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Abstract 

Wind Profiler is a generic term for ground based remote probing instrument used to 

study the dynamics of the earth's atmosphere. These atmospheric radars are coherent pulsed 

Doppler radars operating in VHF or UHF bands. They transmit radio frequency pulses in 

vertical and off-vertical directions. Backscatter from atmospheric and other targets is received 

by sensitive receivers. These echoes are digitized. Subsequently, echoes from the targets in the 

same region are combined and subjected for Doppler analysis to get a Doppler Power Spectrum 

for each range-bin. On this processing, the primary products such as Signal Power, Doppler 

Shift and Spectral Width for each range bin are generated. From these primary products, 

atmospheric parameters like target density, wind speed and turbulence intensity etc., can be 

derived. These parameters are very useful for atmospheric modeling and predictions. The 

Doppler Power Spectra is conventionally considered as the basic form of data from which all 

products and weather parameters are derived. However, obtaining backscattered signal from 

atmospheric target is very difficult as the echoes are too weak (power around -140dBm). Also, 

the signal could be contaminated with clutter, echoes from non-atmospheric targets, 

precipitation and radio frequency interference (RFI) and so on. Discontinuous coverage in range 

and time is also observed occasionally. Consistent and reliable extraction of atmospheric 

parameters is possible by applying appropriate post processing methodology to analyze the 

Doppler power spectra. 

This doctoral research has been carried out with the intention of developing initial 

understanding of the Radio Frequency (RF) scattering process and getting a mathematical 

estimation of the backscattered power. Subsequently, an understanding is being developed on 

the signal processing operation of wind profiler radars and the standard data formats. 

Algorithms are developed for the following: 

1. Modeling and Simulation of the wind profiler Doppler Power spectra: This 

involved mathematical formulation of the backscattered signal as output from the RF receiver of 

the radar, performing mathematical operations of digital signal processing and creating Doppler 

power spectra. By this process one can make spectral data with user defined features. This data 

could be used as a test bench to evaluate the performance of various processing techniques and 

algorithms. 
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2. Preprocessing of the Doppler Power Spectra: This activity involves estimation of 

noise power and identification of the echoes from non-atmospheric targets and removal of all 

the unwanted signals. This way the data is made suitable for the next stage of profile extraction. 

3. Estimation of the Doppler profile: This activity mainly deals with Doppler 

profile tracing. The algorithm developed can be used for most type of data without change of 

parameters. Such an algorithm is expected to be used for automated processing of huge data 

generated by WP radars. 

4. Target classification from Doppler Power Spectra: Automated processing of the 

radar data also require the data to be classified based on the atmospheric targets. 

All the algorithms have been implemented on the data of Indian MST radar at Gadanki, 

India. The functionality of the algorithm has been tested repeatedly and found consistent. The 

performances of algorithms are compared with some of the established methods currently in 

being used for the same purpose. It is observed that the newly developed algorithms show 

improvement over the existing methods in Clutter and RFI removal and profile tracing. The 

algorithms show consistent results in classification of the spectral data along with less 

computational complexity.  

In summary, the algorithms presented in the thesis can be effectively used in the 

following  

1. To generate Doppler power spectral data corresponding to various weather 

conditions. This data is used to evaluate wind profiler data processing algorithms.  

2. Preprocessing of the Doppler Power Spectra. 

3. Automated Doppler profile tracing. 

4. Algorithm development for automated classification of the Doppler power spectra 

 

Key Words 

Wind profiler, Doppler Spectra, Spectral Moment, RFI and Clutter removal, Modeling and 

simulation, Doppler profile tracing, target classification. 
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Chapter 1 

Introduction 

 

Atmospheric studies leading to weather prediction have always assumed cardinal 

importance in the history of human civilisation. The well-being and even existence of human 

civilisation depends on the atmospheric conditions. This is especially true for a predominantly 

agricultural country like India. It is also known that climatic changes in one part of the world 

bring about corresponding changes in distant part of the globe. Understanding this, the 

meteorologists and oceanic scientists all over the world study and monitor the environment by 

regular observations. They also exchange data for correlation of studies. The collaborative 

processing of the data leads to better observations and understanding of these natural processes. 

On the basis of these observations weather forecast and prediction models are made.  

Most of the modern observational tools of lower and middle atmospheric terrestrial 

dynamics are Doppler radars. They transmit radio-frequency (RF) pulses and observe the back 

scattered signal from different atmospheric and oceanic targets. The received signal is analysed 

to find the time delay of the echo and RF frequency shift. The information is represented on 

Range-Doppler plane, from which the location and the velocity of the target can be determined.  

Meteorologists need to take regular atmospheric observations for weather modeling and 

predictions. Continuous up-gradation in the instrumentation and innovative methods to obtain 

remote atmospheric parameters has always been in demand of researchers. The information is 

mainly in the form of wind velocity, temperature and humidity. Occasionally, other parameters 

like pressure, ion content, solar radiation etc. are also observed. In early days, these 

observations were taken vide in-situ measurements using balloon flights. This was the main 

method of monitoring the atmosphere. The most important parameter amongst these is the wind 

velocity profile. Modern studies depend strongly on the wind velocity profile obtained from 

atmospheric radar observations. A brief account of development of various radar data 

processing techniques is given below. 
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1.1 Radar Meteorology  

 In 1960’s radar technology became available for non-military operations. The 

technological advancement has been in following major stages. 

 The receiver sensitivity started getting better (upto -90 dBm or picowatt). Due to this 

it became possible to process echoes from air targets. This capability facilitated the 

determination of scatterers range.  

 Measurement of Doppler frequency shift became possible and the velocity of air/wind 

was determined. This determination of wind velocity became a great boost to weather 

prediction.  

 Generation and steering of narrow radar beam added the capability of perceiving the 

structure of the target. The internal movement of larger clouds and atmospheric layers led to 

greater understanding and analytical capability of wind dynamics.  

As a result of this, different types of weather radars were developed and are 

commercially available. Later regular observations using radars became a standard practice.  

 

1.2 Need for Automated Processing and Classification      

With the advent of these radar technologies, radar meteorology has assumed greater 

importance and radar data is being used more often by atmospheric scientists. The practice of 

collectively taking the radar data has become very common and regular benchmark methods for 

atmospheric observations were developed. Modern radars operate round the clock taking the 

observations. Due to these long operating hours, large amount of data are generated. The 

interpretation of the data and extraction of meteorological information in term of parameters 

like Scatterers Reflectivity, 3-D wind speed, and wind turbulence at all ranges are the 

immediate tasks. This basic process of getting atmospheric parameter is often referred as 

product generation. Conventionally, this task was done by professional experts. These 

professionals used to take decisions based on their experience and the knowledge of similar 

events occurred before. Considering the volume of data from modern radars, it is very difficult 

to analyze this large amount of data manually. Due to this reason, an automated processing 

algorithm functioning without manual supervision and to deal effectively with the spectral 

contaminations and discontinuities are highly desirable.  
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Identification and tracing the Doppler profile corresponding to the echoes from wind and 

air turbulence is the main challenge. As mentioned earlier, the signal is not easily seen due to 

lower strength compared to the noise and contamination due to other non-atmospheric targets 

such as RFI and clutter. The allied sub-tasks would be as follows: 

a) To develop a versatile simulation tool to create Doppler Power spectral data for a 

wide variety of atmospheric conditions. An elaborate collection of such data sets will enable the 

researchers to test the profile extraction algorithms on most types of atmospheric conditions. 

This would provide an objective method to evaluate the efficacy of the Doppler profile 

extraction algorithms. 

b) To develop algorithms to eliminate the unwanted signals. Identifying and 

eliminating the echoes of non-atmospheric targets would clean the data and make tracing of the 

Doppler profile much easier. Clutter and Radio Frequency Interference (RFI) are the major 

unwanted signals. This task is included in the Pre-processing of the Doppler power spectra. 

c) To develop Doppler Profile Extraction algorithm. This main task needs to be 

achieved by an objective algorithm which would not need parameter changes for different 

atmospheric conditions. The new algorithm needs to work in low Signal to Noise Ratio (SNR) 

condition and offer a performance imitating human expert. 

d) The wind profilers are also capable of detecting characteristic Doppler profiles of 

Ionospheric echoes, Meteoric echoes, Precipitation echoes and so on. These atmospheric 

conditions result into much stronger echoes compared to clear air winds. It is not probable to 

extract wind echoes in the presence of such signals. It would be worthwhile to develop a sorting 

algorithm capable of classifying the Doppler power spectral data into these phenomena along 

with the clear air echoes.  

 

1.3 Motivation and research gap  

 Many researchers have come up with very effective algorithms for Doppler profiling. 

However, most of them need meticulous parameter selection depending on atmospheric 

conditions and radar system specifications. For the best results expertise of professional analysts 

are also required. This is a lengthy process and often the decisions were subjective in the sense 

that they were dependent on human expert’s perception. Such approach may not be feasible on 

large amount of data generated by the wind profiling radars. Therefore, there is a need of an 
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objective profile extraction method which would perform well in most of the conditions. The 

requirement can be stated as follows:  

Modern radars are operated continuously for long durations and generate large amount 

of data. In order to process this data in real time the profile tracing must be fast. Therefore the 

computational complexity of the method needs to be moderate so as to handle large data 

throughput of modern radars. Taking motivation from this, the research was directed towards 

developing new algorithm for profile tracing. There is also a need to perform automated 

classification of the data for its appropriate archival. In this research, an effective Doppler 

profile tracing algorithm is developed. And a strategy for the real time classification of the WP 

Doppler spectra is also developed.  

 

1.4 Objective of the Research 

 The research has been carried out with the motivation of developing automated tools for 

processing the data of wind profiling radars. The main challenge of this research towards 

automated processing was large data volume and limited time for processing. With typical 

operating parameters, the radar generates a data set of Doppler Power Spectra, approximately 

every 16 seconds or 32 seconds. Typical observation session of the Indian MST radar session 

generates 120 data sets in 30 minutes. Other WP radars have data generation at similar rate 

depending on their operating parameters. A real-time automated computation scheme is 

expected to process the data as it is generated. Doppler Power Spectra is the standard product of 

wind profiler radars. Processing of this data involves three steps; namely, preprocessing or the 

removal of echo components from non-atmospheric targets, determining the wind velocity 

information and classification of the data into different atmospheric processes based on the 

observed prominent echo types.  

Therefore the problem statement of the research is to develop the algorithms for 

preprocessing, wind profile extraction and classification of the Doppler power spectra. 

Also, these algorithms must be implemented in time less than the data generation time. 

With this research aim, research objectives are detailed as follows  

A. Background development 

1. Understanding the wind profiler radar operation and associated mathematics to 

generate the Doppler power spectra: Information on the data generation process provides 

insight of the radar signal processing.  
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2. Understanding the scattering of the radio waves from atmospheric targets and the 

mathematical expression to compute and describe the echo signal: The knowledge of the 

scattering phenomenon provides requisite help in the mathematical description of the 

backscattered signal. In other words it gives the descriptor features of the target signature. 

3. Learning effective technique to simulate the Doppler power spectral data for different 

atmospheric targets: Simulation of the data requires good understanding of the process of radar 

backscatter. Accurate simulation capability is developed only after detailed correlation of the 

signal features with atmospheric phenomenon. This knowledge is useful to develop data 

classification criterion and for the removal of non-atmospheric signal components. The data sets 

corresponding to different atmospheric conditions can serve as a test bench for the wind profile 

extraction algorithms.   

 

B. Pre-processing of the Wind Profiler data: 

1. Development of the algorithm for the preprocessing of Doppler power spectral data: 

Wind profiler receives the echoes from Clear Air Turbulence (CAT) and other types of 

atmospheric targets. The echoes from these targets are very weak in power and the receiver 

often receives noise and unwanted signals. First step is to remove noise and signals from the 

non-atmospheric targets from Doppler power spectra. This is termed as pre-processing. After 

pre-processing, atmospheric echoes become prominent and further processing of Doppler power 

spectra becomes easy. 

2. Implementation of the algorithm with different operating parameters on the same 

radar and different radars: This work involved understanding the relation between various 

radar parameters and its effect on the data. After this understanding, a strategy needs to be 

developed to translate the algorithm seamlessly to different radars. This exercise establishes the 

transportability of preprocessing algorithm  

 

C. Development of automated Doppler Profile Tracing algorithm 

1. Development of computationally simple algorithm for the profile extraction: Wind 

profiler radar receives echoes from radio refractive index change occurring due to CAT. 

Additionally, echoes from precipitation, meteoric echoes, mesospheric echoes and ionospheric 

activities are also observed.  The analysis of CAT echoes leading to wind profile estimation is 
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main function of the wind profiler radars. Echoes from other types of atmospheric phenomenon 

could be used for specific studies.  

 CAT echoes are very weak in power and the receiver often receives noise and 

unwanted signals. The profile extraction algorithm initially removes noise and signals from the 

non-atmospheric targets. Once these signals are removed, atmospheric echoes become 

prominent and further processing becomes easier. Profile tracing algorithm identifies the wind 

echoes and connects the spectral points in the data to form a wind profile. The work needs to be 

directed towards development of a new algorithm capable of implementing the profile 

extraction to match the data generation speed. 

2. Performance comparison of the newly developed method with leading established 

methods available in the literature: The performance of the newly developed Doppler profile 

tracing algorithm need to be tested with other established algorithm for the same purpose. The 

comparison must be done for the accuracy of the wind estimation and the implementation time. 

3. Performance validation of the Doppler profile tracing algorithm: The performance 

of any method is considered validated when the results match with other independent method 

used for the same purpose. The performance of the newly developed algorithms needs to be 

tested with the wind estimation obtained by the GPS Sonde observations.  

4. Implementation of the algorithm with different operating parameters on the same 

radar and different radars: The utility of the algorithm is established multiple times if it can be 

seamlessly implemented with different parameters as well as different radars. Work must be 

planned towards this ability to establish the effectiveness of the profile extraction algorithm. 

5. Study the performance of the algorithm in low signal conditions and in presence of 

the interfering signals: In atmospheric radars it is often observed that the processing algorithms 

perform differently in different noise conditions. The ruggedness of the algorithm is established 

when it works in most of the possible conditions. The tests for this are expected to be done on 

the real data of various conditions as well as the simulated data creating extreme conditions.  

 

D. Development of Automatic classification algorithm for Wind Profiler data 

Classification of the data is another important function of the data processing. It helps 

segregation of the data for the purpose of analysis and data archival. 
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1. Development of wind profiler data classification algorithm: After appropriate 

processing and information extraction from the echoes, the wind profiler data 

needs to be classified. An algorithm that performs automatic classification of WP 

data with the speed matching with the data generation is needed. This means that 

apart from successful classification, the algorithm must have computational 

simplicity. The implementation time of the algorithms must be such that the 

Doppler profile extraction and the classification can be implemented at the speed 

higher than the data generation.  

2. Performance testing of the algorithm in low signal and in presence of the 

interfering signal: Wind profiling radar data is often contaminated with noise 

and interference. It is an advantage if the classification algorithm works in 

adverse signal conditions. The performance of the classification algorithm needs 

to be tested in low SNR and in presence of interference. The success rate may be 

compared with the classification done by human experts.  

Thus, the research was carried out to achieve four main objectives divided into nine different 

tasks. 

 

1.5 Literature Survey  

After setting the research objective, thorough literature survey has been conducted. The 

efforts were focused towards understanding the reported research to develop insight in four 

different areas of this thesis work.  

 

1.5.1. Historical development of radar meteorology 

One of the early reports on radar meteorology was by Atlas [1] which introduced various 

possibilities of radar observations. In this chapter, Atlas reviewed various techniques of radar 

observation and presented the basis of radar reflection from atmospheric targets or scatterers. In 

early days the echoes from the atmospheric scatterers were analyzed only for the distance or the 

range from the radar. The technique of detecting relative velocity was not established. Later, in 

1970s, experiments of estimating wind velocity by Doppler radars were carried out and many 

scientists, namely, Woodman[2], Zrnić[3], Röttger[4], Zrnić[5] ,Sato[6], Strauch[7], Doviac[8] 

Woodman[9], Ecklund[10], Clifford[11], Boyer[12], Dombrowsky[13] et al., presented observations 
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which established that the Doppler radars could be used to get reliable wind information. These 

experiments were conducted at different frequencies and the observations were taken at 

different heights. The efforts of many scientists have proven that by choosing appropriate 

frequency, it is possible to focus on a specific region of the atmosphere. As an example, 

frequencies between 800 MHz to 3 GHz give strong echoes from the targets in the lower 

troposphere (altitudes of 1 to 12 km). Whereas, lower UHF are used for the observations from 

the altitudes of 10 km to 20 km. VHF ranges of frequencies are used for stratosphere and 

mesospheric (altitudes of 15 to 60 km) echoes. The radars need to be designed considering the 

target reflectivity, required RF beam directivity etc. Scientists like Fukao [14][15], Rao[16] have 

published engineering details of the systems and its significance. Results on radio scattering 

properties were reported by Gossard [17], Bean [18], Tatarski [19] and so on. Good results are 

obtained only if the radar frequency power and the beam directions are appropriate for the 

intended targets. With appropriate radar instrumentation it became possible to observe specific 

phenomenon.  Radar observation of specific atmospheric phenomenon like Kelvin-Helmholtz 

Billows has been reported by Chilson [20]. These are wavy structures repeating at regular 

intervals. Observation of vertical wind velocity profile with its 3 dimensional components has 

been the most important need for weather prediction and the study of wind dynamics. These 

radars are categorized depending on the height coverage; namely, boundary layer radars, 

tropospheric radars, Stratospheric- Tropospheric (ST) radars and the Mesospheric- 

Stratospheric- Tropospheric (MST) radars. The generic name for these radars is the Wind 

Profiler (WP) radars. Wind profiler radars are established as standard product and companies 

like Vaisala [21] market different models of radar profilers. Some results of second generation 

and newly refurbished radars were reported by Srinivasulu [22] and Hall [23]. 

 

1.5.2. Pre-processing of the wind profiler data 

First step in the wind profiler data processing is the removal of noise and echoes of the 

non-atmospheric signals. This process is also known as pre-processing. First step is to estimate 

the noise level.  Hildebrand [24] presented a method to estimate the noise. Though, proposed 

about 4 decades ago, this method still offers the best estimate of the noise in atmospheric 

signals. Mathematical characterization of noise was presented by Petitdidier [25] and Igor [26] [27].  
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 Atmospheric signals are often contaminated with Clutter echoes. Clutter signals are the 

echoes received from terrestrial objects in the vicinity of radar. The terrestrial objects subtend a 

large solid angle at the radar. Therefore these signals are strong compared to the atmospheric 

signals. Jordan [28] presented a method of clutter removal by exploiting the properties of the 

signals like low Doppler frequency and large magnitude with sharp frequency peaks. Processing 

noisy data with discriminatory threshold has been presented by Riddle [29], Volker [30]. These 

techniques use dynamically moving threshold for the removal of noise.  

 Clutter removal is easier in the transform domain processing. Volker [30][31] showed that 

Gabor transform based methods were effective for the removal of clutter. Later, wavelet 

transform based methods were used for the clutter removal. DB 20 wavelets were found to be 

the more effective [32][33]. Wind profiler signals often get interference from electrical noise as 

well as terrestrial noise. These signals appear as sharp peaks present in multiple ranges. An 

autonomous interference filtering technique was presented by Anandan [34]. The interference 

detection and its removal problem is very similar in polarimetric and imaging radars. The 

techniques reported by Tian [35], Le [36] and Bradley [37] use similar signal processing techniques. 

 

1.5.3. Wind profiler data processing techniques 

Processing of the wind profiler data is the main research theme. Therefore, a detailed 

literature survey has been specifically directed to review the strengths and weaknesses of radar 

signal processing to the existing algorithms. With the use of radars, researchers have already 

established the direct relation between Doppler shift and wind velocities. After 1990s, the 

research has been directed towards identifying and enhancing the weather echo components. 

This was then followed by developing the technique to interpret the data. This effort amounts to 

assigning specific features of atmospheric targets to the signal components.  

The calibration of the spectral components with atmospheric parameters is often an 

issue. The calibration often changes with the radar parameters and the beam directions. Tridon 

[38] addressed the issue of calibration. Technical application note of Vaisala [39] consolidates the 

practical aspects of the wind profiler radars. After appropriate calibration, the atmospheric 

feature extraction is possible by using appropriate techniques. The technique based on Kalman 

filtering has been presented by Tuckley [40]. Efforts of many researchers for the removal of 

unwanted signals are also established.  
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The main task, however, is to extract Doppler profile from the power spectral data. The 

Doppler profile is directly related to the wind velocity in the direction of the beam. Many 

methods were developed in last couple of decades. The methods which showed consistent 

results and have been established over the time are presented in the following literature. 

