Abbreviations

0-D - Zero Dimensional
1-D - One Dimensional
2-D - Two Dimensional
3-D - Three Dimensional

BAC - Blood Alcohol Concentration

BE - Binding Energy

CNS - Carbon Nanostructures

CNT - Carbon nanotubes

EDS - Energy Dispersive X-ray Spectroscopy

EG - Ethylene Glycol

EUOSHA - European Agency for Safety and Health at Work

EPA - Environmental Protection Agency

FESEM - Field Emission Scanning Electron Microscopy

FET - Field Effect Transistor MIM - Metal Insulator Metal

MOS - Metal Oxide Semiconductor

MS - Mass Spectrometry

NIOASH - National Institute of Occupational Safety and Health

NC - Nanocomposite
NP - Nanoparticle
NT - Nanotube

PL - Photoluminescence
PPB - Parts Per Billion
PPM - Parts Per Million

GFET - Graphene Field Effect Transistor

GNR - Graphene Nanoribbon
GO - Graphene Oxide
GC - Gas Chromatography
HAP - Hazardous Air Pollutant

HPLC - High Performance Gas Chromatography

rGO - Reduced Graphene Oxide RM - Response Magnitude

TEM - Transmission Electron Microscopy

TNT - TiO₂ Nanotube

TTIP - Titanium (IV) Tetra Iso-propoxide

UV - Ultraviolet

VAC - Vapour Alcohol Concentration
VOC - Volatile organic compound

XRD - X-ray Diffraction

XPS - X-ray Photo Spectroscopy

List of Figures

- Fig. i. A flow chart of complete thesis work.
- Fig1.1. Overview of the various applications of VOC sensing.
- Fig.1.2. Different nanomaterials utilized to fabricate solid state sensors for VOC detection.
- Fig. 1.3. Different allotropes of carbon and year of their invention
- **Fig.1.4.** Structure of nanocarbons; (a) graphene (2-D), (b) fullerene (0-D) (source: chem draw 19.0)
- **Fig.1.5.** Pie chart representing the extensive utilization of different metal oxide semiconductors as sensing material.
- **Fig.1.6**. (a) Planar structured sensor, (b) Vertical structured sensor.
- **Fig1.7.** FET structured sensor.
- **Fig.2.1.** TiO₂ nanotube synthesis via electrochemical anodization route.
- **Fig.2.2.** FESEM image of TiO_2 nanotubes:(a) overall view of TiO_2 nanotubes (b) top view; (c) side veiw. Corresponding TEM image of (d) bottom and (e) top of the nanotubes. (f) A schamatic of TiO_2 nanotubes with all the essential dimentions is drown based on the TEM results.
- Fig 2.3. XRD spectra of TiO₂ nanotubes.
- Fig. 2.4. TiO₂ nanotubes array (a)Photoluminescence, (b) Raman spectra (c)UV vis spectra
- Fig. 2.5. XPS spectra of TiO₂ nanotubes (a)Ti2p, (b)O1s
- **Fig.2.6.** Synthesis of undoped p-type TiO₂ nanoparticles via sol-gel method.
- **Fig. 2.7.** Undoped *p*-type TiO₂ nanoparticles (a)FESEM, (b) TEM, (c)HRTEM representing the lattice fringes.
- **Fig. 2.8.** Particle size of undoped *p*-type TiO₂ nanoparticle.
- **Fig. 2.9.** XRD spectrum of undoped *p*-type TiO₂ nanoparticle.
- **Fig. 2.10.** Undoped p-type TiO₂ nanoparticles; (a) photoluminescence, (b) Raman, and (c) UV vis spectra.
- Fig. 2.11. XPS spectra of undoped p-type TiO₂ nanoparticles (a) Ti2p, (b) O1s.
- **Fig. 2.12.** (a) 0.2 wt% graphene oxide solution. (b) Fullerene aqueous solution.
- **Fig. 2.13.** FESEM Image: (a) graphene oxide, (b) fullerene clusters. (c) Size distribution of fullerene clusters obtained from the FESEM image.
- Fig. 2.14. UV vis absorption spectra of (a) graphene oxide, (b) fullerene-C₆₀.
- Fig. 2.15. Raman spectra (a) graphene oxide, (b) fullerene.

