, pages 468–473, 2005.

179

180 Bibliography

[8] R. Jejurikar and R. Gupta. Dynamic slack reclamation with

procrastination scheduling in real-time embedded systems. In 42nd

IEEE Design Automation Conference, pages 111–116, 2005.

[9] Y. Lee, K. Reddy, and C. Krishna. Scheduling techniques for reducing

leakage power in hard real-time systems. In 15th IEEE Euromicro

Conference on Real-Time Systems (ECRTS), pages 105–112, 2003.

[10] L. Niu and G. Quan. Reducing both dynamic and leakage energy

consumption for hard real time systems. In CASES: ACM International

conference on Compilers, architecture and synthesis for embedded systems,

pages 140–148, 2009.

[11] V. Legout, M. Jan, and L. Pautet. A scheduling algorithm to reduce

the static energy consumption of multiprocessor real-time systems. In

21st ACM International conference on Real-Time Networks and Systems

(RTNS), pages 99–108, 2013.

[12] S. Pagani and J. J. Chen. Energy efficiency analysis for the single

frequency approximation (sfa) scheme. In IEEE 19th International

Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA), pages 82–91, 2013.

[13] J. Gu and G. Qu. Incorporating temperature-leakage interdependency

into dynamic voltage scaling for real-time systems. In IEEE 24th

International Conference on Application-Specific Systems, Architectures

and Processors, pages 289–296, 2013.

181 Bibliography

[14] M. Khaleel and M. Zhu. Energy-efficient task scheduling and

consolidation algorithm for workflow jobs in cloud. volume 13, pages

268–284. Inderscience Publishers, 2016.

[15] L. Geunsik, M. Changwoo, and E. Y. Load-balancing for improving user

responsiveness on multicore embedded systems. In Proceedings of the

Linux Symposium, pages 25–33, 2012.

[16] C. Keng-Mao, T. Chun-Wei, C. Yi-Shiuan, and Y. Chu-Sing. A high

performance load balance strategy for real-time multicore systems.

Hindawi Publishing Corporation, 2014.

[17] G. Buttazzo. Hard Real-Time Computing Systems. Springer, 2011.

[18] Jane Liu. Real-Time Systems. Pearson Education, 5 edition, 2004.

[19] R. Nassiffe, E. Camponogara, G. Lima, and D. Moss. Optimising qos in

adaptive real-time systems with energy constraint varying cpu frequency.

pages 368–379. Inderscience Publishers, 2016.

[20] L. Niu and G. Quan. Reducing both dynamic and leakage energy

consumption for hard real-time systems. In Proceedings of the 2004

International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES), pages 140–148, 2004.

[21] P. Kocanda and A. Kos. Static and dynamic energy losses vs. temperature

in different cmos technologies. In 22nd International Conference Mixed

Design of Integrated Circuits Systems (MIXDES), pages 446–449, 2015.

182 Bibliography

[22] N. Srinivasan, N. Prakash, D. Shalakha, D. Sivaranjani, G. Swetha, and

B. Bala. Power reduction by clock gating technique. volume 21, pages

631–635. Elseiver, 2015.

[23] V. Devdas and H. Aydin. On the interplay of voltage/frequency scaling

and device power management for frame-based real-time embedded

applications. In IEEE Transactions on Computers, pages 31–44, 2012.

[24] G. Chen, K. Huang, and A. Knoll. Energy optimization for real-time

multiprocessor system-on-chip with optimal dvfs and dpm combination.

volume 13, pages 1–21, 2014.

[25] J. Chen and T. Kuo. Procrastination for leakage-aware rate monotonic

scheduling on a dynamic voltage scaling processor. In ACM SIGPLAN

on language, compilers and tool support form embedded systems, pages

153–162, 2006.

[26] J. Chen and T. Kuo. Procrastination determination for periodic real-time

tasks in leakage-aware dynamic voltage scaling systems. In IEEE/ACM

International Conference on Computer-Aided Design, pages 289–294,

2007.

[27] E. Seo, S. Kim, S. Park, and J. Lee. Dynamic alteration schemes of

real-time schedules for i/o device energy efficiency. volume 10, pages

1–32, 2011.

[28] J. Lee and A. Shrivastava. Pica: Processor idle cycle aggregation for

energy-efficient embedded systems. volume 11, pages 1–27, 2012.

