Chapter 1

Background

In this chapter, we recall necessary definitions and results that are useful for
the upcoming chapters. In Section 1.1, we provide essential definitions and results
related to the theory of semigroups and groups. Also, we proved required results
related to semigroups that are used in the thesis. Section 1.2 is devoted to the notion
of graph theory. Also, we recall some fundamental results on graphs which will be

useful in the thesis. This chapter also fixes various notations used in the thesis.

1.1 Semigroups and Groups

In this section, we recall the necessary definitions and results of semigroup theory
from Howie [1995], and group theory from Hungerford [1974]. Also, we derive some
results related to monogenic semigroups which will be useful for further chapters of
the thesis.

A semigroup is a non-empty set S together with an associative binary operation
on S. We say S to be a monoid if it contains an identity element e. A monoid S

is said to be a group if for each x there exists 7! € S such that zx~! = 27z = e.
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2 BACKGROUND

A subsemigroup of a semigroup is a subset that is also a semigroup under the same
operation. A subsemigroup of S which is a group with respect to the operation
inherited from S will be called subgroup. A non-empty subset I of a semigroup S
is said to be an ideal of S if SIS C I. A semigroup S is said to be commutative if
xy = yx for all x,y € S. An element a of a semigroup S is idempotent if a*> = a and
the set of all idempotents in S is denoted by E(S). A band is a semigroup in which
every element is idempotent. A semigroup S is said to be an inverse semigroup
if for each x € S there is a unique element x=' € S satisfying x = xa~'x and
27! = a7 txxr~!. A semigroup S is said to be regular if for each a € S there exists
x € S such that ara = a. If a semigroup S with at least two elements contains an
element 0 such that for all z € S, Ox = 20 = 0 then 0 € S is called the zero of S

and in this case, S is known as a semigroup with zero. If S does not contain zero,

then we say that S is a semigroup without zero.

Example 1.1.1. (i) Let X be a non-empty set and Tx be the set of all mappings
on X. Then Ty forms a semigroup under the composition of mappings is

called full transformation semigroup.

(ii) The set I(X) of partial injective mappings on X forms a semigroup under the

composition of relations and it is known as symmetric inverse semigroup.

(iii) Given a finite group G and a natural number n, write [n] = {1,2,...,n} and

Bn(G) = ([n] x G x [n]) U{0}. Define a binary operation ‘> on B, (G) by

(i,ab,1) if j = k;
0 ifj#k

(iaaaj) ) (k’,b,l) =

and, for all « € B,(G),a-0=0-a =0, is known as Brandt semigroup. When
G is trivial group, the Brandt semigroup B({e},n) is denoted by B,. Instead
of writing the identity element e € G in the triplets of elements of B,,, we use

the following description in the definition of B,. For any integer n > 1, let
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n] ={1,2,...,n}. The semigroup (B,,-), where B,, = ([n] x [n]) U {0} and

)

the operation ‘-’ is given by

(4,0) if j =k;
0 ifj#k

(i,7) - (k;1) =

and, «-0=0-a =0 for all o € B,.

For a subset X of a semigroup S, the subsemigroup generated by X, denoted
by (X), is the intersection of all the subsemigroup of S containing X and it is the
smallest subsemigroup of S containing X. The subsemigroup (X) is the set of all the
elements in S that can be written as finite product of elements of X. If X is finite
then (X) is called finitely generated subsemigroup of S. A semigroup S is called
monogenic if there exists a € S such that S = (a). Clearly, (a) = {a™ : m € N},
where N is the set of positive integers. A subgroup generated by X can be defined
analogously. If X = {a}, then the subgroup generated by X is called cyclic. Note
that the cyclic subgroup generated by a is (a) = {a™ : m € Z}.

For X C S, the number of elements in X is called the order (or size) of X and
it is denoted by |X|. The order of an element a € S, denoted by o(a), is defined as
|(a)]. The set 7(S) consists order of all the elements of a semigroup S. In case of
finite monogenic semigroup, there are repetitions among the powers of a. Then the
set

{reN:(JyeN)a" =a’,x#y}
is non-empty and so has a least element. Let us denote this least element by m and
call it the indez of the element a. Then the set

{reN: o™ =a"}

is non-empty and so it too has a least element r, which we call the period of a. Let
a be an element with index m and period r. Thus, a™ = a™'". It follows that

a™ = ™t for all ¢ € N. By the minimality of m and r we may deduce that the
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powers a,a?,...,a™, a™t, . .., a™" ! are all distinct. For every s > m, by division
algorithm we can write s = m + gr + u, where ¢ > 0 and 0 < u < r — 1. then it
follows that

s m-+qr u

a®=a a = a™a¥ = g™t

Thus, (a) = {a,d?,...,a™" 1} and o(a) = m + r — 1. The subset
Ko={a™ a™™, . . a™t 1}

is a subsemigroup of (a). Moreover, there exists ¢ € N such that 0 < g < r —1
and m + g = 0(mod r). Note that a™%9 is the idempotent element and so it is
the identity element of K,. Because a(™t9)° = ¢2m+20 — gm+(mto)ts — gmtirts a9

m 4 g = 0(mod r) which gives a9 = a9, If we choose ¢’ € N such that
0<¢ <r—1landm+g¢ = 1(modr),

then k(m + ¢') = k(mod r) for all k € N, and so the powers (a9 ) of a™+9" for
k=1,2,...,r, deplete IC,. Thus, IC, is the cyclic subgroup of order r, generated by
a™t9' . Let a be an element of a semigroup S with index m and period r. Then the
monogenic semigroup (a) is denoted by M (m,r). Also, sometimes M (m, r) shall be
written as (a : ¢™ = a™*"). The notations m, and r, denotes the index and period
of x in a monogenic semigroup S, respectively. It is easy to observe that index of
every element in a finite group G is one. Consequently, for a € G, we have (a) is

the cyclic subgroup of G. The following results are useful in the sequel.