Adaptive moment estimation (Anandan [41]) is an established approach with estimation 

of the moments based on criterion that is adapted at every range bin while tracing the Doppler 

profile from the lower ranges to the higher ranges.  The Doppler profiling is best done by using 

soft computing techniques like Fuzzy logic (FL) methods and Artificial Intelligence (AI) 

techniques. Some of the techniques use combination of these methods. Following scientists 

have reported different Fuzzy logic and Neural Network methods. Clothiaux [42], Morse [43], 

Cornman [44], Bianco [45], Gaffard [46], Allabaksh [47] et al. These methods take the Doppler power 

spectra as the input. Individual spectral components are then examined for different properties 

like slope, curvature, spectral power and spectral spread. In addition to these standard 

parameters some techniques use parameters like spectral symmetry and skewness of the spectral 

components. They assign membership functions to each of these parameters. This gives 

function value for each of the attribute. A weighted sum of these values is then computed. The 

result of the weighted mean is subjected to a threshold to determine whether the spectral 

components are atmospheric echoes. This methodology is adapted with slight variations by the 

researchers mentioned above. The selection of membership function and decision of the 

threshold value is critical to these methods. In case of atmospheric signals, there is no 

established basis for such decisions. Therefore artificial intelligence (AI) technique is adapted 

for the selection of membership functions and thresholds. The AI technique involves learning 

by processing a large amount (approximately 200 data sets) data being analyzed in past. To 

understand these processing techniques, the knowledge of radar operation and configuration is 

necessary. Due to this, more discussions on processing techniques are presented in chapter 4 

and chapter 5.  

Though these methods claim very good results, they are computationally complex and 

often needs change of parameters according to Radar system specifications and climatic 

conditions. Intervention of technical experts is also often needed. Hence, it is required to have 

an automated processing of the Doppler Spectra using computationally simple algorithms. 
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1.5.4. Scattering of the radio waves from atmospheric targets 

It is important to have knowledge of the radar backscatter process while developing the 

signal processing technique for wind profiler radar. The study of back scattering of the radio 

waves gives the idea of the expected received power and its nature in terms of frequency shift 

distribution and amplitudes. This knowledge is crucial for the radar design as well as the 

analysis of the echoes.  

Atmospheric targets backscatter the signals depending on the relative size of the target 

compared to the radio wavelength. Battan[48] showed that when the wavelength and the target 

dimensions are comparable, the backscatter is Mie scattering. In such case, the received signal 

depends on the shape of the scatterer. When the diameter ‘D’ of the scatterers is less than 0.1 λ, 

the scattering mechanism is Rayleigh. The received signal power depends on the target particle 

diameter to the power six! This analysis is particularly dominant for the analysis of the 

precipitation echoes.  

 However, the wind profiling radars mainly receive echoes from the clear air targets. In 

such cases, the air particles are very small and the echo is mainly due to the change in the RF 

refractive index. Battan[48].  has also provided this analysis in his book Radar Observation of the 

Atmosphere.  

Turbulence within the target volume of interest is defined as atmospheric structure. For 

radio waves, the quantitative estimation of received power is obtained by defining a volume 

reflectivity (η) for electromagnetic waves and the structural constant Cn
2.   

Repetitive structures provide a large reflection of radio waves if the wavelength is 

double the repetition scale in the atmospheric targets. This is known a Bragg criterion. 

Detection of micro-structures is possible with the help of enhanced echoes due to this 

phenomenon.  

Chapter 3 of this thesis discusses these aspects in details. 

 

1.5.5. Radar target classification techniques  

Radar target classification has been a very well-studied topic and a good amount of 

literature is available for various types of radars. The target classification is often decided by the 

atmospheric parameters and their relative positions, sometimes referred as structures [43][49]. The 

accuracy of the classification or the correct determination of the target echoes is often an 
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increased multifactor consideration [50]. These methods are categorized as signature matching 

techniques. Such techniques are used in other types of radars like surface surveillance radars [51] 

[52] and acoustic ranging and detection systems [53][54]. Ground Penetrating radars (GPR) also use 

these techniques of signature matching [55]. Very few literatures are available on the 

classification of wind profiler targets. However, the techniques used in other radars offer good 

guideline and prompts towards the innovative techniques for the wind profiler targets 

classification.   

 Chandrasekhar [56] presented a consolidated report of classification techniques on dual 

polarized weather targets. Hurricanes and water carrying targets have been more important 

targets for socio economic reasons. Various techniques have been used for identification, 

classification and resolving different types of targets from radar data. Luke presented a 

technique to separate drizzle and precipitation [57] and Harasti used similar technique for 

resolving different types of hurricanes [58]. Neural network methods are popular for bulk 

meteoric classification using polarimetric radar [59][60]. Some of the observations of meteor types 

have been presented by Wannberg [61] and Krishna [62]. Following sections present a new 

spectral feature based technique to classify different types of wind profiler targets.   

 Chapter 7 discusses some of these techniques. It also presents a new technique 

developed for the wind profiler spectral data, by appropriate consolidation of the concepts used 

by various classification techniques available.  

1.6. Problem Definition 

Develop algorithms to process Doppler power spectra of wind profiling radars. This 

involves; preprocessing, Doppler profile extraction and classification according to the target 

types. Signal modeling technique is also allied capability for this research problem. All the 

above algorithms should be optimized for implementation in minimum time, such that they can 

be used for automated processing. The echo signals from atmospheric targets are a distribution 

of many weak signals and they appear as cluster of barely perceptible signals.  Another problem 

with atmospheric signals is that the received signal to noise ratio (SNR) is often very poor. The 

characteristics of atmospheric echoes strongly depend on the weather conditions and the nature 

of the scatterers. In short, due to bad SNR and the distributed nature of the target, the estimation 

of position and velocity of the target is difficult. Better interpretation of the atmospheric signals 

could be evolved by a study of atmospheric processes and formulating statistical representation 
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for the atmospheric echoes. As the air is a continuous media, the wind or turbulence does not 

show abrupt spatial variations. This apriori knowledge is used to develop signal processing 

algorithms for the Doppler power spectra. 

 

1.7. Organization of the Thesis      

This thesis presents the signal processing techniques for the estimation of Doppler 

profile from Power Spectral data. The understanding of the problem and research contribution is 

presented in the following chapters as below. 

Chapter 2 gives the theory on Wind Profiling radars and estimation of 3D winds. 

Chapter 3 presents the information on radio wave backscatter due to atmospheric 

structures. This information along with the data give estimation of received power.  

These two chapters give the background knowledge of the wind profiler systems.  

Chapter 4 explains the need and technique for modeling the Doppler power spectra 

corresponding to different atmospheric conditions. It also gives the results of Matlab simulation 

and its comparison with the real radar data. 

Chapter 5 explains Pre-processing of the radar data. This includes the procedure to read 

the Power spectral data in standard formats used by Indian MST radars. This chapter also 

presents the estimation of noise and noise removal. The techniques of Clutter and RFI removal 

is also described and is illustrated with the help of Matlab simulation. 

Chapter 6 In this chapter step by step description on wind profiling, using newly 

developed Doppler profile estimation algorithm is presented. This is the major contribution of 

the thesis. It also presents the performance comparison with other established methods and 

validation of this technique with other independent methods.  

Chapter 7 explains mathematical approach for the target classification. The Spectral 

Feature Based Atmospheric Target Classification algorithm is explained in this chapter. The 

flow chart, Matlab programs, and its results are also included. 

Chapter 8 summarizes the contribution of the thesis and its significance in practical 

applications.   

Chapter 9 concludes the thesis with future scope of the study  
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Chapter 2 

Wind Profiling Radars and Estimation of 3-D Winds 

Wind profilers are a special category of ground based radar instruments used to obtain 

three dimensional profile of wind velocity along the altitude in atmosphere. Studies of 

atmospheric dynamics, weather prediction and climate change require wind information at 

various heights above the ground, on a regular basis. Radar wind profilers (WP) can provide 

continuous three dimensional wind data with a high temporal resolution.  

The atmospheric targets are weak reflectors of radio frequency radiations. Also, the 

different parts of the targets are in different state of motion. As a result, the echoes received by 

the radar are a vector sum of many weak signals. It is described as an ensemble of statistically 

distributed signals. Therefore these targets are known as distributed targets. This situation is 

different from that in the conventional aircraft tracking radars. The surveillance radars and the 

strategic radars are predominantly being used as the aircraft tracking radars have finite number 

of distinct targets. These are generally fast moving targets whose echoes are received with good 

Signal to Noise Ratio (SNR).  On the other hand, weather targets are often slow moving 

continua with very poor SNR. Therefore, the strategy of analysis of weather signals is different 

from the method used for surveillance radars. Surveillance radars use fast tracking and detection 

algorithms, whereas weather radars use computationally intensive methods to improve the SNR 

and feature extraction. This processing determines the value of atmospheric parameters from the 

echoes. This chapter describes various types of atmospheric radars followed by the description 

of wind profiler signal processing and presentation of the data.   

 

2.1 Types of atmospheric radars   

There are two classes of atmospheric radars. The radars radiating in the horizontal 

direction seeking the terrestrial wind velocities are generally referred as Doppler Weather 

Radars (DWR). The radars transmitting pulses in vertical direction are known as Wind Profilers 

(WP). The DWRs are mainly used for prediction of terrestrial wind patterns like cyclone, 

monsoon; whereas the WPs give three dimensional wind profiles up to large heights and 

generally used for weather monitoring. The current research is focused on the WP data 

processing and extraction of weather parameters. Wind profilers offer wind speed and directions 
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up to desired heights. This information is used for weather modeling and predictions. Such 

information is useful for the agricultural estimation, water resources planning and has a great 

impact on socio-economic aspects of society. The wind information is also useful for avionic 

navigation and to determine the landing conditions of airplanes. Air pollution monitoring and 

estimating wind potential of a particular region are amongst other uses of the wind data.    

 

2.2 Theory of Wind Profilers  

 Wind Profiler is a class of ground based remote probing radar instrument operating in VHF 

and UHF frequency bands. These are Coherent Pulsed Doppler radars transmitting pulses in 

vertical and off-vertical directions (in three or more non-planar directions, typically in zenith, 

tilted eastwards and tilted northwards as shown in Fig.2.1). Depending on the operating 

frequency and power, the range coverage of WP could vary from a few kilometres to about a 

few hundred kilometres. Table 2.1 shows the typical frequency, power and coverage. The WP 

radar receives echoes and has a very sensitive super heterodyne receiver with ultra-high 

frequency stability. This receiver down converts the signal to base band giving the Doppler shift 

in the transmit frequency. This signal is digitally processed. The delay time of the echo gives 

the range of the target and the Doppler shift determines the radial velocity component of the 

target in each beam direction. The echoes received in a particular time interval are segregated 

together as they correspond to a limited section in the air-column above. In other words, signals 

from a slice of air at particular height (referred as range-bin) are processed together for Doppler 

analysis. The base band signal is digitized using Analog to Digital Converter (ADC) at regular 

intervals. A sequence of these digitized samples forms the time series of the down converted 

signal. This series is subjected to Fast Fourier Transform (FFT). This discrete frequency 

domain representation is called Doppler spectrum of that range-bin. In this way a Doppler 

spectrum for each range-bin is obtained. The set is referred as Doppler Power Spectra. This 

gives observed radar parameters, namely; Signal power, Doppler shift and Spectral Width. 

From these parameters, target reflectivity, wind speed and turbulence could be derived. Data 

from at least three beams are collected. Conventionally, beam is pointed towards Zenith, tilted 

towards east (called East beam) and, tilted towards north (called North beam). This approach of 

estimating the wind profile is called Doppler Beam Swinging (DBS) method. The data from 

three beams are combined and the target locations and their radial velocities are resolved in 
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terms of orthogonal Cartesian velocity components at all the range-bins (as shown in equations 

2.1 to 2.4). Thus a three-dimensional (3-D) wind profile is obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: Type of Wind Profiling Radar Instruments 

 

* SODARs are acoustic instruments working on Doppler radar Principle. 

 

 

Type of WP Frequency of 

operation  

Transmitter Peak 

Power 

Maximum Height 

Coverage (Approximate) 

Boundary Layer 900-3500 MHz 3-5 KW 1.5- 3.5 km 

Tropospheric Profilers 

(T-radar) 

400-490 MHz 8-20KW 7-16 km 

Stratosphere - 

tropospheric Radar (ST 

Radars) 

150-250 MHz 50 to 800 KW 12-30 km. 

Mesosphere-

Stratosphere-

Tropospheric Radar 

(MST-Radar) 

40-60 MHz 1000-3000 KW 25-250 km 

Doppler mini SODAR* 3-4 KHz 300-800 Watts 0.3-1 km 

Doppler SODAR* 0.1-1.5 KHz 0.5-2 KW 1.0-3.5 km 

 Fig 2.1 Wind profiling by Doppler Beam Swinging (DBS) method.  
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2
         (2.1) 

w = W            (2.2) 

u =  W Cos  + U sin          (2.3) 

v =  W Cos  + V sin          (2.4) 

 

Where, u, v, w – radial wind velocity in the direction of beams (east, north,& zenith).  

 - Off-zenith beam tilt direction   

U, V, W -orthogonal wind velocity components (easterly, northerly and updraft) 

 

2.3 Initial processing of time domain data  

 The systems working on the same principle but using sound waves as carriers are known as 

Sound Detection and Ranging (SODAR) systems. The principle of operation of all types of 

wind profilers and SODAR is the same. However, weather targets are very different from 

normal radar targets. Strategic radars and surveillance radars seek the echoes from flying objects 

like airplanes. These objects or targets reflect back the transmitted signal, showing frequency 

shift due to the Doppler effect. However, the weather target is an air-mass with all its particles 

having slightly different velocities. Such targets are known as Distributed targets. The echoes 

from such targets occurs as a collection of faint replicas of the transmitted signal showing 

frequency shifts which in turn corresponds to the Doppler shift around the mean velocity. As a 

result the Doppler spectra show a distribution of multiple frequency components. The WP 

signal processing involves Doppler spectrum from individual range bin. Fig. 2.2 shows typical 

Doppler spectra of a range bin. The diagram shows Doppler shifts received from all the targets 

in that particular range bin. In normal cases the envelope of the Doppler component is of 

Gaussian shape. It is seen that it is a spectrum which presents positive as well as negative 

Doppler components. Most of the components are noisy. The prominent or higher magnitude 

component represents the Doppler frequency of the target. The power (Pr) represents the target 

reflectivity. The frequency value (fD) represents the mean wind velocity at the range. The 

spectral width (Wf) represents the wind-turbulence in that range bin.  
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Fig.2.2 Typical Doppler Spectrum of a range-bin. 

 

Fig.2.3 Typical MST radar Doppler spectra of Beam Direction: East beam 100  

(Obtained by stacking individual range-bin spectra) 

 

    f
D
- Doppler Frequency 

   W- Spectral Width 

   N- Noise Power  

   P
1
- Signal Power 



 

19 

 

 The Doppler spectrum is the basic data unit. All the spectra of the range-bins are stacked 

one above other in increasing range. This stack is called a Doppler Power Spectra. A line 

connecting the wind components in all the range bins is called the Doppler Profile. Fig 2.3 

shows typical Doppler power spectra. The Doppler profile gives the wind speed at all the 

heights. The data from the Doppler profiles of three beams (conventionally, Zenith, East, and 

North) could be combined to get 3-D data. However, meteorologists are more interested in the 

winds in 2D plane. This data is represented in the form of wind speed (WS) and wind direction 

(WD). In a way similar to the polar coordinates. Fig.2.4 shows representation of horizontal 

winds as WS-WD data. 

 

          

Fig. 2.4 Typical WS-WD data of a 400 MHz wind profiler. (Source: IMD Pune, India) 

 

 Long term (24 Hours, say) behaviour of the wind is represented as shown in Fig. 2.5. The 

figure illustrates that it is possible to identify the weather phenomenon at a glance using these 

representations. A picture of Indian MST radar is shown in Fig. 2.6. 

 

2.4 Estimation of wind Profile  

 It is evident from the above discussion that the Doppler power spectra is the basic form of 

data and determining the Doppler profile is the most critical activity in wind profiler data 

processing. This is because all the wind parameters are derived from the Doppler profile data. 

However, obtaining the wind parameters from the radar is not an easy task as the radars echoes 
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are very weak (received power varies around -120 dBm to-140 dBm). They could be 

contaminated with clutter and interference. Echoes from clear air could also be contaminated 

with echoes from precipitation, insect swarm etc. Discontinuous coverage in range and time is 

also another problem. Due to these reasons getting a continuous profile or getting wind velocity 

values at all heights become difficult if not impossible. Therefore the scientists use the property 

of continuity and other estimation techniques to get Doppler frequency values at maximum 

possible ranges. 

 

Fig. 2.5 A typical format of representing ‘long term horizontal WS-WD’ data 

 

Evolving strategy of identifying the atmospheric targets and estimating the speed is 

difficult as these targets are spread over a large volume and have pockets showing variation in 

scattering properties. The signal backscattered from such targets is the vector sum of all the 

individual echoes of smaller local scattering structures present in the radar pulse volume. 

Therefore the echoes received by the radar can be considered as an ensemble of many signals 

that are reflected from different parts of the target. Mathematically, these echoes are represented 
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as statistically distributed signals on the time-frequency plane. In the case of air defense and 

surveillance radars, the echoes are localized and are finite in number. Therefore they appear as 

prominent localized signal components on the received signal representation. On the other hand, 

the echo signals from atmospheric targets are a distribution of many weak signals and they 

appear as cluster of barely perceptible signals. The strategy to analyze these echoes is different 

from that used in conventional air-defense or surveillance radars. 

 

 

 

 

 

2.5 Summary: In chapter 2 various types of atmospheric radars and the theory of wind profilers 

are presented. The initial processing of wind profiling data and estimation of wind profile is 

explained. The radio scattering mechanism on the atmospheric targets and dependence of the 

echo parameters on target characteristics are presented in chapter 3.  

Fig 2.6 Mesospheric Stratospheric Tropospheric (MST) radar at  

National Atmospheric Research laboratory (NARL), Gadanki, India  
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Chapter 3 

Theory of Radar Backscatter and RF Reflectivity 

 

Wind Profilers (WP) and Doppler Weather Radars (DWR) transmit RF pulses and 

analyse the backscattered echoes from the atmospheric scatterers. In this chapter the 

fundamentals of the wave scattering principles and the systems from which the data is obtained 

is described. Fig. 3.1(a) shows a concept diagram of a pulsed radar operation. The Doppler 

Weather Radars (DWR) transmits the pulses in horizontal directions; whereas; the wind 

profilers transmit the beam in vertical and off-vertical directions. Figure also shows volume 

occupied by the radar pulse, known as pulse volume or scattering volume. The signal received 

in a particular time interval corresponds to this specific volume. During the echo-interval radar 

receives the scattered echoes from all the scatterers present in the corresponding pulse volume. 

The expression for the received power by mono-static pulsed radar with Gaussian beam shape is 

derived as given below.  

 

 

 

 

 

Fig. 3.1(a) Schematic diagram showing the pulse volume and echo interval 
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The basic form of radar equation[63]  is given below in equation (3.1) 
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        (3.1) 

Where Pr  is the received signal power in watts., Pt is the transmitted power by an 

isotropic antenna, in watts, G is the gain of antenna, Ae is an effective area in m2, σi is the radar 

cross section in m2 and 4πR2 is the surface area in m2  of an isotropic antenna.  

Fig. 3.1 (b) shows the radar beam shape. Incorporating the radar beam shape, the 

equation 3.1 becomes,  
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Where, 
RBvol

ieaBeamspotar )(  is the radar cross section due to all scattering particles present in 

the pulse volume. For homogeneous target, it can be expressed as  
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Where, Vol,Refl (η) is volume reflectivity and RB vol is range bin volume [8] 

The Summation term 
RBvol

i  in equation 3.2 is replaced by Vol, Refl × Pulse Volume in 

Equation 3.3. 

 

 

 

 

 

 

 

 
Fig. 3.1(b) The radar beam: Scattering volume and Beam widths in azimuth and Elevation are φ and θ 
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Rearranging the terms of Equation 3.3, the received power then simplifies to equation (3.4) 

given below. [8] 
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Where the two l(P), l(R) terms are the propagation loss and receiver loss respectively. Now, if 

Gaussian beam is assumed, then the volume changes. The factor 4 in the expression (πϕθ/4)  in 

equation (3.4) is then replaced by 8 ln2 [8]. 
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When the target is not homogeneous, the volume reflectivity term η is being replaced by the 

generalized summation of reflectivity term, Σ(RB vol) σi . Omitting the loss terms and replacing  

the value Σ(RB vol) σi  in equation (3.5) , equation for power received   is derived, as shown 

below[8] 
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Where, Pt and Pr are the transmitted and the received power respectively. 

G is the gain of antenna, R is the range, λ is the wavelength, σ is the reflectivity, 

 and   are the zonal and meridional beam widths of the radar beam.

Fig. 3.2 Schematic diagram showing Zonal and Meridional wind Directions 
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Fig. 3.2 gives the Zonal and Meridional wind directions. The magnitude and the phase 

of the backscattered signal are strongly dependent on the size of the target, the RF wavelength 

used and the refractive index in the scattering volume. The number of targets and their relative 

position within the scanned volume is also a factor. The following sections describe different 

backscattering mechanisms and mathematical expressions quantifying the backscattered signal.  

