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Abstract

Finite impulse response (FIR) filters are the basic building blocks of many digital

signal processing applications. The FIR filter receives a discrete time signal as input

and performs the multiplication and addition operations to give the desired filtered

discrete time output signal. The real time applications such as radar signal pro-

cessing and video processing, require dedicated hardware efficient FIR filters to be

implemented with higher clock frequencies. Nowadays, many battery operated de-

vices such as hearing aids and mobile phones also use FIR filters as it offers stability

and linear phase response. As these devices are power hungry devices, a low power

FIR implementation is required for these applications. Hence, to meet the ever de-

manding high speed and low power devices, new methods for hardware efficient FIR

filter architectures are proposed in this thesis. The FIR filter implementations are

classified as fixed coefficient and programmable coefficient filter architectures. The

hardware implementations of fixed and programmable filter architectures are differ-

ent from each other. In this thesis, two new approaches for fixed coefficient and one

improved architecture for programmable coefficient filter are proposed. In both fixed

and programmable filter implementations, multiplier is the most expensive compo-

nent in terms of hardware. In fixed coefficient filter implementation, replacement of

the multiplier with the shift and adder circuits is a well-known technique. The adders

in this approach are dependent on the number of one’s or signed-power-of-two (SPT)

terms present in each filter coefficient.

In the first method proposed in this thesis, differential evolution algorithm is used

for reducing the number of SPT terms in filter coefficients. Then, with the help

of a common subexpression elimination algorithm the number of adders is further

minimized for efficient filter implementation. The performance of the proposed filter

shows better results in comparison to some of the recently published work in terms
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of area, delay and power. One of the proposed filters is found to improve the power

delay product gain by 29% as compared to the Remez algorithm.

In the residue number system (RNS), a large number is represented with a set of

small numbers. The arithmetic computation using these small numbers reduces the

critical path delay. In the second method proposed in this thesis, the advantage of

RNS is exploited for fixed coefficient filter implementation. However, in RNS arith-

metic, the input binary number is converted into residues using forward conversion

circuit. In the proposed method a lookup table based approach is used for FIR fil-

ter implementation. This lookup table method eliminates the forward converter as

well reduces the partial product generation time. Thus, this RNS based FIR filter

improves the clock frequency of the filter. The synthesis results of the proposed RNS

based filters have been compared with some recently published works. The results

show significant improvement in area, power and delay gain.

In a programmable FIR filter, the filter coefficients are changed depending on

the filter frequency response. Hence, shift and add approach is not applicable in

programmable FIR filter. Several methods in the past have been reported for the

reduction of partial products in a multiplier for filter design. One such method is

computation sharing multiplication with pre-computed block. In this method, the

coefficient is divided into a group of equal number of bits. For a group, all possible

product values of the input are pre-computed. Then, for the coefficient multiplica-

tion, the pre-computed partial products of a coefficient are accumulated using carry

propagate adder. In this thesis, a simple carry propagation free addition using com-

pressors is proposed. The use of the compressors in place of carry propagate adder

offers higher gain in delay, which improves the filter’s performance. The proposed

filter implementation has been compared with some recently published works and

shows significant improvement in delay and power.
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Chapter 1

Introduction

Digital Signal Processing (DSP) has played an important role in several domains

like telecommunications, consumer electronics, speech processing, biomedical systems,

etc. The theory of digital signal processing and its applications is supported by ad-

vances in technologies such as design and manufacturing of very large scale integration

(VLSI) chips [1]. Nowadays, a large number of DSP devices, applications and systems

are affecting the human lives in various ways and many more devices are expected to

be seen in the market in the near future. In many of the DSP applications, filtering is

the most common form of the signal processing, which is mainly used to remove the

unwanted frequencies. Initially, filters were designed using inductors and capacitors,

which are known as analog filters. Digital filters, at first, were simulations of analog

filters on general-purpose computers. The advances in VLSI technology replaced the

analog filters with digital filters by providing faster arithmetic circuits such as mul-

tipliers, adders and some good analog-to-digital converters [2]. The digital filters are

programmable, reliable and have superior performance over the analog filters. How-

ever, limited speed, finite word-length effects and longer development times are the

disadvantages of digital filters. Recent innovations in manufacturing technologies and

programming, have overcome some of the disadvantages of digital filters.

A digital filter is a system that uses discrete time signals as input and produces a

digitally filtered discrete time output signal as shown in Figure 1.1. The digital filter

characteristics depends on the impulse response of the system. The digital filters are

classified as infinite impulse response (IIR) and finite impulse response (FIR) filters

based on the impulse response duration. The FIR and IIR filter equations are given in

equation (1.1) and equation (1.2) respectively, where, x [n] is the input to the digital

1



Chapter 1. Introduction

hl, l = 0, 1, ……..

(impulse response)

x(n)

(input data)

y(n)

(output data)

Figure 1.1: A Conventional Digital Filter Representation

filter, y [n] is the filter output and N is the order of the digital filter.

y [n] =
N−1∑
l=0

hl ∗ x [n− l] (1.1)

y [n] =
N−1∑
l=0

bl ∗ x [n− l]−
N−1∑
l=1

al ∗ y [n− l] (1.2)

The impulse responses of FIR filter are h0, h1 · · ·hN−1 as in equation (1.1), while

bl, al are the feedforward and feeback coefficients for the IIR filter as given in equation

(1.2). These are also known as filter coefficients and have significant role in solving

the filter design problem. Each coefficient is represented with a number of bits called

word-length (WL). The preference between FIR and IIR filters depends on the

relative advantages of the two filter types. As seen from equation (1.2), the output

y [n] of IIR filter depends on the present and previous input samples as well as past

outputs. In comparison to the IIR filter, the output of the FIR filter depends only on

the current and past input samples, which can be realized non-recursively [3]. The

FIR filter has few other advantages over the IIR filters:

• FIR filters have linear phase response.

• The finite word-length quantization error is small in FIR filters.

• FIR filters are stable.

The disadvantage of FIR filters is that they require more coefficients for sharp cutoff

filters than IIR. The implementation of equation (1.1) requires multipliers for coeffi-

2



Chapter 1. Introduction

cient multiplication, adders for accumulation and memory devices for delays. Thus,

the higher-order FIR filter requires more computations and memory as compared to

IIR filter, if implemented for the same specifications. However, linear phase response

and stability are critical in many applications such as speech processing, digital audio

and video processing. Hence, FIR filters are preferred for these kind of applications.

The FIR filter implementations are further classified into fixed coefficient and pro-

grammable coefficient filters. In many applications such as hearing-aids, digital audio-

video encoders and mobile phones, non-varying filter specifications are required. The

filter coefficients for these specifications are generally calculated using conventional

methods before implementing the filter structure. Once calculated, the coefficients are

not changed during implementations of such filters. Hence, for a given specification,

the coefficients and its filter structure are fixed, and these implementations are known

as fixed coefficient FIR filters. However, some applications such as software defined

radio (SDR), DSP processors and filter banks require a filter structure with adaptive

coefficient sets. In these kind of implementations, the filter structure is independent

of coefficient set and hence, these are called as programmable FIR filters. The on-chip

implementation of these filter structures can be done using either application specific

integrated circuit (ASIC) or field programmable gate array (FPGA) methodology.

1.1 Motivation

In fixed and programmable filter implementations, equation (1.1) will be exploited,

and it can be observed that, FIR filtering is mere a sequence of multiplications and

additions with delay elements. The multipliers are required for coefficient multipli-

cation, which multiplies the discrete input x [n] with coefficients at every tap of the

filter. The adders are required for accumulation purpose, followed by the delay el-

ements for storing the accumulated result. The number of multipliers, adders and

delay elements depend on N while size of these elements depends on WL. Multipliers

3



Chapter 1. Introduction

consume most of the area and power in filter implementations. Therefore, improving

the multiplier performance will lead to an efficient filter implementation. In fixed

coefficient FIR filters, these multipliers are replaced with shift and add circuits de-

pending on the number of signed-power-of-two (SPT) terms present in a coefficient.

However, in programmable filters, dedicated hardware optimized multipliers are used

and these are dependent on WL rather than SPT terms. Hence, the major challenges

in implementing the FIR filter are summarized as follows:

• Efficient fixed coefficient filter design with suitable coefficient set that minimizes

the hardware.

• Programmable filter design utilizing efficient multipliers and adder using exist-

ing arithmetic techniques.

Several optimization techniques and algorithms have been presented in the past for

designing the fixed coefficient filters. Many of these algorithms have shown significant

improvements in the filter design. However, a number of optimization algorithms have

also evolved in recent years. Hence, there is a scope of improvement in filter design

using recently developed algorithms. Any method to improve the design and imple-

mentation of FIR filter is always welcome. Similarly, the various arithmetic circuits

have evolved in recent years and can be used for implementing the programmable as

well as fixed coefficient FIR filters. The main motivation of this thesis is to design

fixed coefficient FIR filters with suitable existing algorithms and to address the issues

related to faster arithmetic circuits used for implementing programmable filters.

1.2 Objectives and Contributions

In this thesis, some problems in design and implementations of fixed and programmable

coefficient FIR filters are addressed.
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1.2.1 Objectives

The main objectives of the thesis are as follows:

• To propose a fixed coefficient FIR filter design with the minimum number of

SPT terms using optimization techniques. Coefficient multiplication is mostly

dependent on the number of SPT terms present in a coefficient. Hence, the

number of SPT terms may be minimized using existing optimization techniques

without compromising on the frequency response.

• Several signal processing applications use the residue number system (RNS) for

achieving higher clock frequency. However, the use of RNS doesn’t guarantee

an area and power efficient implementation. Hence, the main focus of this thesis

is to implement a hardware efficient fixed coefficient FIR filter using RNS.

• To propose an efficient programmable filter, which may be utilized in several

applications such as SDR and DSP processors. As most of these devices are

operated at higher clock frequencies, this thesis aims to design a high speed

programmable FIR filter.

1.2.2 Contributions

The main contributions of this thesis are:

• An approach for designing the fixed coefficient FIR filter using Differential Evo-

lution (DE) algorithm has been proposed. The main aim of this algorithm is to

obtain the filter coefficient set with the minimum number of SPT terms with-

out compromising on the frequency response of the filters. Later, the common

sub-expression elimination algorithm is used to minimize the number of adders.

The performance of the proposed filters is compared with those proposed in

recently published literature in terms of area, delay, power and power-delay

product (PDP ). One of the proposed filters was found to improve the PDP
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gain by 29% compared to Remez algorithm. The proposed approach showed

improvements in filter design for the given specifications.

• An efficient fixed coefficient FIR filter structure can be implemented using a

well-known approach called distributed arithmetic (DA). In this approach, the

filter structure is independent of the number of SPT terms presented in a coef-

ficient. In DA approach, the inner product values of coefficients are stored in

a look-up table (LUT) and these values are accessed serially. In this method,

the throughput of the filter is less if input is taken serially. However, if input is

taken in parallel, then area of the filter is more. To balance both these terms a

decomposed LUT based FIR filter using the RNS is proposed. An efficient inner

product based RNS-FIR filter implementation has been proposed in this thesis.

The synthesis results have been compared with recently published RNS based

FIR filter. The proposed RNS-FIR filters show improvement in area, power and

delay gain.

• A high speed programmable FIR filter using efficient arithmetic circuits is pro-

posed in this thesis. Many of the programmable filters in the literature focus

on the coefficient multiplication. However, apart from the coefficient multipli-

cation, there exists an adder for accumulation, which also has the significant

role in the critical path delay. In this method, the final adder in multiplier and

accumulator are replaced with a 4:2 compressors. The compressors in place of

adders minimizes the critical path delay of the filter. The performance of the

proposed architectures are compared with recently published works and shows

better results in terms of delay and power-delay-product at the cost of more

area.

The fixed coefficient filters using DE algorithm and RNS-FIR filters are imple-

mented with gate-level Verilog HDL. These filters are synthesized in UMC 90nm

technology using Cadence RTL compiler. The programmable filters are also imple-
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mented with gate-level Verilog HDL and these are synthesized using Altera Cyclone

II device using DSP builder.

1.3 Outline of the Thesis

The rest of this thesis is organized as follows:

1. Chapter 2 presents the methodology for designing the digital FIR filters. A

literature review on designing the fixed coefficient FIR filters with optimization

techniques is also presented in this chapter. The concept of DE algorithm

is further explained in detail in this chapter. The problem formulation for

obtaining the FIR filter coefficients using DE algorithm is also presented in this

chapter. The effectiveness of the DE algorithm for FIR filter is demonstrated

through an example. The filter implementations and their synthesis results

using DE algorithm are also discussed in this chapter.

2. Chapter 3 presents the background of RNS and its use in FIR filters. This is

followed by the concepts of DA approach, and its implementation in RNS based

FIR filter is discussed. The proposed RNS based FIR filters implementation,

and their synthesis results are also discussed in this chapter.

3. Chapter 4 discusses the various programmable filter architectures and their im-

plementations. The proposed high speed programmable FIR filter implementa-

tion and its synthesis results are also presented in this chapter.

4. Chapter 5 summarizes the contribution of this thesis and discusses the future

direction of work.
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Chapter 2

FIR Filter Design using

Differential Evolution Algorithm

In many of the signal processing applications, the filter specifications may be fixed

and ideally a signal processing device must operate at higher clock frequencies with

low power consumption. However, in practice these are difficult to realize, thus, it

is important to design an efficient hardware (area, delay and power) for FIR filter.

An efficient hardware filter can be designed by computing a new set of coefficients by

optimizing the filter order (N) and it’s word-length (WL).

In this chapter, the existing techniques/algorithms for designing a fixed coefficient

FIR filter is presented. The main focus of this chapter is to investigate these algo-

rithms and then determine the suitable algorithm for designing the hardware efficient

FIR filter. This chapter is organized as follows: The procedure for designing the FIR

filter is discussed in section 2.1 followed by literature review of fixed coefficient FIR

filter in section 2.2. The basic algorithm of an efficient filter (obtained after literature

review) is described in section 2.3. A low-pass filter design and its simulation results

using the proposed algorithm obtained from the literature is described in section 2.4

followed by conclusions in section 2.5.

2.1 General Overview of FIR Filter Design

The design of FIR filter involves the following steps:

1. Specification of the filter requirements
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|H(ω)|
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Figure 2.1: Characteristics of a Low-Pass Filter

2. Calculation of the filter coefficients

3. Implementation of the filter architecture

2.1.1 Specification of the filter requirements

Any filter design starts with specifying the filter characteristics and design require-

ments. The specification of the filter includes, pass band edge frequency (ωp), stop

band edge frequency (ωs), pass band ripple (δp) and stop band ripple (δs). Addition-

ally, other design requirements such as hardware efficient filter structure (delay, power

and area) may be required for designing the FIR filter. Based on these requirements

the filter coefficients can be calculated.

The filter characteristics of a low pass filter is shown in Figure 2.1. In the pass

band, the magnitude response has a peak deviation of δp where as δs is the maximum

deviation in the stop band. The magnitude response decreases from the pass band

to the stop band in the transition band region. The pass band and stop band ripple

values (δp and δs respectively) may be expressed in linear scale or in decibel (dB)
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scale. The minimum stop band attenuation (As), maximum pass band attenuation

(Ap1) and minimum pass band attenuation (Ap2) in (dB) are given below:

As = −20 log10 δs

Ap1 = 20 log10(1 + δp)

Ap2 = 20 log10(1− δp)

 (2.1)

2.1.2 Calculation of the filter coefficients

A number of approaches has been proposed for finding the filter coefficients. The

window, frequency sampling and optimal algorithm are the most commonly used

methods for finding the filter coefficients [3]. The window method employs window

function which could have either a fixed or variable pass band/stop band ripple. The

most commonly used fixed window functions are Rectangular, Hanning, Hamming,

Blackman and Bartlett [4]. In fixed window functions, δp and δs values are fixed and

equal. Hence, the designer may end up with either too small a pass band ripple or

too large stop band attenuation [3,4]. In case of variable window such as Kaiser, the

δp and δs values are chosen with the help of the ripple control parameter set by the

designer [4].

Alternative approach is the frequency sampling in which the filter coefficients

are computed by sampling the ideal filter in the frequency domain. This approach

lacks precise control over the band edge frequencies or the passband ripples [5,6]. In

optimal approaches, the filter coefficients are obtained by minimizing the maximum

error between the desired and actual response using various optimization techniques

and are discussed in section 2.2. These approaches require more time to design the

filter as compared to the window and frequency sampling methods. However, the

optimal approaches are more popular as the resultant filter coefficients leads to an

hardware efficient FIR filter with filter’s desired frequency response [7, 8].
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y[n]

z-1x[n]

h0 h1

z-1

hN-2

z-1
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Figure 2.2: Direct Form Structure

2.1.3 Implementation of filter architecture

The input x[n] and output y[n] is related by the difference equation and is given

below:

y [n] =
N−1∑
l=0

hl ∗ x [n− l] (2.2)

The hardware requirement for implementing the above equation is as follows:

Multipliers: Multiplication between x[n] and filter coefficients h[n].

Adders: For accumulation purpose.

Delay Elements: For storing the previous input samples or accumulated values.

The above equation requires N number of multipliers, N − 1 adders and N − 1 delay

elements. There are several methods for implementing the FIR filter structure. The

straight-forward methods for implementing the FIR filter are direct form (DF) and

transposed direct form (TDF) structures as shown in Figure 2.2 and 2.3, respectively

[9]. The preference between these two structures is based on critical path delay or

clock frequency of the filter.

The critical path delay for DF and TDF structures are given below:

t
df

= t
M

+ (N − 1) ∗ t
A

t
tdf

= t
M

+ t
A

(2.3)
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hN-1 hN-2 hN-3 h0
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Figure 2.3: Transposed Direct Form Structure

where, t
df

and t
tdf

are the critical path delay of DF and TDF where as t
M

and t
A

are

the critical path delays of multiplier and adder, respectively.

From the Figure 2.2, it can be infer that t
df

consists of one multiplier and N − 1

adders where as in Figure 2.3, t
tdf

consists of only one multiplier and one adder. Due

to this, TDF structures are faster and operates at higher clock frequencies and thus

this structure is chosen over DF structure for many filter applications [9].

2.2 Literature Review of Fixed Coefficient FIR Fil-

ter

In TDF structures, the multipliers require more power and area in the circuit when

compared with the adders. Thus, it is a common practice in fixed coefficient filters to

use a multiplier-less realization which could be achieved by replacing the multiplier

with shift and adder circuits. Hence, in multiplier-less realization, the filter coefficients

are represented either as sum or difference of SPT terms [10]. The SPT terms are

usually defined as {1̄, 0, 1}; 1̄ represents −1. The adder cost depends on the number of

SPT terms that are present in the filter coefficients and thus, minimizing the number

of SPT terms can reduce the complexity of FIR filter structure [10].

Lets take an example to describe the SPT term using the conventional and canon-

ical sign digit approaches.
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Example 2.2.1. In this example, a 4 bit coefficient multiplication using the conven-

tional and canonical sign digit approaches are described.

Conventional Approach

Consider a 4 bit coefficient h = 15d = 1111b. The coefficient multiplication with input

X is given below:

X × h = 15×Xd

= X × 23 +X × 22 +X × 21 +X × 20

= X << 3 +X << 2 +X << 1 +X (2.4)

For implementing the above equation 3 adders are required as shown in Figure 2.4(a).

Canonical sign digit (CSD) Approach

In Canonical Sign Digit (CSD), the coefficient h = 15d = 1111b is represented as

10001̄ [11]. The coefficient multiplication with input X is given below and it’s imple-

mentation is shown in Figure 2.4(b) .

X × h = 15×Xd = X × 24 −X × 20

= X << 4−X (2.5)

The CSD approach requires only 1 adder for coefficient multiplication as the num-

ber of SPT terms are reduced from 4 to 2. From the above two approaches, it clearly

shows that, the number of adders are minimized by reducing the SPT terms. Hence,

the main focus of many researchers is to find a coefficient set with the minimum

number of SPT terms without compromising on the frequency response. There are

number of algorithms in the literature for reducing the number of SPT terms. These

algorithms rely on the idea that the sets of filter coefficients are not unique for a given

filter specification [12].
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XX << 1X << 2X << 3

X ×  h
(a) Linear Addition

-XX << 4

X ×  h
(b) CSD Approach

Figure 2.4: Coefficient Multiplication with Adders

2.2.1 Literature Review

The filter coefficient calculations using optimal algorithms are widely used due to the

availability of programming techniques. The filters designed with these algorithms

offers desired frequency response and reduced number of SPT terms.The basic idea

of these algorithms is to minimize the error that is measured as difference between

the desired filter response and the response of the filter being designed. There are

many algorithms in the literature for the FIR filter design. However, a few of them

are addressed in this thesis, which are very well-known in the field of FIR filter

design [7, 8, 10,12–47].

Linear programming technique has been used for finding the filter coefficients [13].

The computation time required for linear programming is far greater than Remez

algorithm [14]. An algorithm by Parks and McClellan for optimal FIR filter design

using the Remez exchange algorithm [14]. A detailed description of how to program

the FIR filter is given in [8]. A general-purpose integer programming along with

branch and bounce algorithm by Kodek is used to design the optimal FIR filter [15].

Lim and Parker, presented a mixed integer linear programming (MILP) method for
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designing the FIR filter. The results obtained by Lim and Parker are compared with

simple rounding of coefficient values and show significant improvement in the desired

filter response [16].