183 Bibliography

[29] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. Energy-aware

scheduling for real-time systems: A survey. volume 15, pages 1–34, 2016.

[30] A. Mishra and A. Tripathi. Energy efficient voltage scheduling for

multi-core processors with software controlled dynamic voltage scaling.

pages 3456–3466. Elseiver, 2014.

[31] M. Bambagini, M. Bertogna, and G. Buttazzo. On the effectiveness of

energy-aware real-time scheduling algorithms on single-core platforms. In

IEEE Proceedings of the Emerging Technology and Factory Automation

(ETFA), pages 1–8, 2014.

[32] O. Zapata and P. Alvarez. Edf and rm multiprocessor scheduling

algorithms: Survey and performance evaluation. Technical report,

http://delta.cs.cinvestav.mx/ pmejiamultitechreport.pdf, 2005.

[33] K. Kedar, R. Harini, S. Abhik, and M. Frank. Policies for migration of

real-time tasks in embedded multi-core systems. In Real-time systems

symposium, pages 17–20, 2009.

[34] R. Davis and A. Burns. A survey of hard real-time scheduling for

multiprocessor systems. volume 43, 2011.

[35] S. Baruah. Techniques for multiprocessor global schedulability analysis.

volume 22, page 14, 2007.

[36] A. Björn and B. Konstantinos. Sporadic multiprocessor scheduling

with few preemptions. In Euromicro Conference on Real-Time Systems

(ECRTS), volume 8, pages 243–252, 2008.

184 Bibliography

[37] A. Björn, B. Konstantinos, and B. Sanjoy. Scheduling arbitrary-deadline

sporadic task systems on multiprocessors. In Real-Time Systems

Symposium, pages 385–394, 2008.

[38] K. Shinpei and Y. Nobuyuki. Portioned edf-based scheduling on

multiprocessors. In Proceedings of the 8th ACM international conference

on Embedded software, pages 139–148, 2008.

[39] K. Shinpei, Y. Nobuyuki, and I.Yutaka. Semi-partitioned scheduling of

sporadic task systems on multiprocessors. In 21st Euromicro Conference

on Real-Time Systems (ECRTS), pages 249–258, 2009.

[40] A. Pillai and T. Isha. Ec-a: A task allocation algorithm for energy

minimization in multiprocessor systems. volume 8, pages 254–260, 2014.

[41] Jr. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation

algorithms for np-hard problems. chapter Approximation Algorithms for

Bin Packing: A Survey, pages 46–93. PWS Publishing Co., 1997.

[42] M. Bambagini, J. Lelli, G. Buttazzo, and G. Lipari. On the energy-aware

partitioning of real-time tasks on homogeneous multi-processor systems.

In 4th Annual International Conference on Energy Aware Computing

Systems and Applications (ICEAC), pages 69–74, 2013.

[43] W. Mao. Best k fit packing. pages 265–270, 1993.

[44] T. AlEnawy and H. Aydin. Energy-aware task allocation for rate

monotonic scheduling. In 11th IEEE Real Time and Embedded Technology

and Applications Symposium, pages 213–223, 2005.

185 Bibliography

[45] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and

aggressive scheduling techniques for power-aware real-time systems. In

Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS), pages

95–105, 2001.

[46] J.J. Chen, T. Kuo, and C. Yang. Profit-driven uniprocessor scheduling

with energy and timing constraints. In Proceedings of ACM Symposium

on Applied Computing (SAC), pages 834–840, 2004.

[47] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically

variable voltage processors. In Proceedings of International Symposium

on Low Power Electronics and Design (ISLPED), pages 197–202, 1998.

[48] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu

energy. In Proceedings of IEEE 36th Annual Foundations of Computer

Science, pages 374–382, 1995.

[49] J. J. Chen, T. Kuo, and H. Lu. Power-saving scheduling for weakly

dynamic voltage scaling devices. In Workshop on Algorithms and Data

Structures, pages 338–349, 2005.

[50] P. Shiv and P. Deo. A hybrid immune genetic algorithm for scheduling

in computational grid. volume 6. Inderscience publishers, 2014.