3.1 Factors Affecting Reflection and back scattering of RF Waves  

RF waves are scattered by two types of targets. They are (i) particle-like or particulate 

scatterers and (ii) atmosphere layers with sharp change or gradient in refractive index. Various 

types of particulate scatterers like water droplets, dust, pollutants, insects, etc. are responsible 

for scattering of the RF waves. These scatterers are present in troposphere at heights up to about 

12 km and the scattering occurs in microwave frequency bands, typically, at the frequencies 

more than 3 GHz. However, change in RF refractive index is observed up to altitudes of about 

100 km and the backscatter is observed in UHF and VHF bands. Therefore, the dominant 

scatterers for the DWRs radars are the particulate scatterers. On the other hand, the Wind 

Profilers get scattered power mainly due to the atmospheric refractive index gradient. This type 

of backscatter is also referred as clear air echoes. The work presented in this thesis focus more 

on the wind profiler radars. However, for completeness, basic expressions of particulate 

scattering are also presented. Sections 3.1.1 and 3.1.2 discuss particulate scattering and sections 

3.1.3 and 3.1.4 present the mathematical expressions for the scattering due to the refractive 

index gradient. 

3.1.1 Particulate Scattering due to Relative Size of the Scatterers 

It is well-known that the size of the scatterer relative to the RF wavelength determines 

the scattering mechanism. For atmospheric radars the mechanisms are broadly classified into 

two, namely Rayleigh scattering and Mie scattering. As an example, the cloud detecting radars 

operating at 30 to 60 GHz have the RF wavelength of 5 to 10 mm. The scatterers of interest for 

this radar are the rain-drops, hail, icicles etc. The size of these scatterers is comparable to the RF 

wavelength. Therefore the Mie scattering will be predominant in this case. Equation 3.7 gives 

the expression for the reflection coefficient of Mie scattering [48].  
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Where, a is the radius of the scatterer and  is a shape factor,  =2 a/ for spherical objects. an 
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and bn are constants which describe the effects of magnetic and electric dipoles, (and 

quadruples) in the scattering volume.[48] 

When the diameter ‘D’ of the scatterers is less than 0.1 λ, the scattering mechanism is 

Rayleigh. The reflection coefficient for Rayleigh scattering is given by the following expression 

in equation (3.8) [48].  
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Where, m is the complex index of refraction,  

D is the target diameter and K= (m2-1)/ (m2+2). 

Substituting the value of σ in equation (3.6), the received power is obtained as [48] 
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Where, C represents the constants and radar system parameters, K is the factor dependent on the 

refractive index of the scatterers and Z (= Σ Di
6) is the Rayleigh scattering factor due to the 

spherical objects. Conventionally, Z is represented in logarithmic scale as dBZ (10 log Z). 

Particles (which include smoke, dust and large pollen grains etc.) scatter RF energy in 

much the same way as rain drops. Since backscatter power is proportional to the diameter to the 

power six, the backscatter from a particle of less than 0.1 mm in diameter is very small [48]. 

However, a large number of airborne particulates are enough to produce significant return from 

weather radars and Sodars operating with smaller wavelengths. The observations of the particle 

backscatter provide the information about the distribution of the scatterers. 

3.1.2 Effect of the Orientation of Scatterers  

Clear-air echoes are often attributed to backscatter from biota, particularly insects. 

However, there is fairly conclusive evidence that at short wavelengths (e.g. K-Band) insects are 

the primary contributors to clear-air radar returns. Since most biota are not spherical, the 

magnitude of the return is strongly dependent on the biota orientation. This idea of orientation is 

represented using the differential radar reflectivity, ZDR. It is defined as: 
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Where, Zh and Zv are the horizontal and vertical co-polarized reflectivity factors. The schematic 

in Fig. 3.3 is a sketch showing the variation in backscattering cross section due to the 

orientation of the biota. The backscatter from the precipitation with large drop size also exhibit 

a similar difference in the amplitudes of backscatter from vertical and horizontal polarization. 

This is due to the fact that the drops get flattened in the vertical direction making the diameter in 

the vertical direction smaller. Typically, a drop of 3 mm size would show ZDR of 1.5 dB and a 

4.5 mm drop would show ZDR of 3 dB [48]. 

The presence of a large differential reflectivity factor is a good indicator that the 

scatterers may be biota 

 

           

 

 

 

3.1.3 Back Scattering due to Refractive Index Gradient  

Radar power is scattered back with sharp inhomogeneities in the refractive index of the 

atmosphere that generally occur at air mass boundaries [48]. Such refractive index discontinuities 

also occur in turbulent air. This phenomenon is often called Bragg scattering. Most of the 

echoes of the vertical looking WPs are by Bragg scatter. The mechanisms resulting in Bragg 

scattering have coherence time of only a few seconds and are transitory. In other words the 

backscatter signal is sustained only for a short time. 

Under special circumstances, gradients in refractive index may lead to specular 

reflections. Such reflections contribute significantly to clear-air returns. Partial specular 

reflection is observed as a result of layered structures in the refractive index field [48]. These 

layers are common in the stratosphere but may also exist within tropospheric inversions. 

Specular reflection of radar power is most important for radars of longer wavelengths (from tens 

of centimetres to a few metres). The reason for this is that such echoes provide information 

about the layered structure of the atmosphere. The atmosphere is primarily horizontally 

Fig. 3.3 Different orientation of the biota with respect to Radar beam 



 

28 

 

stratified. The stratified layers with very high refractive index gradients at their interfaces reflect 

some of the radar power directly back to vertically pointing radar [64]. The effect is enhanced 

with altitude when the layers appear concave to the radar due to the earth’s curvature. This 

focuses the reflected signal[1]. MST (mesosphere-stratosphere-troposphere) radars are 

particularly likely to observe some return due to specular reflection. These radars are used to 

probe the upper reaches of the atmosphere, and are usually operated within a few degrees of the 

vertical. The returns resulting from specular reflection tend to be coherent, often lasting for 

several minutes. Specular reflections are rarely seen by Doppler weather radars as they are 

configured to operate at higher frequencies. Also DWRs usually employ a steerable dish 

antenna and are normally operated at elevation angles less than 60 degrees.  

 Physical properties of the medium, determines its Refractive index:  For air, the 

refractive index is a function of atmospheric density at radio frequencies It is also known as the 

radio or radar refractive index, n. This reflective index is very close to unity and varies very 

minimally due to atmospheric layers [18]. To address these minor variations, radar 

meteorologists use the term N, given by (n - 1) × 106. The refractive index of radar combines 

three important meteorological parameters. These parameters are sensitive to, temperature, 

pressure and humidity, Equation (3.11) gives expression of N in terms of atmospheric 

parameters [18].  
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Where, T is temperature in Kelvin, P is atmospheric pressure in milli bar and e is the vapour 

pressure in milli bar. 

 Spatial refractive index gradients bring about the refraction and reflections of the radar 

beam. The refractive index gradient N, is usually denoted with the symbol M. The changes in 

refractive index are caused by dry parameters (pressure and temperature) as well as the wet 

parameters (vapour-pressure and temperature). As a result, the refractive index gradient M has 

two contributory terms: the dry term is given by 77.6 P/T (the first term of eq. 3.11) and the wet 

term is given by 373256 e/T2 (the second term of Equation 3.11).  Dry term typically 

contributes up to 60% of N [18]. Usually the variation in T and P is not abrupt on the micro-scale, 

so this term is not as significant in creating large fluctuations of N. On a few occasions large 
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gradients of temperature may exist on the boundaries of atmospheric layers, at higher altitudes 

where the air is dry and also close to the ground.  

Humidity variations in the atmosphere may be abrupt. Therefore, the wet term 

contributions can have dramatic variations, and that depends on the temperature and vapour 

pressure. Significant gradients of N can be produced by moisture and temperature gradients 

found at air mass boundaries. As an example, the boundary between warm dry continental air 

and cooler moist maritime air show large value of M. Such situations exist at a sea breeze front. 

With height, the moisture content of atmosphere decreases and hence wet term contributions 

also diminishes with height. The wet contribution becomes less significant in the upper 

troposphere and above. Thus, refractive index is more sensitive to humidity in lower 

atmosphere, while at higher ranges, a significant contribution to M is made by gradients of 

temperature, where water vapour pressure is small. 

 

3.1.4 Turbulence Structure and Back Scattering of the Radio Waves 

Turbulence within the volume of interest is defined for every atmospheric structure by 

the use of quantities known as structure parameters. They represent the root mean square 

difference between an atmospheric variable at two points located a unit distance apart. Structure 

parameters can be practically defined for any atmospheric variable. Refractive index structure 

constant, Cn
2 is of particular interest for the radar observers. The radar volume reflectivity (η) 

[19] for electromagnetic waves are related to the refractive index structure constant Cn
2 by the 

relation shown in equation 3.12. It is expressed as cross section (m2) for unit volume (m3). 

Therefore volume reflectivity unit is m2/m3 or m-1.  

3/12   nC          (3.12) 

This relationship assumes that the radar wavelength and the physical dimensions of the 

turbulence are of comparable dimensions. In such cases, the radar wavelength is said to fall in 

the inertial sub-range. It also assumes that for all clear air targets, the measured reflectivity is 

due to the effects of refractive index gradients. If other types of scatterers are present, their 

effect must be considered separately. It is also assumed that the turbulence producing the 

inhomogeneity is isotropic and fills the entire radar resolution volume. 
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The spatial dimension of the turbulence is defined by inertial sub-range. At a particular 

temperature and pressure, the atmospheric turbulence of a specific spatial dimension is 

sustained. The turbulence (eddies) of smaller dimensions diminish transferring most of the 

energy to the adjacent layers. On the other hand, the larger eddies are not isotropic and are very 

short lived. Thus there is lower and upper limit on the radar wavelength and upper limit for 

sustained turbulence. This range of spatial turbulence dimensions is known as the inertial sub-

range (also known as limiting micro-scale). The lower limit of inertial sub-range is determined 

by the viscous dissipation of energy and the upper limit by the buoyant forces in the air mass. 

Within the inertial sub-range, turbulent eddies do not lose much energy to viscous processes. 

However, often, there is transfer of energy from the larger scale eddies to smaller scale eddies 

(large eddies slowly get converted into smaller ones going down to viscosity region). Fig. 3.4 

shows the inertial sub-range at different heights.  

Much of the Bragg theory related to the radar echoes, was developed by, Tatarski [19]. He 

showed that the radar reflectivity can be expressed as,  

   kFk n

*4
2





         (3.13) 

Where, k is the radar wave number given as k=4 /, Fn
* is a three-dimensional representation 

of the refractive index field.  

It is also established that the RF radiation having the half wavelength ( /2) comparable 

to the spatial variations of the refractive index field shows significant reflectivity. This is known 

as the Bragg or the Fourier mode reflection. This is why the radar /2 must be within the inertial 

sub-range. If this condition is not satisfied, very small reflected power is observed.  

If the scatterers are homogeneously distributed, the expression of the received power 

reflected from clear-air targets uses the volume reflectivity term η. Neglecting the loss terms in 

equation 3.5 we get equation 3.14. This equation is used for estimating received power in wind 

profiler radars.  
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 The lower dimensional limit of the spatial turbulence is known as limiting micro-scale. 

This dimensional limit increases with height. Generally, the limiting micro-scale is of the order 
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of 1 to 2 cm at ground level. This limit increases to about 10 metres, at heights of 80 km as 

shown in Fig. 3.4 [65][66]. It is also reported that limiting micro-scale at the ground level is of the 

order of a few millimetres.  

In view of the above, when the values of limiting micro-scales are very low, the radars 

employing K-band (and perhaps even X-band, if the limiting micro-scale is approximately 2 

cm)will not be able to detect refractive index inhomogeneity at higher heights. If clear-air 

echoes are detected by such radars, it is due to other origins like particle scattering.  

 

The upper limit of the inertial sub-range is usually quite large. It is generally several hundred 

meters in convective conditions [65][66]. However, the upper limit may be less than 1m for thin 

and stable layers. In such cases, expected received power presented by equation (3.14) may not 

be met by HF (High Frequency) radars. From this discussion it is seen that the radar frequency 

10-4           10-3           10-2          10-1              1               101              102            103             104   

80   
 70     
60     
50     

40     

30     

20     

10 

0 

    

Fig 3.4 Turbulent scale size versus altitude (Source: [40]) 
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is selected depending on the region of observations and the size of the scatterers. Table 3.1 

gives broad classifications of atmospheric radars and their operating frequencies. 

The relation between the radar received power and the atmospheric parameters is 

established through Cn
2. To the radar designer and observer, Cn

2 is an extremely useful 

indicator. This quantity depends on three parameters. These parameters are pressure, 

temperature and humidity. The value of Cn
2 can be expressed as a linear combination of the 

structure constants for temperature, absolute humidity and the pressure with appropriate weights 

to each term.  

From the radar observations and the measurement of received power, the value of Cn
2 

can be calculated. Using this value of Cn
2, the atmospheric structure is analysed.  

Table 3.1 Different atmospheric radars and their operating frequencies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Frequency (λ) Typical Application Scatterers 

Cloud radar 

(K/Ka band) 

30/ 52 GHz  

(10 – 6 mm) 

Vertical / horizontal looking radars 

for pollution dispersion and cloud 

monitoring  

Pollutants, Nimbus 

cloud particles etc.  

Doppler 

Weather 

radar 

3-5 GHz 

(10 – 6 cm) 

Horizontal viewing  

rain, cyclones, sea-breeze 

Rain drops hail, 

sand and dust 

particles 

Boundary 

layer radar 

0.9- 1.5 GHz 

(0.3 – 2 m) 

Vertical Beams, Wind profile at 

lower heights 

Wind profiles up to 

3 Km 

Wind Profiler 400 MHz 

(0.75 m) 

Vertical beams Tropospheric wind 

profile 

Wind profiles up to 

12 Km 

ST radar 200 MHz 

(0.6 m) 

Vertical beams Stratosphere 

tropospheric wind profile 

Wind profiles up to 

20 Km 

MST radar 40-50 MHz 

(6 – 7 m) 

Vertical beams, Mesospheric, 

stratospheric, Tropospheric wind 

profile 

Wind profiles up to 

30-90 Km 

Sodar 

(Acoustic 

sounder) 

3 KHz 

(0.1 m) 

Vertical Looking, Surface wind 

profile 

Wind profiles up to 

1 Km 
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3.2 Back Scatter Measurements and Determination of the Atmospheric Parameters 

Studies have been carried out which attempt to correlate observations of atmospheric 

parameters measured using traditional sensors. Wind profile or the wind velocities at different 

heights can be measured by conventional techniques using balloon. Fig. 3.5 shows the wind 

profile comparison between data obtained from three different systems namely, Radiosonde, 

precision wind sounding balloon (Jimsphere) and the radar (Altair). These readings show good 

correlations. 

Gossard [17] reported that layer of dimension less than half the wavelength and having 

thermal stability, exhibit large refractive index gradient. In such cases partial specular 

reflections occur. In this case, the scattered echoes cannot be estimated by the Bragg theory. A 

mathematical approach to estimate the amplitude and the phase of the echo signal is presented 

in Section 3.4 

With appropriate corrections, the experimental observations showed good correlations 

between the analysed radar-data and the in-situ observations However, this particular 

experiment proved that Bragg scattering was not the only agent of scattering. This was also not 

the principle agent of scattering. Such experiments more clearly define the effect of atmospheric 

structure on radar backscatter. It is also established that Doppler techniques provide the 

capability to study atmospheric dynamics. With Doppler radars, it is possible to carry out 

routine detailed analysis of the structure of clear air. 

 
Fig. 3.5 A comparison between the Doppler radar data and other observations 

(Source: Justin Sharp, “Clear-air Radar Observations and their Application in Analysis of Sea-breezes” 

http://www.atmos.washington.edu/~justin/radar_project/referenc.htm) 
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Scientists are interested in another phenomenon of thermal instability known as Kelvin-

Helmholtz (K-H) billows.  This turbulent situation is created due to the interaction of the two 

fluids of different density (mainly due to the temperature difference) moving relative to one 

another. Most common situation occurs in case of sea- breeze. The theory predicts K-H billows 

of twice the height of the main circulation. This is due to the temperature difference of about 

30C (1% of the absolute temperature). When the wavelength is twice the periodicity of the K-H 

billows, they are distinctly observable by the radars [40]. The structure of K-H Billows is shown 

in Fig. 3.6 (a) and (b). 

3.3 Experiments to Determine the Type of Scatter  

It is very important to determine the nature of the scattering process using the radar 

echoes. In case of Doppler weather radars, determining the precipitation echoes is a relatively 

simple task. These radars operate at microwave frequencies and look for particulate echoes due 

to precipitation. The frequencies are generally around 3 GHz. Only a few types of scattering 

mechanisms prompt the echoes. After analyzing the echoes, detailed radar characteristics are 

known.  

 

 

 

 

However, in the case of clear-air echoes, the origin of the echoes is much more difficult 

to determine, as the received echoes may be due to the combination of several types of 

scattering mechanisms. Without knowledge of the scatterers responsible for the echo and the 

scattering mechanism it is not possible to analyse or estimate the extent of scattering. For this 

(a) K-H Billows, Artist’s Impression.    (b) Eddies formed due to temperature difference 

Fig. 3.6 Sketches of the Kelvin Helmholtz billows and the turbulent eddies formation. 

(Source: Justin Sharp, “Clear-air Radar Observations and their Application in Analysis of Sea-breezes” 

http://www.atmos.washington.edu/~justin/radar_project/referenc.htm) 
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reason, the scientists put a great deal of effort for developing ways of differentiating between 

different scatter mechanisms. 

To use radar theory and equations to determine the size and number of distribution of 

scatterers, it is necessary to determine the type of scatter. For this one must determine whether 

scattering mechanism is Bragg scattering or particulate scattering. Also in case of particulate 

scattering, it is necessary to determine whether the scatterer, falls in Rayleigh region or the Mie 

region. Researchers have developed number of methods to determine the scattering mechanism. 

A brief description of some of these methods is given below. 

 

(a) Simultaneous observations using radars of different wavelengths. It has been 

shown that there has been a difference in wavelength dependence of Bragg and particulate 

scattering processes (-1/3 versus -4, as shown in eq.3.8 and 3.12). In order to resolve this issue, 

it is possible to use two wavelengths for observations. After the observations are over, the 

difference in results are taken to determine the type of scattering. It can be shown that the extent 

of two scattering can be resolved using the following expression for Bragg scattering [67]: 
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Where 1edBZ  and 2edBZ  are equivalent radar reflectivity factor for two different radar 

wavelength. 

In this method, the change in reflectivity is predicted assuming that the scattering 

mechanism is Bragg scattering. If the observed signal strengths match, the scattering 

mechanism is likely to be Bragg scatter. When mismatch with the theoretical values is observed, 

it is concluded that the scatter is from particulates. Then it is possible to determine whether the 

relative particle size is in Rayleigh region or in the Mie region. A similar approach with 

different frequency radars is used to resolve this. Within the Rayleigh range, the effective 

reflectivity is inversely proportional to each wavelength used, whereas in the Mie region, the 

dependence is more complex. Using this fact, the reflected signal strengths for both the radars 

are compared and the mechanism for the scatter is determined. Though this method is relatively 

straightforward, it requires two or three radars. This kind of facility is available only at well-

equipped research laboratories.  



 

36 

 

(b) Measurements of differential reflectivity, ZDR. Biota, particularly insects are 

mostly responsible for most clear air particulate scatter. Most of these scatterers have the length 

to width ratios of around 1:3 and hence a random volume of such scatterers will produce 

significant differential reflectivity which then increases with magnitude if the scatterers become 

more elongated. Particularly for insects, the reflected magnitude changes as the insect 

population changes the path of movement.  

Bragg scattering assumes that the inhomogeneities in refractive index responsible for 

scattering are due to isotropic turbulence on the scale of half a wavelength. The assumption that 

turbulence is isotropic is usually valid within the range of wavelengths typically used. Thus, 

differential reflectivity expected from Bragg scattering should be zero. In other words, the 

reflected signal strength due to the isotropic Bragg scatter does not fluctuate. Therefore if the 

measured signal strength shows differential reflectivity, it is likely to be particulate scattering. 

(c) Use of the K-Band radar. As mentioned, when mill metric radar is used, it can 

usually be determined beyond doubt that no Bragg scattering will occur. Therefore, all echoes 

can be attributed to particulate scatter either in the Rayleigh region or Mie region. 

(d) Apply findings of other experiments. The methods presented above have been 

used in research to understand the contribution of each scattering mechanism and the 

characteristics of the scatterers. They are often not practical to use with routine operational 

radar. Nonetheless, such research has provided valuable data which can serve as a baseline in 

routine radar analysis for carefully applying prudent assumptions to radar data. 