A local search algorithm with powers-of-two coefficients by Zhao and Tadakoro [17]

improves the filter response and minimizes the error as compared to MILP given

in [16]. Samueli presented a two-stage local search algorithm for the design of mul-

tiplierless FIR filters [10]. The coefficients are represented as sums or differences of

powers-of-two known as CSD. An important property of CSD is, no two consecutive

bits in a CSD number are non-zero [11]. In CSD, one additional non-zero digit is

required as compared to the Binary Coded (BC) number. However, in [10], δs value

of the filter is approximately equal to the theoretical δs value. An efficient FIR im-

plementation of bit-serial and bit-parallel circuits based on CSD representation was

given in [18]. The algorithm by Li et al., presents a variable number of SPT terms for

each coefficient [20]. This algorithm is compared with MILP and shows improvement

in δs value. The multiplierless FIR filters are implemented in [23–25].

So far, in the literature, most of the algorithms are used for designing the FIR

filter with the desired response. Some algorithms such as [10, 23] discuss on FIR

filter complexity reduction. The number of SPT terms are reduced by 33% in CSD

representation and thus some reduction in the number of adders can be achieved

in FIR filter coefficient multiplication. However, a method by Hartley in [26], uses

common subexpressions with CSD, which results in decrease in the number of adders

by about 50%. This method often referred as common subexpression elimination

(CSE). A fast branch and bounce algorithm is proposed with reduced constraints

proposed by Cho and Lee in [30] improves the filters response as compared to the

conventional branch and bounce algorithm in [16]. Chen and Willson developed an

efficient two-stage algorithm in which the first stage contains a prototype algorithm

followed by the trellis search algorithm for minimizing the error between the desired
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filters response and obtained response [31]. Further, the number of adders are reduced

by subexpression sharing with the help of a merge-search algorithm. The number of

SPT terms in [31] are reduced as compared to the methods in [10, 16, 20] without

compromising on the desired filters response.

Lim et al., introduced the SPT term allocation for filter coefficient set in [32]. In

this approach, the number of SPT term allocated for each coefficient is determined

in first stage followed by optimizing the coefficient value using integer-programming

algorithm. The two-stage algorithm proposed by Kaakinen and Saramaki [33] further

reduces the SPT terms as compared with Lim and Chao and Willson [16, 31]. A

two-stage algorithm by Feng and Teo is presented in [35] consists of local search and

global search algorithm. This method also shows significant improvement in filters

response as compared to Li et al.,, Chen and Willson in [20,31]. Yao and Chien [34]

introduced a three-stage algorithm, first a prototype FIR filter was designed using

the Remez exchange algorithm and then the coefficients are scaled by a scaling factor

and are represented in CSD. In final stage, a partial MILP algorithm was applied to

the filter coefficients for reducing the number of SPT terms.

The algorithms proposed by [10,16,20,31,33,48] are useful for designing the FIR

filters without using the CSE. In [36], Xu et al., implements an algorithm for the FIR

filter design with reusable common subexpressions where common SPT terms are

scaled and rounded to obtain the CSD coefficients set in the first stage. In the second

stage, using the local search algorithm, the maximum peak ripple is optimized. Sub-

sequently the algorithm uses the most frequently used subexpressions for minimizing

the number of adders to implement FIR filters. The results of this algorithm show

significant reduction in area of the filter as are compared with [10,16,20,31,33]. Alter-

native design of FIR filter with subexpression in one stage using MILP algorithm was

given in [37]. Aktan et al., presents a modified branch and bounce algorithm named

as FIRGAM for minimizing the total number of SPT terms in a coefficient set [12].
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This algorithm also reduces the number of SPT terms presented in each coefficient,

which leads to an effective FIR filter implementation.

In [40], Yu et al., presented a method for reusing the CSE for FIR filter imple-

mentation. An algorithm by Shi and Yu [43], presents an FIR filter with a minimum

number of adders. Most of the methods proposed in the literature in general, are

considered for reduction in hardware cost. These methods are categorized into op-

timal and suboptimal approaches. Optimal approach employs mixed integer linear

programming, which requires a lot of computation time. On the other hand, although

suboptimal approach does not guarantee the optimal results, quasi optimal results

can be obtained in reasonable time using this approach [36].

Heuristic algorithms have a unique feature of search within its neighborhood to

obtain optimal solution. Hence, heuristic optimization algorithms, such as simulated

annealing and genetic algorithm (GA), are highly popular in digital filter design

[49–73]. Most of these methods are used to design FIR filter for the desired response.

However, as in optimal approaches discussed above there is a scope of optimizing

the SPT terms using heuristic algorithms. These are most widely used as global

optimization methods. However, genetic algorithms are weaker in determining a local

minimum in terms of convergence speed. To overcome these shortcomings of genetic

algorithms, DE algorithm is preferred in various applications. DE finds the true

global minimum of a model search space, regardless of the initial parameter values.

It also has a very high convergence speed and uses only a few control parameters. DE

is, especially, applicable in solving unconventional filter design problems. As most of

the filter design tasks can be explained as problems to meet some given constraints

or a tolerance level, DE is highly applicable in digital filter design [61, 62]. However,

in [62], DE algorithm was used to obtain the coefficient set which meets the magnitude

response.

The objective of this thesis is to find a coefficient set using DE along with the

CSE algorithm. While DE algorithm finds several coefficient sets, which satisfy the
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magnitude response with a decreased number of SPT terms, CSE algorithm finds a

coefficient set from the above with decreased adder cost. DE algorithm is a stochastic,

population-based optimization algorithm introduced by Storn and Price [74]. DE is a

powerful non-deterministic algorithm, which searches for a solution, by generating and

refining the search spaces continuously. In each iteration step, the results are tested

for their fitness to survive, and whether they can form a part of the solution. Each

set of solutions is said to form one generation. The algorithm searches from a search

space of random solutions and iteratively refines the search space. Next, it samples

out some solutions randomly, calculates a vector difference of them and finally applies

this to the present solution. Thus the present solution now gets mutated; however,

it may or may not be better than before. If it is found to yield a better output,

it is retained, or else it is discarded. The above sequence of steps is repeated for

a sufficiently large number of times. The major steps in a DE algorithm for FIR

filter design are initialization, evaluation, mutation, recombination, evaluation, and

selection [74]. Here, the objective of the iterations is to generate the coefficients

with a minimum number of SPT terms in them, so that number of multiplications is

reduced. The DE and implementation of FIR filter using DE algorithm are discussed

in section 2.3.

2.3 Proposed Approach for FIR Filter Design

Differential Evolution (DE) is an optimization algorithm to find the optimum solution

for a given problem by iteratively trying to improve the solution without sacrificing

the system quality requirement. DE optimizes a problem by generating a population

of random solutions and creates a new solution by combining the existing ones. It uses

simple formulas for generating new solutions and finds the fitness on the optimization

problem. The steps involved in DE algorithm are discussed in this section.
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2.3.1 Differential Evolution Algorithm

Like most of the evolution algorithms (e.g. genetic, simulated annealing), DE is a

population-based optimizer that samples the objective function at randomly chosen

multiple initial points. Preset parameter bounds define the domain from which the NP

vectors in the initial population are chosen. Here, NP is population size. Each vector

is indexed by a number from 0 to NP − 1. Like other population-based methods

[61], DE generates new points that are perturbations of existing points, but these

deviations are neither reflections nor samples from a predefined probability density

function. Instead, DE perturbs vectors with the scaled difference of two randomly

selected population vectors [60].

A general flow chart of DE algorithm is shown in Figure 2.5. The flowchart shows

the steps involved in DE algorithm for the generation of new population. The major

steps involved in DE are population structure, initialization, mutation, cross-over

and selection. The detailed explanations of these steps are given in the following

subsections.

2.3.1.1 Population Structure

DE maintains two population vectors Sx and Sm (see Figure 2.5), each vector contains

NP L- dimensional elements. Here, L is the number of parameters to be determined.

The current population, Sx is composed of vectors Xi,g which is initial population or

updated new population. Each Xi,g vector consists of xj,i,g elements with j varying

from 0 to L-1, where g represents the current generation. The population Sx,g can be

written in equation form as given below:

Sx,g = Xi,g where i = 0, 1, · · · , NP − 1 and g = 0, 1, · · · , gmax

Xi,g = xj,i,g where j = 0, 1, · · · , L− 1 (2.6)
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1) Choose Target Vector and Base Vector

2) Random choice of two Population Numbers Xr1,g and Xr2,g

3) Compute weighted difference vector

4) Add to a base vector

Figure 2.5: Flow Chart for DE

where, gmax represents the maximum number of iterations that can be done. The ini-

tialization of the population is randomly done; however, the values of each parameter

should be defined within a pre-specified range, defined by lower and upper bounds,

UL and UB, respectively. These bounds define each of the elements in a row. The

elements of these vectors are given by ULj and UBj. Hence, when a random number

is generated between 0 and 1, it is multiplied with (ULj − UBj) and then added to
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ULj to generate a random number between ULj and UBj. Following equation shows

this process:

Xj,i,0 = randj(0, 1).(UBj − ULj) + ULj (2.7)

For first iteration g = 0. The random number generator, randj(0, 1), returns a

uniformly distributed random number between 0 and 1. The subscript, j, indicates

that a new random value is generated for each element [55,60]. Once initialized, DE

mutates randomly chosen vectors to produce an intermediary population, Sm,g, of NP

mutant vectors, Mi,g:

Sm,g = Mi,g where i = 0, 1, · · · , NP − 1 and g = 0, 1, · · · , gmax

Mi,g = mj,i,g where j = 0, 1, · · · , N − 1 (2.8)

Each vector in the current population is then recombined with a mutant to produce

a trial population, Sc,g, of NP trial vectors, Ci,g:

Sc,g = Ci,g where i = 0, 1, · · · , NP − 1 and g = 0, 1, · · · , gmax

Ci,g = cj,i,g where j = 0, 1, · · · , L− 1 (2.9)

2.3.1.2 Mutation

This step is used to create the intermediary mutant population (Sm) consisting of

mutant elements. In differential mutation, difference between two randomly selected

elements from (Sx) are taken and then multiply by a pre-decided scale factor F (usu-

ally range between 0 and 1). Finally, the resultant is added with another randomly

selected element from Sx [55, 60].

Mi,g = X1,g + F.(X2,g −X3,g) (2.10)

2.3.1.3 Recombination or Cross Over

This step is used to create the trial vectors for Sc population. It complemented

the mutation step. Crossover basically mixes up the two populations based on the
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crossover probability (Cr). It is pre-defined by the user like F and decides which

of the two populations Sx or Sm supplies the trial vector. If the random number

generated in the range (0, 1) is less than Cr, then the mutant element is copied

otherwise the element from Sx is selected. In addition, the trial parameter with

randomly chosen index, randj, is taken from the mutant to ensure that the trial

vector does not duplicate Xi,g.

Cj,i,g = mj,i,g if randj(0, 1) ≤ Cr or j = jrand

= xi,j,g otherwise

 (2.11)

2.3.1.4 Evaluation

The frequency response of the initial coefficient set is calculated before and after

recombination. If the filter response is improved by introducing the mutant solution

vector, then the mutant vector is replaced with the older vector. In each iteration, a

new candidate is considered for replacement by a predetermined order. When all the

elements are checked for replacement, the new modified set constituted one generation

of samples. The above steps are repeated for a large number of generations, until the

coefficient sets obtained, fell within an error margin level set by the user.

2.3.1.5 Selection

Selection is the last step of a particular iteration or generation. Firstly, the cost

values or the objective function values of the trial vector and the target vectors are

compared. Secondly, the next-generation target vector consisted of either of these

depending on which one had a lower value. Once, the new population is selected, the

complete process starts again [55,60].

Xi,g+1 = Ci,g if f(ci,g) ≤ f(xi,g)

= Xi,j,g otherwise

 (2.12)
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2.3.2 DE algorithm for FIR filter

The flowchart for the proposed methodology is shown in Figure 2.6. Apart from the

given filter specifications, the DE parameters, maximum number of iterations (IMax),

weight factor (F ) in the range (0,1), optimum cost value (OCV ) and population size

of coefficient vectors (NP ) are specified in this method. The order of the filter N is

obtained using Kaiser’s order formula [75].

At the first iteration of the algorithm, the initial filter coefficient set are selected

using equation (2.7). For I < IMax, mutation and crossover are computed using equa-

tion (2.10) and equation (2.11); resulting in a new set of coefficient vectors generated.

For this new set of coefficients, scaling factor is calculated for each set. Scaling factor

(sf) is the ratio of 2B to the maximum valued coefficient. Here B is the word length

of the filter coefficient. The quantized filter coefficients can be obtained by multiply-

ing each set of coefficients with 2B and its respective sf . The number of SPT terms

are evaluated for each set of coefficients described in [11]. The total adder cost is

estimated after applying the CSE elimination algorithm in [76]. By comparing with

the ideal response of the filter with a new set of coefficient, objcost is evaluated using

equation (2.14) and compared with the OCV . The algorithm ran until the objcost

became less than OCV or the maximum number of iterations occurred. The FIR

filter optimization problem for finding the filter coefficients is described as follows:

minimize : E = δPR − δPD

subject to: 1− δP ≤ H(ω) ≤ 1 + δP for ω ε [0, ωP ]

− δS ≤ H(ω) ≤ δS for ω ε [ωS, π]

 (2.13)

where, δPD is the difference between the ideal peak pass band and peak stop

band attenuation and δPR is the difference between the peak pass band and peak

stop band attenuation obtained in each iteration. The error function E defined in
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Start

Specify filter specs: N , B, ωP , ωS, δP , δS and DE parameters: F , IMax, NP , OCV

Initial Population

if I < IMax

CrossoverMutation

Filter Coefficient set obtained

Quantization of Coefficients

Conversion of coefficients to CSD

Common Subexpression Elimination

Adder Cost and objcost Estimation

if objcost < OCV

Terminate Algorithm

Yes

Yes

No

No

Figure 2.6: DE Flow Chart for FIR Filter
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equation (2.13) can be obtained in each iteration. The objcost is evaluated based as

given in equation (2.14).

objcost = objcost + η for E < 0

= objcost for E ≥ 0

 (2.14)

Here, η is a real number. The objcost value should be 0 for the first iteration. By

using equation (2.13), E will be evaluated. If δPR satisfies the filter specifications,

the value of E will be either positive or zero, else the value of E is negative. The

objcost remains identical if E is positive or zero, else a small value η will be added to

objcost. This objcost is compared with OCV and terminates the algorithm if the value

reaches to OCV or less, else DE starts with new population and follows the identical

procedure. Once, algorithms terminate, DE finds the filter coefficients. In the next

section, the algorithm is explained through an example.

2.4 Design Illustration and Simulation Results

In this section, the proposed DE algorithm is illustrated with an example. The sym-

metric FIR filter is designed using DE algorithm in the transposed direct form. The

benchmark filter specifications are taken from literature [36, 41, 43]. The normalized

pass band and stop band edge frequencies are 0.3π and 0.5π respectively. The pass

band and stop band, both had equal ripple value of 0.00316. The δs value in dB is -50

dB. The filter is implemented for different word length and order. The specifications

of the filter are defined in the objective function as defined in equation (2.14).

As mentioned in the previous section, the major steps in a DE algorithm for FIR

filter design include initialization, mutation, recombination, evaluation, and selection.

Among all steps, only initialization and mutation for the FIR filter are discussed

in this section. Rest of the steps are performed as discussed in section 2.3. The
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comparisons are based on the best published ones [36,41,43]. The results are compared

in terms of SPT terms, area, power and delay.

2.4.1 Initialization and Population

An initial set of the filter coefficients is constructed using the following expression.

Fcoefficient = UL+ rand(1,
N + 1

2
). ∗ (UB − UL) (2.15)

where UL, UB are the lower and upper limits of the filter coefficients and are given

as [-1,1]. The population NP , is considered as ten times that of the number of filter

coefficients [77]. Hence, NP is given as.

NP = 10 ∗ Fcoefficient (2.16)

2.4.2 Mutation

The mutant factor ’F ’ would have a range from (0, 1). The significance of mutation

was explained in section 2.3. The F value is chosen in such a way that it mutates

the population vectors effectively and converges to a better solution. Since DE is

sensitive to F , selection of F required manipulations. Initially, the FIR filters are

implemented for different values of F . Three sets of population vectors were obtained

for each value of F varying from 0.1 to 1 with the number of iteration as I1 = 25, I2

= 50 and I3 = 100. Then for each F value, three frequency responses were obtained

and plotted (Figures 2.7, 2.8 and 2.9).

In Figure 2.7(a) the F value is chosen as 0.1, and the magnitude responses are

shown for I1, I2, I3. The stop band and pass band attenuation for the above filter

were approximately 50 dB and 0 dB, respectively. However, for any value of the I1, I2

and I3 the responses of the filter are not matching with the ideal filter characteristics.

This suggests that the F chosen here is unsuitable for filter implementation. Similar
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Figure 2.7: Magnitude Responses of LPF for Mutant Factor ‘F = 0.1, 0.2, 0.3’
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(a) F = 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

 

 

I1=25
I2=50
I3=100
Remez

(b) F = 0.5
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Figure 2.8: Magnitude Responses of LPF for Mutant Factor ‘F = 0.4, 0.5, 0.6’
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(a) F = 0.7
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(b) F = 0.8
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(c) F = 0.9
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Figure 2.9: Magnitude Responses of LPF for Mutant Factor ‘F = 0.7, 0.8, 0.9, 1’
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process is repeated for different values of F in step of 0.1 starting from 0.2 to 1 and

plots obtained in each case for I1, I2 and I3 are shown in Figures 2.7, 2.8 and 2.9.

Close examination of the magnitude response plots, F =0.6 and I3 = 100 approaching

best towards the ideal response. Hence, the value of F is chosen as 0.6 by comparing

responses for different values of F . Once the mutant factor was chosen, DE mutated

and recombined the population to produce NP population trail set of filter coefficients.

2.4.3 Design of FIR Filter using DE Algorithm

The transposed direct-form FIR filter is implemented based on the equation in (2.17).

Y (n) =
N−1∑
k=0

hk ∗X(n− k) (2.17)

where, X(n) represents the input to the filter, h0, h1, · · · , hN−1 represents filter co-

efficients of length N , and Y (n) represents the filter output. The transposed direct

form of filter implementation, shown in Figure 2.3 consists of multipliers, adders and

delay elements.

The adders in the FIR filter realization can be categorized into structural adders

(SA) and multiplier adders (MA). The SA is used to add the input signal X(n),

multiplied by filter coefficient, along with stored value in delay element. Hence, the

adder cost of SA became equal to order of the filter. The MA are used to obtain the

product value of the filter coefficients multiplied by input X(n), by the shift and add

approach. The number of adders in a multiplier used for coefficient multiplication is

dependent on the number of non-zero bits present in the filter coefficients. In brief, the

adder cost of MA depends on the number of SPT terms present in filter coefficients.

However, the number of delay elements in FIR filter cannot be reduced, thus, the

complexity of FIR filters is largely dependent on adders required to implement the

filter coefficients. In this study, the objective of the DE algorithm is to design an FIR
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Table 2.1: FIR filter Coefficients

Filters h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14

Remez -2 -9 1 19 16 -23 -49 1 87 70 -96 -212 1 543 1024

Xu [36] -11 0 25 23 -32 -70 0 128 106 -140 -316 0 814 1536 –

Yu [41] -1 -4 0 9 8 -11 -24 0 44 36 -48 -108 0 277 523

Shi [43] -2 -8 0 17 16 -21 -46 0 84 68 -92 -205 0 527 994

DE1 -1 -4 0 8 8 -8 -20 0 36 28 -45 -96 0 243 458

DE2 -1 -2 0 4 4 -4 -10 0 18 14 -23 -48 0 122 230

DE3 0 6 6 -12 -26 0 49 40 -66 -142 0 372 704 — —

filter with reduced hardware complexity without compromising on the filter response.

Hence, the objective function of the DE algorithm should calculate the filter coefficient

set in such a way that it would have the minimum number of SPT terms, resulting in

reduction of the number of MA. The FIR filters designed using DE algorithm named

as DE1, DE2 and DE3 are compared with methods proposed in [36], [41], [43]. The

coefficients of DE1, DE2 and DE3 along with Remez, Xu [36], Yu [41] and Shi [43]

are listed in Table 2.1.

The properties of the designed filters are summarized in Table 2.2, where N is

the order of the FIR filter (i.e., number of taps), WL represents the word length of

the filter coefficients, Asb represents stop band attenuation (in dB), SPT is the total

number of SPT terms presented in a filter coefficient set. MA and SA are numbers

of multiplier adders and structural adders, respectively, required to implement filter

coefficient set. The number of MA are obtained after applying CSE elimination

following the method described in [76]. SA is calculated using non-zero coefficient

values presented in the filter coefficient set. TA is the total adder cost obtained by

adding MA and SA.
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Table 2.2: Properties of the designed filters

Filters N WL Asb(dB) SPT SPT gain(%) MA SA TA TA gain(%)

Remez 30 10 -50.13 66 10 30 40

Xu [36] 28 12 -50.05 62 6.06 8 22 30 25

Yu [41] 30 10 -51.74 56 15.151 6 23 29 27.5

Shi [43] 30 10 -51 60 9.09 6 23 29 27.5

DE1 30 9 -52.96 50 24.242 7 23 30 25

DE2 30 8 -51.74 46 30.303 7 23 30 25

DE3 26 10 -50.76 52 21.212 8 19 27 32.5

The magnitude response of DE1, DE2, DE3 filters and the other filters by Remez,

Xu [36], Yu [41] and Shi [43] are plotted in Figure 2.10. The magnitude responses

of DE1, DE2, and DE3 are plotted in Figure 2.11 for the filter coefficients obtained

using DE algorithm.

The coefficients for the Remez algorithm are obtained by Remez function in MAT-

LAB [78] with filter length N = 30. The magnitude response of Remez filter in Figure

2.10 shows that the Remez filter satisfies Asb = -50 dB attenuation with WL = 10.