- Fig. 2.16. XPS spectra: Graphene oxide with (a) O1s, (b) C1s; Fullerene with (c) O1s, (d) C1s.
- **Fig. 3.1.** XRD spectra of five different TiO_2 nanotubes with different level of reductions i.e. (a) S_0 (as grown); (b) S_1 (reduction by cathodization at -1.0 V); (c) S_2 (reduction by cathodization at -1.5 V); (d) S_3 (chemical reduction at 85°C); (e) S_4 (chemical reduction at 115°C).
- **Fig. 3.2.** Characterizations to estimate the amount of reduction in TiO₂ nanotubes array with respect to pure TiO₂ nanotubes array: (a) PL spectra; (b) Raman spectra.
- **Fig. 3.3.** High resolution XPS spectra of TiO₂ nanotube array of different level of reduction; (a) Ti2p peak and (b) O1s peak.
- Fig. 3.4. Top and side view of sensor device structure with dimensions.
- **Fig. 3.5** Schematic of the sensor characterization setup to detect volatile organic compounds (VOCs) of different concentrations.
- **Fig. 3.6.** (a) Response magnitude; (b) response time; (c) recovery time; as a function of temperature in 100 ppm of ethanol.
- Fig. 3.7. Stability test of (a) S_0 ; (b) S_1 ; (c) S_2 ;(d) S_3 ;(e) S_4 ; at 150 °C for 100 ppm of ethanol.
- **Fig. 3.8.** Sensing performance of chemically reduced S₃ sensor; (a) transient behaviour (20 to 300 ppm); (b) resistive response magnitude at different temperatures (50 °C, 100 °C, 150 °C); (c) cross sensitivity of ethanol comparing with Benzene, Xylene, 2-propanol and Acetone of 100 pm concentration at 150 °C.
- Fig. 3.9. A two dimensional schematic of the cross sectional view of TiO₂ nanotube wall.
- Fig. 3.10. Planar sensor device structure with dimensions, (a) side view, and (b)top view.
- **Fig. 3.11.** Sensing performance of pure TiO_2 nanoparticle sensor (S_1) (a) Response magnitude to 100 ppm of different VOCs (Formaldehyde, Ethanol, Methanol, Acetone and Toluene) at 100° C, (b) transient behaviour (25 to 300 ppm) towards ethanol at 100° C, (c) Repeated cycles in exposure to 100 ppm of ethanol at 100° C, (d) resistive response magnitude at different temperatures (50 °C, 100 °C, 150 °C and 200 °C) in exposure to 100 ppm formaldehyde. (e) transient behaviour (1 to 1000 ppm) towards formaldehyde at 150 °C, (c) Repeated cycles in exposure to formaldehyde at 150 °C.
- **Fig. 3.12.** Intergranular junctions between p-TiO₂ NPs with hole accumulation at the surface of nanoparticles in air and VOC ambient.
- **Fig. 4.1.** EDS Spectra: (a) pure TiO_2 nanotubes array (S_0) and (b) GO loaded TiO_2 nanotubes array (S_1).
- **Fig.4.2.** (a) XRD spectra and (b) Raman spectra of pure TiO_2 nanotubes array (S_0) and GO loaded TiO_2 nanotubes array (S_1).
- **Fig. 4.3** Photoluminescence spectra of pure TiO_2 nanotubes array (S_0) and GO loaded TiO_2 nanotubes (S_1) at 300 nm of excitation
- **Fig. 4.4**. Transient behaviour in exposure to 100 ppm methanol at room temperature of pure TiO₂ nanotubes and GO-Loaded TiO₂ nanotubes.