In general, Bragg scatter is much more prevalent for longer wavelength radar sets 

(especially wavelengths greater than 20 cm) and typically does not yield reflectivity greater than 

about -10dBZ. Its intensity is proportional to the magnitude of the refractive index gradients. On 

the other hand, the magnitude of particulate scatter is dependent both on the scatterer number 

density and the scatterer size. The reflectivity is usually much higher, typically between -10dBZ 

to 20dBZ [68], with much higher values possible. Achtemeier [69] reported reflectivity values up 

to 40dBZ from an insect cloud. This difference will usually enable us to tell if particulate 

scattering is occurring, but this will not allow us to determine the possible additional 

contribution of Bragg scatter, if any. 
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3.4 Modeling of Clear air Doppler Radar Signals 

 Clear air Doppler radars normally operate in monostatic mode. In this configuration the 

transmitting and the receiving antenna is same. Phase coded RF energy is radiated. The echo 

signals are detected by correlating with the replica of the transmitted signal. After that the signal 

is subjected to the Fast Fourier Transform (FFT) to get the velocity information of the target. 

Fig. 3.7 shows the radar beam volume and the local volume.  

  

 

The echo signal is represented as a correlation function over the space filled by the beam. 
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Where, 
)(
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~ mC is the mth time-derivative of the two-way correlation function, G12 is the two-way 

gain function of the radar beam and )(
12

~ mR  is the auto-correlation function of the refractive 

index. The gain term is a product of the amplitude term A(x) and the phase term P(x). The phase 

term has a dependence of r and x given by the equation given below. 
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Fig. 3.7 A sketch of sampling geometry for the CDR radar beam (Source A. Muschinski [70]) 
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Where kB  is the wave number and r0 is the range vector. 

The first position dependent term of the quantity in the parenthesis (z) is due to the 

homogeneous Bragg scatter in the radar resolution volume. Analysis considering only the first 

term is known as Fraunhofer approximation. The second quadratic term in the above expression 

indicates location dependence in terms of coordinates x, y. This is the Fresnel approximation. 

With this approximation, for homogeneous scatter conditions, the echo from the scatterers in 

annular rings will have same phase. Also, the scattered power of the annular rings where value 

(x2+y2) for which the phase of G12 becomes π will add out of phase. This distance is called 

Fresnel’s radius (f). Most of the scattered power is due to the volume within the Fresnel radius. 

The value of Fresnel radius for the two way gain function is  

  



orf           (3.18) 

 Due to these effects the radar observations will show deviations in the backscattered echoes. 

The CDR backscatter is broadly classified into basically two different mechanisms: the scatter 

from Bragg-isotropic refractive index turbulence and the scatter from refractive index 

discontinuities in the form of sheets that are thin but extend beyond the radar beam in the 

transverse direction. The first type of scatter is known as the Bragg-Scatter. In this case, the 

target has the same texture of refractive index turbulence throughout the radar beam volume. 

Therefore it does not have any fluctuating effect or variations in the backscattered power. This 

phenomenon is mathematically represented by Fraunhofer approximation of the two way 

backscatter expression. The second type of backscatter is due to refractive index discontinuities. 

These discontinuities are often in form of layers of different refractive indices (also referred to 

as ‘sheets’). The backscatter echoes in this case show specular reflections, aspect sensitivity 

(variation in backscatter amplitude with beam incident angle [71] and velocity biases in the wind 

measurements [72][73]. The mathematical analysis for this type requires Fresnel approximation or 

the inclusion of the quadratic term of the two way backscatter expressions. 
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3.5 Signal Processing Techniques to derive atmospheric parameters from The 

Backscattered Radar Signals 

 In the above sections a brief presentation of atmospheric scattering and the process of 

observation are presented. The radars are used to observe the back scattered signal from the 

atmospheric targets and facilitate to determine the structure and estimate the dynamics of the 

atmosphere. The backscattered signal is coherently sampled and FFT is computed for the 

Doppler analysis. Use of appropriate window on the time domain data helps in improving 

SNR[74]. With this background, the radar signals can be viewed as a discrete representation of 

the backscattered signal on the range-Doppler plane. This 2-D representation is subjected to 

spectral moment estimation followed by consensus averaging. This data is used to determine the 

structure of the target. For reliable and consistent determination of the target structure, it is 

important to estimate the error in the spectral parameters [75] and thereby the accuracy of the 

atmospheric parameters [68].  With the studies mentioned above, the statistical nature of the 

Doppler spectra is known in advance. This apriori knowledge can be used to optimize the signal 

processing strategy and determine the atmospheric parameters better. In subsequent chapters of 

the thesis three different approaches to analyze the radar signals are presented. These methods 

use the statistical nature of the scatterers along with the continuity and homogeneity of the 

atmospheric targets.  

 

3.6 Summary: This chapter explain the concept of the radio wave scattering from atmospheric 

targets. The knowledge of scattering phenomenon helps in the mathematical description of the 

backscattered signal. With this understanding, it is possible to develop the spectral signature of 

atmospheric phenomenon and simulation of all types of weather phenomena, which is being 

described in chapter 4. 
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Chapter 4 

 

Modeling of Doppler Spectra for Different Types of 

Weather Echoes 

 It is seen in the earlier chapters that the Doppler  power spectra is the basic data set on 

which the further processing is done to extract the information of atmospheric parameters. 

Before developing any profile extraction technique, it is important to understand the signal 

processing of the classical wind profiler while operating in Doppler beam swinging method. We 

have seen that the wind profiler receives the backscatter from the atmosphere. This signal is 

amplified, filtered and down converted by a super heterodyne receiver to the base-band before 

subjecting to the digital processor (shown in Fig 4.1). It may be appreciated that a typical 

Doppler frequency is as small as approximately 10-8 to 10-7 times the carrier frequency. The 

Indian MST radar operating at 53 MHz expects Doppler frequencies of a few Hertz. This 

requires very high frequency stability in the receiver. Also, the expected signal strength is in the 

range of -140 to -110 dBm. This calls for a very high-gain or sensitive receiver.   

 

 

 

 

 

 

 

 

Fig. 4.1 Schematic of the RF and analog part of a wind profiler receiver 

 The receiver output is then subjected to a digital processor where the signal is digitized 

and then sequenced according to their time of arrival. Radars estimate the range of the target 
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from the time of arrival of the echo. The echoes from the same range are brought together. 

Signal samples are added coherently and then subjected to frequency estimation by calculating 

the Fast Fourier transform (FFT), as shown in Fig. 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Need for Modeling   

 Before developing any post processing method it is important to understand the 

mathematical formulation of the input signal. This is best done by writing simulation program. 

This program should be done so as to imitate the exact mathematical operation of the digital 

processor. This way the correct mathematical representation of the Doppler power spectra could 

be formulated. Knowing the correct formulation of the signal would make it easier to develop 

the processing algorithms on the spectral data.  

Fig 4.2 Schematic representation of Signal processing in wind profiler radars. 
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Modeling of the process provides correct understanding of the signal ingredients [66]. 

Another advantage of the modeling is that it gives the capability of creating customized data. In 

other words one can create Doppler power spectra corresponding to any type of weather 

condition! It is improbable that different atmospheric conditions occur at radar site. Also in 

operational radar it is not expected to have power spectral data of all possible weather 

conditions. However, one expects that the estimation algorithms to work in all possible 

conditions. The modeled data comes handy at such a situation and can be used as a test case. 

In short, modeling provides insight into the input signal structure. And a set of 

simulation data corresponding to different atmospheric conditions serves as a benchmark test set 

with the help of which various processing algorithms could be evaluated. 

 

4.2 Preprocessing of radar data        

In this section we shall present the simulation steps that would imitate the wind profiler 

digital processor. The receiver gives two signals to the digital processor. These are the In-phase 

and Quadrature components of the Base-band signal (shown in Fig. 4.1.). They contain 

different frequency components depending on the target velocity variation. These signals are 

represented as sum of sinusoids with real and complex components. The digital samples are the 

numbers generated on complex sampling of these sinusoids or the Doppler components. 

Conventionally, the samples of the In-phase channel are represented by periodic digital values 

of cosine function. Similarly, the samples of the quadrature -phase channel are represented by 

periodic digital values of sine function. These values are the samples taken of the echoes, in the 

Inter Pulse Period (IPP) (shown in Fig. 4.2). It is known that the signals received early in the 

time are from the nearer ranges and the signals received in the later part of IPP are from the far 

ranges. The complete IPP time interval could be divided into many time slots corresponding to 

the range-bins. Fig. 4.2 shows name tags of ‘R1’, ‘R2’…    RM to these time intervals.  

It is obvious that the signals received in the corresponding time slots in subsequent IPP 

are also from the same range-bin. Such corresponding signals for a few (typically 40 to 60) 

consecutive IPPs are added. This operation is known as coherent Integration. The purpose of 

coherent integration is to enhance the signal to Noise Ratio (SNR). It can be seen that these 

addition equations (4.1) and (4.2) gives the mathematical expressions for the same. 
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The equation to compute the in phase component of Doppler spectra is as follows:  
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Similarly, the equation to compute the quadrature component is as follows:   
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In the equations (4.1) and (4.2), i is the index for time sample and k is the index for the 

range-bin and l is the number for coherent integrations. The simulation algorithm generates time 

sample x(i,k)  this is ith in-phase sample of kth range bin; whereas, y(i,k) is ith quadrature-phase 

sample of kth range bin. The weather target echo in the Doppler power spectra is a collection of 

multiple frequencies (explanation is given in section 2.3). These signals are generated using the 

summation of multiple sinusoids with different frequencies around fD. These frequency 

components are generated by the terms (fD + mΔf) as shown in equations 4.1 and 4.2. The signal 

frequencies are modeled by 2s+1 components with frequencies (fD-sΔf) to (fD+sΔf). The index 

m is used for the frequency components. The index l is used for the number of coherent 

integration. Thus a time sample is formed by adding [(2s+1) × nc] samples. This sample is 

computed by doing additions in two For loops. The terms a(k) is the amplitude of the signal 

from kth Range-bin. In reality, this value depends on the RF reflectivity of the scatterers. Clear 

air atmospheric target often has particles exhibiting Brownian motion. Therefore the amplitude 

envelope of the group of spectral components has Gaussian or the Bell shape.  The term G(m) 

implements the Gaussian amplitude envelope. This is also generated by ‘NORMPDF’ function 

in Matlab. At the frequency fD , value of G(m) is 1 and will roll down for both positive and 

negative frequencies. By changing the variance parameter of the Gaussian envelope function, it 

is possible to choose slow roll down for high turbulence and fast roll down for more streamlined 

winds.  

Though there is no limitation on value of the parameters, the user is expected to choose 

realistic values corresponding to the wind velocity. For the wind profiler, the wind velocity 

range is between 0 ms-1 to 24 ms-1(86 Km/hr). This corresponds to Doppler frequency range 0 

Hz to 7.8 Hz for the MST radar. However the cyclonic winds could take the wind values up to 
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100 ms-1 or Doppler frequency of 30 Hz approximately. Similarly, there is no limit on 

amplitude values. But most of the scientists prefer to use amplitude values normalized to 1.  

The components x(i, k) and y(i,k) form the real and imaginary part of the complex time 

sample. It may be noted that the Complex Sampling of the received signal is required as +ve and 

–ve frequencies need to be measured. Complex sampling is possible with quadrature detection. 

In other words, the last down conversion need to be done with Quadrature Mixer (shown in Fig. 

3.1) creating 2 –channel output; namely in-phase Channel and quadrature phase Channel. 

4.3 Modeling and Simulation of Noise and Doppler Spectra    

The received signal is always accompanied by noise. The wind profilers receive signals 

from open sky. Atmospheric backscatter signals from VHF/UHF bands generally have White 

Gaussian noise [1]. Therefore, under the normal circumstances, wind profiler signal encounters 

Additive White Gaussian Noise (AWGN). This inclusion of AWGN is simulated by simply 

adding complex random term n(k) as shown in equation (4.3). The additive WGN term n(k) is 

generated using the Matlab function (AWGN). However, the simulation algorithm allows the 

user to select noise of any probability distribution. Equation (4.4) shows the mathematical 

expression of complex FFT computation. Z (i,k) is the complex spectral component of the 

Doppler spectrum for the kth range-bin. The power of the component is simply the squared 

addition of the real and imaginary parts of the component (given in equation 3.5). 

)(),(),(),( knkijykixkiz        (4.3) 

After addition of the noise, the signal is subjected to ‘Fast Fourier Transform’ 






















nDFT

k

kxj
nDFT

ekizKjiZ
1

2

),(),(



         (4.4) 

22 )),,(Im()),(Re(),( kiZkiZji Z       (4.5) 

 Fig.4.3a is an example showing the power spectra generation. It shows a sine wave 

power spectra demonstrating capability of generating user defined Doppler profile. Fig.4.3b 

shows customized Doppler profile imitating profiles obtained by radars. 
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Fig. 4.3 (a) Simulated Sine wave profile 

 

Fig. 4.3 (b) Simulated Doppler power spectra 

Fig.4.4a shows the Doppler power spectra with noise. Different values of noise power 

could be programmed in different range bins. Fig.4.4b shows a real radar data. It may be seen 

that the simulated data and the radar data is practically indistinguishable. 
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Fig 4.4(a) Simulated Power spectra with noise at few range bins 

 

Fig. 4.4(b) Representation of Radar Power Spectra (MST radar, Beam Direction: East 100) 
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4.4 Modeling and Simulation of Clutter, RFI and other unwanted signals 

It is often observed that the radar signal is occasionally contaminated by Clutter and 

Radio Frequency Interference (RFI). Clutter is the most common unwanted signal in the WPs. 

Clutter consists of echoes from nearby stationary and slowly moving objects like trees, hills, sea 

etc. On the Doppler power spectra, clutter appears as a low frequency spectral component 

symmetrically placed around 0 Hz. Since the clutter is signal from nearby terrestrial objects, it 

appears in the lower range-bins. These signals are simulated by adding extra components at low 

Doppler frequencies (corresponding to velocities below 2.5ms-1)  say fD1. The mathematical 

expression for x(i,k) is the same as given in equation 3.6. Similar expression is used for y(i,k). 

The notations of the variables are the same as described in section 4.2.  
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 (4.6)

 

 System generated disturbances like electrical noise and power frequency leakage are 

occasionally observed in the power spectra. Power frequency disturbances and other interfering 

sources are categorized as RFI. RFI is generally a single frequency disturbance spanning over 

short time. This appears as a sharp spectral component in 8-10 or more range bins. RFI occurs 

at same Doppler bin at all the affected range bins. Hence this type of unwanted signal presents 

itself as a set of sharp peaks placed in a vertical line. This disturbance is simulated by adding 

another frequency component (say fD2) in the expression of x(i,k) and y(i,k). 

 In Matlab programming separate vectors of dimension (RB × 1) for frequency and 

amplitudes are created; where RB is the number of range bins. User can put any values of 

frequencies for each range bins. Fig. 4.5a shows simulated Doppler spectra with clutter 

contamination and Fig. 4.5b shows simulated Doppler spectra with RFI contamination.  

 Fig. 4.6a shows Simulated Doppler power spectra with Clutter and RFI contamination. 

Fig. 4.6b shows MST radar data having both clutter and RFI contamination. It is seen that the 

simulated data is perceived same as real radar data.  
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Fig. 4.5(a) simulated Doppler spectra with clutter 

 

  Fig. 4.5(b) simulated Doppler spectra with RFI 
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Fig 4.6(a) simulated Doppler spectra with clutter & RFI.   

 

. Fig. 4.6(b) Power spectra with RFI & Clutter (MST radar, Beam Direction: East 100) 



 

50 

 

4.5 Modeling and Simulation of specific weather phenomenon    

In this section, simulation of Doppler power spectra for Precipitation and 

Ionospheric echoes is presented. Precipitation echoes are created by adding additional 

components in the same form as equation (4.7) and equation (4.8). The only difference is 

the mean Doppler component is fpi corresponding to the rain-drop velocity. The envelope 

function could Gp(m) is generally a narrow Gaussian function (with standard deviation of 

approx. 1 Hz corresponding to 0.4 ms-1, say). The precipitation echoes are generally 

observed for the range-bins below 8 km and with rain drop velocities in between 8ms-1 to 

20ms-1 with range profile of a characteristic shape shown in Fig.4.8. Precipitation Doppler 

spectra corresponding obtained from radar is shown in Fig.4.7 for comparison. .  
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(4.8) 

 

The ionospheric echoes could also be generated by adding frequency components in 

the same form as equation (4.7) and (4.8). The Doppler frequency values (to be indicated 

by fpi) and envelope shape need to be chosen correspondingly. Ionospheric echoes are 

observed at heights above 80 km and typical radial winds are between 53 ms-1 and 140 ms-

1. This corresponds to) fpi values of 19 Hz to 50 Hz for Indian MST radar operating at 53 

MHz. Fig. 4.9 and Fig. 4.10 show simulated and radar ionospheric Doppler spectra 

respectively. 

Similarly, Meteoric echoes are generally observed above 80 km. The Doppler 

frequency values (to be indicated by fpi) are observed in between 28 Hz (77 ms-1) to 222 

Hz (623 ms-1).  

The envelope shape in all the cases can be decided using the variable Gp(m) in 

equation (4.7) and equation (4.8) and the spread of the envelope can be decided using the 

variable m in equation (4.7) and equation (4.8). It can be seen that it is possible to create 

Doppler power spectra corresponding to any weather phenomenon whose spectra features 

are known. 
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Fig. 4.8 Simulated Precipitation plot 

Fig. 4.7 Precipitation   plot (MST Radar, Beam Direction: South 100) 
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Fig. 4.9 Ionospheric plot (MST Radar Data, Beam Direction: North 130) 

 

Fig.4.10 Simulated Ionospheric plot 
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4.6 Results         

In the earlier sections we have seen that it is possible to simulate Doppler power spectra 

of all atmospheric condition. If the signature on range- Doppler plane is known, the spectra 

could be generated. Generally, the data of range-Doppler signature corresponding to most of the 

weather conditions is available as the atmospheric researchers have studied them and have 

found correlation and associated specific range-Doppler signature. In other words, the signal 

patterns appearing in the power spectra due to the backscattered echoes is known for almost all 

weather phenomenon. Using this information it is possible to prepare Doppler spectra of various 

atmospheric conditions and add disturbance of any kind.  

The mathematical formulation described in the foregone sections is very versatile and 

can simulate any range-Doppler signature by appropriate choice of the variables and functions. 

It may be worthwhile to create data sets of all representative weather conditions and with 

disturbance signal of different levels. Such data set could be used as a Benchmark platform to 

evaluate the performance of post processing algorithms and also to compare the performance of 

multiple algorithms. This approach presented in this chapter may be seen as a versatile tool to 

simulate the power spectra of all weather conditions and different types of disturbances. This 

simulation tool is expected to pose itself as a generator of benchmark platform for testing and 

performance evaluation of post-processing algorithms.  

 

4.7 Summary  

 Mathematical modeling of wind profiler power spectra is presented in this 

chapter. This method initially defines the spectral components and generates the time 

samples as generated by the radar ADC. Then it performs wind profiler signal processing 

steps as performed by the radar. This allows the user to generate real weather-like 

Doppler spectra by introducing realistic Doppler components at every range. It is also 

possible to include noise and other non- atmospheric components in the spectra. Similarly, 

atmospheric Doppler power spectra corresponding to specific atmospheric phenomenon 

could be generated by adding appropriate Doppler component. General strategy of 

algorithm is to include feature based Doppler components corresponding to physical 

parameters in the time domain samples. All programs were written in Matlab. The 
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modeled and simulated data sets are compared with radar spectral components of more 

than 100 observations from the Indian MST radar at NARL Gadanki, India.  

This tool turns out to be a versatile testing platform for wind profiler radar data. 

This method can be effectively used to generate ‘standardized data set’ of Doppler 

spectra to test the effectiveness of any newly developed profile tracing algorithm(s). The 

capability of adding specific spectral features could be used in reverse action for removal 

of specific spectral signatures from radar data. Hence developed algorithm also proves as 

an effective pre-processing tool as they are capable of removing the unwanted non-

atmospheric signals.  

The power spectral data modeling techniques presented in this chapter were used to 

generate the data where actual signals are not available and to create data sets 

corresponding to less probable situations like meteoric echo 

 Next chapter presents signal processing algorithm for the wind profiler Doppler power 

spectra. The implementation of all these algorithms are done on the real data of wind profiling 

radars. 
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Chapter 5 

Pre-processing of Real Radar Doppler Spectra 

 

It is seen that the wind profile data is very weak and often contaminated with the echoes 

from non-atmospheric sources. This makes it difficult to extract weather parameters from the 

radar data. Therefore it is advisable to perform pre-processing of the data set(s). The 

preprocessing involves following functions. 

1. Noise estimation and removal. 

2. Identification of the clutter and RFI components and the removal of these 

components.  

This chapter presents the methodology and mathematical formulation of 

preprocessing. Real data from MST radar and the LAWP radar are used to apply preprocessing 

techniques as shown below. MST radar works at 53 MHZ radar with 2.5 MW, peak power. This 

radar is expected to estimate the wind profiles up to mesospheric heights (up to 60 km). LAWP 

is 1280 MHz, 10 KW power radar and expected to receive and process echoes from the targets 

up to altitude of about 5 km.   

 

5.1 Reading the data from Binary Data file 

The first step of the data processing is “reading the data format”. Radars make the data 

available in a specific format. The data format for the Indian MST radar is given in Appendix-1. 