The SPT terms of the quantized coefficients can be obtained using binary to CSD

method by Parhi [11]. The MA cost is estimated using the method described in [76].

Table 2.2 shows the total number of SPT terms, MA, SA, and TA. The SPT term

reduction can be achieved either by finding a new set of coefficients or by reducing

WL without compromising on the filter response. In this proposed work, the DE

algorithm generated various coefficient sets for which the filter responses are verified

for different WL. With N =30 and WL = 10, Remez filter satisfied -50 dB stop band

attenuation (see Figure 2.10). The DE1 filter is designed choosing N = 30 and WL

= 9. By using the DE parameter mutant factor ’F ’ and by generating population

NP using equation (2.16), DE evaluates the objective function in every iteration with
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a new set of filter coefficients. The objective function checks the filter response and

evaluates the error function E as in equation (2.13). After all iterations, DE gave the

coefficient sets, satisfying the magnitude response. By using binary to CSD method,

the SPT terms are evaluated for each coefficient set. The objcost and adder cost esti-

mation are computed by applying CSE elimination. Finally, a filter coefficient set is

chosen, which contained a minimum number of both SPT terms and TA.

Figure 2.11, shows that DE1 filter achieves -50 dB Asb value as per the filter

specifications. Table 2.2 shows the number of SPT terms obtained for Remez and

DE1, and these values are 66 and 50, respectively. Hence, the proposed approach

achieved a gain of 24.42% in SPT terms as compared to Remez algorithm. The gain

in SPT terms and adder cost are compared with methods [36,41,43] as shown in Table

2.2. However, the TA gain is not much better than Xu [36], Yu [41] and Shi [43].

The filter named DE2 is designed by further reducing the WL to 8 while keeping N

constant. The DE2 filter response also achieved -50 dB Asb as shown in Figure 2.11.

The numbers of SPT terms (shown in Table 2.2), are reduced as compared to DE1

without compromising on the magnitude response. After CSE elimination, the adder

cost is estimated for DE2, and found to be same as DE1. The adder cost can be

reduced by optimizing the order of the filter N. Among MA and SA; the cost of SA

can be reduced either by having a zero coefficient value or by reducing N value. If

coefficient value is zero, the product value is also zero; hence, SA is not required to

add to the stored value in delay element. However, it is always impossible to have

more coefficient values to be zero, hence by reducing N; the SA reduction can be

achieved. In the proposed work, DE1 and DE2 are designed with N = 30; however,

DE3 is designed with N = 26 with WL = 10 for reducing the adder cost further. The

SPT gain for DE3 is 21.2% as compared to Remez (shown in Table 2.2); however, the

SPT gain is slightly reduced as compared to DE1 and DE2. The gain in TA is much

more improved as compared to DE1 and DE2 as well as Remez. It is observed that,
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Table 2.3: Synthesis Results of the designed filters

Filters
Area Area gain Delay Delay gain Power Power gain PDP PDP gain

(µm2) (%) (ns) (%) (mW ) (%) (%)

Remez 98214 —— 7.456 —— 5.593 —— 41.7 ——

Xu [36] 81793 16.719 7.873 -5.592 4.896 12.462 38.546 7.563

Yu [41] 79867 18.68 7.331 1.676 4.605 17.664 33.759 19.042

Shi [43] 77498 21.092 8.229 -10.367 4.413 21.097 36.314 12.914

DE1 77947 20.635 7.353 1.381 4.115 26.425 30.257 27.439

DE2 80490 18.046 7.019 5.861 4.213 24.673 29.571 29.086

DE3 76373 22.238 6.976 6.437 4.477 19.953 31.231 25.104

the proposed filters have comparable performance with higher TA gain.

The filters described in Table 2.2 are implemented using Verilog HDL [79]. The

functionality of the filters is verified in Modelsim. After completion of the function-

ality, these filters are synthesized using Cadence RTL compiler. The synthesis is

performed with a standard application-specified integrated circuit design flow using

the UMC 90 nm standard cell library. The circuits are synthesized with a consistent

time constraint of 10 ns. The post synthesis results in terms of area, delay, power

and power-delay-product (PDP ) are shown in Table 2.3. The gain in area, delay,

power and PDP are measured and compared over the Remez implementation is also

given in the same table. From Table 2.3, it shows that the gain in delay and area

are maximum for DE3 and are 22% and 6% respectively as compared to Remez. The

power consumed is minimum for DE1 and thus it has a maximum power gain of 26%.

However, the delay of DE2 is similar to that of DE3 and the power consumed of DE2

is similar to that of DE1. Hence, PDP is minimum for DE2 with a maximum gain

of 29% when compared to Remez.
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2.5 Conclusion

In this chapter, an approach for the design of FIR filter with reduced number of SPT

terms using the evolutionary algorithm is presented. The DE algorithm is used as

the evolutionary algorithm for optimizing the filter design. This proposed approach

evaluated the filter coefficient sets followed by CSE elimination and determined the

number of SPT terms and total adder cost. The experimental results of the proposed

approach showed better improvements in area, delay, and power gain in comparison

to recent reported design methods. One of the proposed filter DE2, showed maximum

PDP gain of 29% than those designed using Remez algorithm. The results of this

study may lead to more improvement in filter design, whose coefficients are fixed.
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Chapter 3

RNS-Based Fixed Coefficient FIR

Filters

Residue number system (RNS) has been preferred in many digital signal processing

(DSP) systems for achieving higher clock frequency. The main advantage of RNS is

that a large number can be represented by a set of small numbers, which improves

the speed of arithmetic operations such as addition and multiplication. However,

the disadvantages of the RNS arithmetic system have been binary to RNS, RNS

to binary conversions and these conversions are computationally intensive and are

time consuming circuits. It is understood from literature that the RNS arithmetic

circuits are area and power consuming circuits. There has been a continuous search

for overcoming these difficulties.

In this chapter, the implementations of RNS-based fixed coefficient FIR filters are

discussed. This chapter is organized as follows: Introduction on RNS and basic RNS

arithmetic circuits are discussed in section 3.1. RNS based FIR filters are discussed

in section 3.2. The selection of the moduli set for designing the FIR filter is discussed

in section 3.3. In section 3.4, modular multiplication for the selected moduli set is

described. Section 3.5 describes the proposed filter architecture with an example. In

section 3.6, the implementation methodology for the proposed filter architectures and

their synthesis results are summarized. Functional verification of the implemented

filters using Altera DSP builder is also discussed in the same section, followed by the

conclusions in section 3.7.

38



Chapter 3. RNS-Based Fixed Coefficient FIR Filters

Forward Conversion

X Y

x3 x2 x1 y3 y2 y1

Reverse Conversion

z3 z2 z1

Z

Figure 3.1: A Typical RNS based Arithmetic System

3.1 Introduction on RNS

RNS is a technique of representing a binary number by a set of numbers {m1, m2,

m3..., mq} called moduli. Here, q is the size of moduli set [80]. These moduli values

are relatively prime to each other. Any number can be uniquely represented in the

given dynamic range [0,M − 1] using such moduli set. The maximum number M , for

a given moduli set is defined using equation (3.1).

M =

q∏
i=1

mi (3.1)

Most widely studied moduli sets employ modulus (mi) as a power of two. Considering

the value of q = 3, the possible moduli sets can be {2k − 1, 2k, 2k + 1} and {2k −

1, 2k, 2k±1 − 1} [81–83]. However, there are several moduli sets, which have larger

than three modulus such as {2k − 1, 2k, 2k+1 ± 1, 2k + 1} [84], where k is an integer.

A typical RNS based arithmetic system with the moduli set {m1, m2, m3} is shown
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in Figure 3.1. The inputs to this system are X, Y and the output from this system is

Z, where Z = X � Y , here � denote arithmetic operations {+,−,×}. In Figure 3.1,

〈x1, x2, x3〉, 〈y1, y2, y3〉, and 〈z1, z2, z3〉 are the residues of binary coded (BC) numbers

X, Y and Z, with respect to the moduli set 〈m1,m2,m3〉. The residues are defined

as x1 = |X|m1
, x2 = |X|m2

, x3 = |X|m3
, y1 = |Y |m1

, y2 = |Y |m2
, y3 = |Y |m3

, and

z1 = |Z|m1
, z2 = |Z|m2

, z3 = |Z|m3
. The above arithmetic operations are performed

in parallel for each modulus as shown below.

Z = X � Y =


z1 = |x1 � y1|m1

z2 = |x1 � y1|m2

z3 = |x1 � y1|m3

The typical RNS arithmetic system shown in Figure 3.1 consists of forward conversion,

arithmetic circuits and reverse conversion. These blocks are discussed in detail within

the following section 3.1.1.

3.1.1 Forward Conversion

The forward conversion circuit is used to find the residues of a BC number. This block

is typically used in RNS immediately after the BC input. The forward conversion for

a j bit BC input X with a well-known moduli set {2k − 1, 2k, 2k + 1} is discussed.

The residues of BC input X are defined as 〈x1, x2, x3〉. The dynamic range for the

above moduli set from equation (3.1) is
[
0, 23k − 2k − 1

]
. The maximum number X

requires 3k bits as shown in equation (3.2). For finding the residues, first divide the

input X into three k bit blocks, B1, B2 and B3 [85, 86] as shown in equation (3.2).

X = x
3k−1

x
3k−2

. . . x
2k︸ ︷︷ ︸

B3

x
2k−1

. . . x
k︸ ︷︷ ︸

B2

x
k−1

. . . x0︸ ︷︷ ︸
B1

= 22kB3 + 2kB2 +B1 (3.2)
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Modulo 
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2k+1

Modulo 

Adder 

x3

~B2+1

Figure 3.2: Forward Converter

The residues 〈x1, x2, x3〉 are obtained as given in equation (3.3).

x1 = |B1 +B2 +B3|2k−1

x2 = |B1|2k

x3 = |B1 −B2 +B3|2k+1

 (3.3)

The following example 3.1.1 shows the conversion of input X into residues.

Example 3.1.1. Consider k = 3, the moduli set {2k − 1, 2k, 2k + 1} = {7, 8, 9}. For

the input X = 351d = 101011111b, the decimal values B3, B2, B1 are 5, 3 and 7

respectively. Substituting B1, B2 and B3 values in equation (3.3), the residues are

obtained as follows:

x1 = |7 + 3 + 5|7 = 1

x2 = |7|8 = 7

x3 = |7− 3 + 5|9 = 0

The forward converter circuit implemented using equation (3.3) is shown in Figure

3.2. The residue x2 is the direct value of B1. The residues x1 and x3 are calculated

with two-stage modulo adders. The modulo addition is discussed in the following

section 3.1.2.
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Adder
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S’

Adder

m~
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S’-m

Cout

|X+Y|m

Figure 3.3: Basic Modulo Adder

3.1.2 Modulo Addition

The modulo-m addition of two numbers X and Y , where 0 ≤ {X, Y } < m is defined

in [87] which is given in equation (3.4).

|X + Y |m =

{
X + Y if X + Y < m

X + Y −m otherwise
(3.4)

The modulo adder (MA) using equation (3.4) can be implemented as shown in

Figure 3.3. First, it produces sum S ′ by adding X and Y . If S ′ falls within modulus

value m, then S ′ is selected, else m is subtracted from S ′ to fall within m value.

Hence, two adders and a 2:1 multiplexer is required for implementing MA. The 2k

modulo adder is same as BC adder with carry-out neglected. Hence, only 2k − 1 and

2k + 1 modulo adder circuits are discussed.
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Figure 3.4: 2k − 1 Modulo Adder

3.1.2.1 2k − 1 Modulo Addition

In 2k − 1 modulo addition, the resultant sum should be within the range 0 ≤ 2k − 2.

The design of 2k−1 MA is based on the following three cases given in equation (3.5).

|X + Y |2k+1 =


X + Y if 0 ≤ X + Y < 2k − 1

0 if X + Y = 2k − 1

X + Y −m 2k − 1 < X + Y ≤ 2k+1 − 4

(3.5)

Based on the three cases mentioned above, the 2k − 1 MA circuit can be imple-

mented as shown in Figure 3.4. In Figure 3.4, both X and Y are added with Cin as

‘0’ and ‘1’ at the same time. The resultant sums are denoted as S1 and S2. The

sum value S1 is correct for the first case given equation (3.5). For the second case, a

signal P is generated by bit-wise AND of k bit S1. If P = 1, the resultant sum S1

is equal to 2k − 1 and needs to be subtracted from 2k − 1. In third case, if Cout = 1,

which means that S1 exceeds 2k−1 and hence 2k−1 needs to be subtracted from S1.

In second or third case, subtraction is basically adding a ‘1’ to the least significant
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Adder1 Adder2 2:1 Multiplexer
0 1 Sel 0

X 0 1 0 X 0 1 0 Sum S1
Y 0 1 1 Y 0 1 1

0 1 0 0 1 1
S1 1 0 1 S2 1 1 0
P 0

C
in

C
in

C
out

C
out

Figure 3.5: 2k − 1 MA Example for Case 1

Adder1 Adder2 2:1 Multiplexer
0 1 Sel 1

X 0 1 1 X 0 1 1 Sum S2
Y 1 0 0 Y 1 0 0

0 0 0 1 1 1
S1 1 1 1 S2 0 0 0
P 1

Cin Cin

C
out

C
out

Figure 3.6: 2k − 1 MA Example for Case 2

bit (LSB) of the sum S1. This is same as adding X and Y with Cin = ‘1’ which is

S2. The 2:1 multiplexer selects the correct Sum value based on the Sel value. The

Sel value is obtained by bit-wise OR of P and Cout. The 2k − 1 MA is demonstrated

with following example 3.1.2 for the three cases mentioned above.

Example 3.1.2. Consider k = 3, and hence the modulus m = 23 − 1 = 7.

Case 1: Consider X = 2d = 010b and Y = 3d = 011b. The addition steps of these

two numbers are shown in Figure 3.5. The Cout and P signals of Adder1 are

‘0’ which results Sel signal of 2:1 multiplexer is ‘0’. Hence, the resultant Sum

from 2:1 multiplexer is S1 = 101b = 5d.

Case 2: Consider X = 3d = 011b and Y = 4d = 100b. The addition of these two

numbers are shown in Figure 3.6. The Cout and P signals of Adder1 are ‘0’ and

‘1’ which results Sel signal of 2:1 multiplexer is ‘1’. Hence, the resultant Sum

from 2:1 multiplexer is S2 = 000b = 0d.

Case 3: Consider X = 6d = 110b and Y = 6d = 110b. The additions of these two

numbers are shown in Figure 3.7. The Cout and P signals of Adder1 are ‘1’ and
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Adder1 Adder2 2:1 Multiplexer
0 1 Sel 1

X 1 1 0 X 1 1 0 Sum S2
Y 1 1 0 Y 1 1 0

1 1 0 1 1 0
S1 1 0 0 S2 1 0 1
P 0

Cin Cin

C
out

C
out

Figure 3.7: 2k − 1 MA Example for Case 3

‘0’ which results Sel signal of 2:1 multiplexer is ‘1’. Hence, the resultant Sum

from 2:1 multiplexer is S2 = 101b = 5d.

3.1.2.2 2k + 1 Modulo Addition

The 2k + 1 modulo addition is discussed in this section. In 2k − 1 modulus, the

sum of two numbers exceeds the modulus value, whenever there is a carry out signal.

However, in case of 2k + 1 modulus it is difficult to find out whether a sum exceeds

the modulus value or not. For k =3, the modulus 2k + 1 is 9. Consider two numbers

X and Y within this modulus are 6 = 0110b and 7 = 0111b respectively. The addition

of X and Y is 13 = 1101b without any carry-out, and this value exceeds modulus

value 9. Another difficulty is to obtain the residue value of 2k +1 with same modulus,

which is ‘0’Ċonsider two numbers 6 = 0110b and 3 = 0011b, the addition is 9 = 1001b

for which the residue should be ‘0’ with respect to the modulus 9.

The 2k + 1 MA shown in Figure 3.8 is implemented based on the cases given in

equation (3.6) [87].

|X + Y |2k+1 =


A if A ≥ 0

2k + |A+ 1|2k if A = -1

|A+ 1|2k otherwise

(3.6)

In equation (3.6), A is defined as X + Y −m, where m is 2k + 1. Three different

cases are considered for 2k + 1 modulo addition as given in equation (3.6). In the
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Figure 3.8: 2k + 1 Mod Adder

first case, if the value of A is positive or zero, the same value is retained as sum

value. Second case is considered when sum of two numbers is equal to 2k. Third

case is considered for A value less than zero. In all three cases, first A has to be

calculated. Hence, a carry save adder (CSA) is used to add the three values X, Y

and m̃ as shown in Figure 3.8, where m̃ is the two’s complement of m. The outputs

of CSA are defined as S and C respectively. The S and C values are added with

Adder1, which produces sum S1, carry-out Cout and P . The P value is obtained by

bit-wise AND of S1 values. The most significant bit (MSB) of final sum Sum is P

value only. To obtain the remaining bits of Sum, Adder2 is used by adding S1 and

C1 values as shown in Figure 3.8. The value of C1 is equal to P | ∼ Cout (‘|’ bit-wise

OR operation), where ∼ Cout is the one’s complement of Cout. The three different

cases in equation (3.6) are demonstrated with the following example 3.1.3.
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CSA Adder1 Adder2
mm 0 1 1 1 S 0 1 1 1 S1 1 1 1
X 1 0 0 0 C 1 0 0 0 0
Y 1 0 0 0 S1 0 1 1 1 1 1 1
S 0 1 1 1 1
C 1 0 0 0 P 0

C1=P | ~C
out

Sum(MSB-1 to LSB)

C
out

Figure 3.9: 2k + 1 MA Example for Case 1

CSA Adder1 Adder2
mm 0 1 1 1 S 0 0 1 1 S1 1 1 1
X 0 1 1 0 C 0 1 1 0 1
Y 0 0 1 0 S1 1 1 1 1 0 0 0
S 0 0 1 1 0
C 0 1 1 0 P 1

C1=P | ~C
out

Sum(MSB-1 to LSB)

C
out

Figure 3.10: 2k + 1 MA Example for Case 2

Example 3.1.3. Consider k = 3, which results m = 2k + 1 = 9. The 2’s complement

of m is represented as m̃ and this value in binary is 0111.

Case 1: In this case, the typical values of X and Y are considered for modulo addi-

tion. Consider X = 8d = 1000b, Y = 8d = 1000b and m̃ = 0111b. The addition

of these two numbers are shown in Figure 3.9. In the first-stage, CSA produces

the output S and C as 0111 and 1000 respectively. In second stage S and C

values are added using Adder1 by left shifting the C value by one bit. This

results three outputs S1, Cout and P as 0111, ‘1’ and ‘0’ respectively. Here the

value of P itself is MSB of Sum. In third stage, Adder2 adds the S1 with C1.

Here, MSB is not considered for addition, and the carry-out from this adder

is always neglected. This results in Sum as 111. By appending P in MSB to

Sum, the final sum value is 0111b = 7. By referring to the first case in equation

(3.6), the value of A is obtained as A = 8+8−9 = 7 and the same are obtained

with adder circuit shown in Figure 3.8.

Case 2: In this case, consider the values of X and Y such that the sum of these

two numbers is equals to 2k. Consider X = 6d = 0110b, Y = 2d = 0010b and

m̃ = 0111b. The addition of these two numbers are shown in Figure 3.10. In the
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CSA Adder1 Adder2
mm 0 1 1 1 S 0 0 0 1 S1 1 0 1
X 0 0 1 0 C 0 1 1 0 1
Y 0 1 0 0 S1 1 1 0 1 1 1 0
S 0 0 0 1 0
C 0 1 1 0 P 0

C1=P | ~C
out

Sum(MSB-1 to LSB)

C
out

Figure 3.11: 2k + 1 MA Example for Case 3

first-stage, CSA produces the output S and C as 0011 and 0110 respectively.

The S1, Cout and P of Adder1 are obtained as 1111, 0 and 1 respectively. Hence,

the MSB of Sum is ‘1’Ṫhe Sum from Adder2 is obtained as 000. By appending

P in MSB to Sum, the final sum value is 1000b = 8. By definition the value of

A is obtained as A = 6+2−9 = −1, which satisfies the second case in equation

(3.6). The sum will be obtained in such a case as 23 + |6 + 2 − 9 + 1|8 = 8

as given in equation (3.6), which is same as the sum obtained from the adder

circuit shown in Figure 3.8.

Case 3: In this case, consider X and Y as 2 = 0010b and 4 = 0100b respectively.

The value of A is obtained as 2 + 4 − 9 = -3, which satisfies the third case in

equation (3.6). In this case, the sum is obtained as | − 3 + 1|8 = 6. The same

adder circuit shown in Figure 3.8 is used for this case also and the values for

each stage are shown in Figure 3.11. The MSB of Sum is obtained as ‘0’ and

the remaining bits from Adder2 are obtained as 110, which result the final sum

as 0110b = 6.

In this section the design of 2k±1 modulo adders are discussed and demonstrated

with the examples. Another important arithmetic operation in RNS is modulo mul-

tiplication, which plays a significant role in FIR filter design and will be discussed in

next section 3.1.3.

3.1.3 Modulo Multiplication

Modular multiplication of RNS is essentially computing the product of two numbers

and then reducing it to the modulo value m. The basic modular multiplication of
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Figure 3.12: Basic Modulo Multiplier

RNS is shown in Figure 3.12. As in the natural binary number system (BNS), in

RNS also first partial products have to be generated. However, in RNS the values of

these partial products should be in the range of modulo value m. In the next stage,

these partial products are added with the help of CSA and modulo adder. The 2k±1

modulo multiplications are discussed in the following sections.