- **Fig. 4.5**. GO- Loaded TiO₂ nanotubes (a) transient response behaviour within the concentration range of 10 to 1000 ppm, (b) repeated cycles in the exposure to 100 ppm of methanol at room temperature.
- **Fig. 4.6**. Heterojunctions are formed between p-type GO and n-TiO₂ nanotubes.
- **Fig. 4.7.** FESEM and TEM images of *p*-TiO₂ nanoparticles (NPs) embedded graphene oxide (GO) on SiO₂/Si substrate. (a) homogeneous mixture of TiO₂ and GO (T:G) in different ratio including pure solution of TiO₂ NPs (T:100%) and GO (G:100%)). FESEM image of (b) S₁: pure *p*-TiO₂ NPs, (c) S₂: 1 vol% GO loaded 99 vol% of *p*-TiO₂ NPs, (d) S₃: 5 vol% GO loaded 95 vol% of *p*-TiO₂ NPs, (e) S₄: 10 vol% GO loaded 90 vol% of *p*-TiO₂ NPs, (f) S₅: 50 vol% GO mixed with 50 vol% of *p*-TiO₂ NPs, (g) S₆: 10 vol% *p*-TiO₂ NPs embedded 90 vol% of GO, (h) S₇: 5 vol% *p*-TiO₂ NPs loaded 95 vol% of GO, (i) S₈: 1 vol% *p*-TiO₂ NPs loaded 99 vol% of GO, (j) S₉: pure GO flakes. TEM images of (k) pure *p*-TiO₂ NPs, (l) *p*-TiO₂ NPs decorated on GO flakes, (m) magnified TEM image of *p*-TiO₂ NPs decoration on GO, (n) *p*-TiO₂ NPs marked with oval shape dotted line showing an average size of ~12 nm, (o) lattice image of single *p*-TiO₂ nanoparticle on GO, (p) HRTEM lattice image of anatase *p*-TiO₂ with a d-spacing of 0.352 nm.
- **Fig. 4.8.** Structural analysis of S_1 - S_9 . Raman spectra measured under 500 nm laser at room temperature (300 K) shows (a) 100-700 cm⁻¹ scan for anatase and (b) 1200-1800 cm⁻¹ scan for GO. (c) Photoluminescence (PL) spectra showing a shifting of peak position in visible region, (d) UV Vis spectra of all the samples to estimate absorption edge, (e) sample wise variation of I_D/I_G from Raman spectra (i), centered wavelength shifting from PL spectra (ii) and band gap variation from UV Vis spectra (iii).
- **Fig. 4.9.** XPS spectrum of four selective samples among the nine i.e. S₁ (pure *p*-TiO₂ NPs), S₃ (95 vol% *p*-TiO₂+5 vol% GO), S₈ (1 vol% *p*-TiO₂+ 99 vol% GO) and S₉ (pure GO). (a) Ti2p doublet peaks for S₁, S₃ and S₈. Being a pure GO sample, no Ti2p peaks were observed for S₉. (b) C1s spectrum; S₁, S₃, and S₈ are deconvoluted in three peaks, originated from sp² carbon (C-C, C=C), ether (C-O) and Ti-O-C linkage. Additional C=O and COOH peaks were observed for pure GO (S₉) without Ti-O-C peak at 288.3 eV. (c) O1s spectra of pure *p*-TiO₂ NPs (S₁) showed high and low intensity oxygen peak from surface oxygen (Ti-OH) and TiO₂ crystal (Ti-O). O1s spectrum were deconvoluted in three peaks (Ti-O, Ti-O-C and hydroxyl/epoxy) for S₃ and S₈. Strong O1s spectra at 432.6 V for pure GO (S₉) originated from hydroxyl/epoxy groups are available on GO surface.
- **Fig. 4.10.** Schematic of back gated field effect transistor (FET) having p-TiO₂ NPs embedded GO channel.
- **Fig. 4.11.** Transfer characteristics (I_{DS} V_{GS}) of p-TiO₂/GO FETs with variable V_{DS} (0.2-1 V) for (a) S_1 , (b) S_2 , (c) S_3 , (d) S_4 , (e) S_5 , (f) S_6 (g) S_7 , (h) S_8 and (i) S_9 . No significant field effect was observed in S_1 to S_3 .
- **Fig. 4.12.** Electrical characteristics of GO-FET (TG0) and three GO/p-TiO₂ hybrid FETs (TG0.5, TG1, and TG5) at room temperature (300 K). Drain current as a function of V_{GS} (at V_{DS} =0.8 V) in (a) linear and (b) log scale. (c) On/off ratio (I_{ON}/I_{OFF}) and (d) Transconductance (g_m) for four FETs. (e) Drain current as a function of V_{DS} at normally 'on' condition i.e. V_{GS} =0 V.
- **Fig.4.13.** (a) I_D - V_{GS} characteristics of S_7 for variable V_{DS} (0.2 to 1 V). (b) On/off ratio $(\frac{I_{ON}}{I_{OFF}})$ and (c) transconductance (g_m) of S_7 as a function of V_{DS} .