Initial part of the data format is the header which contains information of the operating radar 

parameters like Pulse width, start and stop of observation window etc. In general, MST radar 

can generate following data products.  

a) Power Spectra: Received power in each Doppler frequency bin. 

b) Raw data: Time samples data 

c) Complex Power spectra: Complex values of the frequency components after FFT 

d) Moments: Zeroth, First and Second central moments for each Range-bin.   
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e) UVW: U (Zonal), V (Meridional), W (vertical) winds computed by classical 

method[5].  

These products are available to carryout research on different signal processing aspects 

of the radar. One of the objective of this thesis to develop a new Doppler Profile tracing 

algorithm. Therefore, only the Power spectral data will be relevant for this research. 

Considering this a detailed procedure is formed and the Matlab program is written for the same 

(explained in Appendix-2). Chau [76] attempted to extract information for Distance-Velocity 

Azimuth Display (DVAD) from the radar data. This new interpretation technique provides wind 

information at the locations substantially away from the radar. The data of Lower Atmospheric 

Wind profilers (LAWP) radars, with conventionally fed antenna array as well as active array are 

also processed in similar manner [77][78]. 

 

5.2 Noise Estimation in Each Range Bin  

 Estimation of noise in each range bin is done after the data acquisition and reading. The 

probability of estimation accuracy of wind in each range-bin depends on the signal to Noise 

Ratio (SNR). The processing strategy also changes with the value of SNR. Various noise 

estimation methods were studied [25][26][27]. However, the VHF/UHF radar noise is white 

Gaussian noise and classical method suggested by Hildebrand et. al.[24] is still found consistent. 

Hence, this thesis also used the same method and Matlab program is written for the noise 

estimation using Hildebrand method. Mathematical operations for the noise estimation with 

typical power spectral data set are as follows:  

 This algorithm is applicable for the noise estimation for atmospheric radar Doppler 

spectra. This algorithm is developed based on following reasonable assumptions. 

1. Weather echo spectrum is Gaussian but colored. (non-uniform frequency contents) 

2. The noise spectrum is Gaussian but white. (uniform frequency content) 

The structure of the power spectra is as shown in Fig. 5.1.  

 

 

 

 

Fig. 5.1 Typical Doppler Spectra of a range-bin.  
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Mathematical implementation of noise estimation algorithm is as follows: 

Total number of frequency components are indicated by N (N=512 in Fig 4.1). The 

index n is used to indicate individual frequency component. Spectral components are indicated 

by Sn and p is the number of spectra averaged (if more than 1). We compute the following 

quantities.  
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 Where, 2  and 2

N are spectral variances of the components and noise, P is average 

signal power, Q is the average noise power, R1 noise power threshold and R2 determines the 

signal power threshold.  F is frequency spread of spectrum. N is the number of independent 

spectral densities. When all the spectral components belong to white noise the ratios R1 and R2 

are unity. If any non-random component is present, then the value of R1 is greater than 1 (R1>1) 

and, the value of R2 is less than 1 (R2<1). The Noise estimation uses this property by following 

procedure. 

It computes the ratios R1 and R2 for the complete spectra. Generally the ratios do not 

satisfy the condition for white noise. Then the largest spectral component is discarded and the 

value of N is decremented. The ratio is re-checked. This process continues till the ratios are 

equal to one (within some pre-decided tolerance). The corresponding value of P at that stage 

gives the noise power level.  

 

5.2.1 Smoothing of Doppler Spectrum 

The Doppler Spectrum of a range bin often show abrupt magnitude changes between 

adjacent Doppler Bins. This is removed by averaging a few spectra. Three point averaging is 



 

58 

 

done in this thesis. This procedure involves taking average of three consecutive Doppler 

components and replacing the central component. This procedure is widely adapted in spectral 

processing. The same practice is continued in this thesis. 

 

5.2.2 Noise Removal  

After the noise estimation in each range bin, the noise component is removed. This is 

done by subtracting the noise value through all the components. If the negative value is obtained 

after subtraction, it is replaced by zero or very small value, 0.1 × the noise level.  

 

5.3 Identification of Clutter and RFI 

The signature of the clutter and the RFI are presented in section 4.4. The word signature 

is used to describe the characteristics and the relative position of the spectral components. For 

identification of the Clutter and RFI the same apriori information is used. Here the occurrence 

of clutter and RFI is verified by observing the signature conditions for all the spectral points. 

The spectral points which satisfy these conditions are categorized, as clutter or RFI accordingly. 

 

5.4 Removal of Clutter and RFI without affecting received atmospheric echoes 

Once the clutter and RFI spectral points are identified it is easy to remove them. They are 

removed simply by replacing these components with calculated noise level value. This method 

shows better performance than other method. The advantage is mainly in terms of less 

disturbance to other spectral components. Most of the filter based methods show a small 

deviation (amplitude change of the adjacent components).   

 

5.5 Computation of Moments for profiling 

The definitions of the moments and their significance in this context are as follows:  

 dFm  )(0   Zeroth Moment (reflectivity)    (5.6) 

  dFm )(1
  First moment (wind Velocity)     (5.7) 

   dFmm )(
2

12     Second Central Moment (wind Turbulence)    (5.8) 
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Where, )(F  is the power spectrum, m0, m1, m2 are the zeroth, first and second moment 

respectively. However, in the remaining part of thesis, normal nomenclature for the power 

spectrum has been used as applicable in atmospheric science. Moment computations are very 

similar to those given in Equations (5.1) through (5.2). 

The zeroth moment is the average of all the components and mathematically equal to the 

denominator term in equation (5.1) given by


N

n

nS
1

. The first moment is mathematically equal to 

the numerator of the second term of equation (5.1) given by


N

n

nn Sf
1

. The second central 

moment is the computed value of the equation (5.1) given by 2 . 

5.6 Results 

Pre-processing of the Doppler spectra are done in following three steps. 

(i) Noise estimation and suppression: Noise estimation has been done using classical 

Hildebrand algorithm. Hence the noise is partially suppressed. 

(ii) Identification of non-atmospheric spectral components and removal: The algorithm 

developed to model the spectral features of the non-atmospheric components is used to identify 

them and subsequently to remove them. 

This processing removes the unwanted signals and enhances the echoes of the 

atmospheric signals. This makes the data ready for its further processing and extracting the 

wind velocity information. The efficacy of preprocessing method was tested on simulated data 

as well as on various real data sets of the Indian MST radar and few results are presented below 

with the real MST radar data and simulated data. Fig 5.2(a) shows the unprocessed Doppler 

spectra of MST radar and Fig 5.2(b) Shows Doppler Power Spectra of the same data after noise 

removal using Hildebrand method.  

Fig. 5.3 (a) and 5.3 (b) shows MST Radar Power Spectra before and after RFI and Clutter 

removal.  

Fig. 5.4 (a) and (b) shows LAWP Power Spectra before and after clutter removal.  

Fig. 5.5 (a) and (b) shows Simulated Power Spectra before and after RFI removal.  
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This knowledge of the Doppler signatures of RFI can be used to simulate wind profiler 

data contaminated with RFI. The RFI removal method is tested with the simulated data as well 

and the result is presented in Fig. 5.5(a) and 5.5 (b) 

 

Fig. 5.2 (a) WP Power spectra of few Range Bins before noise removal (Section of MST Radar data, Beam 

Direction: West 100) 

 

    

Fig. 5.2 (b) Power spectra of the same Range Bins after noise removal  

(Section of MST Radar data,  Beam Direction: West 100) 
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   Fig.. 5.3 (a) MST Radar data (Beam Direction: West 100) with RFI and Clutter.              

 

Fig.  5.3 (b). MST Radar data: (Beam Direction: West 100) Clutter and RFI removed. 
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Fig. 5.4 (a) Power spectra (LAWP beam Direction: Zenith) before clutter removal 

 

 

 

  
 

Fig. 5.4 (b) Power spectra (LAWP beam Direction: Zenith)  after clutter removal 
 

Clutter 
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Fig. 5.5 (a) Modeled Power spectra with RFI        

 

Fig. 5.5 (b) Modeled Power spectra after RFI removal 
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5.7 Summary 

The need for pre-processing of Doppler power spectra and the procedure used are 

discussed in this chapter. Pre-processing mainly involves noise estimation and removal using 

Hildebrand algorithm, identification of clutter and RFI and its removal from the Doppler power  

spectra. The pre-processing method is applied to MST radar and LAWP radar and the results are 

presented. After preprocessing, the Doppler power spectra are subjected to the signal processing 

technique(s) for the extraction of the wind information. The wind profiling radars are often 

operated with more than 3 beams. Though the data received from additional beams are 

redundant, it facilitates improved feature extraction and data interpretation [79].  Averaging of 

the data from coplanar beams [80] and fuzzy logic [47] based techniques are some of the ways to 

improve the atmospheric feature extraction from the radars. Some of the leading methods of 

Doppler profile extraction and a new method developed during this research for wind profiling 

are presented in the next chapter 6. 
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Chapter 6 

 A Novel Multiparameter Cost Function Method for the 

Estimation of Doppler Profile 

 The main function of the wind profiler radar is to obtain three dimensional (3-D) wind 

velocity information. As discussed earlier, it is done by doing Doppler analysis of the 

backscattered echoes. The processing of the backscattered signal of one beam provides the 

radial velocity (wind velocity component in the direction of the radar beam) profile. From the 

information of three or more such beams the 3-D wind is computed using simple mathematical 

techniques. The information extraction from the Doppler power spectra of one beam is the 

important theme. 

In this chapter, section 6.1 and 6.2 discuss the need for automated Doppler profiling and 

some of the leading methods of Doppler profile extraction respectively. Section 6.3 presents a 

newly developed novel method of profile tracing which was one of the main objectives of this 

thesis. 

 

6.1 Tracing the Doppler Profile 

 It has seen that the Doppler power spectral data is cleaned by pre-processing. The pre-

processing removes the noise and unwanted signals like Clutter and RFI. After this activity, all 

the stronger spectral components are expected to be from atmospheric targets. The strongest 

atmospheric target is assumed to give strongest spectral peak in the corresponding range bin. 

Doppler profile could be obtained by simply connecting the strongest. Fig. 6.1 shows a small 

section of the wind profiler data. There are multiple peaks and estimating the correct peak and 

including it in the Doppler profile is a skilled job. Conventionally, this job was done by a 

Human Expert. Modern radar metrology demands very frequent weather monitoring and WP 

radars generate a large amount of data for that purpose. There is a need of extracting wind 

information in real time. Therefore an automated profile extraction method is required. This 

research is directed towards the development of an automated Doppler profile estimation 

algorithm. A literature survey was done on the existing methods of Doppler profile estimation. 
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The following section presents some of the leading methods for the same. 

 

 

    

Fig. 6.1 Tracing of a Doppler profile. 

 

6.2 Literature review of Doppler profile Estimation 

 In section 5.5, the mathematical formulae for the spectral moment computation are 

presented. Following facts are well-established in the previous chapter 5.  

a) The zeroth moment is the summation of the amplitudes of the spectral components and is 

indicative of the RF reflectivity of the target. 

b) The first moment gives the mean Doppler frequency. Therefore, it indicates the mean 

wind velocity.  

c) The second central moment (variance) is a measure of the Doppler spread which 

automatically indicates the velocity spread and hence the wind turbulence. 

This classical approach to Doppler profiling, which was formally introduced by Zrnić [5] is 

presented here and is followed as a basic method. The profile extraction is done by connecting 

the geometrical centers of the prominent Doppler components as shown in Fig. 6.1. This 

method performs reliably in case of a Prominent Single Doppler Component. However, this 

method fails in low SNR conditions or in the presence of strong non atmospheric spectral 

components. Due to this the profile tracing used to have discontinuities in the regions where 
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wind turbulence is more and hence Doppler could not be traced at larger heights. 

Subsequently many methods were developed to increase the range coverage and establish 

better height. Following approaches claimed consistent results and are in use till date by the 

researchers. 

 

6.2.1 Adaptive moments estimation method 

It is observed that in low SNR case, the estimation of Doppler component based on 

moments gives erratic results. This is because the first moment of the Doppler spectrum of 

adjacent range bins would vary by a large amount on either side! This problem was addressed 

by Anandan [41] by proposing adaptive moment method. This method proposed profile tracing 

from the lowest range bin where the SNR is high. High amplitude spectral components 

present in a pre-decided Doppler window of the subsequent range-bins are tagged as 

prospective candidates. One of the candidate peak is finalized as a member of the profile on 

the basis of SNR and wind shear criterion.  

 

 

 

 

This method also suggests improvement in Doppler profile if the data from Symmetrical 

Fig.6.2 Doppler power spectra of a Doppler profile of Indian MST radar (East beam tilt 100on 10-07-2002). It is 

seen that in Low SNR range bins the first moment profile (dotted line) shows erratic variations. Adaptive moment 

estimation takes a corrective action Source [41]. 
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beam is available. This method claims good results and is one of the leading methods of 

Doppler profiling currently in use. However, some of the parameters and decision processes 

are subjective and may require tuning depending on the radar data. As a result, the process 

needs to be customized for different radars and for different atmospheric conditions. This 

leads to the change of algorithm parameters. Thus factors like radar operating parameters and 

changing environmental conditions pose limitation for this method as a candidate as an 

automated algorithm. Fig. 6.2 [41] shows an illustration bringing out the strength of the 

adaptive moment estimation method. 

 

6.2.2 Profile Chain building   

The concept of identifying prospective spectral components was also reported by Clothiaux 

[42] and has proposed first guess feature based algorithm. This method proposes connecting of 

the prospective candidates to form possible Doppler profile chains. The data from multiple 

Doppler power spectra of similar conditions is collected and subjected to neural network 

learning technique. Finally a continuous chain obtained by selecting most suitable branches is 

selected as the Doppler profile. Fig. 6.3 shows some data slides illustrating the method from 

reference [42]. The computation complexity of this method changes depending on the data type 

and number of possible profile chains. Hence the extent of computation becomes unpredictable. 

Also the method requires a large training data that is similar to the Doppler spectra under 

consideration.  

   

 (a)                                                (b)                                                        (c)  

Fig.6.3 Demonstration of ‘first guess feature based algorithm’ (a) identification of all the chains. (b) Removal 

of incomplete chains to have candidates for complete profiles (c) Selecting final profile based on the neural 

network technique (Source [42]) 
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6.2.3 Fuzzy Logic based Doppler Profile Estimation 

In the recent years Fuzzy logic (FL) methods have been used by many researchers and have 

claimed very accurate results. Fuzzy logic approach considers every spectral point in the data 

set of Doppler profile spectra. These points are evaluated for various features like spectral 

variances, feature slopes and curvature, asymmetry etc. A fuzzy logic approach examines some 

of these features and then concludes whether the spectral component is a member of that 

particular feature or not. As an example, a spectral component could be examined whether it is 

a weather echo component or a clutter component or a RFI component. The procedure for this 

is as follows: 

A membership function is defined for each of these features and a value, usually between 

0 and 1, is assigned for each feature. This assignment is done by defining a membership 

function having the range 0 to 1 (e.g. Gaussian function). These assigned values are combined 

to get a membership value. There are two approaches of getting the membership value.  

First approach computes a weighted sum of these values. This value is subjected to a 

threshold to decide whether the component is included in the class under consideration [43][44]. 

The national Centre for Atmospheric Research (NCAR) uses this concept. The method ‘NCAR 

Improved Moments Algorithm (NIMA) additionally uses other spectral cleaning techniques.  

The other approach combines the membership function values and then subject it to 

another function (also called classification function or soft thresholding function) for the 

decision of whether the spectral point is included in the class under consideration [44][45][47]. The 

fuzzy logic methods are capable of classifying the spectral component into different classes like 

weather echoes, clutter RFI and so on. Due to this capability, it is possible to identify the 

components of different features simultaneously on the same Doppler power spectra. Fig. 6.4 

shows an illustration indicating spectral components due to different features. However, for the 

optimal performance tuning of confidence value threshold is generally required. Also the 

parameters and the functions used in Fuzzy logic approaches are dependent on the nature of the 

signal, radar site and parameters etc. Allabaksh [47] has used the same method suggested by 

Bianco [45] and has reported that the change of parameters and membership function was 

necessary to obtain good results. As a result the method could not be treated as objective.  

It is seen that the leading methods give very consistent performance of Doppler profile 



 

70 

 

extraction. However, they are computationally complex and require changes in the processing 

parameters or strategy depending on data type, radar site and operating parameters. Therefore 

these methods could not be considered as objective methods. It cannot be used for automated 

Doppler profiling.  

 

 

 

 

 

6.3 Newly developed Multi Parameter Cost Function (MPCF) Method  

As mentioned in earlier sections, the estimation of wind parameters is difficult due to bad 

SNR and the presence of echoes from non-atmospheric targets. The objective was to develop 

the algorithm that works in low SNR conditions; has moderate computational complexity and 

has consistent performance in most atmospheric conditions. It was realized that the new method 

should consider features like continuity, limited wind shear etc. A nonlinear function was 

designed to consider multiple factors and a new method was developed for the said purpose. 

This multi-parameter cost is the key innovation in the proposed method. This section presents 

Fig.6.4 Classification of spectral components based on ‘first guess feature method using Fuzzy logic 

 The diagram shows components due to weather echoes, RFI, and disturbances due to small isolated 

objects (Source [43]) 
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step-by-step procedure of the newly developed algorithm.  

Step 1: Removal of unwanted components  

The power spectrum is a standard product of the radar signal processing system that 

serves as an input for the Doppler profile tracing. Pre-processing actions are as discussed in 

chapter 4, namely noise power level estimation by ‘Hildebrand Algorithm’ [24], three point 

moving average for smoothing followed by clutter and RFI removal.  

Step 2: Identifying prospective spectral peaks and formation of Possible Doppler Traces: 

Identifying spectral peaks of atmospheric targets is the most critical task of this algorithm. 

The complete set of Doppler spectra is divided into groups of five range bins each. This method 

performs the task of profile tracing in individual groups starting from the lowest range group 

and proceeding sequentially to the next high range group. The method uses the concept of 

selecting five prospective peaks as proposed by Anandan [41]. After identification of the 

prospective peaks in all five range-bins, all possible Doppler profile traces are constructed as 

used by Clothiaux [42]. The proposed method uses the established concepts of selecting spectral 

components as prospective candidates and forming various possible traces. The main difference 

in the approach is limiting the length of the traces to five in single step. This number is arrived 

after multiple experiments on different types of data. The main advantage of this restriction is in 

having limited and predictable computational complexity. The procedure is as follows: 

(i) Make groups of 5 range-bins starting from the lowest. In spectrum of each range-bin, 

identify five highest magnitude peaks that satisfy the SNR threshold. These peaks may be called 

prospective peaks.  

(ii) Start from the lower group of range-bins. List all possible traces using these 

prospective peaks. Fig. 6.5 shows a group of 6 range-bins of East beam Doppler profile 

(18:12:0, 26/7/2007), where prospective peaks are identified and many Doppler traces can be 

constructed. In this example, the group consists of 5 range-bins starting from 13.5 km is shown. 

The highest range-bin of the lower group (at 13.35 km) is considered in trace building.  

(iii) Identify all the possible traces where the condition of Doppler window is satisfied. 

This means that the prospective peak to be included in possible trace must be within the 

Doppler window. In Fig. 6.5 the path shown by the dotted line may not satisfy the Doppler 

window criterion. Therefore, it will be omitted from further processing.  
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The detailed explanation is given below: 

There are maximum of five prospective peaks in each range bin and the links could be 

formed between any two peaks. These components are indicated as fm,n, meaning mth peak of nth 

range-bin and fp,n-1 meaning pth peak of n-1th range-bin. The generalized expression of Doppler 

shear will be ‘fm,n -fp,n-1’; where the subscripts ‘m’ and ‘p’ are different numbers taking the value 

between 1 to 5.  

For a case when a link between 3rd peak of 2nd range-bin and 1st peak of 3rd range-bin is 

considered, the values of m, p and n are 3, 1, 3 respectively. Similarly, the differential shear 

term in equation 6.2 is written as ‘fm,n -2fp,n-1+fq,n-2;’ where m, p, and q are integers with values 1 

to 5. The Doppler window criterion is applied to fm,n-1, and fp,n and is given in equation 6.1. With 

this condition, the number of possible traces reduces to a couple of hundreds. This algorithm 

sets the limit to ± 4.4 ms-1 for the range bin size of 150m. The limit is sufficiently high to 

include all realistic wind shear values. This limit is changed proportional to the size of the range 

bin. This means that the radar operating for range resolution of 300 m will have wind shear 

value limit of ± 8.8 ms-1, as shown in equation 6.1 

 

 

In case of the lowest range-bin group, there is no starting point and no Doppler frequency 

peak to initiate the traces. We assume a proxy value of ‘0 ms-1’ to initiate the traces. It may be 

Fig.6.5 Selections of ‘Prospective Components’ and profile tracing (Section of East beam 100) 
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noted that it is not a realistic wind velocity. As a result, the shear criterion cannot be applied to 

this first link.  