3.1.3.1 2k − 1 Modulo Multiplication

The circuit for a k bit 2k−1 modulo multiplier is shown in Figure 3.13. The maximum

residue of 2k−1 is 2k−2, and it can be represented by using k bit binary value. Hence,

the multiplier size for these moduli is k bit. The steps in the modular multiplication

are as follows:
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Figure 3.13: k Bit 2k − 1 Modulo Multiplier

• Generate partial products.

• Obtain sum S and carry C from CSA stages.

• Add S and C using 2k − 1 modulo adder.

The binary representation of X and Y are given as

X = x
k−1
x

k−2
· · ·x1x0

Y = y
k−1
y
k−2
· · · y1y0 (3.7)
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The partial products PP0,i are generated for every Y bit value as given in equation

(3.8)

PP0,i =
k−1∑
i=0

X × y
i

(3.8)

where, i is an integer varying from 0 to k − 1.

The multiplication of two numbers within the modulus 2k − 1 is given as

|X × Y |2k−1 =

∣∣∣∣∣
k−1∑
i=0

2iPP0,i

∣∣∣∣∣
2k−1

= |2k−1PP0,k−1 + 2k−2PP0,k−2 · · · 22PP0,2

+ 21PP0,1 + 20PP0,0|2k−1 (3.9)

In equation (3.9), the partial products are scaled by the powers of 2. In such cases,

the values of partial products may exceed to the modulus value 2k − 1. Hence, these

values to be reduced to modulus value and then given to the CSA stages. The binary

representation of partial product can be defined as

PP0,i = PP0,i,k−1PP0,i,k−2 · · ·PP0,i,1PP0,i,0 (3.10)

The modulo power of 2 is defined as

2nPP0,i = PP0,i,k−n−1 · · ·PP0,i,0PP0,i,k−1 · · ·PP0,i,k−n (3.11)

where, n is an integer. Consider for k = 3, the PP0,i = PP0,i,2PP0,i,1PP0,i,0. Now

by using equation (3.11), the 22PP0,i is obtained as PP0,i,0PP0,i,2PP0,i,1. This shows

that 2n scaling for 2k − 1 modulus is simply left circular shifting the MSB values of

partial product and this shifting is simply the hardwired shift. These shifted partial

product values are given to CSA stages to obtain the S and C values as shown in

Figure 3.13. Finally, these two values are added using 2k − 1 modulo adder. Here, C

will be shifted by one bit as in equation (3.11).
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Figure 3.14: k + 1 Bit 2k + 1 Modulo Multiplier

3.1.3.2 2k + 1 Modulo Multiplication

The 2k + 1 modulo multiplier is shown in Figure 3.14. The multiplier is designed

based in the following cases:

|X × Y |2k+1 =



∣∣Y + 2
∣∣
2k+1

if X = 2k∣∣X + 2
∣∣
2k+1

if Y = 2k

1 if X = 2k and Y = 2k

|X × Y |2k+1 otherwise

(3.12)

The above cases are implemented using the circuit shown in Figure 3.14 [88]. The

2k correction circuit is designed either by combinational circuit or using an LUT
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approach. The 2k correction unit is required to calculate the redundant product as

given in equation (3.13).

(P ′c, P
′
s) =


(
Y , 1

)
if X = 2k(

X, 1
)

if Y = 2k

(0, 0) if X = 2k and Y = 2k

(3.13)

The partial products generated are similar as in 2k − 1 modulus. However, the 2n

scaling in these moduli is slightly different. The 2n scaling is defined as

2nPP0,i = PP0,i,k−n−1 · · ·PP0,i,0PP0,i,k−1 · · ·PP0,i,k−n (3.14)

The inverted MSB values are placed in LSB of partial products. The shifted partial

product values also exceeds the 2k + 1 modulus. Hence, a correction term is required

to get the correct value. And finally these values are added with 2k +1 modulo adder.

The arithmetic circuits (addition and multiplication) of 2k + 1 modulus involves

complex logic and requires more hardware as compared to 2k − 1 modulus. It can be

observed that the arithmetic computations of each modulus are totally independent.

Hence, if a large number is represented with a moduli set having a small value of k,

the arithmetic operations will be faster resulting higher clock frequency.

3.2 RNS Based fixed coefficient FIR Filters

Several techniques are proposed in literature for RNS-based FIR filter implementa-

tion [89–96]. All these filters were implemented using {2k − 1, 2k, 2k + 1} moduli set.

The 2k + 1 modulo multiplication and addition requires larger hardware as compared

to 2k − 1, 2k modulus. In [92, 93], the RNS-based FIR filters were implemented us-

ing distributed arithmetic (DA)approach. In [92], specific moduli set was used to

implement the RNS-DA based FIR filters. A low-power RNS-based FIR filter was

proposed by Wang et al. [93]. This method reduces the size of the reverse converter.
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The lookup table (LUT) partition technique was also presented by Wang, to reduce

the size of the memory. In DA-LUT approach, the inner product values are pre-

computed and are stored in RNS form. The required product values are accessed

serially from DA-LUT. These values are shifted and added in modular arithmetic to

obtain the complete output. The modulo shift addition involves complex logic cir-

cuits. The concepts of inner product computations and its use in DA based filters

were explained in [96–101]. The transfer function of an FIR filter is expressed as

Y =
N−1∑
l=0

hl ×Xl (3.15)

It is assumed that the filter coefficients hl are fixed values. The input with N

entries are represented as Xl = [XN−1 · · ·X1X0], each of j bit length. The input

entry Xl with binary weights can be expressed as follows:

Xl =

j−1∑
n=0

bln × 2n bln ∈ [0, 1] (3.16)

where bln, is the nth bit of Xl which has binary value either 1 or 0. The 2n represents

the associated weight of the binary bits. By substituting equation (3.16) in equation

(3.15), the filter output Y can be written as

Y =
N−1∑
l=0

hl ×Xl

=
N−1∑
l=0

hl

j−1∑
n=0

bln × 2n (3.17)

By interchanging the order of summations and bringing hl together with binary bits

of Xl

Y =

j−1∑
n=0

{
N−1∑
l=0

hlbln

}
2n (3.18)
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Let f (hlbln) =
N−1∑
l=0

hlbln (3.19)

Hence Y =

j−1∑
n=0

f (hlbln) 2n (3.20)

The function in equation (3.19) contains the values representing the sum of products

with individual binary bit value bln of the input vector Xl. Since for the N number

of coefficients hl values are fixed and these are multiplied with bln, there are 2N

possible combination values based on equation (3.19). In DA approach, these values

are pre-computed and stored in an LUT. These values are accessed serially by giving

the present and past input bits as address to the LUT. The accessed pre-computed

values from LUT are first scaled with 2n, then added and stored in a register. The

FIR filter design with DA approach is demonstrated with example 3.2.1.

Example 3.2.1. Consider a 5th order FIR filter with j = 3 bit from [96]. The filter

equation with coefficients is shown below:

Y [n] = 3X[n] + 11X[n− 1] + 15X[n− 2] + 11X[n− 3] + 3X[n− 4] (3.21)

The coefficients are represented as hl = {h0, h1, h2, h3, h4} = {3, 11, 15, 11, 3}.

The 3 bit input vectors can be represented as follows:

X[n] = X0 = b02b01b00

X[n− 1] = X1 = b12b11b10

X[n− 2] = X2 = b22b21b20

X[n− 3] = X3 = b32b31b30

X[n− 4] = X4 = b42b41b40 (3.22)
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Figure 3.15: FIR Filter Implementation using DA LUT

By substituting the above values in equation (3.18), the output Y [n] is obtained as

Y [n] =
2∑

n=0

{3b0n + 11b1n + 15b2n + 11b3n + 3b4n} 2n

= {3b00 + 11b10 + 15b20 + 11b30 + 3b40} 20

+ {3b01 + 11b11 + 15b21 + 11b31 + 3b41} 21

+ {3b02 + 11b12 + 15b22 + 11b32 + 3b42} 22 (3.23)

From equation (3.19) and equation (3.20), it is evident that the size of DA LUT is

2N . In this example 3.2.1, the filter requires LUT size of 32 as N = 5. The 32 entries

to the LUT are based on the present and past input values. The LUT entries are

shown in Table 3.1. These values are computed based on the equation (3.19).

The FIR filter implementation using the DA LUT is shown in Figure 3.15. The

filter is designed with three basic building blocks. The first one is a DA LUT of size 25

= 32 as shown in Table 3.1. The second block is scaling accumulator, which consists

of 2n scaling, adder and a register and the third block is a clock divider circuit which

is required to reset the accumulator. The address to the LUT is the present input
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Table 3.1: DA LUT For N = 5

Address to LUT Entry Value

0 0 0 0 0 0 0

0 0 0 0 1 h4 3

0 0 0 1 0 h3 11

0 0 0 1 1 h4 + h3 14

0 0 1 0 0 h2 15

0 0 1 0 1 h2 + h4 18

0 0 1 1 0 h2 + h3 26

0 0 1 1 1 h2 + h3 + h4 29

0 1 0 0 0 h1 11

0 1 0 0 1 h1 + h4 14

0 1 0 1 0 h1 + h3 22

0 1 0 1 1 h1 + h3 + h4 25

0 1 1 0 0 h1 + h2 26

0 1 1 0 1 h1 + h2 + h4 29

0 1 1 1 0 h1 + h2 + h3 37

0 1 1 1 1 h1 + h2 + h3 + h4 40

1 0 0 0 0 h0 3

1 0 0 0 1 h0 + h4 6

1 0 0 1 0 h0 + h3 14

1 0 0 1 1 h0 + h4 + h3 17

1 0 1 0 0 h0 + h2 18

1 0 1 0 1 h0 + h2 + h4 21

1 0 1 1 0 h0 + h2 + h3 29

1 0 1 1 1 h0 + h2 + h3 + h4 32

1 1 0 0 0 h0 + h1 14

1 1 0 0 1 h0 + h1 + h4 17

1 1 0 1 0 h0 + h1 + h3 25

1 1 0 1 1 h0 + h1 + h3 + h4 28

1 1 1 0 0 h0 + h1 + h2 29

1 1 1 0 1 h0 + h1 + h2 + h4 32

1 1 1 1 0 h0 + h1 + h2 + h3 40

1 1 1 1 1 h0 + h1 + h2 + h3 + h4 43
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sample X(n) and previous input samples X(n−1), X(n−1), X(n−2), X(n−3) and

X(n− 4). The binary representation of a 3 bit input is given in equation (3.22). The

3 bit input samples considered are shown in Table 3.2. The binary representation of

X(n) is defined as bbn2bbn1bbn0

Table 3.2: Input Samples For FIR Filter

n Input X[n] bbn2 bbn1 bbn0

0 1 0 0 1
1 1 0 0 1
2 2 0 1 0
3 3 0 1 1
4 3 0 1 1
5 5 1 0 1

The inputs are taken serially in DA based filter implementations. One input

sample consists of 3 bits, hence the filter output is available for every three clock

cycles. The number of input samples and clock cycles are represented as n and tcycle

respectively. Initially, all the previous input samples are assumed to be ’0’. For some

n values the procedure for output is described in this example 3.2.1.

For n = 0: For tcycle = 0, the bb00 value ‘1’ is selected from Table 3.2. Hence, the

address to DA LUT is 10000, and from Table 3.1 the corresponding entry ‘3’

is selected and stored in a register. In the next clock, tcycle = 1, the bb01 is ’0’

which generates the address as 00000. The entry for this address is ’0’ and this

value is scaled by 2 and then added with previous value stored in the register.

Since the entry is ’0’, the adder output remains same as 3 and stored in the

register. The same process continues in the third clock cycle. Finally in the

third clock cycle, the filter output is obtained as 3 for n = 0 and tcycle = 2 as

shown in Table 3.3. The step by step execution of this FIR filter for every clock

cycle is shown in Table 3.3. The filter outputs are shown in bold-faced fonts.

The outputs are obtained for every three clock cycles for a 3 bit input sample.
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Table 3.3: Execution of DA FIR Filter

n tcycle X0 X1 X2 X3 X4 DA LUT Scaled Accumulator

0
0 1 0 0 0 0 3 3
1 0 0 0 0 0 0 3+0*2 = 3
2 0 0 0 0 0 0 3+0*4 = 3

1
0 1 1 0 0 0 14 14
1 0 0 0 0 0 0 14+0*2 = 14
2 0 0 0 0 0 0 14+0*4 = 14

2
0 0 1 1 0 0 26 26
1 1 0 0 0 0 3 26+3*2 = 32
2 0 0 0 0 0 0 32+0*4 = 32

3
0 1 0 1 1 0 29 29
1 1 1 0 0 0 14 29+14*2 = 57
2 0 0 0 0 0 0 57+0*4 = 57

4
0 1 1 0 1 1 28 28
1 1 1 1 0 0 29 28+29*2 = 86
2 0 0 0 0 0 0 86+0*4 = 86

5
0 1 1 1 0 1 32 32
1 0 1 1 1 0 37 32+37*2 = 106
2 1 0 0 0 0 3 106+3*4 = 118

The clock divide circuit reset the accumulator for every three clock cycles. The

accumulator reset signal is represented as Acc rst as shown in Figure 3.15.

n = 1: In this case, the input samples are X0 = 001 and X1 = 001. The X1 value

is the input sample in n = 0 case. In every tcycle, the input bits are received

and the corresponding pre-computed values are selected from DA LUT. These

values are added as discussed in n = 0 case. The filter output in this case is

14. Again, the accumulator will be reset, and the present input sample will be

used in next case.

n = 2 to 5: For n = 2 to 5 the outputs of the filter will be obtained with the same

procedure discussed in n = 0 and 1 cases. For n = 4, the filter has all the

previous and present inputs X0, X1, X2, X3 and X4 as 3, 3, 2, 1 and 1. The filter

output for n = 4 and tcycle = 2 is obtained as 86 and is shown in Table 3.3.

This can be verified by substituting the filter coefficients and inputs in equation

(3.15).
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As the filter receives continuous input, this process remains same for all the input

samples. The throughput of this design is based on the size of the input j. In RNS,

as the large numbers are represented with small moduli sets, thus the throughput

of the system can be improved. Moreover, due to its small size modulo arithmetic

operations, the RNS offers higher clock frequency. Applying RNS to DA approach

with moduli set {2k − 1, 2k, 2k + 1} defined as M1, the filter output is given as

|Y |M1 =

∣∣∣∣∣
j−1∑
n=0

f(hlbln)2n

∣∣∣∣∣
M1

=

∣∣∣∣∣
j−1∑
n=0

|f(hlbln)|M1 |2
n|M1

∣∣∣∣∣
M1

(3.24)

Let f
M1

(hlbln) =

∣∣∣∣∣
N−1∑
l=0

hlbln

∣∣∣∣∣
M1

(3.25)

The filter moduli output is rewritten as

|Y |M1 =

∣∣∣∣∣
j−1∑
n=0

f
M1

(hlbln) |2n|M1

∣∣∣∣∣
M1

(3.26)

In equation (3.26), the values of f
M1

(hlbln) are pre-computed and stored in DA

LUT for each modulus. These values are accessed serially from LUT with the address

as present and previous input samples. However, first it is necessary to convert the

BC input to RNS using a forward converter. DA RNS-based FIR filters are proposed

by various researchers in the past [92,96,102–104]. The standard RNS DA based FIR

filter for each modulus with N = 5 is shown in Figure 3.16. In-spite of the advantages

in RNS, very few works have been reported in DA RNS filter. The major issue in RNS

DA based FIR filter is modulo scaling as given in equation (3.26) which is shown in

Figure 3.16. The modulo 2n scaling for 2k − 1 modulus can be implemented as given

in equation (3.11). However, as described in equation (3.14) the modulo scaling is

difficult to implement with 2k + 1 modulus. In [92] and [104], appropriate filters are
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Figure 3.17: DA RNS FIR Filter

designed for specific moduli set. In [102] a new modular approach with DA principles

was proposed by Lim and Premkumar.

Recently, a new RNS based DA approach for inner product computation was

proposed by Chan and Premkumar in [96]. The modulo 2n scaling issue is well

addressed in [96]. The FIR filter implementation using this RNS DA based inner

product computation is shown in Figure 3.17. The design in Figure 3.17 shows the

filter implementation for one modulus. This design uses thermometer code (TC)

representation for inputs, and one-hot coding (OHC) for modulo addition. The reason

behind the TC representation is due to the availability of RNS encoding based folding

analog-to-digital converter (ADC), which was designed by the same authors [105].

This ADC, converts the analog signal to thermometer code residue (TCR). Hence,

the forward conversion and residue to TC conversion are avoided. However, only

in few cases such as pre-processing filtering, the FIR filter receives the input signal

directly from ADC. Where as in other cases, the filter is used as an intermediate

block, then the input is received from the near by processing units.

In summary, the design in [96] requires forward and TC conversion circuits when

the input signal is not received directly from ADC. The filter shown in Figure 3.17 is

designed with binary code (BC) to TC conversion, accumulator and one-hot residue

(OHR) to BC conversion. The TC refers to the encoding format where the value is
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Table 3.4: Input Samples for RNS DA FIR Filter

n for x1tn Input values x1 = |X[n]|5 x1t

0 1 1 0001
1 1 1 0001
2 2 2 0011
3 3 3 0111
4 3 4 0111
5 5 0 0000

represented with a number of binary ‘1’ bits. For instance, decimal value 4 is encoded

in TC with a dynamic range of 6 as 001111. The decimal zero is encoded as 000000.

The TC encoding is not useful for larger dynamic range. However, TC encoding is

feasible in RNS as the large number is represented with small moduli set. The other

encoding used in [96] is OHC. In OHC, only one 1 bit is asserted for any number. For

instance, decimal value 4 is encoded in OHC with the dynamic range of 6 as 0010000.

The decimal zero is encoded as 0000001. When OHC is used to represent residues, it

is named as one-hot residue (OHR). Only one modulus filter design is demonstrated

with example 3.2.2.

Example 3.2.2. Consider the moduli set
{

2k−1 + 1, 2k, 2k − 1
}

, which is taken from

[96]. For demonstration, 2k−1+1 modulus is considered in this example as it is similar

to 2k + 1 modulus. For k = 3, the modulus is 5. The residues with this modulus are

represented as x1 . The residues of input samples X(n) and its TC encoding values

are shown in Table 3.4. The TC encoded x1 values are represented as x1t.

The size of the LUT in RNS DA filter is also dependent on N value. Hence, 25

pre-computed residues are stored in DA LUT as shown in Table 3.5. The address to

this LUT is present and past input sample residues, represented as x1tn. The x1tn

values are TC encoded as shown in Table 3.4. Initially, the previous input samples

are kept as 0. For n = 0 and tcycle = 0, the first input sample is LSB of 0001, which

is 1. Thus, the address to the LUT is 10000, for which the pre-computed value is 3.

The binary output of DA LUT is represented as b[0]b[1]b[2] as shown in Table 3.6.

These are the select signals for OHR modulo adder. Initially, the accumulator is reset
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Figure 3.18: OHR Modulo adder for modulus 5

to 0, hence; at first, input to the OHR adder is 000001 = 0d for mod-5. The OHR

modulo adder is shown in Figure 3.18.

The OHR adder shown in Figure 3.18 is designed based on 2:1 multiplexer. Hence,

it has two inputs. One is previous accumulated sum, represented as a[k]. Here k is an

integer varying from 0 · · · 2k−1. The second input (select signal) to the 2:1 multiplexer

is the output of DA LUT. The select signal is of k bit. The 2:1 multiplexer stages

in OHR adder are dependent on the size of DA LUT output and TC input samples.