- **Fig.4.14.** (a) A possible side view of the channel region where p-TiO₂ nanoparticles were decorated to both the bottom and top side of GO flakes, as evidenced from the FESEM images. An extended view of (b) GO/p-TiO₂ junctions and (c) GO/p-TiO₂/GO junction showing the hole transfer direction in-between GO and p-TiO₂. (d) Energy band diagram of GO and p-TiO₂ indicating the follow of electron based on the work functions.
- **Fig.4.15.** A qualitative energy band diagram of GO/p-TiO₂/GO junction in equilibrium ($V_{DS} = 0$) for different gate to source voltage (a) $V_{GS} = 0$, (b) $0 < V_{GS} < V_{Dirac}$, (c) $V_{GS} = V_{Dirac}$, (d) $V_{GS} > V_{Dirac}$
- **Fig. 4.16**. Response characteristics of S_1 to S_9 in two terminal form where $V_{DS} = 0.5$ V and $V_{GS} = 0$ V were used. (a) S_6 was considered for the selection of VOC mostly sensitive among different group of VOCs. (b) Response magnitude was calculated from part (a) where S_6 exhibited ethanol selective response. (c) Effect of variable operating temperature (50°C to 200°C) on S_1 - S_9 in the exposure of 100 ppm of ethanol. (d) Effect of variable concentration of ethanol (25 ppm to 300 ppm) on S_1 - S_9 operated at 100°C.
- **Fig. 4.17**. Transient response of S₁-S₉ sensors within the ethanol concentration range of 25 to 300 ppm at 100°C where $V_{DS} = 0.5 V$ and $V_{GS} = 0$.
- **Fig. 4.18**. I_{DS} V_{GS} Characteristics in air and 100 ppm ethanol at 100°C for (a) S₇ and (b) S₈. Response calculated from I_{DS} - V_{GS} characteristics by using the expression $\left[\frac{(I_{DS_air}-I_{DS_ethanol})}{I_{DS_ethanol}}\right] \times 100$ for (c) S₇ and (d) S₈. Amplified transient response of (e) S₇ with $V_{GS} = 0.6 \, V$ and (f) S₈ with $V_{GS} = 0.7 \, V$. Repeated cycles for 100 ppm of ethanol at 100 °C (g) S₇ with $V_{GS} = 0.6 \, V$ and (h) S₈ with $V_{GS} = 0.7 \, V$. (i) S₈ sensor representing the selective nature towards ethanol in comparison to other VOCs at $V_{GS} = 0.7 \, V$.
- **Fig.4.19**. Comparative response magnitude between two terminal $(V_{GS} = 0 V)$ and three terminal FET $(V_{GS} > 0 V)$ as a function of ethanol concentration for (g) S_7 and (h) S_8 .
- **Fig.4.20.** Schematic of GO channel decorated with distinct *p*-type TiO₂ NPs indicating the drain current in the channel.
- **Fig. 4.21**. Energy band diagram of GO/p-TiO₂ heterojunction at (a) zero gate voltage ($V_{GS}=0$) and (b) positive gate voltage ($V_{GS}>0$) for both the air and VOC ambient.
- **Fig. 5.1**. Four major steps i.e. the synthesis of fullerene- C_{60} water colloidal system, anodic growth of the TiO_2 nanotubes array, hydrothermal synthesis of fullerene- C_{60}/TiO_2 nanotubes composites and fabrication of the metal-insulator-metal (MIM) structured sensors, are shown in the flow diagram.
- **Fig. 5.2.** (a) Scanning electron micrograph (SEM) of pure TiO_2 nanotubes array (i.e. S_0) indicating the side and top views. Analysis of cluster (particle) size of C_{60} having different concentrations i.e. C_{60} i.e. (b) 0.006 wt%, (c) 0.01 wt%, (d) 0.02 wt% and (e) 0.05 wt%. SEM images of C_{60} - TiO_2 composites with different concentrations of C_{60} i.e. (f) S_1 (0.006 wt% C_{60}), (g) S_2 (0.01 wt% C_{60}), (h) S_3 (0.02 wt% C_{60}) and (i) S_4 (0.05 wt% C_{60}).
- **Fig. 5.3.** Transmission electron micrograph (TEM) of C_{60} -functionalized TiO_2 nanotubes (S_3). (a, b) C_{60} clusters are decorated on the side wall of TiO_2 nanotubes. (c, d) Very small clusters and individual spheres of C_{60} attached on the wall of TiO_2 nanotube. (e) High resolution TEM