1

1,, ))15.04.4(( 

  msRRff npnm
         (6.1) 

Where, RR is the range resolution in km. 

 

Step 3: Assigning cost to the traces  

After identifying all possible traces, a cost is assigned to each link. The cost function is 

designed with the objective to figure out whether the link is part of Doppler profile. We have 

shown three traces indicated by a solid line, dashed line and a dotted line in Fig. 6.5.  These are 

some of the indicative traces. Link 2, 3 and 4 in the trace, indicated by the dashed line, does not 

satisfy the Doppler window criterion. This trace will not be included in further processing. The 

solid line traces show less wind shear for all the links. An experienced operator will choose this 

trace as a Doppler profile. On the other hand, the dashed trace having links with more wind 

shear is less likely to be selected as Doppler profile. The cost function is a mathematical 

formulation of this human perception.  The activity of profile tracing prefers two qualities, - 

‘consistent high power components’ and ‘low change in wind shear’. The proposed 

mathematical model considers these features and calculates the cost functions consisting 

weighted sum of two terms. First term is a function of Relative Spectral Power (RSP) and the 

second term is a function of change in the wind shear (x). Relative spectral power is the ratio of 

the peak spectral power to average noise power density (indicated by Sn). The change in wind 

shear is defined with respect to the spectral components, fq,n-2,  fp,n-1 and fm,n of 3 consecutive 

range-bins. The expression in the modulus sign of equation 6.2 gives differential wind shear. 

The complete cost function is given in equation 6.3. The first term in equation 6.3 deals with 

Relative Spectral Power and the second term represent the probability of occurrence of the 

differential wind shear. This probability is found by experimental data collection. The power 

spectral data of 5 cycles at different times was collected. Each cycle consists of 4 beams tilted 

by 10 degrees East, West, North and South. Each beam was operated with the parameter 

settings given in table 1. Approximately 2600 differential wind shear values were obtained for 

130 range bins in this exercise. The cost assigned to differential wind shear should be matching 

to the envelope function. As seen from the Fig. 6.6, Rayleigh distribution function with ‘σ =1’ 

between abscissa 1 and 4 matches the best.  
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This matching is achieved by mapping the 3 unit spread of Rayleigh function with the 

maximum Differential shear value. Fig. 6.7 shows that the maximum shear value is 2.2 ms-1 for 

the radar operation when the range resolution was 0.15 km. Therefore at arbitrary range 

resolution RR the maximum shear value will be given by RR × 2.2 ÷ 0.15. Thus the Differential 

Doppler wind shear value is normalized to (RR × 2.2 ÷ 0.15) and is matched to the desired 

section of Rayleigh distribution function by multiplying 3 as shown in Equation 6.2. Graph 

shown in Fig. 6.7 presents frequency of occurrence. Equation 6.3 incorporates the parameter ‘x’ 

with appropriate shift in the expression of Rayleigh distribution function. 

The term ‘ 2,1,, 2   nqnpnm fff ’ in equation 6.2 is the magnitude of differential wind shear 

(y), where m, p, and q are integers corresponding to the peak numbers with values ranging from 

1 to 5. The weights 0.4 and 0.6 were found out after rigorous experimentation wherein we 

carried out Doppler profile tracing exercise on approximately 2000 Power spectral data sets.  

 1

, , 1 , 23 2 ((2.2 0.15) )m n p n q nx f f f RR ms      
 

    (6.2)  

where, ‘x’ is the normalized and scaled deviation from constant wind shear. 

          )2/)1(( 2

)1(6.0)4.0(  xexRSPC        (6.3) 

Fig.6.6 Selected part of Rayleigh function as 

‘cost’ for change in wind shear 
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Each link has ‘RSP’ values (corresponding to spectral component fn) and the differential wind 

shear values (illustrated in Fig.6.8). Each trace has 5 links connecting the peaks in the range 

bins n and n-1 (n = 1 to 6). Cost is calculated for each link using Equation 6.3. The sum of the 

cost of all 5 links is the total cost associated with the trace. The trace with the maximum cost is 

finalized as Doppler trace for that group.  
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Fig 6.8 Assigning cost to differential wind shear 

 

Fig.6.7 Occurrence profile of the absolute value of differential wind shear 
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Step4: Sequential Formation of Connected Traces  

Trace in the lowest Range-bin group is finalized by following step 1 to 3. The processing 

of the next higher range-bin group starts with step 1 of identifying the peaks. In step 2, the 

formation of traces starts with the highest point of the trace of the ‘lower range-bin group’. This 

condition ensures the connectivity of the traces. Complete Doppler Profile is automatically 

obtained after completion of the highest ‘Range-bin profile.  

The profile could be traced to best possible heights with SNR threshold of 5 dB and 

Doppler window of ±20 % of the Doppler Bandwidth. It is occasionally possible to encounter a 

few range-bins that do not have a single ‘prospective peak’ satisfying SNR threshold. In such 

cases, the threshold is lowered to 0 dB and the range-bin is marked as ‘suspect’. Power spectra 

of these range-bins are shown by lighter shade. The process of Doppler profile extraction 

terminates if all 5 range-bins of a group are marked as suspect. Fig. 6.9 shows the Doppler 

profile estimated by this method. It can be seen that the performance can be traced to low SNR 

ranges and it is comparable to the tracing by human expert. This method is also applied to the 

Lower Atmospheric Wind Profiler (LAWP) data without changing any of the weights. This 

radar has the antenna array of 16×16 elements and is operated at NARL. The same method is 

applied to another operational LAWP with antenna array of 8x8 elements.  

 

 Fig.6.9 Doppler profiling using Multi-parameter cost function method (Beam Direction: North 100) 
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The results of LAWP 8x8 and LAWP 16×16 are shown in Fig. 6.10(a) and 6.10(b) 

respectively. The MPCF method also traces Doppler profile even in presence of strong 

precipitation echoes. A representative example is given in Fig.6.11 (a) and (b) respectively.  

 

Fig. 6.10(a) Doppler profile estimated using Multi-parameter cost function method for LAWP (8X8) 

(Beam Direction:14.20 down at North East)  

 

 
 

 

Fig. 6.10 (b) Doppler profile estimated using Multi-parameter cost function method for LAWP (16X16)  

(Beam Direction: Zenith) 
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Fig.6.11(a) Doppler Profile Estimation using the Multi-parameter cost function for precipitation data; 

Doppler profile shown in dotted line(Indian MSI radar data Beam Direction: South 100) 

 

Fig.6.11 (b) Doppler Profile Estimation using the Multi-parameter cost function for precipitation data; 

Doppler profile shown in dotted line (Indian MSI radar data Beam Direction: North 100) 
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6.3.1 Profile improvement using symmetrical beam 

Most of the radars operate in more than 3 beams. The main purpose of having additional 

beams is getting redundant reading which can be used for having more accurate estimate. It is 

known that the Doppler profile of symmetrical beam (East-West or North-South) is symmetrical 

around Zero Doppler velocity. This is because approaching wind observed by the east beam 

would appear receding beam in the west beam. Therefore symmetrical (with opposite sign) 

Doppler frequency components would be observed. Taking advantage of this fact, the tracing 

accuracy could be improved if the data of symmetrical beam is available. The MST radar at 

Gadanki has two zenith beams with orthogonal polarization. The Doppler Profile from these 

two beams (Zx and Zy) are expected to be identical. For practical purposes, the agreement 

between the data is defined as the Doppler frequency of the same range-bin is within 2 % of the 

Doppler Bandwidth. The accuracy of the Doppler profile could be improved by following 

strategy. The data is checked  

(i) Case 1, The Doppler frequency in both the beams is ‘in agreement’: Average Doppler 

frequency is assigned to that range bin.  

(ii) Case 2, The Doppler frequencies are not in agreement: The same cost function is used 

to evaluate the corresponding part of the traces. The trace having higher cost is selected as the 

Doppler profile data. The Doppler profile improved using the Image beam Power spectral data 

is given in Fig. 6.12. It is seen that the abrupt deviations in the profile could be eliminated  

Fig.6.12 Enhanced Doppler Profile Estimation using the Multi-parameter cost function (MPCF) 

with image beam data (Indian MST radar data, Beam Direction: North 100) 
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Fig.6.13 Flow Chart of Doppler Profile estimation by “multi-parameter cost Function Method” 
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It can be seen that the Doppler profile tracing using Multi-Parameter Cost function 

followed by corrections from the data of symmetrical beam gives performance comparable to 

that of  human expert analysis. The complete flow chart for MPCF is shown in Fig. 6.13. 

6.3.2 Performance comparison of Doppler Profile Estimation Methods    

Performance of Doppler Profile estimation of the newly developed algorithm is 

compared with the established methods discussed in section 2 in this chapter. In order to 

compare the performance the Matlab program for the adaptive moment estimation [41] and Fuzzy 

logic method (proposed by Bianco {45]) were written. Fig 6.14 and Fig. 6.15 show the Doppler 

profile estimated by adaptive moment estimation method and fuzzy logic method respectively. 

These illustrations are representative examples. The same experiment was tried on about 30 data 

sets and the observations were similar 

When Fig 6.12 is compared with Fig. 6.14 and Fig.6.15; it is seen from the above 

illustrations that the moment estimation method using multi-parameter cost function estimates 

the Doppler profile with accuracy comparable (if not better) to the established methods. Main 

advantage of this method is that it does not require tuning the parameters according to the 

environment, radar or human perception. Hence this post processing method has a potential of 

operating without the need of a human expert for analysis and tracing in real time.  

 

6.3.3 Comparison of Computational Complexity 

Gross estimation of computational load for these methods is as follows:  

Considering set of Doppler power spectra of N range-bins and M Doppler components 

per range-bin; the estimate on the required computations is as follows:  

The multi-parameter cost function requires 5N sort operations, 50N exponential function 

computations and 20 N additions and 20 N multiplications!  

The adaptive moments method requires. M×N multiplications and 5K×N sort functions. 

Where, K is the number of iterations while deciding whether the candidate peak is the member 

of the estimated Doppler profile. The value of K is generally limited to below 50.  

Fuzzy logic methods require 5×M× N exponential function computations, M× N Multiply 

and accumulate operations.  
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Fig.6.14 Doppler Profile estimation by Adaptive Moments Estimation  

(Beam Direction:  North100). 

Fig.6.15 Doppler Profile estimation by Fuzzy Logic method (Bianco approach) 

 (Beam Direction:  North100). 
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Prima facie, it is seen that the cost function method requires less computations. Another 

experiment was conducted to arrive at relative computational complexity. The three programs 

were run on the same data set. These programs were run using Matlab (7.11) on a personal 

computer with clock speed of 1.6 GHz. The cost function method required 5.6 seconds; whereas 

the AME and FL methods clocked 8.8 seconds and 9.6 seconds, respectively. On this basis it 

could be concluded that the new ‘cost function method’ is expected to perform Doppler profile 

estimation in approximately 63% of time compared to AME and 58% of time compared with 

FL method. The same procedure was followed to get the scatter plots. The resulted scattering 

coefficients from the experiments are given in table 6.1. The results of AME and FL methods 

were obtained using programs written by the authors. Original programs with optimized 

parameters may give different results.  

 

6.3.4 Experimental results: Verification of Doppler profiling with concurrent Radiosonde 

flight data 

  Estimation of wind velocity is also done by sending sensor electronics and Global 

Positioning System receiver along with a balloon. The balloon data is received by the ground 

based receiver and the wind velocities are estimated. This system is known as GPS sonde. This 

is an independent wind velocity estimation system. The MST Radar was operated 

simultaneously with GPS sonde flights. The GPS sonde flight offers the wind speed (WS) and 

wind direction data (WD) at every second. This reflects to a height resolution of 5 to 10 meters. 

This high range-resolution data was grouped and averaged in the sets corresponding to the radar 

range-resolution, 150 m in this case. From these WS and WD values of Zonal (U) and 

Meridional (V) wind speed corresponding to the radar ranges were computed. Fig. 6.16 (a) and 

(b) show the U and V wind profiles of MST radar using Cost Function method and from GPS 

sonde data respectively. The profile shows very good agreement. A series of experiments were 

conducted to compare the wind estimations using MST radar and GPS sonde. The scatter plots 

of the comparison for Zonal and Meridional winds are shown in Fig.6.17 (a) and (b) 

respectively. Similar experiment was conducted to validate the MPCF algorithm on the LAWP 

radar using GPS sonde. Fig. 6.18 (a) and (b) show the U and V wind profiles of LAWP (16×16) 

radar using Cost Function method and from GPS sonde data respectively and Fig. 6.19 (a) and 

(b) show the scatter plots of the comparison for Zonal and Meridional winds of LAWP (16×16) 
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radar. The GPS sonde flights were conducted on 10th, 11th, 14th and 15th of December 2015. The 

scatter plots were generated by combining the data of all the four flights. The correlation 

coefficient (R) for the zonal wind is 0.9250 and meridional wind is 0.9132 for wind profiler. For 

LAWP, the zonal wind is 0.9723and meridional wind is 0.9005. This proves that the wind 

velocity estimation by MPCF method shows excellent match with the GPS sonde data. The 

same data was compared with the wind estimations by other methods. Table 6.1 shows the 

correlation coefficient for various experiments. It is seen that the MPCF gives the best match. 

 

 

 

Fig.6.16 (b) Meridional wind velocity comparison using GPS Sonde and MST radar observations 

Fig.6.16 (a) Zonal wind velocity comparison using GPS sonde and MST radar 

observations 
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Fig.6.17 (b) Scatter plot showing the comparison of meridional (V) winds for GPS Sonde and MST radar. (10th, 

11th, 14th and 15th December 2015) 

 

 

Fig.6.17 (a) Scatter plot showing the comparison of Zonal (U) winds for GPS Sonde and MST radar. (10th, 

11th, 14th and 15th December 2015) 

 

radar observations 
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Fig 6.18 (a) Zonal wind velocity comparison using GPS Sonde and LAWP (16 × 16) radar observations 

 

 

 

 

Fig 6.18 (b) Meridional wind velocity comparison using GPS sonde and LAWP (16 × 16) radar observations 
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Fig.6.19 (a) Scatter plot showing the comparison of Zonal (U) winds for GPS Sonde and LAWP (16 × 16) radar. 

(10th, 12th, 13th and 15th December 2015) 

 

 

 

  

Fig.6.19 (b) Scatter plot showing the comparison of meridional (V) winds for GPS Sonde and LAWP (16 × 16) 

radar. (10th, 12th, 13th and 15th December 2015) 
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Table: 6.1 Comparison of wind velocity estimations by Scatter plots : GPS Sonde v/s wind profiling radar 

using different methods  

 

Scatter Plot Correlation 

Coefficient (R) 

MST radar 

(Zonal 

winds) 

MST Radar  

(Meridional 

winds) 

LawP 16 × 16 

(Zonal winds) 

LawP 16 × 16 

(Meridional 

winds) 

MPCF (single beam data) 0.8634 0.8379 0.9723 0.9005 

MPCF (with image beam) 0.9250 0.9132 3-beam system 

No Image data 

3-beam system 

No Image data 

AME method* 0.7420 0.7159 0.6583 0.6843 

FL Method* 0.8092 0.7821 0.6642 0.6853 

* Programs for AME and FL methods were written by the authors using the descriptions given in the publications 

 

6.4 Doppler profile tracing in presence of interference and noise 

Doppler power spectral data is subjected to pre-processing for the removal of noise, 

clutter and RFI. Therefore, the Doppler tracing is not done under the presence of clutter and 

RFI. However, in a few cases, the interference does not present itself in an orderly manner. 

Such components are not identifies as RFI and are not removes. Sometimes the signal power is 

low, the noise becomes comparable to the signal and the Relative Spectral Power (RSP) value is 

low. In both these cases, there is limitation in Doppler profile tracing. This limitation is seen as 

follows.  

(i) Presence of Interference: The traced profile shows abrupt deviation in the Doppler 

profile. An example of the same is shown in Fig. 6.9 and 6.14. We have also seen that if the 

data from image beam is available and the there are no interference signals in the image beam, 

the Doppler profile tracing improves significantly (please refer Fig 6.12). The echoes from the 

precipitation are also interference for Doppler profile tracing. Occasionally the Doppler profile 

shows deviations due to the presence of precipitation echoes, as shown in fig. 6.11(b); whereas, 

in some cases, the MPCF shows accurate profile tracing even in presence of precipitation 

echoes, as shown in Fig 6.11 (a). 

(ii) Low signal strength: At higher ranges, the signal strength is low and the SNR is low. 

This reflects as relatively low values of RSP in spectral domain. Therefore, there could be cases 

where all 5 range bins in a group do not have any peak having power more than 2×SN. In such 

case, the MPCF algorithm terminates. This can be seen in Fig. 6.10 (b).  
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6.5 Summary  

Wind profilers are used to obtain the 3D wind velocity information. Wind velocity 

profiles can be obtained by processing the backscattered signal. Two established methods 

called Adaptive Moment Estimation and Fuzzy Logic based method used for wind profiling, 

are discussed in section 2. These methods are computationally extensive. Hence, a 

comparatively simpler method is developed and presented in this thesis.  

The Multi Parameter Cost Function (MPCF) method is a newly developed algorithm for 

tracing Doppler Profile. This algorithm was tested on Indian MST radar data. Data file details 

are are given in Appendix 4. The results have shown good agreement with other established 

methods of Doppler profile extraction such as Adaptive Moment Estimation (AME) and Fuzzy 

Logic (FL). The new algorithm was also successfully tested on two of the Lower atmospheric 

wind profilers located at Gadanki India namely LAWP (8×8) and LAWP (16×16). The 

application of the MPCF method from the MST to LAWP was seamless and did not require any 

change in parameters.   

The performance of MPCF method is validated with another independent wind estimation 

method. The estimation of easterly and northerly winds by this method using Indian MST radar 

showed excellent agreement with the data obtained by concurrent GPS sonde flight as well.  

It was also observed that this method require much less computations compared to the 

above mentioned existing methods. MPCF is a promising algorithm which can be used for 

automated data processing. The method does not require any parameter change depending on 

data type, weather conditions and locations. Therefore, it is claimed that this new algorithm 

presented is an objective method of Doppler profile estimation.  

The MPCF algorithm shows a little degraded performance in presence of Noise and 

interference. MPCF provides the best possible effort approach by providing an improvement 

using the image beam data and having strategy of building traces in groups.  

This step is followed by Automatic classification of the Doppler spectra based on the 

target type of the prominent echo. This requirement is also owing to the fact that there is large 

data generation and the data sets need to be classified in real time for further analysis. In order 

to cope up with the speed of data generation, the method must be able to perform automatically 

without human intervention. A simple spectral feature based classification algorithm is 

developed and tested successfully. This method is described in the next chapter 7.  
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Chapter 7 

 

Spectral Feature based Classification of Doppler Power 

Spectra 

  Radar target classification has been a very well-studied topic and a good amount of 

literature is available for different types of radar. The target classification is generally based on 

the target structure [49]. The accuracy of the classification is often increased by considering 

multiple perspectives [50]. These techniques can broadly be classified as signature matching 

techniques. This approach was found useful for surface surveillance radars [51] [52]. Milanko 

presented a data base for such technique and also presented experimental results for acoustic 

ranging and detection systems [53][54].  Similar techniques have also been successful on Ground 

Penetrating radars (GPR) [55]. In addition to signature matching advanced techniques like 

extinction profile [81] and use of orthogonal pseudo-Zernike polynomials [82] improve the 

performance of radar target classification. However, atmospheric targets consist of randomly 

moving particles in motion similar to Brownian motion. Statistically these processes are non-

stationary and therefore these targets do not show definite signature on Range-Doppler plane. 

Techniques using rough sets [83] having concepts similar to fuzzy logic have been found 

effective for the target classification of the weather radars.  

 In section 6.2 it was shown that the NIMA method is capable of identifying various 

features separately and classifying them according to their target type. This is demonstrated in 

Fig. 6.4 of chapter 6. This method is computationally intensive. It also requires fine tuning of 

membership functions and the thresholds according to the radar site and atmospheric conditions. 

Therefore, in spite of being very robust and consistent, the method may not be implemented as 

an automatic tool for classification. It is felt that an automatic classification algorithm should 

adopt a strategy based on the Signature Correlation. In other words an algorithm searching for a 

specific signal pattern on the Doppler spectra is expected to give performance as a tool for 

automated classification of the spectral data.  

 Chandrasekhar [56] presented a consolidated report of classification techniques on dual 

polarized weather targets. Hurricanes and water carrying targets have been more important 

targets for socio economic reasons. Various techniques have been used for identification, 
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classification and resolving different types of targets from radar data. Luke presented a 

technique to separate drizzle and precipitation [57] and Harasti used similar technique for 

resolving types of hurricanes [58]. Neural network techniques are popular for bulk meteoric 

classification using polarimetric radar [59][60]. Some of the observations of meteor types have 

been presented by Wannberg [61] and Krishna [62]. Following sections present a new spectral 

feature based technique to classify most types of the wind profiler targets.   