In example 3.2.2, for k = 3, the size of DA LUT output and input sample is 3 bits

and 4 bits respectively. Hence, the OHR adder requires three stages with four 2:1

multiplexers in each stage. For n = 0 and tcycle = 0, the accumulator input is 00001

and select signal to multiplexer stages is b[0]b[1]b[2] = 011. Now the input of the OHR

adder shifted according to the select signal and gives the output as 01000, which is

shown in Table 3.6. The steps of accumulation addition is shown in Table 3.6. The
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Table 3.5: DA LUT For x1 = 5

Address to LUT Entry Value |Entry|5
0 0 0 0 0 0 0 0

0 0 0 0 1 h4 3 3

0 0 0 1 0 h3 11 1

0 0 0 1 1 h4 + h3 14 4

0 0 1 0 0 h2 15 0

0 0 1 0 1 h2 + h4 18 3

0 0 1 1 0 h2 + h3 26 1

0 0 1 1 1 h2 + h3 + h4 29 4

0 1 0 0 0 h1 11 1

0 1 0 0 1 h1 + h4 14 4

0 1 0 1 0 h1 + h3 22 2

0 1 0 1 1 h1 + h3 + h4 25 0

0 1 1 0 0 h1 + h2 26 1

0 1 1 0 1 h1 + h2 + h4 29 4

0 1 1 1 0 h1 + h2 + h3 37 2

0 1 1 1 1 h1 + h2 + h3 + h4 40 0

1 0 0 0 0 h0 3 3

1 0 0 0 1 h0 + h4 6 1

1 0 0 1 0 h0 + h3 14 4

1 0 0 1 1 h0 + h4 + h3 17 2

1 0 1 0 0 h0 + h2 18 3

1 0 1 0 1 h0 + h2 + h4 21 1

1 0 1 1 0 h0 + h2 + h3 29 4

1 0 1 1 1 h0 + h2 + h3 + h4 32 2

1 1 0 0 0 h0 + h1 14 4

1 1 0 0 1 h0 + h1 + h4 17 2

1 1 0 1 0 h0 + h1 + h3 25 0

1 1 0 1 1 h0 + h1 + h3 + h4 28 3

1 1 1 0 0 h0 + h1 + h2 29 4

1 1 1 0 1 h0 + h1 + h2 + h4 32 2

1 1 1 1 0 h0 + h1 + h2 + h3 40 0

1 1 1 1 1 h0 + h1 + h2 + h3 + h4 43 3
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Table 3.6: Execution of RNS DA FIR Filter

Inputs in TC RNS DA LUT OHR Adder

n tcycle x1t0 x1t1 x1t2 x1t3 x1t4 x1t5 Decimal b[0] b[1] b[2] Decimal OHR

0

0 1 0 0 0 0 0 3 0 1 1 3 01000

1 0 0 0 0 0 0 0 0 0 0 3 01000

2 0 0 0 0 0 0 0 0 0 0 3 01000

3 0 0 0 0 0 0 0 0 0 0 3 01000

1

0 1 1 0 0 0 0 4 1 0 0 4 10000

1 0 0 0 0 0 0 0 0 0 0 4 10000

2 0 0 0 0 0 0 0 0 0 0 4 10000

3 0 0 0 0 0 0 0 0 0 0 4 10000

2

0 1 1 1 0 0 0 4 1 0 0 4 10000

1 1 0 0 0 0 0 3 0 1 1 |4 + 3|5 = 2 00100

2 0 0 0 0 0 0 0 0 0 0 2 00100

3 0 0 0 0 0 0 0 0 0 0 2 00100

3

0 1 1 1 1 0 0 0 0 0 0 0 00000

1 1 1 0 0 0 0 4 1 0 0 4 10000

2 1 0 0 0 0 0 3 0 1 1 |4 + 3|5 = 2 00100

3 0 0 0 0 0 0 0 0 0 0 2 00100

4

0 1 1 1 1 1 0 3 0 1 1 3 01000

1 1 1 1 0 0 0 4 1 0 0 |3 + 4|5 = 2 00100

2 1 1 0 0 0 0 4 1 0 0 |2 + 4|5 = 1 00010

3 0 0 0 0 0 0 0 0 0 0 1 00010

5

0 0 1 1 1 1 1 0 0 0 0 0 00000

1 0 1 1 1 0 0 2 0 1 0 2 00100

2 0 1 1 0 0 0 1 0 0 1 |2 + 1|5 = 3 01000

3 0 0 0 0 0 0 0 0 0 0 3 01000
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outputs of the filter for every n input sample are shown in bold-faced fonts. The main

advantage of this modulo adder is modulo 2n scaling is overcome with TC and OHR

representations.

For k = 3, the moduli set is {5, 7, 8} and the highest modulus is 8. The filter output

for n = 0 is obtained after 4 tcycle for modulus 5, which is equal to 2k. Similarly, for

modulus 7 and 8 the throughput will be 6 and 7 respectively. Hence, the throughput

of the filter proposed in [96] is dependent on the maximum modulus presented in

the moduli set. The major issues in this design are the representation of residues for

higher modulus in TC, BC to TC conversion, OHR to BC conversion and RNS DA

LUT size, which depends on N . Hence, for simple modulo 2n scaling, a proper moduli

set is required for an efficient filter implementation. The main aim of this chapter is

to design filter with the following objectives:

• Modulo power of 2 scaling with appropriate moduli set selection.

• Eliminating the forward conversion circuit to improve the filter clock frequency.

• LUT based multipliers for improving the filter throughput.

First, the moduli set selection is discussed in section 3.3.

3.3 Selection of the Moduli Set

Modulo power of 2 scaling (2n) is encountered in RNS-based inner-product compu-

tation using the multiplier-less approach such as DA and LUT multipliers. Scaling a

number with 2n is not a problem in BNS, but modulo 2n scaling (|2n|mi
) is difficult

to implement in hardware as the modulus operation of 2n with respect to mi involves

complex logic circuit [88]. The modulo 2n scaling is analyzed on an integer using

different moduli sets and observed that modulo 2n scaling can be implemented in

hardware similar to 2n scaling using bit-shifting, provided an appropriate moduli set

must be chosen.

67



Chapter 3. RNS-Based Fixed Coefficient FIR Filters

Table 3.7: Modulo 2n Scaling

Steps {2k − 1, 2k, 2k + 1} {2k − 1, 2k, 2k+1 − 1}

Moduli set (k = 3) {7, 8, 9} {7, 8, 15}

Digit size {3, 3, 4} {3, 3, 4}

DR 504 840

10 in RNS {3, 2, 1} {3, 2, 10}

Residue in binary {011, 010, 0001} {011, 010, 1010}

(10× 24) in RNS {|160|7, |160|8, |160|9} {|160|7, |160|8, |160|15}

Residue in binary {110, 000, 0111} {110, 000, 1010}

2k − 1 modulus 011→ 110 011→ 110

Bit-operation circular-shift circular-shift

2k modulus 010→ 000 010→ 000

Bit-operation linear-shift and linear-shift and

retaining k LSBs retaining k LSBs

2k + 1/2k+1 − 1 modulus 0001→ 0111 1010→ 1010

Bit-operation Circular-shift with (Only 4 left circular-shifts)

with correction

Suppose, an integer X = 10 to be scaled by 24 in RNS using two moduli set

{2k−1, 2k, 2k +1} and {2k−1, 2k, 2k+1−1} defined as M1 and M2 respectively. Step

by step, operations of modulo 2n scaling using moduli sets M1 and M2 are shown

in Table 3.7. For k = 3, the moduli sets M1 and M2 are {7, 8, 9} and {7, 8, 15}

respectively. The digit size in Table 3.7, is defined as the number of bits required to

represent, and it is {k, k, k + 1} bits for both M1 and M2 moduli sets. Hence, for

k = 3 the digit size is {3, 3, 4}. The DR for M1 and M2 is 504 and 840, which can

be obtained using (3.1).

Consider an integer X = 10, represented in RNS using the moduli sets M1 and

M2 as {3, 2, 1} and {3, 2, 10} shown in Table 3.7. The binary representation of the
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residues 〈x1, x2, x3〉 for the moduli set M2 is as follows:

x1 = {bk−1,1bk−2,1 · · · , b2,1b1,1b0,1}

x2 = {bk−1,2bk−2,2 · · · b2,2b1,2b0,2}

x3 = {bk,3bk−1,3 · · · b2,3b1,3b0,3}

 (3.27)

The multiplications of a binary number X by 2n can be achieved by a simple left shift

operation by n bits. Similarly, multiplication of RNS number 〈x1, x2, x3〉 with 2n can

be achieved by the circular and linear shift for x1 and x2 as given in equation (3.28)

for the moduli sets M1 and M2 respectively.

x1 × 2n = {bk−s−1,1 · · · b0,1bk−1,1 · · · bk−s,1}

x2 × 2n = {bk−n−1,2 · · · b1,2b0,2n′b0}

x3 × 2n = {bk−p−1,3 · · · b2,3b1,3b0,3bk,3 · · · bk−p,3}

 (3.28)

In equation (3.28), s = |n|k, p = |n|k+1 and n′b0 represents n-bits of value ’0’. By

using equation (3.28), the residues for the integer value 10 scaled by 24 are obtained

by the circular and linear shift of the residues x1, x2 by 4 times respectively as shown

in Table 3.7. For x3 in the case of M1, i.e residue of X with 2k +1 modulus, scaling of

any number by 2n is the circular shift with each MSB bit inverted followed by adding

the correction term, which requires an extra modulo adder. The residue of 10 with

moduli 9 is 1 (0001 in binary). Now to obtain the residue of 10 × 24, consider the

3 LSB bits of 0001 and circular shift it by 4 times with inverted MSB bits, which

are obtained as 100. Add a correction term of value 3 (011) to 4 (100) results in

7 (111) [88]. Hence by using the moduli set M1, 2n scaling requires an additional

modulo adder. However, in M2, x3×2n can be achieved with the simple circular shift

without using any extra modulo adder.

Hence, in this work the moduli set {2k−1, 2k, 2k±1−1} is considered. The dynamic

range of {2k − 1, 2k, 2k−1 − 1} is smaller as compared to {2k − 1, 2k, 2k + 1} hence,
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the filters are implemented with the moduli set {2k− 1, 2k, 2k+1− 1} and defined this

as M2. The modulus are represented as m1 = 2k − 1, m2 = 2k and m3 = 2k+1 − 1.

The chosen moduli set was proposed in [82]. This moduli set offers a larger dynamic

range and also modulo multiplication by powers of 2 helps for an efficient FIR filter

design. In the next section 3.4, the proposed modular multiplication for the moduli

set M2 is discussed.

3.4 Proposed Modular Multiplication

In this section, conventional modular multiplication and the proposed new modular

multiplication for the selected moduli set M2 is discussed.

3.4.1 Conventional Modular Multiplication (CMM )

The modulo multiplication in RNS can be carried out by multiplying the individual

residues with respect to the corresponding modulus. Consider two j bit BC numbers

X and H for which the residues are represented as 〈x1, x2, x3〉 and 〈h1, h2, h3〉 respec-

tively. The size of these residue numbers are {k, k, k + 1} bits. The straight-forward

approach for |X × H|M2 using CMM is shown in Figure 3.19. The product value

should fall within the dynamic range of M2.

In the conventional approach, the input X is converted into residues and modulo

partial products for each modulus are generated. The generated partial products are

added with CSA followed by MA for each modulus. Later the residue outputs of

MA are converted to BC numbers. The multiplier shown in Figure 3.19, consists of

forward conversion, partial product generation, CSA stage, a MA for adding Sum and

Carry from CSA stage and finally reverse converter circuit to obtain the BC output.

The forward converter converts the j bit input X into the residues 〈x1, x2, x3〉 of

{k, k, k + 1} bits respectively. The other input H is known value, hence the residues
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Figure 3.19: A Standard Conventional Modular Multiplication

of H are directly given to the multiplier. The partial products are generated and

are shifted as given in equation (3.8) and equation (3.11). The CSA stages are used

to get the Sum and Carry of partial products. The generated Sum and Carry are

added using MA. Finally to get the BC output, reverse conversion circuit is used.

For j = 8 and k = 5 the partial product generation for each modulus of M2 is shown

in Figure 3.20. The modular multiplication of X × H consists of {5, 5, 6} partial

products for each modulus. The partial products for each modulus are represented as

PPg,1, PPg,2, PPg,3 for m1, m2 and m3 respectively. Here g is an integer varies from

0, 1 · · · k − 1 for 2k − 1, 2k modulus and from 0, 1 · · · k for 2k+1 − 1 modulus.

Here all PPg,i are shifted according to equation (3.28). The obtained PPg,i are

given to the CSA stages and are added using MA as shown in Figure 3.21. For k = 5,
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the moduli set requires 3 - CSA stages and 1 - MA for each modulus. From Figure

3.19, it is observed that the critical path of CMM consists of forward conversion,

partial product generation, CSA stages, MA and reverse conversion. The proposed

LUT based multiplier is discussed in the next section.

3.4.2 New Modular Multiplication (NMM )

The new modular multiplication (NMM ) for a j bit input X is presented in this

section. The proposed multiplier NMM is shown in Figure 3.22. The main objective

of this design is to avoid the forward conversion and reducing the number of partial

products for a known input. In NMM, the j bit input X is divided into I bits of
⌈
j
I

⌉
groups. The input X in terms of I can be expressed as given in equation (3.29).

X = bj−1 · · · bzI+1bzI︸ ︷︷ ︸
Xz−1

· · · b2I−1 · · · bI+1bI︸ ︷︷ ︸
X1

bI−1 · · · b1b0︸ ︷︷ ︸
X0

= 2(z−1)I .Xz−1 + · · ·+ 2I .X1 +X0 (3.29)

In equation (3.29), z represents the number of partitioned groups and is defined

as z =
⌈
j
I

⌉
. The multiplication method for |X × H|M2 using NMM is shown in

Figure 3.22. The pre-loaded product (PLP) block stores 2I combinations of Xz mul-

tiplied with H in RNS form. The addresses to the PLP are the I bit X values.

The partitioned inputs {Xz−1 · · ·X1, X0} selects the corresponding product values

{PPz−1 · · ·PP1, PP0} from PLP block and are added as given in equation (3.30).

|X ×H|M2 = 2(z−1)I |Xz−1 ×H|M2 + · · ·+ 2I |X1 ×H|M2 + |X0 ×H|M2

= 2(z−1)IPPz−1 + · · · 2IPP1 + PP0 (3.30)

In equation (3.30), multiplications by powers of two is obtained using the shift

approach given in equation (3.28). The shifted product values generates Sum and
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Figure 3.22: New Modular Multiplication

Carry from CSA stages are added using MA. The final modulo product value |X ×

H|M2 is given to reverse conversion to get the BC output. This multiplication process

is demonstrated with the same j and k values considered in CMM. The I value is

considered as 4. The 8 bit input is divided into two groups as z =2 and are represented

asX1 andX2. Since there are only two groups, simply two product values are obtained

from PLP and are represented as PP0,i and PP1,i. The NMM approach for modular

multiplication is shown in Figure 3.23. The size of the PLP is 24 as I = 4 for each

modulus. The two product values are added directly without using CSA stages. Then

finally the BC output is obtained using reverse conversion.

The area and delay complexities of CMM and NMM are listed in Tables 3.8 and

3.9 respectively. In Table 3.8, AMA, ACSA and APPk,q
are the area of MA, CSA and

partial product generation for each modulus. For CMM, the forward conversion is
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Figure 3.23: NMM for a j = 8 and I = 4

only for m1 and m3 modulus, which requires one AMA for each modulus as shown in

Table 3.8. However, in NMM the forward conversion is not required as given in Table

3.8. In CMM, the k, k, k + 1 partial products are generated for each modulus, hence

the area for these are defined as APPk,q
. In NMM, the size of the PLP depends on I

and z, hence the size of PLP is 2I × z for each modulus. Now the number of CSA are

depended on the partial products and product values in CMM and NMM methods.

In CMM these are depended on k, hence (k − 2) CSA are required. However, in

NMM these are depending on z value, hence (z − 2) CSA is required. The outputs

of the CSA are added with MA, hence for each modulus one MA is required in both

CMM and NMM methods. The reverse conversion is not included in area and delay

comparison as it is a compulsory and the same circuit is used in both the methods.

From Table 3.8, it is observed that NMM can be an area efficient with proper selection

of I. The selection of I for various input lengths is discussed in section 3.6.1.

The critical path delay complexities between CMM and NMM methods are listed

in Table 3.9. From Figure 3.19, it is observed that the critical delay of CMM con-

sists of forward conversion, partial product generation, CSA stages and MA. In M2

moduli set, modulus m3 requires k + 1 bit arithmetic circuits (e.g. modulo addi-

75



Chapter 3. RNS-Based Fixed Coefficient FIR Filters

Table 3.8: Area Comparison Between CMM And NMM

Method Moduli Forward ConversionPP/PLP CSA+MA

CMM

2k − 1(m1) AMA APPk,1
(k − 2)ACSA + AMA

2k(m2) Not required APPk,2
(k − 2)ACSA + ARCA

2k+1 − 1(m3) AMA APPk,3
(k − 1)ACSA + AMA

NMM

2k − 1(m1) Not required 2I ∗ z (z − 2)ACSA + AMA

2k(m2) Not required 2I ∗ z (z − 2)ACSA + ARCA

2k+1 − 1(m3) Not required 2I ∗ z (z − 2)ACSA + AMA

Table 3.9: Delay Comparison Between CMM And NMM

Method Critical Path

CMM t
CMM

= t
FC

+ t
PP

+
⌈
log(k+1/2)
log(3/2)

⌉
t
CSA

+ t
MA

NMM t
NMM

= t
PLP

+
⌈
log(z/2)
log(3/2)

⌉
t
CSA

+ t
MA

t
CMM

: delay for CMM. t
NMM

: delay for NMM. t
FC

: delay for forward conversion. t
MA

:
delay for modulo adder. t

CSA
: delay for carry save adder. t

PLP
: delay for PLP access.

tion/multiplication). Hence, the critical path delay in CMM method involves k + 1

bit arithmetic operations. The number of CSA stages are estimated using the for-

mula given in [106] and the same are used here also. The number of CSA stages are

dependent on k value in CMM method and are given in Table 3.9. Finally one t
MA

delay is required for adding the sum and carry from CSA stages. Hence, CMM delay

consists of t
FC

, t
MA

, tPP and t
CSA

stages followed by t
MA

of k + 1 bits.

In NMM approach shown in Figure 3.22, the critical path delay is PLP access,

CSA stages and MA. The number of z product values are dependent of I value in

NMM method and the partial products are dependent on k value inCMM method.
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Hence, a smaller z value reduces the area and critical path delay in NMM method.

In that case NMM may offer a better approach for known inputs as compared to

CMM. In RNS DA approach, the inner products are calculated with known filter

coefficients. However, many of the RNS DA approaches in the past are designed with

lower throughput rate of the system [96]. Hence, the proposed multiplier is used in

RNS based FIR filter to overcome this issue. In the next section 3.5, the architectures

of the FIR filters using the proposed multiplier are discussed.

3.5 Architectures of Proposed RNS-FIR Filter

This section presents three RNS based FIR filter architectures for fixed coefficients.

One architecture with conventional modular multiplication (CMM ) method is repre-

sented as RNSC and other two proposed architectures are represented as RNS1 and

RNS2. The RNS1 filter architecture is designed with PLP blocks and RNS2 filter is

designed with NMM method for coefficient multiplication. Both these methods are

implemented with PLP blocks hence, forward converter is not required for RNS1 and

RNS2 architectures. The filters are designed with M2 moduli set. The modulus of

M2 are represented as m1 , m2 and m3 with a size of k, k and k + 1 bits respectively.

The conventional and proposed architectures with M2 moduli set are discussed in

detail in the next section.

3.5.1 Conventional RNS (RNSC) FIR Filter architecture

The conventional RNS (RNSC) filter structure using CMM method is shown in Figure

3.24. The input to FIR filter is X(n) and the filtered output is Y (n). The filter

coefficients are represented as h0, h1 · · ·hN−1, where N is the order of the filter. The

residues of the coefficient with respect to M2 moduli set are represented as hl,1, hl,2

and hl,3, where hl,1 = |hl|m1
, hl,2 = |hl|m2

and hl,3 = |hl|m3
. The same representations
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Figure 3.24: RNSC Filter Architecture

are used in the proposed RNS1 and RNS2 filters. The filter structure for each modulus

is similar to the TDF structure shown in Figure 2.3 (in chapter 2 of the same). Each

modulus of the filter uses respective modulo multipliers CMM, delay elements and

structural adder (SA) for each coefficient. The forward and reverse conversion circuits

are used at the input and output of the filter structure respectively. The critical path

delay in RNSC consists of a forward converter, CMM, SA and end around carry

(EAC) addition. The individual blocks of the RNSC filter are discussed in detail in

section 3.5.2 (since, the same blocks are also used in RNS1 and RNS2 filters).

3.5.2 Proposed RNS Based FIR Filter Architectures

This section presents the proposed RNS based FIR filter architectures for fixed co-

efficients. In the proposed method, a j bit input X(n) is divided into
⌈
j
I

⌉
groups.

These groups are denoted as pair groups (PGu), where u is the maximum number of

pair groups varies from 0, 1, 2 · · · z− 1 and z =
⌈
j
I

⌉
. In general, a j bit X(n) in terms
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of PGu is expressed as

X(n) =
z−1∑
u=0

2IuPGu (3.31)

By substituting equation (3.31) in filter difference equation, the filter output Y (n) is

expressed as

Y (n) =
N−1∑
l=0

hl

z−1∑
u=0

2IuPGu

=
N−1∑
l=0

z−1∑
u=0

2IuPGuhl

=
N−1∑
l=0

2(z−1)IPGz−1hl + · · ·+ 22IPG1hl + 2IPG1hl + PG0hl (3.32)

The above equation with respect to M2 moduli set is expressed as

|Y (n)|M2 =

∣∣∣∣∣
N−1∑
l=0

2(z−1)I |PGz−1hl|M2 + · · ·+ 2I |PG1hl|M2 + |PG0hl|M2

∣∣∣∣∣
M2

(3.33)

The modulo power of 2 scaling is required for implementing equation (3.33). Hence,

moduli set M2 is an appropriate selection for these filter implementations. In this

work, two filter architectures RNS1 shown in Figure 3.25 and RNS2 shown in Figure

3.26 are proposed for implementing the filter equation (3.33).

The RNS1 architecture for j = 8 and I = 4 is shown in Figure 3.25 and the same

is discussed in this section. The 8 bit input X(n) is divided into two pair groups

(PG0 and PG1) is expressed as follows:

X(n) = PG = b7b6b5b4︸ ︷︷ ︸
PG1

b3b2b1b0︸ ︷︷ ︸
PG0

= 24PG1 + PG0 (3.34)

Since I = 4, each PG can have 24 = 16 possible product values for each coeffi-

cient. For known coefficients, the residues of the product values for each modulus are
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computed and stored in a PLP block for each coefficient. The number of PLP blocks

required for each coefficient is equal to z value. The addresses to the PLP blocks are

I bit PG values. For a 8 bit input, PG0 and PG1 are the addresses to the two PLP

blocks and selects the product values PG0hl and PG1hl respectively. For moduli set

M2, the digit size for each PG0hl and PG1hl are {k, k, k + 1} bits. The product val-

ues for each modulus of M2 are represented as PG0hl = {PG0hl,1, PG0hl,2, PG0hl,3}

and PG1hl = {PG1hl,1, PG1hl,2, PG1hl,3}, where, l = 0, 1 · · ·N − 1 . These product

values are accumulated at every tap with the help of SA block. At every single tap

end around carry is stored in registers and given as input carry to SA. Hence, this

carry is added at the last tap before MA block. The accumulated product values

PG0 and PG1 obtained in equation (3.35) are added using MA.