[51] P. Shiv, T. Vibhu, and R. Manojkumar. An elitist non-dominated sorting

bat algorithm nsbat-ii for multi-objective optimization of phthalic andride

reactor. volume 7, pages 200–315. Inderscience publishers, 2016.

186 Bibliography

[52] T. Vibhu, P. Shiv, and R. Manojkumar. Optimized on-line control of

mma polymerization using fast multi-objective de. pages 1–8. Taylor

and Francis Online, 2016.

[53] Y. Zhang, X. Hu, and D. Chen. Task scheduling and voltage selection

for energy minimization. In Proceedings of the 39th Annual Design

Automation Conference (DAC), pages 183–188, 2002.

[54] W. Shieh and C. Pong. Energy and transition-aware runtime task

scheduling for multicore processors. volume 73, pages 1225–1238.

Academic Press, Inc., 2013.

[55] X. Chen, X. Zheng, K. Hyungjun, G. Paul, Hu. Jiang, M. Kishinevsky,

U. Ogras, and R. Ayoub. Dynamic voltage and frequency scaling for

shared resources in multicore processor designs. In Proceedings of the

50th Annual Design Automation Conference (DAC), volume 114, pages

1–7, 2013.

[56] N. Min-Allah, H. Hussain, S. Khan, and A. Zomaya. Power efficient rate

monotonic scheduling for multi-core systems. volume 72, pages 48–57.

Academic Press, Inc., 2012.

[57] X. Zhu, C. He, K. Li, and X. Qin. Adaptive energy-efficient scheduling

for real-time tasks on dvs-enabled heterogeneous clusters. volume 72,

pages 751–763. Academic Press, Inc., 2012.

[58] R. Bergamaschi, H. Guoling, A. Buyuktosunoglu, H. Patel, I. Nair,

G. Dittmann, G. Janssen, N. Dhanwada, Zhigang Hu, P. Bose, and

J. Darringer. Exploring power management in multi-core systems. In

187 Bibliography

Asia and South Pacific Design Automation Conference, pages 708–713,

2008.

[59] K. Woonseok Kim, K. Jihong, and L. Sang. Preemption-aware dynamic

voltage scaling in hard real-time systems. In IEEE Proceedings of

International Symposium on Low Power Electronics and Design, pages

393–398, 2004.

[60] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in

embedded real-time systems. In IEEE Proceedings of the Conference on

Design, Automation and Test in Europe (DATE), 2003.

[61] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management on

reliability in real-time embedded systems. In IEEE/ACM International

Conference on Computer Aided Design (ICCAD), pages 35–40, 2004.

[62] B. Goel and S. McKee. A methodology for modeling dynamic and static

power consumption for multicore processors. In IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 273–282,

2016.

[63] C. Y. Yang, J. J. Chen, L. Thiele, and T. W. Kuo. Energy-efficient

real-time task scheduling with temperature-dependent leakage. In Design,

Automation Test in Europe Conference Exhibition (DATE), pages 9–14,

2010.

[64] W. Liao, L. He, and K. Lepak. Temperature and supply voltage aware

performance and power modeling at microarchitecture level. volume 24,

pages 1042–1053, 2005.

188 Bibliography

[65] Y. Liu, R. Dick, L. Shang, and H. Yang. Accurate temperature-dependent

integrated circuit leakage power estimation is easy. In Design, Automation

Test in Europe Conference Exhibition, pages 1–6, 2007.

[66] D. Meisner, B. Gold, and T. Wenisch. Powernap: Eliminating server idle

power. volume 37, 2009.

[67] M. Awan and S. Petters. Enhanced race-to-halt: A leakage-aware energy

management approach for dynamic priority systems. In 23rd Euromicro

Conference on Real-Time Systems (ECRTS), pages 92–101, 2011.

[68] K. Huang, L. Santinelli, J. Chen, L. Thiele, and G. Buttazzo. Periodic

power management schemes for real-time event streams. In Proceedings

of the 48th IEEE Conference on Decision and Control (CDC) with 28th

Chinese Control Conference, pages 6224–6231, 2009.

[69] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar. Rate-harmonized

scheduling and its applicability to energy management. IEEE

Transactions on Industrial Informatics, 6(3):265–275, 2010.

[70] S. DSouza, A. Bhat, and R. Rajkumar. Sleep scheduling for

energy-savings in multi-core processors. In 28th Euromicro Conference

on Real-Time Systems (ECRTS), pages 226–236, 2016.