 

7.1 Types of targets and their representation on the Doppler spectra. 

 Wind Profilers are mainly meant to analyze the clear echoes and derive 3-D wind speed 

from the backscatter. It was presented in Chapter 2 that these echoes are due to the change of 

RF refractive index. Additionally, the radar receives echoes from other phenomenon and objects 

present in the atmosphere. It may be noted that these echoes are not from man-made objects and 

are not strictly unwanted. These are echoes from other atmospheric phenomenon and are topic 

of study for the atmospheric scientists. It could be referred as bi-products of the WP radars. Five 

types of the phenomena are studied with the help of wind profiler data. They are as follows 

(a) Wind profile (clear air turbulence, CAT): The main product of the WP radars is 

Doppler profile or the radial velocity profile. We have seen in chapter 3 that the radio waves are 

scattered back due to the change in the refractive index. This occurs due to wind velocity 

change in small volume. Normal wind flow is always associated with turbulence. In other 

words, the air pockets in atmospheric layer have different velocities. This turbulence leads to 

the backscatter of radio waves. This phenomenon is known as Clear Air Turbulence (CAT) as 

there are no particle scatterers in the radar target.   

(b) Precipitation Echoes: Rain or precipitation is a tropospheric phenomenon and the 

echoes are observed at the ranges up to 6 to 8 km. These echoes are due to particulate scatter 

due to the rain drops. They appear as strong spectral components in the positive half plane on 

the range Doppler plane. The Doppler shift also allows the study of rain drop velocities. 

(c) Meteoric Echoes: These echoes are generally observed in upper troposphere to lower 

mesospheric ranges (from 10 to 50 km). Falling meteors encounter friction with air. The air is 

ionized due this friction. Due to the presence of the charges ions, the radio waves are reflected 

and this phenomenon gives strong backscattered echoes. 
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(d) Ionospheric echoes: Ionosphere contains ionized molecules and therefore the RF 

reflectivity of the ionospheric targets is very good. In spite of large distance, the ionospheric 

echoes show good signal strength. These echoes are seen at the ionospheric ranges (between 75 

km to 200 km). 

(e) Mesospheric Echoes. Wind turbulences lead to change in RF refractive index of the 

air. This phenomenon could occur in Mesosphere. 

(f) Echoes due to Ionospheric Turbulence: It is occasionally observed that the due to 

strong solar activity or strong magnetic disturbance in ionosphere. This is reflected as multiple 

strong power spectral components spread over the complete Doppler band. This signature is 

similar to Clear air turbulent echoes observed in lower ranges. 

It is also observed that sometimes discrete objects like flock of birds, dust, pollutants etc. 

contaminate the WP data. Such data sets are classified separately. Therefore this is included as 

8th type for classification.  

 

7.2 Characteristic signatures on the Doppler spectra 

The occurrences of this phenomenon are observed by identifying the characteristic 

features (or signature) in the range-Doppler plane. They are as follows: 

 

(a) Wind profile, (CAT) echoes,  

 The main product of the WP radars is Doppler profile or the radial velocity profile. This is 

characterized by the following conditions. Power contained in the highest two peaks must be 

more than 3 times the power contained in the remaining peaks and standard deviation of the 

peaks must be less than 5 ms-1; as given in expression (7.1).   
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i PP  ∩ std_dev < 5         (7.1) 

If this condition is satisfied for more than 30% of the total range the data is classified as 

wind profile. The wind profile appears as one or two closely spaced prominent peaks. These 

conditions ensure that most of the backscattered power is concentrated in a peak or closely 

spaced components  
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(a) Precipitation Echoes 

Rain or precipitation is a tropospheric phenomenon and the echoes are observed at the 

ranges up to 8 km. In this case, falling raindrops is target. Their echoes would result in positive 

Doppler frequency as they approach the radar.  The spectral components appear on the right half 

of the range-Doppler plane. The terminal velocities of falling rain drops are generally between 4 

ms-1 to 12 ms-1[84]. The precipitation echoes are identified using conditions give below.  

 

  if {R(i) <8  ∩ peakval(i,j)>10×N(i)   ∩ 4< velocity (i,j)<12      (7.2) 

 

Where, R(i) indicates the range of ith range bin in km, and peakval(i,j) is the power of the 

jth Doppler component of the ith range bin. N(i) is the RMS noise level of ith range bin and 

velocity(i,j) is the velocity of the falling rain drops in ms-1. If this condition is true for more than 

2000 meters, or more than 7 range bins in our case, the target is classified as precipitation echo.  

(b) Ionospheric Echoes 

 

 The Ionosphere is an atmospheric layer that contains the charged particles like electrons 

and ions. It surrounds the earth at altitudes between 80 km to more than 1000 km and is 

classified into D, E and F layers depending on the types of particles. During the day, the D and 

E layers become heavily ionized; thereby increasing the RF reflectivity of that layer. In spite of 

large distance, the ionospheric echoes show good signal strength on the MST radar Doppler 

power spectra. They present themselves as prominent peaks clustered together. The radial 

Doppler velocity spread of the ionospheric echoes is observed to be less than 44 ms-1[85]. The 

following conditions are used to identify the ionospheric echoes.  

 

If {90≥R(i)>60 ∩ peakval(i,j)>4×N(i) ∩ std_dev(i)<44(ms-1)}    (7.4) 

 

Where, R(i) is the range of ith Range bin, peakval(i,j) is the  amplitude for the ith range bin 

jth peak selected from power spectral component, N(i) is the RMS noise level of ith range bin. If 

this condition is true for more than 300 meters or more than 2 range-bins in this case, the target 

is identified as ionospheric winds. The expression (7.4) shows the condition for D layer. For E 

and F layers the range condition changes to 150≥R(i)>90 and R(i)>150, respectively.  
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(c) Meteoric Echoes 

 

Meteoric echoes are generally observed in upper troposphere and up to lower ionospheric 

ranges, (from 10 to 100 km). Falling of meteors creates ions due to the friction with air. This 

ionization gives strong backscattered echoes. These echoes appear at prominent peaks clustered 

together. These peaks are generally found in the positive Doppler velocities. Meteoric velocity’s 

could be very high and may exceed the maximum Doppler velocities. As a result, the Doppler 

peaks of the meteoric echoes may fall in the negative Doppler region due to fold-over. The 

conditions used to identify the meteoric echoes are as follows: 

 

 if {R(i) >10 ∩ peakval(i,j)>10×N(i) ∩ std_dev < 17}     (7.5) 

 

Where, R(i) is the range of ith range bin in km., peakval(i,j) is the  amplitude for the ith range bin 

jth peak selected from power spectral component, N(i) is the RMS noise level of ith range bin. 

std_dev standard deviation of the selected peaks in ms-1. If this condition occurs for more than 

300 meters or for more than 2 range bins in our case, the target is classified as meteoric echo.  

 

(d) Mesospheric Echoes 

 

Occasionally wind turbulence occurs in Mesosphere. Due to this, wind profilers see 

moderately strong peaks spreading over complete Doppler frequency band. The signature is 

similar to the CAT signature with the difference only in the range at which it occurs (typically 

between 30 km to 70 km).  

if {80>R(i) >30  ∩ std_dev < 4∩ peakval(i,j) > 1.5×N(i) }     (7.6) 

Where, R(i) is the range of ith range bin in km and std_dev is the standard deviation of 

the peaks in ms-1. The data is classified as mesospheric echo if the conditions are true for the 

range of 9 km. or more than 4 range bins in this case.  

(e) Echoes due to Ionospheric Turbulence 

 

 It is occasionally observed due to strong solar activity or strong magnetic disturbance in 

ionosphere. This is reflected as multiple strong power spectral components spread over the 

complete Doppler band. This signature is similar to Clear air turbulent echoes observed in lower 

ranges. The conditions used to identify the magnetic activity ionospheric echoes are as follow 
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    If {R(i) >80 ∩ peakval(i,j)>100×N(i) ∩ std_dev >7 }                      (7.7) 

Where, R(i) is the range of ith Range bin in km, peakval(i,j) is the amplitude of the jth 

spectral peak of the ith range bin and N(i) is the  RMS noise level of ith range bin. If this 

condition occurs for more than 2.4 km or for more than 2 range bins in this case, the target is 

classified as magnetic activity ionospheric echo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.1 Flow Chart demonstrating the SFBC classification algorithm 
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7.3 Target feature identification and classifications 

 It may be noted that the spectral signatures for the six types of echoes are independent to 

each other. The characteristic feature for each type of echo was translated into mathematical 

conditions of the range and Doppler frequency. These conditions were checked by a simple 

sequential search algorithm, used for the classification. This approach is scalable in the sense 

that a new type of the echo could be included easily. Also the feature signature conditions could 

be fine-tuned if required. This method describes the target types in terms of atmospheric 

parameters. For the same atmospheric parameters, the radar Doppler data parameters change 

due to radar beam width and beam tilt [86]. Considering this fact the descriptor conditions or the 

limits and thresholds used in this method are kept accommodative to include the variations due 

to the radar beam. This method is independent of radar operating parameters.  In this method, 

we are looking for concurrence probability, limits kept are hard but relaxed, which effectively 

forms the basis of fuzzy logic. A Matlab program capable of reading and classifying the data 

was written. The flow chart for the classification algorithm is given in Fig. 7.1. 

 

7.4 Experimental results verification on classification using Indian MST radar data  

 The Classification algorithm was tried on approximately 20,000 sets of MST radar data. 

Data file details are given in Appendix 4. These sets were classified by conventional methods / 

human experts. The pre classified data was subjected to the Spectral feature based classification 

algorithm described in the chapter. The program classified all the data sets correctly. There was 

no wrong identification neither was there missed identification when ionospheric and meteoric 

data was analyzed. However, in case of precipitation cat and mesospheric echoes there were 

approximately 10 % missed identification. When these cases were observed manually it was 

found that the data was having poor SNR. This indicates that the classification algorithm has 

limitation of the performance when the SNR is low. The data sets having two or more features 

(e.g. CAT and Precipitation were classified into both the categories. A representative spectrum 

is shown in Fig. 7.2 to 7.9. 

 Presently the classification algorithm is capable of identifying the presence of 7 different 

types of atmospheric targets/ phenomenon. The detection and classification of various targets is 

done by a search of specific features defined in terms of certain thresholds and limits. This 

algorithm is computationally simple and has shown excellent results. This algorithm can be 
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used on any wind profiler without requiring change of parameters. The algorithm is 

implemented in Matlab. Due to computational simplicity it takes 1.5 seconds per frame to 

classify the data set. This is less than the data generation rate. Due to these features the 

algorithm could be used as an automated tool for real time WP data classification. Summary of 

result is given in table 7.1. 

Table 7.1: Summary of the Results of classification algorithm on MST radar at Gadanki 

Type of 

Atmospheric 

Phenomenon 

No. of 

Data 

sets 

Range of Vales of the Critical Parameters Comments 

(%Auto/Human) Range Peak power / 

Noise level 

Radial 

Velocity/Std Dev 

Ionospheric(D) 3000 75 - 80 km 4 < 44 ms-1 100% match 

Ionospheric 

(E) 

2000 80 - 110 

km 

4 < 44 ms-1 100% match 

Ionospheric 

(F) 

3000 >110 km 4 < 44 ms-1 100% match 

Precipitation 3000 0- 8 km 10 4 - 20 ms-1 90 % match 

CAT/ Wind 

Echoes 

3000 0 – 12 km 4 < 5 ms-1 92 % match 

Mesospheric 

Echo 

3000 30-80km 1.5 < 4 ms-1 91%match 

Meteoric Echo 3000 >40 km 10 <17 ms-1 100% match 

 

 

 Fig.7.2 Wind profile /CAT Echo  

(Beam Direction: West 100)) 
Fig.7.3 Wind Profile with Precipitation Echo 

(Beam Direction: West 100)) 
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Fig. 7.5 Ionospheric Echo (E) (Beam Direction: North 150)  Fig. 7.4 Ionospheric Echo (D) (Beam Direction: North 150) 

Fig. 7.6 Ionospheric Echo (F) (Beam Direction:  North 150) 
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Fig. 7.9 Ionospheric turbulence (Beam direction East 100) 

 

Fig. 7.8 Mesosphere Echo (Beam Direction: East 100)  Fig. 7.7 Meteoric Echo (Beam Direction: East 200) 
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7.5 Classification in low SNR conditions and in the presence of Interference 

 The processing of WP Doppler spectra starts with preprocessing followed by the 

Doppler profile tracing. The classification of the data type is taken up after these two steps. 

Therefore the presence of noise and interfering signals is minimal when the Doppler power 

spectral data is subjected to the classification. However, there is always probability of the 

presence of interference signal and noise with power comparable to the signal. The 

classification algorithm presented in the earlier sections works on the presence of high power 

prominent peaks in the Doppler spectra. Due to the interference and noise with comparable 

strength, the selected of spectral peaks do not belong to the atmospheric echoes. As a result, the 

algorithm is not able to classify the data set into appropriate data type. This limitation is seen in 

the results presented in table 7.1. It is seen that the non-decisive classification percentage is 8 to 

10% in case of CAT, precipitation and mesospheric echoes. It may be appreciated that such 

situation never arises in case of meteoric and ionospheric echoes. This is mainly because the 

echoes from these phenomena are high in signal strength and the interfering components are 

almost always of lower magnitude. However, the good part is that the classification algorithm 

does not lead to wrong classification.  

 

7.6 Summary 

 Classification of wind profiler Doppler spectra is very much necessary to archive the data 

which helps the researchers to a great extent. The radar Doppler spectra are generally classified 

based on the atmospheric target or back scatter. It is done according to the spectral features 

associated to the target structure. Various algorithms are developed and is in use for different 

kind of radars. A spectral feature based radar target classification algorithm is developed and 

presented in this chapter. The algorithm is simple and easy to use. This classification algorithm 

is capable of identifying the presence of 7 different types of atmospheric targets/ phenomenon. 

The detection and classification of various targets is done by a search of specific features 

defined in terms of certain thresholds and limits. This algorithm showed successful 

classification of 100 % in 4 categories and around 90% in 3 categories. The lower accuracy of 

classification is mainly due to the presence of noise and interfering spectral components with 

power comparable signal. This algorithm is computationally simpler compared to other 

established algorithms and has shown very good results. These results indicate that the 
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algorithm is of great utility. This algorithm can be used on any wind profiler without requiring 

change of parameters. The algorithm is implemented in Matlab. Due to computational 

simplicity it takes 1.5 seconds per frame to classify the data set. Most of the classification 

algorithms operate in the transform domain; either wavelet transform or the Gabor transform. 

The time required for proposed method is 25% less compared to the wavelet based algorithm 

which required approximately 7.5 seconds. Also, the implementation time is much lesser than 

the data generation rate of 16 to 32 seconds. Due to these features the algorithm could be used 

as an automated classification algorithm for WP data. 

 Next chapter revisits contributions and evaluates their significance. 
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Chapter 8 

 

Research Contributions and Discussions 

 

 This chapter revisits the research carried out and consolidate the contributions and 

evaluate the significance and relevance to the research objectives. A discussion on results and 

the limitations are also included. 

 

8.1 Modeling and Simulation of Doppler Spectra 

 The research work started with the study on the operation of the wind profiler radar. The 

efforts were directed towards understanding the theory behind the radar backscatter, radar 

operation, signal processing schemes and mathematical representation of the received signal. It 

is also realized that the Doppler power spectra is the most important standard product of the 

Wind Profiler and the research to extract the wind information is carried out taking this product 

as the primary data set.  

Clear air Doppler radars normally operate in monostatic mode i.e., the transmitting and the 

receiving antenna are the same. Phase coded RF energy is transmitted. The echo signals are 

detected by correlating with the replica of the transmitted signal. The Bragg-Scatter type of 

echo has the same texture of refractive index turbulence throughout the radar beam volume. 

Therefore it does not have variations in the backscattered power which is mathematically 

represented by Fraunhofer approximation of the two way backscatter expression. Backscatter 

due to refractive index discontinuities show specular reflections, aspect sensitivity and velocity 

biases in the wind measurements. The modelling of this type of scatterers need Fresnel 

approximation or the quadratic term of the two way backscatter expressions. The apriori 

knowledge on the statistical nature of the Doppler spectra can be used to model the same. [87] 

The radars are used to observe the back scattered signal from the atmospheric targets and 

estimate the dynamics of the atmosphere. The backscattered signal is coherently sampled and 

FFT is computed for the Doppler analysis to get the velocity information of the target. Use of 

appropriate window on the time domain data helps in improving SNR. With this background, 
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the radar signals can be viewed as a discrete representation of the backscattered signal on the 

range-Doppler plane. This 2-D representation is subjected to spectral moment estimation 

followed by consensus averaging. This data is used to determine the structure of the target. 

Modeling of Doppler spectra makes it possible to create customized data. Knowing the 

structure of atmospheric targets, one can create Doppler power spectra corresponding to any 

type of weather condition! In practice, operating radars are not expected to have power spectral 

data of all possible weather conditions. The modeled data can be conveniently used in such 

situations to evaluate the signal processing algorithms initially. 

Atmospheric backscatter signals from VHF/UHF bands generally have Additive White 

Gaussian noise. The additive WGN term n(k) is included in the model by using the Matlab 

function AWGN. However, the simulation algorithm allows the user to select noise of any 

probability distribution. The power of the signal is the squared sum of the real and imaginary 

parts of the signal components (given in equation 3.5). 

 To begin with, a Matlab program to simulate the Doppler power spectra was written. 

This program mathematically emulate the processing steps of the WP radar. This exercise 

provided insight to the processes involved and could generate Doppler power spectra for 

various atmospheric conditions with added noise of required statistical feature. This facilitated 

generation of radar like data even for the conditions which occur rarely at the radar site.  

This simulation program turn out to be a very useful tool to create data sets of all the 

weather conditions. And hence it can be used as initial test data to evaluate all the post 

processing algorithms for Wind Profilers. 

 

8.2 Modeling, Simulation and Removal of Clutter and RFI signal  

Real radar signals are often contaminated with clutter, RFI and other man-made signals. 

The Matlab program is modified to model clutter and RFI of various specifications. In practical 

applications, these disturbing signals need to be removed.  

Clutter is the most unwanted signal in the Wind Profilers. Clutter consists of echoes 

from nearby stationary and slow moving objects like trees, hills, sea etc. It appears on the 

Doppler power spectra as a low frequency spectral component symmetrically placed around 0 
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Hz. These signals are modelled by adding extra components at low Doppler frequencies 

corresponding to velocities below 2.5ms-1.  

 System generated power frequency disturbances such as leakage, electrical noise and 

other interfering sources are categorized as Radio Frequency Interference RFI. RFI is generally 

a single frequency disturbance spanning over short time. This appears as a sharp spectral 

component in 8-10 or more range bins. RFI occurs at same Doppler bin at all the affected range 

bins. Hence this type of unwanted signal presents itself as a set of sharp peaks placed in a 

vertical line. This disturbance is modelled by adding another frequency component in the 

Doppler spectra. From the simulated results, it is verified that the modeled data perceived same 

as the real radar data.  

 In this manner, the characteristic features of RFI and clutter are determined. It is 

possible to simulate the contaminated Doppler power spectra for various testing purpose. 

However, this capability is most useful to identify and remove the Clutter and RFI components. 

This is an important step in the pre-processing of the Doppler power spectra. The pre-

processing algorithm is briefly described in the following text.  

   Various noise estimation methods are studied and the classical method suggested by 

Hildebrand et al. is still found consistent. Matlab program is written for the noise estimation of 

atmospheric radar Doppler spectra using Hildebrand method based on following reasonable 

assumptions. 

1. Weather echo spectrum is Gaussian but colored. (non-uniform frequency contents) 

2. The noise spectrum is Gaussian but white. (uniform frequency content) 

The Doppler spectrum corresponding to each range-bin is subjected to smoothing before 

noise removal. The widely adapted spectral processing technique namely three point averaging 

is used in this thesis for Doppler Spectra smoothing. Once the noise is estimated, it is removed 

by subtraction from the smoothened Doppler spectrum.  

Knowing the characteristics of the RFI and Clutter present in the atmospheric Doppler 

spectra, the algorithm is developed to remove the Clutter and RFI from the data without 

affecting the weather signal (chapter 3). The performance of this algorithm is tested 

exhaustively using the simulated data, MST radar data and different LAWP radar data for the 

Clutter and RFI removal.  
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8.3 Newly developed Multi-Parameter Cost Function method: A Novel approach for wind 

profiling 

The main function of the Wind Profiler is to extract wind velocity information at various 

atmospheric layers. Many researchers have worked in this area and fair amount of literature is 

available.  

This literature was studied and a new computationally simple algorithm is developed in 

this thesis. The power spectrum is a standard product of the radar signal processing system that 

serves as an input for the Doppler profile tracing. Pre-processing of the power spectra is carried 

out by noise power estimation using Hildebrand Algorithm to clean the Doppler spectra 

(Discussed in Chapter4). The MPCF [88], Doppler profile tracing algorithm followed a different 

approach to estimate the wind profile (Chapter 6). 

Identifying spectral peaks of atmospheric echo is the most important task of this 

algorithm. The complete set of Doppler spectra is divided into groups of five range bins each. 