PG0 =
N−1∑
l=0

PG0 × hl

PG1 =
N−1∑
l=0

PG1 × hl (3.35)

The filter output in the RNS form |Y (n)|M2 just before the reverse converter is

given as:

|Y (n)|M2 = PG0 + 24 × PG1 (3.36)

Here, PG1 is shifted by 4 bits as in equation (3.28) for each modulus. For 2k modulus,

carry-out is neglected, to sum up EAC block is not required. The above equation

satisfies for X(n) of 8 bits. In general, it can be represented as

|Y (n)|M2 =
z∑

u=0

PGu× 2Iu (3.37)

The filter output Y (n) in binary form is obtained using reverse converter block.

Figure 3.26 shows the proposed architecture RNS2. As in equation (3.38), PG0hl,i

and PG1hl,i are added using MA at each tap of the filter. Here, PG1hl,i is shifted by
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4-bits as in equation (3.28) for each modulus.

PGhl,i = PG0hl,i + 24×PG1hl,i for l = 0, 1, · · ·N − 1 and i = 1, 2, · · · q (3.38)

The above equation satisfies for X(n) of 8 bits. In general, it can be represented as

PGhl,i =

d j−I
I e∑

u=0

PGuhl,i × 2Iu for i = 1, 2, · · · q (3.39)

However, for accumulation the SA block is used at each tap. In RNS2 also the

end around carry addition is similar as in RNS1. In RNS2, output in an RNS form

|Y (n)|M2 just before the reverse converter can be obtained as follows:

|Y (n)|M2 =
N−1∑
l=0

PGhl (3.40)

In RNSC, RNS1 and RNS2 architectures reverse converter proposed by Anand Mohan

in [82] is implemented for moduli set M2. The MA blocks discussed in section 3.1.2

are used in RNSC, RNS1 and RNS2 architectures. Hence, PLP, SA and EAC blocks

of the architecture are described in this section.

3.5.2.1 Pre-loaded product (PLP) block

It essentially stores all possible combinations of any number multiplied with PGu (I

bit input) value. Here u = 0, 1, 2 · · · z. For each PG there will be 2I combinations of

binary values. Hence, for a fixed coefficient hl, PLP block stores 2I product values

of hl for each PG combination. Each product value is of {k, k, k + 1} bit size for the

moduli set M2. These values are computed offline, and stored in PLP. A sample PLP

block is shown in Table 3.10. Here, assume that a coefficient h1 has a value 65 and

I = 4. Table 3.10, shows all PG inputs and the product values PG × hl in decimal

as well as in RNS for k = 5.
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Table 3.10: PLP for h1 = 65

PG PG×h1 |PG×h1|31 |PG×h1|32 |PG×h1|63

0 0 00000 00000 000000

1 65 00011 00001 000010

2 130 00110 00010 000100

3 195 01001 00011 000110

4 260 01100 00100 001000

5 325 01111 00101 001010

6 390 10010 00110 001100

7 455 10101 00111 001110

8 520 11000 01000 010000

9 585 11011 01001 010010

10 650 11110 01010 010100

11 715 00010 01011 010110

12 780 00101 01100 011000

13 845 01000 01101 011010

14 910 01011 01110 011100

15 975 01110 01111 011110

3.5.2.2 Structural Adder (SA)

This adder is used for accumulating the product values at each tap. In Figure 3.27,

SA block adds two k-bit inputs X and Y with 1 bit input carry (Cin) which results

in k bit SUM and a one bit output carry. In RNS for 2k − 1 and 2k+1 − 1 modulo

additions, this carry is added to SUM again for which another adder is required as

discussed in section 3.1.2. To reduce this adder cost at each tap, the carry of present

tap is assigned to Cin of the next tap. For the first tap of the filter, consider Cin = 0

and at each tap carry is stored in a register and assigned to Cin of the following tap

SA. This process occurs at each tap of the filter. In the last tap, carry is added to

SUM for each modulus. However, for 2k modulus carry is discarded at each tap.
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Adder1
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sum

Cin
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Figure 3.27: Structural Adder (SA) for 2k − 1

Adder

X carry

1k

sum

k

Figure 3.28: End Around Carry (EAC) Adder for 2k − 1 Modulus

3.5.2.3 End Around Carry (EAC) adder

This block adds carry from the last tap of SA block. A simple adder is used for adding

the carry along with accumulated product value as shown in Figure 3.28. The inputs

X and carry shown in Figure 3.28 are the outputs of SA block present just before

the EAC block.
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The computations of proposed architectures is presented through an example 3.5.1

by considering j = 8 and I = 4.

Example 3.5.1. For k = 5, the moduli set M2 = {31,32,63}. In this example,

consider input X(n) as 59 and coefficients h0, h1 are 137 and 65 respectively. Consider

X(n) = 59 = PG = 0011︸︷︷︸
PG1

1011︸︷︷︸
PG0

The decimal equivalents of PG0 and PG1 are 11 and 3 respectively. Now, consider

for h1=65, the outputs of PLP, PG0h1,i and PG1h1,i from Table 3.10 are chosen

according to PG0 and PG1 are:

PG0h1,i = {PG0h1,1, PG0h1,2, PG0h1,3}

= {00010, 01011, 010110}b = {2, 11, 22}d

PG1h1,i = {PG1h1,1, PG1h1,2, PG1h1,3}

= {01001, 00011, 000110}b = {9, 3, 6}d (3.41)

Both PG0h1,i and PG1h1,i values are shown in binary and decimal number. Similarly

for h0= 137, PG0h0 and PG1h0 values are as follows:

PG0h0,i = {PG0h0,1, PG0h0,2, PG0h0,3}

= {10011, 00011, 111010}b = {19, 3, 58}d

PG1h0,i = {PG1h0,1, PG1h0,2, PG1h0,3}

= {01000, 11011, 100001}b = {8, 27, 33}d (3.42)

Using RNS1 Architecture

As shown in Figure 3.25, the accumulated product values are added by using SA block

for each modulus. From equation (3.35), PG0 and PG1 are obtained as follows:

PG0 = PG0h1 + PG0h0 = {10101, 01110, 010001}b = {21, 14, 17}d

PG1 = PG1h1 + PG1h0 = {10001, 11110, 100111}b = {17, 30, 39}d (3.43)
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In equation (3.43), the results were obtained after the end around carry addition.

Now PG0 and PG1 shifted by 4 bits (24×PG1) are added using MA block as shown

in Figure 3.25 and these results are given to reverse converter to produce Y (n). The

filter output before the reverse converter is represented as |Y (n)|{31,32,63}. The PG0

and 24 × PG1 are added as described in Figure 3.4. The result of |Y (n)|{31,32,63} is

shown in equation (3.44).

|Y (n)|{31,32,63} = { 10101, 01110, 010001}b︸ ︷︷ ︸
PG0

+ {11000, 00000, 111001}b︸ ︷︷ ︸
24×PG1

= {01110, 01110, 001011}b = {14, 14, 11}d (3.44)

Using RNS2 Architecture

As in Figure 3.26, PGhl is calculated using equation (3.38). Hence, PGh1 and PGh0

are computed as follows:

PGh1 = {00010, 01011, 010110}b︸ ︷︷ ︸
PG0h1,i

+ {10100, 10000, 100001}b︸ ︷︷ ︸
24×PG1h1,i

= {10110, 11011, 110111}b = {22, 27, 55}d

PGh0 = {10011, 00011, 111010}b︸ ︷︷ ︸
PG0h0,i

+ {00100, 10000, 011000}b︸ ︷︷ ︸
24×PG1h0,i

= {10111, 10011, 010011}b = {23, 19, 19}d (3.45)

In equation (3.45), the results were obtained after the end around carry addition.

The result of |Y (n)|{31,32,63} is shown in equation (3.46).

|Y (n)|{31,32,63}} = { 10110, 11011, 110111}b︸ ︷︷ ︸
PGh0

+ {10111, 10011, 010011}b︸ ︷︷ ︸
PGh1

= {01110, 01110, 001011}b = {14, 14, 11}d (3.46)

In both the architectures |Y (n)|{31,32,63} obtained is same.
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The area and delay analysis of proposed RNS based filters with RNSC and DA

RNS filter in [96] are compared in Table 3.11 and 3.12. The area estimation of all

the moduli for each filter given in Table 3.11 is same. Hence, only m1 modulus area

estimation is discussed here. In Table 3.11, one bit D-flipflop area is ADFF , area of

SA is ASA, reverse converter area is ARC , area of NMM, CMM is ANMM and ACMM

respectively. The area of forward conversion is AFC and area of 2:1 multiplexer is

represented as A2:1Mux.

Area Estimation for RNS1

From Figure 3.25, it is observed that input X(n) is divided into z groups, and each

group require z PLP blocks for each coefficient. Each PLP stores k bit 2I words.

Hence, for a N tap filter, m1 moduli requires N such z2I PLP blocks. At each tap,

the selected product values are accumulated with the help of SA adder. There are z

product values for each coefficient and each product require one SA. Hence, an N tap

filter requires N such zASA adders. The accumulated results are stored in registers,

which are implemented with D-flipflops. The size of the registers k + 1 bits. This is

due to the SA block output is k + 1 bits (see Figure 3.27). There are z accumulated

results for each coefficient. Hence, RNS1 requires N such z(k + 1)ADFF flipflops as

given in Table 3.11.

Area Estimation for RNS2

The RNS2 filter architecture in Figure 3.26 is implemented with NMM. Hence, for an

N tap filter NANMM multipliers are required. In RNS2, NMM at each tap results a

k bit product value. This value is accumulated with previous tap value by using SA.

For an N tap filter, RNS2 requires NASA adders. The output of SA is k+ 1 bits and

hence, k + 1 registers are required to store the accumulated result at each tap of the

filter. Hence, RNS2 filter is implemented with (k + 1)NADFF registers.
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Table 3.11: Area Comparison Between RNS1, RNS2, RNSC and DA RNS

MethodModulus Area Estimation for N tap Filter

RNS1

m1 zN2I + zNASA + z(k + 1)NADFF + ARC

m2 zN2I + z(N − 1)ASA + z(k)NADFF + ARC

m3 zN2I + zNASA + z(k + 2)NADFF + ARC

RNS2

m1 NANMM + NASA + (k + 1)NADFF + ARC

m2 NANMM + NASA + kNADFF + ARC

m3 NANMM + NASA + (k + 2)NADFF + ARC

RNSC

m1 NACMM + NASA + (k + 1)NADFF + ARC

m2 NACMM + NASA + kNADFF + ARC

m3 NACMM + NASA + (k + 2)NADFF + ARC

[96]

m1 AFC + 2N + k
(
2k − 1

)
A2:1Mux +

(
2k − 1 +N(2k − 2)

)
ADFF + ARC

m2 AFC + 2N +
(
k2k
)
A2:1Mux +

(
2k +N(2k − 1)

)
ADFF + ARC

2k−1 + 1AFC + 2N + k
(
2k−1 + 1

)
A2:1Mux +

(
2k−1 + 1 +N(2k−1)

)
ADFF + ARC

Area Estimation for RNSC

The RNSC filter implemented with CMM for each coefficient is shown in Figure 3.24.

This filter requires NACMM multipliers for an N tap filter. The remaining blocks are

similar to RNS2 architecture discussed above.

Area Estimation for DA RNS in [96]

The DA RNS based FIR filter shown in Fig 3.25 consists several blocks. First, it

requires forward conversion in BC number and then BC to TC conversions. This

entire circuit is treated as forward conversion and this area is represented as AFC .

The DA LUT stores k bit 2N words. The number of 2:1 multiplexer required for

OHR mod adder is depended on k value. From Figure 3.18, it is observed that the

OHR adder requires k(2k − 1) 2:1 multiplexer as given in Table 3.11. The registers

are estimated as follows:
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Table 3.12: Delay Comparison Between RNS1, RNS2, RNSC and DA RNS

Method Critical Delay Throughput

RNS1 t
RNS1

= t
PLP

+ t
SA

+ t
EAC

In Every clock cycle

RNS2 t
RNS2

= t
NMM

+ t
SA

+ t
EAC

In Every clock cycle

RNSC t
RNSC

= t
CMM

+ t
SA

+ t
EAC

In Every clock cycle

[96] t
RNSDA

= t
FC

+ t
LUT

+ t
OHRMA

Every 2k clock cycle

• The present and past inputs are encoded in TC format. The input of size TC

coded residues are 2k − 2 bits for m1 modulus. For an N tap filter it requires

N
(
2k − 2

)
ADFF registers to store present and previous input samples.

• Another register is used in the accumulator as shown in Fig 3.18. This register

stores the OHR adder output which is encoded in OHC. The size of this output

is 2k − 1 bits and hence, a register of size 2k − 1 bit is required.

In all these methods, reverse converter is compulsory. Hence, it is included in all

the methods and represented as ARC . The critical delay path analysis of all these

methods are given in Table 3.12.

The critical delay of RNS1, RNS2, RNSC and RNSDA in [96] is represented as

t
RNS1

, t
RNS2

, t
RNSC

and t
RNSDA

respectively. t
SA

, t
EAC

represents the delay of SA and

EAC adders. The forward conversion delay is t
FC

and the access time for selecting

the pre-computer value from DA LUT is represented as t
LUT

. The OHR modadder

delay is represented as t
OHRMA

. In any of these methods mentioned in Table 3.12, the

highest modulus only exists in critical delay path. In RNS1, RNS2 and RNSC this

moduli is 2k+1 − 1. In RNSDA the highest modulus is 2k as given in [96].
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Delay Estimation for RNS1

The RNS1 filter architecture is shown in Figure 3.25. First, the input X(n) is di-

vided into z groups. Each group accesses the pre-computed product values from the

corresponding PLP blocks. The delay of PLP is t
PLP

. Now the selected product

values are added with accumulator. At every tap, the same procedure is followed.

However, at the coefficient h0,3 after SA, the result is added again with EAC. Hence,

the critical delay path is from the input X(n) through h0,1 PLP , k + 1 bit SA and

k + 1 bit EAC adder.

Delay Estimation for RNS2

The RNS2 filter architecture is shown in Figure 3.26. This architecture uses NMM

multiplier and the delay of NMM is given in Table 3.9. In RNS2 also after the h0,3

NMM multiplier, the SA result is added again with EAC. Hence, the critical delay

path is from the input X(n) through h0,1 NMM, k + 1 bit SA and k + 1 bit EAC

adder.

Delay Estimation for RNSC

The RNSC filter architecture is shown in Figure 3.24. This architecture uses CMM

multiplier and the delay of CMM is given in Table 3.9. The critical delay path in

RNSC is similar to RNS2.

Delay Estimation for DA RNS in [96]

In this architecture, the input residues are encoded in TC format. Hence, forward

conversion with TC encoding circuit is required. This delay is represented ast
FC

. In

every clock cycle, the address of DA LUT is generated with the present serial input

bit and past input samples. With this address, the pre-computed inner product is

accessed and given to the OHR mod adder. The LUT access time is represented
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Table 3.13: PG and PP Comparison for 2k and 2k − 1 modulus

Input length PG for NMM PP for CMM

j
I k

2 3 4 5 6 2 3 4 5 6

8 4 3 2 2 2 2 3 4 5 6

12 6 4 3 3 2 2 3 4 5 6

16 8 6 4 4 3 2 3 4 5 6

as t
LUT

. Then the OHR mod adder shifts the OHC encoded accumulator result.

Hence, in this architecture the critical delay path consists of forward conversion, DA

LUT access and OHR mod adder. The implementation and synthesis results of the

proposed filters and existing filters are discussed in the next section 3.6.

3.6 Implementation And Results

In this section, the implementations of the proposed filters along with synthesis results

are discussed. The results obtained are compared with the filters developed using

RNSC in [107]. First, the selection of I is discussed.

3.6.1 Selection of optimum grouping size I

In this section, the best I value for input X(n) grouping in RNS1 and RNS2 archi-

tectures is discussed. In CMM, number of CSA stages depends on the value of k.

However, in NMM the product values are depended upon j and I. The number of

PG are equal to
⌈
j
I

⌉
. Hence, the number of partial products (PP ) for different k

values and the number of PG required for different I values are compared in Table

3.13. Consider three different input lengths 8, 12 and 16 bit. For CMM, the number

of PP depends on k value. For instance, for j = 8, the number of PP are equal to k

values in CMM. For I = 4, there will be
⌈
8
4

⌉
= 2 PG. From Table 3.13, it is clearly
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Table 3.14: Synthesis Results for selection of I

X(n) I Area (µm2) Power (mW ) Delay (nS) PDP

8-bit

2 2230 76.067 2.696 205.077

3 2833 105.261 2.737 288.099

4 2535 85.021 2.657 225.901

5 2746 97.105 2.706 262.766

6 3414 116.86 2.719 317.742

12-bit

2 4561 210.227 3.351 704.471

3 4026 182.329 3.61 658.208

4 3507 164.831 3.368 555.151

5 4587 201.75 3.404 686.757

6 4935 183.638 3.195 586.723

16-bit

2 6723 370.92 3.954 1466.62

3 5698 317.856 4.232 1345.17

4 5014 283.754 4.023 1141.54

5 6994 374.347 3.802 1423.27

6 6662 298.442 3.843 1146.91

evident that for j = 8, I = 4 and k = 5, NMM require two PG values, where as

CMM require 5 PP values. The addition of these PP in CMM requires three CSA

stages and one MA block as shown in Figure 3.21. However, in NMM, only one MA

block is required for addition of two PG. Hence, NMM is quicker and area efficient.

So I has to be chosen, such that it will be faster and area, power efficient for any

input length.

The synthesis results for selection of I are summarized in Table 3.14. Here, for

8, 12 and 16 bit input, the synthesis results of NMM for each possible bit pair

combination are obtained. The performances are compared in terms of Area, Power,

Delay and PDP and in Figure 3.29, I Vs PDP results were analyzed. From Figure

3.29, it clear that for I = 4 NMM offers better PDP . Hence, in this work RNS1 and

RNS2 architectures are implemented with I = 4.
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3.6.2 Implementation and Synthesis Results

First, the proposed RNS based filter is compared with DA RNS filter from [96]. The

filter specifications given in [96] are used in both the designs. The 5th order filter

given in equation (3.21) is considered for implementation. Then three different order

filters from [43] are implemented and denoted as X1, Y1 and S2. The orders of the

filter are 15, 30 and 60 respectively. These three filters are compared with RNSC,

as their order is high. The specifications of the filters are described in Table 3.15.

The coefficients of the filter are taken from [43]. Each filter is implemented with 8,

12, 16 bits input X(n). The proposed filters are developed in gate level using Verilog

HDL. For 8 bit X(n), the filters structures for RNS1 and RNS2 are same as shown

in Figure 3.25 and Figure 3.26 respectively. However, for 12 bit X(n), one additional

PG is selected from PLP block, and multiplied with 28 as given in equation (3.31).

For this, another delay and SA block is required at each tap in RNS1 filter. In RNS2

filter, for 12 bit X(n), a CSA stage at each tap is required before MA block to get

sum and carry from these three PG. Similarly, for 16 bit input two additional PG

values are selected, and it requires two additional delay and SA blocks at each tap in
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Table 3.15: Specification of Filters

Filters N ωp ωs δp δs

X1 15 0.2π 0.8π 0.0001 0.0001

Y1 30 0.3π 0.5π 0.00316 0.00316

S2 60 0.042π 0.14π 0.012 0.001

RNS1 filter. Hence in RNS1 filter, the delay and SA blocks are equal to the number

of PG. In RNS2, for 16 bit input, a two-stage CSA is required before MA block. In

RNS1 delay and MA, blocks are proportional to PG, hence it requires larger area as

compared to RNS2. In RNS1 and RNS2 delay, elements are realized using D-flipflops.

The filters are synthesized in UMC 90 nm technology using Cadence RTL compiler.

The performances of the filters are compared in terms of area, delay, power and power

delay product (PDP ). The synthesis results of 5th order filter given in equation (3.21)

are shown in Table 3.16. Both these filters are implemented without the reverse

converter. In both these implementations j and k are considered as 3 bits each as

given in [96]. The proposed architecture shows 21.31% and 24.64% improvement in

area and power gain respectively as compared to the methods reported in [96]. The

critical delays of both these circuits are similar. In the proposed filter I is considered

as 3, so the PLP block stores 8 words for each modulus. Hence, for a 5 tap filter,

each modulus requires 40 word PLP . At each tap, the stored inner product values

are accessed from PLP and are directly given to the SA block. Here, CSA stages

and MA are not required as the input size j and I both are equal. At each tap, M2

moduli set stores {3, 3, 4} bits. Hence, for a 5 tap filter, 50 bit registers are required

in the proposed design. The size of each SA is {3, 3, 4} bit adders for M2. So, the

proposed architecture for a 5 tap required 50, 1 bit full adders.

The filter structure is similar to the either of the architectures shown in Figure
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Table 3.16: Synthesis Results of RNS DA and Proposed RNS based FIR Filters

Filter Area Area Power Power Delay Dealy

(mm2) gain (%) (mW ) gain (%) (ns) gain (%)

[96] 3495 - 0.200607 - 3.977 -

Proposed 2750 21.31 0.151163 24.64 3.844 2.087

3.25, and Figure 3.26. This is due to the small size input. In [96], as the input to

be represented in TC, this architecture requires a forward converter. It first converts

the binary input into residues and encodes to equivalent TC number. Each modulus

requires different OHR mod adders, and the sizes of these adders are given in Table

3.11. For k = 3, the moduli set {5, 7, 8} requires 15, 21 and 24 2:1 multiplexers.

The present and past input samples are represented in TC format for each modulus.