- (HRTEM) image of C_{60} -TiO₂ interface showing the lattice spacing of anatase TiO₂. SAED pattern in inset of figure (e).
- **Fig. 5.4**. Spectroscopic characterizations of all the samples (S₀-S₄). (a) XRD spectra, (b) Raman spectra, (c) UV Vis spectra, (d) FT-IR spectra.
- **Fig. 5.5**. Deconvoluted high resolution scan of X-ray photoelectron (a) Ti2p spectra (b) C1s spectra and (c) O1s spectra for all the samples (S₀-S₄).
- **Fig. 5.6.** Comparative response of all the five sensors (S_0-S_4) in the exposure of 100 ppm formaldehyde at 150 °C.
- **Fig.5.7**. Temperature effect on the transient behaviour of C_{60} -TiO₂ composite sensors i.e. (a) S_1 , (b) S_2 , (c) S_3 and (d) S_4 . (e) Response magnitude, (f) response time and (g) recovery time as a function of temperature for S_1 - S_4 .
- **Fig. 5.8**. (a) Repeated cycles measured in 100 ppm formaldehyde, (b) transient behaviour within the range of 100 ppb to 100 ppm at 150 °C for all the C_{60} -TiO₂ nanotube sensors.
- Fig. 5.9. Response magnitude as function of the concentrations of formaldehyde.
- **Fig. 5.10.** (a) Bar chart representing the magnitude of S_3 in the exposure to different VOCs to asses formaldehyde selective nature of the sensor, (b) transient behaviour under different relative humidity (40% 80%), (c) Comparative response in dry air and different humid conditions with measured response and recovery time for S_3 in 100 ppm of formaldehyde at 150 °C.
- **Fig. 5.11**. (a) Energy band diagram of C_{60} -TiO₂ composite indicating possible electronic exchange in air ambient. Possible surface reactions in C_{60} -TiO₂ composite (b) in air ambient, (c) in presence of formaldehyde vapours.
- **Fig. 5.12.** A flow diagram to show the synthesis and fabrication steps of the pure C_{60} , TiO_2 nanoparticles (NP) and C_{60} - TiO_2 composite sensors.
- **Fig.5.13**. FESEM images of (a) pure TiO_2 nanoparticles (S_2) , (b) fullerene- C_{60} clusters (S_1) , (c, d) C_{60} - TiO_2 nanohybrid (S_3) . TEM image of (e) TiO_2 nanoparticles and (f) TiO_2 NPs encapsulated in fullerene- C_{60} clusters (S_3) . (g) HRTEM image of the C_{60} - TiO_2 nanohybrid (S_3) indicating the existence of anatase (101) crystallinity with lattice spacing of 0.35 nm.
- **Fig.5.14**. Size analysis of C₆₀—encapsulated TiO₂ NPs.
- **Fig. 5.15.** Spectroscopic characterizations of all the samples. (a) UV vis adsorption spectra, (b) Raman spectra.
- Fig. 5.16. XPS spectra with high resolution scan of (a) Ti2p, (b) O1s, (c) C1s peaks.
- **Fig. 5.17**. (a) Natural selectivity tested for S_1 - S_3 sensors in exposure to 100 ppm of different VOCs at 150 °C, (b) response characteristics of all the three sensors at variable operating temperature (50 °C to 200 °C) in the exposure of 100 ppm of formaldehyde.
- **Fig. 5.18**. (a) Transient behaviour within the formaldehyde concentration range of 1 to 1000 ppm, (b) repeated cycle characteristics, and (c) response/recovery characteristics measured at 150 °C.
- Fig. 5.19 Response magnitude as a function of formaldehyde concentrations.

Fig. 5.20. (a) Energy level diagram of C_{60} -TiO₂ composite indicating possible flow of electron in air ambient, (b) Schematic view of the C_{60} encapsulated TiO₂ nanoparticles layer in-between two electrodes.

Fig. 5.21 Sensing mechanism in C_{60} encapsulated TiO_2 nanoparticles with the help of energy band diagram in (a) air and, (b) formaldehyde.

List of Tables

- **Table 1.1** Performance of carbon nanostructures based VOC sensors
- **Table 1.2** Performance of metal oxide semiconductor based VOC sensor
- **Table 1.3** Performance of graphene and its derivatives-metal oxide nanocomposite based VOC sensor
- **Table 1.4** Fullerene metal oxide nanocomposite-based VOC sensing performance.
- **Table 2.1:** Hall effect result of sol gel derived undoped p-TiO2 nanoparticles.
- **Table 3.1** Depicting the shifts in PL and Raman spectroscopy of all the reduced TiO₂ nanotubes array with respect to pure TiO₂ nanotubes array
- **Table 3.2** Summary of de-convoluted fit-peak position and area of XPS O(1s) peak for S_0 to S_4
- **Table 4.1** Details of the sample (S_1-S_9) .
- **Table 5.1**: BET analysis of pure TiO₂ nanotube array and C₆₀-TiO₂ composites.
- **Table 6.1** The sensing performance of various fabricated devices under different environmental conditions