This method performs the task of profile tracing in individual groups starting from the lowest 

range group and proceeding sequentially to the next high range group. After identification of the 

prospective peaks in all five range-bins, all possible Doppler profile traces are constructed. The 

procedure is summarized as below: 

(i) Make groups of 5 range-bins starting from the lowest. In spectrum of each range-bin, 

identify five highest magnitude peaks that satisfy the SNR threshold. These peaks are called 

prospective peaks.  

(ii) Start from the lower group of range-bins. List all possible traces using these prospective 

peaks in each range bin. 

(iii) Identify all the possible traces where the condition of Doppler window is satisfied. 

After identifying all possible traces, a cost is computed to each link. The cost function is 

designed with the objective to determine whether the link forms part of Doppler profile. The 

cost function is a mathematical model of human perception to decide whether a link belongs to 

the profile.  The profile tracing look for two factors, - ‘consistent high power components’ and 

‘low change in wind shear’. A cost function is computed as the weighted sum of two terms 

based on  Relative Spectral Power (RSP) and a function of change in the wind shear. 

Each link has ‘RSP’ values (corresponding to spectral component) and the differential wind 

shear values. Each trace has 5 links connecting the peaks in the range bins. Cost is calculated 
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for each link using Equation 6.3. The sum of the cost of all 5 links is the total cost associated 

with the trace. The trace with the maximum cost is finalized as Doppler trace for that group. The 

processing of the next higher range-bin group starts with step 1 identifying the peaks. In step 2, 

the formation of traces starts with the highest point of the trace of the ‘lower range-bin group’. 

This condition ensures the connectivity of the traces. Complete Doppler Profile is automatically 

obtained after completion of the highest ‘Range-bin profile. The tracing accuracy is found 

improved if the data of symmetrical beams are available. 

The performance of the new Multi Parameter Cost Function (MPCF) algorithm is 

compared with two of the well-established techniques, namely the Adaptive moment estimation 

method and the Fuzzy logic based profile extraction method. The performance by the MPCF 

algorithm is found better in some cases and comparable in most of the cases. The key feature 

of the MPCF method is its computational simplicity and good performance even in low 

SNR conditions.   

 The MPCF algorithm is computationally simpler than available alternatives and does not 

require any change of parameters when migrated from one radar to another. This is a significant 

advantage as all other methods of Doppler profile extraction require algorithm parameter 

change when migrated to different radar. Another advantage of the MPCF algorithm is that it 

performs better than other two algorithms in low SNR conditions. MPCF works reliably well 

when the RSP of signal components is more than 3dB. However, when the spectral power of the 

strongest atmospheric components are within 200% (less than 3dB) of the noise power, 

consistently for 5 consecutive range bins, the algorithm terminate the process of Doppler profile 

tracing. However, if the low RSP condition is for less than 5 range bins the process continues 

marking the estimations in the noisy range bins as  suspects. The limitation of the MPCF is 

reflected only in the case when the signal is overpowered by the non-atmospheric components 

for a band of more than 5 range bins. The computational complexity is less by approximately 60 

to 70 percent. This leads to lesser computation time by the same margin. The results obtained by 

the MPCF algorithm are also validated with the wind data obtained by the GPS Sonde 

observations. The matching results with different radar data sets proved that the MPCF 

algorithm provides a valid profiling tool. Hence this algorithm is presented as a strong tool to be 

used for automatic processing of the wind profiler spectra.  
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8.4 Atmospheric Target Classification of Wind Profiler Spectra 

Another important requirement of Wind Profilers is classification of the data according 

to the target present. Many methods are developed to classify the Doppler spectra based on the 

echoing targets. Techniques using rough sets having concepts similar to fuzzy logic have been 

found effective for the target classification of the weather radars. In section 6.2 it is shown that 

the NIMA method is capable of identifying various features separately and classifying them 

according to their target type. However this method is computationally intensive. It also 

requires fine tuning of membership functions and the thresholds according to the radar site and 

atmospheric conditions. Therefore, in spite of being very robust and consistent, this method may 

not be implemented as an automatic tool for classification. It is felt that an automatic 

classification algorithm should adopt a strategy based on the Signature Correlation. A new 

Spectral Feature Based Classification algorithm is developed to classify most types of the 

atmospheric targets.  The spectral characteristics of Clear Air Turbulence (CAT), Precipitation 

echoes, Meteoric echoes, Ionospheric echoes, Mesospheric echoes and Echoes due to 

Ionospheric Turbulence are defined. This spectral characteristic feature of each type of echo are 

translated into its equivalent mathematical conditions in terms of range and Doppler frequency. 

These conditions were checked by a simple sequential search algorithm to classify the Doppler 

spectra. For the same atmospheric echo, the radar Doppler data parameters change due to Radar 

beam width and beam tilt. The limits and thresholds to define the spectral features of various 

echoes are decided by considering the variations of the radar beam as well. This method of 

target classification is independent of radar operating parameters.   

A Matlab program was developed for automatic classification of the Doppler power 

spectra without human intervention (Chapter 7). This is a very effective tool for automatic 

segregation of the wind profiler Doppler spectra. This algorithm classifies the data from 

atmospheric phenomenon like ionospheric echoes, precipitation echoes etc. This algorithm has a 

limitation when the data has low SNR and strong interference signals. Approximately 8-10% of 

the datasets are not classified in such cases. This limitation could be overcome by introducing 

more accurate feature definitions of the various atmospheric targets.  

8.5 Limitations of the research  

  The research conducted during the doctoral study was implemented on the Doppler 

power spectral data sets of three different radars. They are Indian MST Radars, LAWP radars 
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and Radio Sonde. The techniques were found useful, computationally simple and fast to 

implement so as to cope up with radar data generation speed.  

  However, the profile tracing algorithm (MPCF) shows limited performance in Low SNR 

conditions or in presence of interfering signals. The program terminates when it encounters 

noisy spectra in 5 consecutive range bins. Similarly the classification algorithm becomes 

indecisive in very low SNR conditions or in the presence of strong interfering signals.  

  The algorithms developed during this research are specific to the wind profiling radars. 

These techniques require the data headers giving the information of radar operating parameter. 

The system requires manual data entry if the data header is not available. They cannot be used 

for other types of atmospheric ranging instruments like Doppler weather radars and Lidars. 

Another limitation with these systems is its use in extreme weather conditions like hurricanes 

and heavy precipitation (more than 7.5 mm/hr). Under such severe conditions the Doppler 

profile estimation has to be done manually. 
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Chapter 9 

 

Conclusion and Future Scope 

 

 The motivation of this research work was to develop various signal processing 

algorithms for modeling, automatic processing and classification of the wind profiler spectral 

data. Modern wind profiler radars are generally operated for long hours and generate a large 

volume of data. It is required to process the data in near-real-time. Therefore, the processing 

algorithms need to be faster and computationally efficient. Also, the algorithms should be data 

independent and parameter independent. The research was carried out with this objective. 

During the course of this research work, study of the wind profiling radar operation is done. The 

algorithms are developed addressing real data processing requirements. In this doctoral research 

the techniques for modeling and the simulation of the WP data are developed and the complete 

processing of the Wind profiler Doppler power spectra is addressed. The processing of the WP 

data is done in three steps.  

They are (a) Preprocessing (b) Doppler profile tracing (c) classification.  

The concluding remarks on the research done are summarized below.  

 

9.1 Conclusions  

a) A versatile software tool to model and simulate the Doppler Power spectra is 

developed. The established method of Sum of Sinusoids to generate the Doppler spectra is used 

in this thesis. This procedure allows the user to select the Doppler velocity and the Doppler 

velocity spread the required. The amplitude and the pattern of the amplitude envelope can also 

be chosen. Thus this technique offers complete flexibility in modeling the spectra to the user. 

With knowledge of the atmospheric process dynamics, the user can create the Doppler spectra 

of almost any observable weather phenomenon. The modeling exercise resulted in a powerful 

tool to create a set of Doppler spectra corresponding to various atmospheric conditions.  

b) Pre-processing algorithm: Algorithms are developed and implemented to estimate 

the noise content and identify the RFI and Clutter components present in the spectral data. This 

information is used to automatically remove the noise and unwanted signals like RFI and 
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Clutter cleaning the Doppler power spectra. The algorithm implemented removed the unwanted 

signal components with known pattern from the WP Doppler Spectra successfully. Some less 

probable interference components may survive the preprocessing.  

c) A novel Doppler profile estimation method using Multi parameter Cost Function 

(MPCF) is developed, evaluated and validated in this thesis. The MPCF algorithm is based on 

the concepts established by the earlier researchers. The innovation in this method is the use of a 

cost function developed considering also the ‘differential wind shear’ criterion. The cost 

function is derived using weighted sum of Relative Spectral Power and the ‘differential wind 

shear’. This algorithm shows Doppler profile tracing comparable to the leading techniques for 

the profile extraction such as AME and Fuzzy Logic methods. The performance of the MPCF is 

also validated using the correlation with the GPS Sonde data. However, the MPCF method 

shows limited performance in very low SNR. Computational simplicity is the main feature of 

MPCF method. Due to this computational simplicity the method is capable of tracing the 

Doppler profile in 7 seconds on Matlab. This time is much faster than the data generation time. 

Also the MPCF algorithm could be migrated to any wind profiling radar operating in pulse 

Doppler mode. This is due to MPCF’s ability to adapt to the radar parameters. These features of 

the MPCF qualify it to be an algorithm for automated processing of the wind profiler data.   

d) Spectral Feature Based Target Classification (SFBC) algorithm has been developed 

for the Wind Profiler Doppler spectral data. The SFBC algorithm is computationally efficient 

and has shown excellent performance in classifying the WP data. The algorithm is 

computationally simple and performs the classification in 2-5 seconds when implemented using 

Matlab. Due to this the classification program could be implemented on an operational radar 

and the data classification can be done as the data is generated. In other words, the programs can 

be adapted into real time operations of Indian MST radar or any other wind profilers. These 

programs are objective in the sense they do not require any modifications when migrated from 

one radar to another.  

 

9.2 Future Scope  

 Main motive of the research work was to develop algorithms to implement the Wind 

Profiler signal processing in real time. It is established that all the three steps in the signal 

processing can be implemented in less than 14 seconds. Therefore the processing using this 
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algorithm is possible to be implemented in an automated process in real time. Hence the 

immediate future scope would be to implement the algorithms on the wind profiling radar in 

real time. 

1) Integration of the pre-processing algorithm with MPCF algorithms. The Matlab 

code written to implement the algorithm could be optimized and translated to C programs. This 

would give further improvement in processing speed. The software programs could be 

implemented on a wind profiling radar / MST radar. This process requires interfacing the 

programs on the MST radar computer and matching the data exchange protocols and formats.  

2) After processing the data, the sa+me needs to be subjected to classification using 

SFBC algorithm. This algorithm is capable of performing the operations and classifying them 

according to the target type. After the classification, the data could be systematically archived in 

appropriate format.  

3) For modeling and classification, broad characteristics of various atmospheric 

phenomena are defined and their spectral signatures are developed. This can be further extended 

to develop more detailed characteristic features. This kind of detailed study would enable us to 

establish the relation between structures of atmospheric targets. This knowledge about the 

structure of atmospheric targets would lead to more accurate classification of localized 

atmospheric targets.  

4) The processing algorithms could be implemented on atmospheric radars operating 

on similar principles; namely the Sodar and Cloud radar.   

5) MPCF algorithm, can be further improved to have better performance in noisy 

conditions too. Similarly the SFBC algorithm can also be augmented with additional 

discriminatory conditions to improve the performance. The new techniques can be applied to 

transformed domain like wavelets.  

6) The MPCF algorithm can further be extended to study the wind turbulence from the 

frequency spread of the Doppler components. 

Thus this research has established a systematized base for atmospheric climate studies 

and prediction using radar meteorology.  
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Appendix-1 

Data format of Indian MST Radar 
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Appendix-2 

Procedure for reading the MST Radar Data File and Plotting in 2D Format 

1. Read the header.  

2. Assign values from the header to the following parameters. Ignore all other parameters. 

a. No. of range bins (NRB) 

b. No. of FFT points (NFFT) 

c. No. of coherent integrations (NCOH) 

d. No. of incoherent integrations (NICOH) 

e. Inter Pulse Period (IPP) 

f. Pulse width of transmission (PWD) 

g. Code Flag (CFLG) (1 for Coded Transmission; 0 for Uncoded) 

h. Observation Window Start (W1Start) 

i. Observation Window Length (W1Len) 

j. Year 

k. Month 

l. Day 

m. Hour 

n. Minute 

o. Second 

p. No. of beams (NBEAMS) 

q. Beam direction (BEAM) 

r. Data Type (DTYPE) (1 for Raw Data; 2 for Power Spectrum; 3 for Moments; 4 

Power Spectrum + Moments; 5. UVW; 6; Complex Spectrum) 

 

3. Compute no. of data points = NRB × NFFT . 

4. Compute Range resolution (meter) =  

a. (if CFLAG = 0) 150 × PWD  

b. (if CFLAG = 1) 150 

5. Read the float type data points into a matrix - one row for each range bin. 

6. Organize each range bin data by “FFTshift”. 

7. Make a copy of this matrix. Use this copy for further modifications required for plotting. 

Do not alter the original data. Keep it for signal processing later. 

8. Now find the maximum value in each range bin and divide all the data points of that 

range bin with its maximum value. Now all the data points will be in the range 0-1. 

9. Now add a constant to each point of a range bin which is= ( range bin no.-1) so that it is 

zero for the first range bin and (NRB-1) for the last range bin. 

10. Now plot this data. 

11. Now to set the values on the range and Doppler shift  axes: 

a. Lowest range in meter = W1Start  × 150  

b. Now to get a particular range add (rangebin no. × range resolution to the value in 

11a. 

c. Compute maximum unambiguous Doppler shift as ±1/(2×NCOH × IPP). 

d. Positive Doppler shift denotes target approaching. Negative target receding. 

e. Divide twice the value in 11c. by NFFT to get Doppler resolution. 
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f. Assign the Doppler shift values from left to right.  

g. Identify the zero Doppler shift point in each range bin. 

h. Replace the zero Doppler shift point with an average of the points on positive 

and negative side.  

 

12. Write the ASCII data in the format required for the Plotting program and then plot. 

13. If End Of File reached - exit; else Repeat procedure for next frame of data.  
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Appendix-3 

Table: 1 Operating parameters of various Radars at NARL, India (location: 13.40N, 79. .170E) 

used in this thesis 

 

Parameter (a) MST Radar (b) LAWP (8X8) (c) LAWP 

(16X16) 
Transmission 

Frequency 

53 MHz 1280 MHz 1280 MHz 

 

Peak power 

 

2.5 MW 

 

0.3 KW 

 

 

1.2 KW 

Operation mode DBS, 6 Beams, N10, 

E10, S10, W10, Zx, Zy. 

DBS, 3 Beams, Zenith, 

and 14.20 down at NE, 

SW. 

DBS, 3 Beams. (110, 

150), (1010, 150), (00, 

00). 

 

Baud Rate 

 

1 µs. 

  

1 µs. 
 

1 µs. 

Coherent 

Integration 

64 ( Time domain 

averaging) 

32 ( Time domain 

averaging) 
32 ( Time domain 

averaging) 

 

FFT points 

 

512 

 

512 
 

512 

 

Doppler 

Resolution 

 

0.0305 Hz 

 

1.22 Hz 
 

1.22 Hz 

 

Sampling Start 

(after Tx)  

 

24 µs 

 

5 µs 

 

5 µs 

 

No. of range bins 

 

150 

 

35 
 

30 

 

Starting range 

 

3.6 Km 

 

0.75 Km 
 

0.75 Km 

 

Range Resolution 

 

150 m 

 

150 m 
 

150 m 

 

Maximum radial 

velocity 

 

±22.11 ms-1 

 

±30 ms-1 

 

 

±30 ms-1 

 

Radial velocity 

resolution 

 

0.08636 ms-1 

 

0.1464 ms-1 
 

0.1464 ms-1 
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Appendix-4 
Data sets used for testing the Algorithms 

(Description of the data files and the data formats) 
 

1. Classified as wind echoes with RFI 

 

 

  

 File name:12JA2015.d21 File name:15Ju2015.d7 File name:01no2007.d7 

Specifications  Data type: RFI present 
only 

Data type: RFI with echo Data type: Normal echo 

Baud length(in μs) 1 1 1 

No. of RBs 150 150 150 

No. of FFT points 512 512 512 

No. of ncoh 64 64 64 

No. of Incoh 1 1 1 

Inter pulse period(in 
μs) 

1000 1000 1000 

Pulse width(in μs) 16 16 16 

Code flag Coded coded Coded 

No. of beams 6 8 6 

Scan cycle 1,2,3,4,5,6 1,2,3,4,5,6,7,8 1,2,3,4,5,6 

Rx. attenuation 0 dB 0 dB 0 dB 

Data type Spectrum spectrum Spectrum 

No. of observation 
window 

1 1 1 

Window start 24 24 24 

Window length 150 150 150 

Data file name 12JA2015.d21 15JU2015.d7 01NO2007.d7 

File size 3.6MB 9.6MB 3.6MB 
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2.  

 

  

 File name:26se2007.d76 File name:01AP2009.d6 File name:01de2009.d2 

Specifications  Data type: Wind echo Data type: Wind echo Data type: Wind echo 
Baud length(in μs) 1 1 1 

No. of RBs 150 150 150 

No. of FFT points 512 512 512 

No. of ncoh 64 64 64 

No. of Incoh 1 1 1 

Inter pulse period(in 
μs) 

1000 1000 1000 

Pulse width(in μs) 16 16 16 

Code flag Coded coded Coded 

No. of beams 6 8 6 

Scan cycle 1,2,3,4,5,6 1,2,3,4,5,6,7,8 1,2,3,4,5,6 

Rx. attenuation 0 dB 0 dB 0 dB 

Data type Spectrum spectrum Spectrum 

No. of observation 
window 

1 1 1 

Window start 24 24 24 

Window length 150 150 150 

Data file name 26se2007.d76 01AP2009.d6 01DE2009.d2 

File size 3.6MB 9.6MB 3.6MB 
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3.  

 

  

 File name:28MY2009.d1 File name:08FE2006.d1 File name:01de2007.d1 

Specifications  Data type: Wind echo Data type: RFI +Normal 
echo 

Data type: Normal echo + 
clutter 

Baud length(in μs) 1 1 1 

No. of RBs 100 150 150 

No. of FFT points 512 512 512 

No. of ncoh 64 64 64 

No. of Incoh 1 1 1 

Inter pulse period(in 
μs) 

1000 1000 1000 

Pulse width(in μs) 16 16 16 

Code flag Coded coded Coded 

No. of beams 5 8 6 

Scan cycle 1,2,3,4,5 1,2,3,4,5,6,7,8 1,2,3,4,5,6 

Rx. attenuation 0 dB 0 dB 0 dB 

Data type Spectrum spectrum Spectrum 

No. of observation 
window 

1 1 1 

Window start 24 24 24 

Window length 100 150 150 

Data file name 28MY2009.d1 08FE2006.d1 01DE2007.d1 

File size 1 MB 7.2MB 7.2MB 
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4.  

 

  

 File name:24JL2013.d4 File name:05JL2013.d6 File name: 11JL2013.d1 

Specifications  Data type: CAT echo Data type: Ionospheric 
echo 

Data type: Precipitation 

Baud length(in μs) 1 16 2 

No. of RBs 100 270 80 

No. of FFT points 512 256 512 

No. of ncoh 64 1 128 

No. of Incoh 1 8 1 

Inter pulse period(in 
μs) 

1000 5000 250 

Pulse width(in μs) 16 16 2 

Code flag Coded coded Coded 

No. of beams 6 4 4 

Scan cycle 1,2,3,4,5,6 1,2,3,4 1,2,3,4 

Rx. attenuation 0 dB 0 dB 0 dB 

Data type Spectrum spectrum Spectrum 

No. of observation 
window 

1 1 1 

Window start 24 560 10 

Window length 100 4320 160 

Data file name 28MY2009.d1 05JL2013.d6 11JL2013.d1 

File size 100 MB 2.1MB 100 MB 
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5.  

 

 

  

 File name:11DE2011.r1 File name:12DE2011.r1 File name: 13DE2011.r1 

Specifications  Data type: Meteoric echo Data type:  Meteoric 
echo 

Data type:  Meteoric 
echo 

Baud length(in μs) 8 8 8 

No. of RBs 34 34 34 

No. of FFT points 1024 1024 1024 

No. of ncoh 4 4 4 

No. of Incoh 1 1 1 

Inter pulse period 
(in μs) 

1000 1000 1000 

Pulse width(in μs) 8 8 8 

Code flag Uncoded Uncoded Uncoded 

No. of beams 4 4 4 

Scan cycle 1,2,3,4 1,2,3,4 1,2,3,4 

Rx. attenuation 0 dB 0 dB 0 dB 

Data type raw raw raw 

No. of observation 
window 

1 1 1 

Window start 533 533 533 

Window length 272 272 272 

Data file name 11de2011.r1 11de2011.r1 11de2011.r1 

File size 1088  MB 1088  MB 1088  MB 
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