Hence, for a 5 tap filter, modulus-5 requires 25 bit registers. Similarly, modulus-

7and 8 requires 37 and 43 registers respectively. And this architecture requires extra

hardware for clock divide circuits as each modulus modulo adder is different. Hence,

the proposed filter shows better results in terms of area and power. So far, the results

are compared for the smaller dynamic range. Now, the proposed architectures are

compared with RNSC filters, where filters require larger dynamic range.

The synthesis results of X1, Y1 and S2 obtained from cadence RTL compiler are

summarized in Table 3.17. Here k is the moduli selection, which is chosen such that

the filter output lies within the maximum range of moduli set. From Figure 3.24, the

critical delay path for RNSC consists of a forward converter, CMM along with SA

and end around carry addition. As shown in Figure 3.25, modular multiplication in

RNS1 consists simply PG selections from PLP and SA block, hence the critical delay

path consists, reverse converter at most. In RNS2, it consists CMM and SA along

with the end around carry addition. From the critical delay path analysis, RNS1 has
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Table 3.17: Synthesis Results of Proposed RNS based FIR Filters

Filter Input k Method
Area Area Delay Delay Power Power PDP PDP

(mm2) gain(%) (ns) gain(%) (mW ) gain(%) gain(%)

X1

8-bit 6

RNSC 0.0432 9.17 2.226 20.4

RNS1 0.0309 28.46 6.01 34.38 2.027 8.92 12.19 40.242

RNS2 0.0261 39.71 6.88 24.92 1.486 33.24 10.22 49.889

12-bit 8

RNSC 0.0772 10.9 4.49 49.08

RNS1 0.0582 24.58 6.98 36.15 3.702 17.55 25.84 47.356

RNS2 0.0485 37.16 8.49 22.37 2.553 43.13 21.67 55.855

16-bit 9

RNSC 0.0864 12.3 6.103 75.25

RNS1 0.0832 3.767 7.57 38.63 5.297 13.20 40.08 46.735

RNS2 0.0691 20.09 9.03 26.78 3.85 36.91 34.76 53.808

Y1

8-bit 7

RNSC 0.0969 9.44 5.041 47.58

RNS1 0.0726 25.12 6.47 31.43 4.593 8.87 29.73 37.517

RNS2 0.0615 36.52 7.46 20.96 3.629 28.01 27.08 43.097

12-bit 8

RNSC 0.1374 10.9 8.817 96.3

RNS1 0.1123 18.32 7.19 34.13 7.113 19.32 51.17 46.865

RNS2 0.0952 30.75 8.74 20.01 5.87 33.43 51.28 46.755

16-bit 9

RNSC 0.1674 12.7 12.2 154.5

RNS1 0.1558 6.958 7.51 40.64 9.906 18.80 74.44 51.806

RNS2 0.1348 19.49 9.31 26.48 8.455 30.69 78.69 49.052

S2

8-bit 7

RNSC 0.2506 9.5 12.52 119

RNS1 0.151 39.75 6.5 31.62 9.565 23.62 62.13 47.777

RNS2 0.129 48.52 7.6 20.01 8.065 35.60 61.28 48.487

12-bit 9

RNSC 0.4046 12.3 25.35 311.9

RNS1 0.2611 35.47 7.7 37.41 15.87 37.41 122.2 60.832

RNS2 0.2372 41.36 9.65 21.56 14.8 41.62 142.8 54.211

16-bit 10

RNSC 0.4567 12.9 34.27 443.6

RNS1 0.3756 17.75 8.17 36.91 24.3 29.08 198.4 55.264

RNS2 0.3099 32.13 10.5 19.25 20.25 40.90 211.7 52.283
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a better delay gain as compared to RNSC and RNS2. From Table 3.17, X1 filter using

RNS1 architecture achieves a delay gain of 34.39%, 36.16% and 38.63% as compared

to RNSC for 8, 12 and 16 bit inputs respectively. Similarly from Table 3.17, Y1

and S2 filters implemented with RNS1 architecture achieve a delay gain of 31.43%,

34.13%, 40.65% and 31.62%, 37.41%, 36.92% respectively as compared to RNSC for

8, 12 and 16-bit inputs. It can also observed from Table 3.17, that RNS2 filters

shows improvement in delay gain as compared to RNSC. However, with comparison

to RNS1, the delay gains of RNS2 filters are slightly smaller.

In RNS1, at each tap delay and SA blocks are equal to number of PG groups.

For 8, 12 and 16 bit inputs, the number of PG from equation (3.31) are 2, 3 and 4

respectively. Hence, for a 8 bit input, two delay and SA blocks are required. This

is shown in Figure 3.25 as two inputs to delay and SA block. In RNS2, as shown

in Figure 3.26 MA block is used at each tap for adding two PG selected from PLP

block. Thus the area and power consumption by RNS1 architecture is larger than

RNS2 architecture. Table 3.17 shows the area gains of X1, Y1, S2 filters implemented

with RNS2 architecture are 39.71%, 37.16%, 20.09% and 36.52%, 30.75%, 19.49%

and 48.52%, 41.36%, 32.13% respectively as compared to RNSC for 8, 12 and 16 bit

inputs. However, filters implemented using RNS1 architecture also has a comparable

area gain with respect to RNSC architectures. Similarly, power gain results are also

summarized in Table 3.17. It clearly shows that filters using RNS2 architecture

achieve a higher power gain as compared to RNS1.

For better synthesis analysis, RNS1 and RNS2, architectures are compared in-

terms of PDP and PDP gain. From Table 3.17, it is observed that delay of RNS1

and RNS2 architectures for any filter is based on k value. The k value is chosen as

9 for a 16 bits input filters X1, Y1 and for a 12 bit input filter S2. The delay of X1

filter using RNS1, RNS2 is 7.57 ns and 9.03 ns, respectively for k = 9. Similarly,

the delay values for Y1 are 7.51 ns, 9.31 ns and for S2 are 7.7 ns, 9.65 ns. The above

values show the delay is almost consistent for a given k, and it is independent of filter
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Figure 3.30: Filter Implementation in Altera DSP Builder

order and input length of the filter. Hence PDP value depends on the filter order as

well as input length.

The PDP and PDP gain values are also summarized in Table 3.17. For the same

k = 9, filter X1 of 15 order using RNS2 architectures achieve a PDP gain of 53.808%

as compared to RNSC. However, PDP gain of RNS1 is smaller than RNS2. As the

filter order increases for filter Y1 and S2, PDP gain of RNS1 increases. Filter Y1,

S2 of 30, 60 - order implemented using RNS1 architecture achieves a PDP gain of

51.806% and 60.832%. For k = 6 and 7, the PDP gain in any filter is high for RNS2

and for k = 8, X1 filter using RNS1 has larger gain and in Y1 filter, both RNS1 and

RNS2 are having a comparable gain. The analysis of PDP gain results from Table

3.17 shows that, increase in order and k value RNS1 filter architecture obtains larger

gain and for lower order filter and small k values, RNS2 architecture has larger gains.

3.6.3 Functional Verification

In this section, the functionality of the proposed filters is discussed. The implemen-

tation shown in Figure 3.30 is done using Altera DSP builder and is illustrated for

S2 filter type.

The functional verification of the filters is as follows:
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Figure 3.31: Input and Output Waveforms of S2 Filter

• Two signals are added at the source. One is 100 Hz and other is 200 Hz.

• The sampling frequency is 2 kHz.

• From the specifications of S2 in Table 3.15, pass band frequency is 42 Hz and

stop band frequency is 140 Hz.

• A 16 bit input RNS2 filter is imported and synthesized using HDL import block

of the Altera DSP builder. The top-level module is named as RNS2 16bit S2,

which appears in an HDL import block as shown in Figure 3.30

• For a duration of 0.1 Sec the added signal is passed to the filter block.

• As per the S2 specification, it filtered out 200 Hz signal and passes only 100 Hz

signal.

The waveforms in Figure 3.31 shows that the implemented filter is functionally veri-

fied.
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3.7 Conclusion

In this chapter, a novel approach towards implementing a fixed coefficient FIR fil-

ter architecture in RNS has been presented. Modular multiplications, which is the

most intensive part of an RNS based filter, have been replaced by employing PLP

blocks. This reduced the number of partial products for the modular multiplier. The

accumulated partial products are added using shift and add approach owing to the

chosen moduli set {2k − 1, 2k, 2k+1 − 1}. Implementing PLP blocks also eliminates

the need for forward conversion. These blocks offer significant advantages in terms

of delay and area. Proposed filter implementation of different order shows significant

improvement in PDP gain.
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Programmable FIR Filters

The design and implementations for fixed coefficient FIR filters are discussed in chap-

ter 2 and 3. In some applications such as adaptive pulse shaping, filter banks in SDR

and signal equalization, requires adaptive filter coefficient sets. In these kind of filter

implementations, the filter building blocks (e.g. multiplier and adder) are independent

of coefficient set. Hence, these filters are implemented with the dedicated multipliers,

and these are known as programmable FIR filters. This chapter presents an approach

for implementing high speed programmable FIR filter architecture.

This chapter is organized as follows: section 4.1 presents the introduction to

programmable FIR filter implementations. In section 4.2, the architecture of the

proposed programmable FIR filter is discussed. The synthesis results of the proposed

architecture and it’s functional verification using Altera DSP builder is discussed in

section 4.3, followed by the conclusion in section 4.4.

4.1 Introduction to Programmable FIR Filter

The TDF structure is widely used in many FIR filter applications due to its higher

operating clock frequency as comapred to the DF structure. The filter equation (1.1),

implemented in TDF is shown in Figure 2.3. For convenience the filter equation is

given below

Y (n) =
N−1∑
k=0

hk ∗X(n− k) (4.1)

The adders in the filter shown in Figure 2.3 are used for accumulation, and these

are named as structural adder (SA). The SA adder cost is equal to the order of the
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Figure 4.1: FIR Filter using CSHM Multiplier

filter. The multipliers in Figure 2.3 were used for coefficient multiplication with input

X(n). Here, the multiplier is an area and a power consuming device. The delay of

the multiplier depends on the number of partial products.

Several methods in the past have been proposed on programmable filter architec-

tures [108–115]. In [108], Tang proposed a high speed programmable filter based on

CSD representation. The limitation of this method is that the number of CS digits

in a coefficient is not more than three bits. In [109], computation sharing multiplica-

tion (CSHM) was used for filter implementation. A more simplified filter architecture

using constant shift method (CSM) was proposed by Mahesh in [111]. In this sec-

tion, the filter architectures based on CSHM and CSM with their critical path delay

analysis is discussed.

4.1.1 FIR Filter using CSHM Multiplier

The FIR filter implementation using CSHM multiplier is shown in Figure 4.1. The

filter architecture is similar to transposed direct form structure shown in Figure 2.3.

However, in the CSHM based FIR filter multipliers are replaced with select and add

unit at each tap of the filter. The coefficients at each tap will share the common

pre-computations by the bank of precomputers. The adders shown in Figure 4.1

which is used for accumulation are called as structural adders (SA). The CSHM

multiplier architecture for a 8 bit coefficient shown in Figure 4.2 consists of Bank of

precomputers, select units and a final adder. Each individual block implementation

is discussed and demonstrated with an example.

103



Chapter 4. Programmable FIR Filters

1XX(n)

1001X (9X)

1011X (11X)

111X (7X)

1101X (13X)

101X (5X)

1111X (15X)

11X (3X)

Shifter

8:1

MUX

Ishifter AND

Select Unit

Shifter

8:1

MUX

Ishifter AND

Select Unit

Final

Adder

Product 

X*h

Coefficient 

h = 11011010

hL = 1010

hU = 1101

select010

shift01

101X 1010X

select110

shift00

1101X 1101X<<4
Bank Of 

Precomputers

Select and Add Unit

Figure 4.2: CSHM Multiplier

4.1.1.1 Bank of Precomputers

The precomputaion block architecture is shown in Figure 4.3. This block will pre-

compute the possible product values of the input X(n) using shift and add approach.

In this method, the coefficient is divided into the groups of four bits each [109]. Hence,

in each group the value of the coefficient ranges from 0 to 15. So this block has to

pre-compute the possible product values {0X, 1X, 2X, 3X, 4X, 5X, 6X, 7X, 8X,

9X, 10X, 11X, 12X, 13X, 14X, 15X}. Here, X is the input X(n). However, these

computations can be minimized by using the select unit, which will be discussed
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in section 4.1.1.2. Here, {2X, 4X, 8X} can be omitted, since these values can be

obtained by simply shifting the value 1X by 1, 2 and 3 times respectively. Similarly,

{6X, 12X} can be obtained by shifting 3X and 10X is by shifting 5X and 14X can

be obtained by shifting 7X. Hence, this block calculates only the product values {1X,

3X, 5X, 7X, 9X, 11X, 13X, 15X} by using shift and add approach. There are seven

adders required for the precomputation block implementation as shown in Figure 4.3.

4.1.1.2 Select Unit

The select unit shown in Figure 4.2 consists of Shifter, 8:1 multiplexer, Ishifter and

an AND gate. The shifter circuit is used to generate the select and shift signals

for 8:1 multiplexer and ishifter circuits respectively. The input to the shifter is 4

bit value, which is derived from the coefficient. The input and output relation for

a shifter circuit is shown in Table 4.1. The select signal from the shifter is used

to select the product value from precomputer block through 8:1 multiplexer. The

ishifter circuit shifts the output from the multiplexer depending on shift signal from
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Table 4.1: Shifter Circuit

Shifter

Input Outputs
hL or hH Shift Select

0000 00 000
0001 00 000
0010 01 000
0011 00 001
0100 10 000
0101 00 010
0110 01 001
0111 00 011
1000 11 000
1001 00 100
1010 01 010
1011 00 101
1100 10 001
1101 00 110
1110 01 011
1111 00 111

the shifter circuit where as AND gate is used for the zero coefficient input.

The multiplication of input X with the coefficient can be expressed as in equation

(4.2)

X × h = X ×

dn4−1e∑
l=0

hl × 24l

 (4.2)

where, n is the number of bits to represent the filter coefficient h and l is the number of

4 bit coefficient groups. For n = 8, only two product values are required as compared

to eight partial products. Similarly for a 12, 16 bit coefficient 3 and 4 product values

are required instead of 12 and 16 partial products respectively. Hence the number of

partial products are reduced in CSHM multiplier architecture. The CSHM multiplier

is demonstrated in example 4.1.1.

Example 4.1.1. The CSHM multiplier is explained with the help of example. Con-

sider the filter coefficient h = 11011010. Now divide the coefficient into two groups
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hL = 1010b = 10d and hU = 1101b = 13d and give as the inputs to select units as

shown in Figure 4.2. By referring to Table 4.1, the shifter circuit produces select as

010 and shift as 01 for the input hL. These values indicate that, the 8:1 multiplexer

will select 101Xb = 5Xd from the bank of precomputers and it should be shifted by

one time to get 1010Xb = 10Xd. The AND gate will pass the same value as the hL is

non-zero. Similarly, for hU the select value is 110 and shift value is 00. Hence, the 8:1

multiplexer chooses the product value as 1101Xb = 13Xd. Here ishifter doesn’t shift

the product value as the shift signal is 00. However, for obtaining the final product

value X × h, the hu × x should be shifted by 4 bits as given in equation (4.2) and

added with hl ×X with the help of final adder.

The critical path delay of this filter is one select and add unit, one SA. Here, for

a n bit coefficient the critical path delay in [109], is as given in equation (4.3).

Tcshm = Tshifter + Tishifter + T8:1mux +
⌈
log2

(n
4

)⌉
Tadd + TSA (4.3)

Here in equation (4.3), Tcshm is the critical path delay of the FIR filter architecture

proposed in [109]. Tshifter, Tishifter, T8:1mux, Tadd, and TSA are the delays of the shifter,

ishifter, 8:1 multiplexer, final adder and SA respectively. Two adder stages are re-

quired for a 16 bit coefficient to add four product values. Next section presents CSM

architecture proposed by Mahesh and Vinod which is an improvement over CSHM

architecture.

4.1.2 FIR Filter using Constant Shift Method (CSM )

The FIR filter implementation using CSM approach is shown in Figure 4.4. This

architecture consists of shift and add unit, processing element (PE), delay blocks and

adder. The adder is used for accumulating the previous tap product value. This

also referred as structural adder (SA). All these blocks are explained in detail in the

following sections.
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4.1.2.1 Shift and Add Unit

The shift and add unit shown in Figure 4.4 is similar to the bank of precomputers

in CSHM architecture. However, in CSM the coefficient is divided into a group of

3 bits each. Each group value ranges from 000b = 0d to 111b = 7d. Hence, the

shift and add unit will compute only {0X, 1X, 2X, 3X, 4X, 5X, 6X, 7X}. The shift

and add unit is shown in Figure 4.5. This architecture requires only three adders, as

compared to the bank of precomputers in CSHM architecture which requires seven

adders. This shows that area is reduced for shift and add unit as compared to the

bank of precomputers.
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4.1.2.2 Processing Element (PE)

The PE of CSM approach is shown in Figure 4.6. The PE consists of selection unit,

shifter unit and adder unit. The selection unit consists of
⌊
n
3

⌋
8 : 1 multiplexers and

one 2|n|3 : 1 multiplexer. The inputs to this multiplexer are from shift and add unit,

and the select signals are from the coefficient stored in LUT. The shifter unit shifts

the selected product values from multiplexers as shown in Figure 4.6. The adder unit

adds all these shifted product values with the help of adders. These adders are called

as multiplier adders(MA). The output of final MA (i.e MA5 ) is Sum1. The two’s

complement circuit shown in Figure 4.6 is used for negative number coefficients. The
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output of complement circuit is represented as ∼Sum1. The 2:1 multiplexer selects

∼Sum1 for negative coefficient for which the sign bit is ‘1’. For a positive coefficient,

the sign bit is ‘0’ hence, Sum1 is selected and given to SA block as shown in Figure 4.6.

Since the coefficient is divided into a group of 3 bits, the selection unit in PE requires

8:1 multiplexer. Hence, CSM architecture is implemented without any shifter and

ishifter circuits as compared to CSHM architecture. However, the number of product

values will be increased due to a one-bit reduction in grouping.

The critical path delay for a n bit coefficient, in [111] is as given in equation (4.4).

Tcsm = Tsau + T8:1mux +
⌈
log2

(n
3

)⌉
Tadd + TSA (4.4)

In equation (4.4), Tcsm is the critical path delay of the FIR filter architecture

proposed in [111]. Tsau is the delay of shift and add unit. A 16 bit coefficient will

select six product values. The addition of all these product values will be done by

using three-stage adder. The precomputation block is optimized in terms of delay

and number of adders in [111] as compared to [109].

However, in CSM and CSHM architectures the critical path delay depends on

the number of adder stages required to add the product values and the delay of SA.

Hence, there is a possibility of improving the clock frequency or minimizing the delay

by replacing the adders with suitable arithmetic circuits. In section 4.2, the proposed

programmable FIR filter architecture is discussed.

4.2 Proposed FIR Filter Architecture

In this section, the proposed architecture and its basic blocks are discussed. The

proposed architecture is shown in Figure 4.7. It consists of a shift and add unit, a

modified processing element (MPE) for each coefficient, a structural compressor (SC)

along with two delay elements at each tap of the filter and finally an adder after the

last tap of the filter. The shift and add unit shown in Figure 4.7 is implemented as
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Shift and Add Unit

MPEN-1 MPEN-2 MPEN-3 MPE0

z-1

z-1

z-1

z-1

z-1

z-1

Structural

Compressor

Structural

Compressor

Structural

Compressor

j

hN-1 hN-2 hN-3 h0

X(n)

CN-1 SN-1 CN-2 SN-2 CN-3 SN-3 C0 S0

Y(n)

CA1 CA2

CAF

SA1 SA2

SAF
z-1

z-1

Figure 4.7: Proposed FIR Filter Architecture

proposed in [111]. The delay of the shift and add unit was one adder. Modified pro-

cessing element (MPE ) has been used at every single tap of the filter. The outputs of

MPE at every tap are Sum and Carry represented as Sk and Ck respectively, where

k is an integer varying from 0 to N − 1. The Sk and Ck values at each tap are accu-

mulated with the help of SC. The outputs of these compressors are the accumulator

sum, and the accumulator carry, represented as SAF and CAF respectively, where F

is an integer, varying from 1 to N − 1. And finally, to add both SAF and CAF , an

adder is required to produce output Y (n). The critical path delay of the proposed

architecture for a n bit coefficient, is as given in equation (4.5).

Tproposed = Tsau + T8:1mux + TMPE + TSC (4.5)

Here, Tsau, TMPE, and TSC are the delays of the shift and add unit, the modified

processing element and the SC respectively. Since an optimized implementation of a

shift and add unit was proposed in [111], the same is implemented in the proposed

filter. Hence, only a detailed explanation for MPE, 4:2 compressors and SC are

discussed in the following sections.
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4.2.1 Modified Processing Element (MPE) Architecture

The proposed MPE architecture for a 16 bit coefficient as shown in Figure 4.8 consists

of a selection unit and a compressor unit. The 16 bit coefficient is divided into 3 bits

of five groups and 1 bit of one group. Each group then selects a particular product

value from the shift and add unit. For a j bit input X(n), the shift and add unit has

a possibility of eight products values {0X, 1X, 2X, 3X, 4X, 5X, 6X, 7X}, each

of j + 3 bits. Hence, to select one product value, an 8:1 multiplexer is required for

five groups and a 2:1 multiplexer for 1 bit group. The 8:1 multiplexer are named as

MUX1 to MUX5 and the 2:1 multiplexer is MUX6. In Figure 4.8, MUX1 to MUX6

are considered as the selection unit. Each multiplexer input is fed from the shift and

add unit and the select signals will be from the coefficient bits which are stored in a

look-up table (LUT).