[71] C. Fu, Y. Zhao, M. Li, and C. J. Xue. Maximizing common idle time on

multi-core processors with shared memory. In Design, Automation Test

in Europe Conference Exhibition (DATE), pages 900–903, 2015.

[72] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. volume 3,

2007.

189 Bibliography

[73] A. Gabriel, V. Sameer, B. Rémi, S. Gilles, B. Pascal, T. Lionel,

C. Everton, and M. Fernando. Evaluating the impact of task migration

in multi-processor systems-on-chip. In Proceedings of the 23rd symposium

on Integrated circuits and system design, pages 73–78, 2010.

[74] S. Abhik, M. Frank, R. Harini, and M. Sibin. Push-assisted migration

of real-time tasks in multi-core processors. In ACM Sigplan Notices,

volume 44, pages 80–89, 2009.

[75] J.J. Chen, H. Heng-Ruey, C. Kai-Hsiang, Y. Chia-Lin, P. Ai-Chun,

and K. Tei-Wei. Multiprocessor energy-efficient scheduling with task

migration considerations. In Proceedings of 16th Euromicro Conference

on Real-Time Systems (ECRTS), pages 101–108, 2004.

[76] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis

of edf on multiprocessor platforms. In 17th Euromicro Conference on

Real-Time Systems (ECRTS), pages 209–218, 2005.

Index

Affinity, 38

hard affinity, 38

soft affinity, 38

Aggressive Speed Reduction (AGR), 31

Bin Packing (BP), 30

Best Fit BP (BFBP), 30

First Fit BP (FFBP), 8, 30, 57

Modified FFBP (MFFBP), 45, 56, 58

Next Fit BP (NFBP), 30

Worst Fit BP (WFBP), 30

critical speed, 34, 36

Cycle Conserving EDF (ccEDF), 26

dynamic energy, 2, 51

Dynamic Reclaiming Algorithm (DRA), 31

Global scheme, 106

Look Ahead EDF (LAEDF), 26

Migration, 38

pull migration, 39, 109

push migration, 38, 109

190

191 Index

Partitioned scheme, 106

Procrastination, 3

Dynamic Procrastination (DP), 3, 6, 34, 66

Procrastinated Idle Duration (PID), 71

Static Procrastination, 66

Semi-partitioned scheme, 106

source core, 107, 109

static energy, 2, 51

target core, 109

Voltage/Frequency Scaling (VFS), 2

Dynamic VFS (DVFS), 2, 6, 31

Static VFS (SVFS), 26

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Motivation
	Problem Statement
	Research Goals
	Contributions
	Thesis Outline

	Literature Survey
	Introduction
	Fundamentals
	Scheduling in Uniprocessor HRTS
	Shutdown Techniques
	Slowdown Techniques

	Scheduling in MC-HRTS
	Task Allocation Methods
	Task Scheduling Methods

	Summary

	System Model
	Introduction
	SMART - A Simulator for MC-HRTS
	Platform Model
	Task Model
	Evaluation Parameters
	Energy Model
	Summary

	Energy Efficient Scheduling in MC-HRTS
	Introduction
	Task Allocation
	MFFBP Algorithm
	Motivating Example
	Analysis of MFFBP algorithm
	Experimental evaluation

	Energy Efficient Dynamic Schedulers
	DPS Scheduler
	Working of Conventional Static and Dynamic Procrastination Scheduler
	DPS algorithm
	Motivating Example
	Analysis of DPS Algorithm
	Experimental Evaluation

	DPVFS Scheduler
	Working of ccEDF
	DPVFS algorithm
	Motivating Example
	Analysis of DPVFS Algorithm
	Experimental Evaluation

	Summary

	Scheduling using Migration
	Introduction
	Energy Efficient Dynamic Schedulers
	OASIS Scheduler
	OASIS algorithm
	Motivating Example
	Analysis of OASIS Algorithm
	Experimental Evaluation

	HandT scheduler
	HandT algorithm
	Motivating Example
	Analysis of HandT Algorithm
	Experimental Evaluation

	Summary

	Conclusion and Future Directions
	Summary of results
	Future scope

	Publications
	Biographies
	Bibliography
	Index