The outputs of MUX1 to MUX6 are represented as r1, r2, r3, r4, r5, r6 each of

j + 3 bits, respectively. Consider the input x is of j bits and the coefficient h is of n

= 16 bits. The multiplication of input with the coefficient can be obtained as given

in equation (4.6).

X × h = y =

dn3 e∑
i=1

ri × 23×(i−1) (4.6)

In [111], output y can be obtained as shown in equation (4.7).

X × h = y = r1 + r2 × 23 + r3 × 26 + r4 × 29 + r5 × 212 + r6 × 215 (4.7)

To implement equation (4.7), five adders are required with logic depth (LD) of

three adders. Hence in equation (4.4),
⌈
log2

(
n
3

)⌉
Tadd + TSA becomes 3Tadd + 1Tadd

resulting in a four stage adder delay. Since, shift and add unit requires one adder,

Tcsm in equation (4.4) requires 5Tadd and 1T8:1mux in critical path delay . In MPE,

as shown in Figure 4.8, r3 × 26, r4 × 29, r5 × 212 and r6 × 215 are given to the stage 1
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Inputs from Shift and Add Unit

MUX3MUX2 MUX4 MUX5 MUX6

 Compressor Stage2

MUXC MUXS

C S

<< 3 << 6 << 9 << 12 << 15

r1 r2 r3 r4 r5 r6

C1 S1

C2 S2

LUT

<< 1

S2'C2'

Selection

 Unit

Compressor 

Stage
<< 1

C2 S2

MUX1

h

3 3 3 3 3 1

Compressor Stage1

j+3 j+3 j+3 j+3 j+3 j+3

j+3

j+18 j+18

j+19j+19

j+19 j+19

Figure 4.8: Modified Processing Element (MPE) Architecture

compressor which results S1 and C1. Next S1, C1 × 21, r1 and r2 × 23 are given to

the stage 2 compressor which results in S2 and C2. Depending on the sign bit, S2′ or

S2 from the MUXs and C2′ or C2 from MUXc can be chosen which results the final

sum S and carry C. Hence, the delay of TMPE is 2T4:2compressor which is faster than

3Tadd delay. These values will be accumulated with the next tap sum and carry of

the filter again by using a 4:2 compressor, as shown in Figure 4.7. Thus, the delay of

TMPE and TSC in equation (4.5) equals to three 4:2 compressors. Hence, for a 16 bit
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coefficient the critical path delay in the proposed approach, requires 1Tadd for shift

and add unit, 1T8:1mux and 3T4:2compressor for MPE and SC which improved the delay

gain as compared to [111]. A detailed explanation of the compressor stage is given

below.

4.2.1.1 Compressor Stage

Compressor stage1 and compressor stage2 comprise the complete compressor stage.

The outputs of MUX3 to MUX6 are fed to compressor stage1. The outputs of stage1

are labeled as S1 and C1. The outputs of MUX1, MUX2, S1 and C1 are given to

compressor stage2 and the outputs are labeled as S2 and C2. Each compressor stage

consists of a half adder, a 3:2 compressor and a 4:2 compressor. For demonstration,

consider that j is of 8 bits, hence the outputs r1, r2, r3, r4, r5 and r6 are of 11

bits. The t3, t4, t5 and t6 in compressor stage1 shown in Figure 4.9, represents

r3×26, r4×29, r5×212 and r6×215, respectively. Zero padding is represented as 1′b0.

The outputs S1 and C1 are represented as given in equation (4.8)

S1 =

j+17∑
m=0

S1m × 2m

C1 =

j+17∑
m=0

C1m × 2m (4.8)

where m is an integer varying from 0 to j+17. The values of S1m and C1m are either

1 or 0. From Figure 4.9, S1 and C1 values for m = 0 to 5 are ‘0’only. Now S16, S17

and S18 are directly taken from 0, 1, and 2 bits of t3. Figure 4.9 shows that a half

adder is used to obtain S19, S110, S111 and C19, C110, C111, as the corresponding t5,

t6 are zeros. Similarly, a 3:2 compressor has been used for generating S112, S113, S114

and C112, C113, C114 bits. For S115 to S119 and C115 to C119 a 4:2 compressor is used.

For S120 and C120 a 3:2 compressor has been used. The carry in for this compressor
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10
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Figure 4.10: Logic Diagram of 4:2 Compressor

is generated by the 4:2 compressor. Three MSB bits of S1 are the direct values of

t6 as shown in Figure 4.9. Similarly, S2 and C2 values are also shown in Figure 4.9.

Hence, the critical path delay to obtain S2 and C2 will consists of two stages 4:2

compressors.

The implementation of the half adder is using an ex-or (XOR) gate for the Sum

bit and an AND gate for Carry. A 3:2 compressor is a full adder that produces the

Sum with two XOR gates and Carry with three AND, two OR gates. In [106], a

4:2 compressor is implemented as shown in Figure 4.10. This compressor takes four

inputs in1, in2, in3, in4 along with previous stage carry(Cin) and give output in the

form of sum, carry along with carry out(Cout). Hence, sometimes it is also referred

as a 5:3 compressor [106]. By referring to Figure 4.10, it can be observed that Cout

does not depend upon Cin as it is available after 1 XOR and 1 2:1 multiplexer delay.

As a result, the delay of a 4:2 compressor will always be three times XORdelay.
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4.2.1.2 Comparison of MPE

The delay of select and add unit (SADD) proposed in [109], processing element (PE )

in [111] and the proposed MPE are given in equations (4.9), (4.10) and (4.11) respec-

tively.

TSADD = Tshifter + Tishifter + T8:1mux +
⌈
log2

(n
4

)⌉
Tadd (4.9)

TPE = T8:1mux +
⌈
log2

(n
3

)⌉
Tadd (4.10)

TMPE = T8:1mux +
{⌈

log2

(n
3

)⌉
− 1
}
T4:2compressor (4.11)

For a n = 16 bit coefficient, TSADD requires a two-stage adder, TPE requires a three-

stage adder, where as TMPE requires two-stage 4:2 compressor. The delay equations

for SADD, PE and MPE are derived from the Figures 4.2, 4.6 and 4.8 respectively.

The SADD, PE and MPE blocks are synthesized using Cyclone II device in Altera

DSP builder.

The synthesis results shown in Table 4.2 are compared in terms of resource usage

(RU ), delay, and delay gain. The RU is the ratio of logic cells utilized by the archi-

tecture to the total number of available logic cells of a device in terms of percentage

value. For convenience, RU values are rounded to the nearest integer. The delay of

MPE for j = 8, 12 and 16 bits are 2.476, 3.222 and 2.838ns respectively. A 4:2 com-

pressor delay is often less than an adder delay, hence in the proposed MPE, the delay

is considerably less as compared to the existing architectures as shown in Table 4.2.

In section 4.3, the synthesis environments along with complete filter implementation

are discussed in detail.

4.2.2 Structural Compressors (SC)

At every single tap of the filter, the outputs of MPE are accumulated with the earlier

tap S, C. Hence, at each tap, two outputs from MPE and two outputs from preceding
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Table 4.2: Synthesis results of MPE

j Method RU Delay Delay Gain

8

SADD [109] 2 12.628

PE [111] 1 12.792 -1.29

MPE 1 2.476 80.64

12

SADD [109] 3 14.465

PE [111] 2 15.119 -4.52

MPE 2 3.222 77.72

16

SADD [109] 4 16.368

PE [111] 3 18.223 -11.33

MPE 2 2.838 82.66

tap MPE are available. To get sum and carry from these four values, again a 4:2

compressor is used and named as structural compressors (SC), as shown in Figure

4.7. There are two outputs from the SC, hence two registers are required to store

these values. This extra register will result as an increase in area of the filter.

4.3 Experimental Results

In this section, the synthesis results of the proposed filter architecture, with archi-

tectures of [109] and [111] are discussed. The filter specifications and coefficients are

taken from [43]. The filters are labeled as X1, Y 1, and L2, and the orders of the

filters are 15, 30, and 63, respectively. Normalized filter passband, stopband edge

frequencies (ωp, ωs) and passband, stopband ripple values (δp, δs) are given in Table

4.3. The filter architectures proposed in [109] and [111] are named as CSHM and
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Table 4.3: Specifications of filters

Filter N ωp ωs δp δs

X1 [43] 15 0.2π 0.8π 0.0001 0.0001

Y1 [43] 30 0.3π 0.5π 0.00316 0.00316

L2 [43] 63 0.2π 0.28π 0.028 0.001

CSM respectively. The filters in Table 4.3, are implemented in Verilog HDL [79] us-

ing CSHM, CSM and with the proposed techniques for 8, 12 and 16 bit input word

lengths (WL). The filters are synthesized using Altera Quartus II 12.0 and the DSP

builder tool [116, 117]. The target device is the Cyclone II EP2C20F484C7 (DE1

development board), which is fabricated in 90 nm technology [118]. A carry look

ahead (CLA) adder is used in [111] wherever an adder is required. However, in [109],

square root select (SRS) adders were used instead of CLA, hence while implementing

CSHM, SRS adders are used. D-Flipflops are used as registers in all architectures.

The functional verification of the filters is checked through the DSP builder. For

demonstration, the proposed filter architecture for the L2 filter of 63 order and 8 bit

WL is shown in Figure 4.11. Consider that the sampling frequency (FT ) is 2 kHz.

From Table 4.3, the passband and the stopband edge frequencies (fp, fs) are 200

Hz and 280 Hz, respectively. This indicates that the L2 filter will pass frequencies

of up to 200 Hz. Hence in this implementation, two sine waves are considered and

named as Sine Wave1 and Sine Wave2 as shown in Figure 4.11. Sine Wave1 is of 800

Hz and Sine Wave2 is of 50 Hz. Both these signals are added and quantized to 8

bits through an ADC. Now this signal will pass through the L2FILTER, as shown in

Figure 4.11. The L2FILTER is implemented using Verilog gate-level description and

imported through HDL import of the DSP builder. As per L2 filter specifications, it

will pass frequencies below 200 Hz, hence the output from the L2FILTER consists of
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a 50 Hz signal. The input and output signals are as noise signal and filtered signal

shown in Figure 4.12. Figure 4.12 clearly shows that the proposed filter architecture

produces 50 Hz signal. Thus the filters functionality is verified.

For logic cell utilization and critical path delay estimation, Resource usage block

is used as shown in Figure 4.11. Power estimation is done through Quartus II 12.0.

The clock frequency is 166.67 MHz (6 ns). The synthesis results of the filters are listed

in Table 4.4. The results are compared in terms of delay (D), power (P ) and power-

delay product (PDP ) along with their gains with respect to the CSHM architecture.

The resource usage (RU ) of the filter is also given in Table 4.4. For instance, with

the signal compiler after synthesizing, the Resource usage shows 21% of logic cells are

used for the L2FILTER as shown in Figure 4.11, with a delay of 3.85 ns. The same

values along with power consumption for this filter (L2 for an 8 bit WL) are shown

in Table 4.4.

In filterX1, the delay value for 8, 12 and 16 bitWL values are 11.26ns, 13.47ns and

16.39ns for the CSHM architecture, and for the CSM, the values are 10.96ns, 13.06ns

and 15.64ns respectively. However, for the proposed architecture, the delay values

are similar for 8, 12 and 16 bit WL. Hence, for X1 filter the proposed architecture

achieves a 62%, 75%, and 76% delay gain as compared to the CSHM architecture.

This is due to the use of 4:2compressors that have less delay as compared to SA.

In the proposed architecture, RU increases as the order of filter increases. This

is due to storing SAF and CAF values in two registers. This also leads to slight

increase in power consumption of the proposed filter. Hence, PDP is considered as

performance metric. From Table 4.4, the PDP gain for 8, 12, and 16 bit WL of X1

filter are 61.09%, 72.68%, and 74.53%, respectively. From the synthesis results it can

be observed that in CSHM and CSM architectures, the delay value increases as WL

increases. Hence, the synthesized results show that the proposed filter has significant

PDP and delay gain as compared to the CSHM and CSM architectures.
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Chapter 4. Programmable FIR Filters

Table 4.4: Synthesis Results

Filter WL Architecture RU
Delay Delay Power Power

PDP
PDP

(ns) gain (%) (mW) gain (%) gain (%)

X1

8

CSHM [109] 3 11.26 110.41 1243.33

CSM [111] 3 10.96 2.65 115.69 -4.78 1268.31 -2.01

Proposed 4 4.12 62.43 117.45 -6.38 483.78 61.09

12

CSHM [109] 4 13.47 116.15 1564.66

CSM [111] 4 13.06 3.09 120.84 -4.04 1577.57 -0.83

Proposed 6 3.36 75.09 127.35 -9.64 427.39 72.68

16

CSHM [109] 5 16.39 126.96 2080.24

CSM [111] 4 15.64 4.54 148.24 -16.76 2318.62 -11.46

Proposed 7 3.86 76.42 137.17 -8.04 529.89 74.53

Y1

8

CSHM [109] 7 11.25 140.57 1581.13

CSM [111] 6 11.37 -1.06 179.60 -27.77 2041.51 -29.12

Proposed 10 3.60 68.01 150.62 -7.15 541.93 65.73

12

CSHM [109] 9 14.18 150.22 2129.97

CSM [111] 8 13.31 6.16 185.03 -23.17 2461.82 -15.58

Proposed 12 3.76 73.47 175.00 -16.50 658.35 69.09

16

CSHM [109] 11 16.32 157.78 2574.34

CSM [111] 10 15.81 3.12 188.78 -19.65 2984.05 -15.92

Proposed 15 3.66 77.60 186.54 -18.23 681.80 73.52

L2

8

CSHM [109] 15 11.64 193.40 2250.21

CSM [111] 14 11.07 4.89 200.10 -3.46 2214.31 1.60

Proposed 21 3.85 66.94 231.70 -19.80 891.12 60.40

12

CSHM [109] 20 14.43 223.65 3227.05

CSM [111] 17 13.58 5.87 225.68 -0.91 3065.19 5.02

Proposed 27 4.27 70.39 227.47 -1.71 971.75 69.89

16

CSHM [109] 24 16.57 255.57 4233.77

CSM [111] 21 15.73 5.07 254.86 0.28 4007.93 5.33

Proposed 33 3.97 76.06 309.55 -21.12 1227.68 71.00

123



Chapter 4. Programmable FIR Filters

4.4 Conclusion

In this chapter, an approach for a high speed programmable FIR filter architecture for

faster applications is presented. A 4:2, and 3:2 compressors are used for implementing

MPE. This improved a delay gain in MPE as compared to conventional PE, where

adders are used. A 4:2 compressor is used as an SC to further make the filter delay

efficient with area overhead. As compressors are faster than adders, the proposed

architecture showed significant improvement in delay and PDP gain. One of the

proposed architecture shows a 62.43% delay gain and a 61.09% PDP gain as compared

to the existing filter architectures.
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Conclusions and Future Work

This thesis addressed the issues in FIR filter design and its implementation for fixed

and programmable coefficients. From the filter transfer function, it is observed that,

coefficient multiplication consumes most of the hardware in filter implementations.

The coefficient multiplication depends on the filter implementation type. Multipli-

erless realization using shift and add approach is one such famous implementation

for the fixed coefficient filter. In multiplierless implementations, the coefficient mul-

tiplication depends on the number of SPT terms present in a coefficient. Several

signal processing applications use RNS for achieving higher clock frequency. How-

ever, the use of RNS doesn’t guarantee an area and power efficient implementation. In

programmable filters dedicated multipliers were used and these multipliers are most

expensive in terms of hardware. In brief, this thesis addressed the following issues:

• Calculation of FIR filter coefficients with a minimum number of SPT terms

using optimization algorithms.

• An efficient RNS based fixed coefficient FIR filter implementation.

• Improvement in the clock frequency of programmable FIR filter implementa-

tions using appropriate arithmetic circuits.

This chapter summarizes and presents the tasks accomplished in this thesis. The

challenges and scope of future research work in filter design are also discussed.
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5.1 Conclusions

As the first contribution, an approach to FIR filter design using DE algorithm is

proposed in the thesis. From the literature survey, it is understood that FIR filters

are designed with various optimization techniques. Several deterministic algorithms

such as linear programming and mixed integer linear programming have been used

in the past to obtain hardware efficient filter coefficients. At the same time, the

stochastic algorithms such as genetic and differential evolution (DE) have also been

used for filter design in the recent years. Few researchers have designed FIR filter with

DE algorithm for which the objective function is only to obtain the desired frequency

response of the filter [61, 62, 72]. However, these objective functions in [61, 62, 72] do

not focus on minimizing the number of SPT terms. In this thesis, a filter is designed

with the minimum number of SPT terms using DE algorithm. Furthermore, CSE

approach is applied to obtain filter coefficients that lead to a hardware efficient filter

implementation. The experimental results showed significant improvements in area,

delay, and power gain in comparison to some recent reported design methods. One of

the proposed filters showed maximum PDP gain of 29% than those designed using

Remez algorithm. The results of this study will lead to improvements in filter design

for specific application.

In the second contribution, an approach for RNS based fixed coefficient FIR fil-

ter structure is presented. In spite of its carry-free modulo arithmetic operations,

only few researchers have contributed in the field of RNS DA based FIR filter imple-

mentations. Many of these RNS based filters are designed with conventional moduli

set
{

2k − 1, 2k, 2k + 1
}

. The main issue in this moduli set is, 2k + 1 modulo scal-

ing operations. Recently, an RNS based FIR filter with inner product computation

was presented in [96]. This method overcomes the modulo scaling by encoding the

BC residues into TC and modulo adder design with OHR representation. The OHR

modulo adder presented in [96] is simple to design and modulo scaling was obtained
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by simple shift operations. However, throughput of this design is less, and it requires

conversion between BC residues to TC encoding, OHR to BC encoding and requires

more registers for storing the previous inputs. The filter in [96] is best suited for

smaller dynamic ranges. However, selection of moduli set also plays a significant role

in RNS based filter design. The second major finding is the forward conversion, its

BC residue encoding and OHR to BC residue conversion. Hence, in this thesis two

RNS based FIR filter architectures using the moduli set
{

2k − 1, 2k, 2k+1 − 1
}

are

proposed. The modulus 2k + 1 is replaced with the modulus 2k+1−1, which increases

the dynamic range of the design and overcomes the modulo scaling operation. The

proposed architectures focus on the LUT based multipliers without forward conver-

sion. The proposed LUT based multipliers reduced the number of partial products as

compared to conventional modulo multiplication. The LUT stores pre-computed in-

ner products for each coefficient in RNS and thus, avoids forward conversion. Due to

parallel implementation, the throughput of the filter is increased as compared to [96].

The proposed filters are implemented in Verilog HDL and are synthesized in Cadence

RTL using the 90nm technology library. The filters with LUT based multipliers and

conventional multipliers are compared in-terms of area, power and delay. The RNS

filters with LUT based multipliers showed significant improvement in clock frequency,

area and power gain.

The third contribution of this thesis presents a high speed programmable FIR

filter architecture. The programmable filters are extensively used in several signal

processing applications such as SDR and DSP processors. These filter implementa-

tions use dedicated multipliers, which consume a lot of hardware. Few researchers

have addressed this issue in the past and proposed some novel approaches. Compu-

tation sharing multiplication is one such approach proposed in [109]. A pre-computer

block is used to calculate the possible product values with input. In this method,

the coefficient is divided into a group of 4 bits each. Each group selects the pre-
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computed values and add these values using select and add circuit. A modification

to this approach is proposed in [111]. In [111], the coefficient is divided into a group

of 3 bits each instead of 4 bits as in [109]. This modification reduces the number of

pre-computed values and uses simple selection circuit. In either of these approaches,

at every tap of the filter, two adder stages are required. One for adding the final sum

and carry in the multiplier and second is for accumulating the previous tap values.

These two adder stages play an important role in the critical path delay. Hence,

in this thesis, a high speed programmable filter with the use of compressor circuits

is proposed. The compressors are fast in operation as compared to adders. In the

proposed filter design, the two adders at every tap of the filter are replaced with one

4:2 compressor, which improves the clock frequency of the filter. The proposed high

speed filters are synthesized in Altera Cyclone II devices. The filter functionality is

verified with DSP builder using Altera DE1 board. One of the proposed filter show

62.43% delay gain and 61.09% power-delay product gain as compared to the existing

architectures.

5.2 Future Work

In this thesis, the challenges in FIR filter design and its implementations for fixed

and programmable coefficients are discussed. Three approaches to tackle these issues

were proposed in this thesis. However, further research may continue and may be

undertaken to address the proposed challenges as follows:

Modified Differential Evolution Algorithm for FIR Filter

The DE algorithm generates good optimum results by choosing the suitable values

for parameters such as mutation, cross-over ratio and strategies. Among these, DE

follows six strategies, which are developed in general for various problems. However, a

future study developing a new strategy dedicated for FIR filter would be challenging.
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Further study on DE algorithm for multirate filter bank would be an interesting

topic. In multirate filter bank, FIR filter is designed such that, the desired frequency

response should be obtained after decimation or interpolation. This will add more

constraints to the objective function and would be challenging with DE algorithm.

RNS Based FIR Filters

RNS in signal processing applications is widely used due to its carry-free arithmetic

operations. In this thesis, RNS based FIR filters are implemented using three moduli

set with LUT based multipliers. A limitation of this architecture is that dynamic

range of the moduli set should satisfy the filter design. Further research should focus

on filter design with four or more moduli set. The four and above moduli sets will

increase the dynamic range, hence it would be challenging to implement higher-order

filters with higher clock frequency.

Programmable FIR Filters

In this thesis, a high speed programmable filter is implemented using 4:2 compressors.

The use of compressors results in higher clock frequency. However, this implementa-

tion requires more area, for large-size input and coefficients. Further research could

significantly explore on programmable filter implementation with RNS. A future study

on selection of moduli sets, and its use in implementing the programmable filter would

be challenging.
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