Remark 1.1.2. Let S = M(m,r) = (a) be a monogenic semigroup. Then
ICai = <CLZ> N ICa.

Proposition 1.1.3 ([Howie, 1995, Proposition 1.2.3]). Every finite semigroup con-

tains at least one idempotent.

Lemma 1.1.4. Let a be an element of a finite semigroup S. Then the subsemigroup

(a) contains exactly one idempotent.



1.1 SEMIGROUPS AND GROUPS 5

Proof. Let m and r be the index and period of «a, respectively. Then, (a) =
{a,a®,...,a™1}. The subgroup K, = {a™, a™,... a™ '} of (a) contains
exactly one idempotent. If for 1 < 4 < m, o’ is an idempotent, then we have
2i ‘

a® = o'. Consequently, m < ¢; a contradiction. Hence, the idempotent element of

IC, is the only idempotent in (a). O

Lemma 1.1.5. Fvery finite cyclic subgroup of a semigroup S is a monogenic sub-

semigroup of S.

Proof. Let H be a cyclic subgroup of S. Then H = (a) for some a € S. Since H
is finite so that o(a) = n for some n € N. Thus a” = e, where e is the identity
element of . Consequently, a~! = a"~!. Now for any non-negative integer k, we
get a™F = a1 Thus, every element of H is a positive power of a. Hence, H is a

monogenic subsemigroup of S. O

Lemma 1.1.6. Let S = M(m,r) = (a) be a monogenic semigroup. Then

Ko = (a™9%%) for some g such that 0 < g <r — 1.

Proof. For m,r € N, there exists ¢ € N such that 0 < g < r—1and m+ g =
0(mod r). Since a™*9 is an idempotent element of S and so is the identity element
of Kqi. First we show that K, = (a™97). Clearly, a™ ™z = x for all x € K.
To prove that K, C (a™™97%), consider x € K,i. Then x = (a')! for some ¢ € N.
Consequently, we get x = a™9a" = (a™™9T)t C (@™, Now assume that
y € (@™ and so y = (a™9")* for some s € N. It follows that y = a™ ™97 =

(a)a®t € (a*). Thus y € {a’) N K, = Kqi. Therefore K,i = (a™97). O
Lemma 1.1.7. Let o' € {(a) = M(m,r). Then
(i) mgyi = 1 if and only if 1 > m.

(ii) mai =2 if and only if [2] <i<m— 1.
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Proof. (i) Let a' € (a) = M(m,r). If i > m, then a' € KC,. Since K, is a finite group
of order r so (a’)"*' = a'. Consequently, we get m,: = 1. To prove the converse
part, we show that m, > 1 for all ¢ < m. On contrary, we assume that ¢ < m
such that mgy = 1. Clearly, m > 1. Then (a')! = a’ for some ¢ > 1 gives m < i; a

contradiction.

(ii) For [2] < i < m — 1, we have (a’)? € K,. Therefore, ((a’)?)™! = (a')? gives
myi < 2. If m, = 1, then we must have m < i; a contradiction. It follows that
mg: = 2. For the converse part, we assume that m, = 2. By (i), note that ¢ < m.
Since my,i = 2 then we get m < 2i. If 1 < < {%L then 2¢ < m which is not

possible. Thus, we have (%W <3< m-—1. O

Lemma 1.1.8. Let S = (a) = M(m,r) be a monogenic semigroup and x # a € {(a).

If mg > 1, then my < m, and o(x) <m+r — 1.

Proof. Let x # a € {a). Then x = a' for some 7 > 1. Clearly, (a’) C (a) so that
o(x) < m+r—1. Otherwise, (a') = (a) gives a = (a*)* gives m, = 1; a contradiction.
For 7 > m,, we have a' € K, and so m, = 1 < m, (cf. Lemma 1.1.7). If i < m,,

then (a')™ € K, N (a’) = K,: implies m, < m,. O

An involution (if exists) in a semigroup S is an element of order 2. A mazimal
monogenic subsemigroup of S is a monogenic subsemigroup of S that is not properly
contained in any other monogenic subsemigroup of S. We shall denote M by the

set of all elements of S that generates maximal monogenic subsemigroup of S i.e.
M ={a € S: (a)isamaximal monogenic subsemigroup of S}.

Similarly, a maximal cyclic subgroup of S is a cyclic subgroup of S that is not
properly contained in any other cyclic subgroup of S. We shall denote M by the

set of all elements of S that generates maximal cyclic subgroup of S i.e.

M ={a € S: (a)is amaximal cyclic subgroup of S}.
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For integers a and b, we denote their greatest common divisor by (a,b) and the
symbol a | b denotes a divides b. The following result about the Euler’s totient

function ¢ is well known (for instance, see Burton [2006]).

Lemma 1.1.9. For any integer n > 3, ¢(n) is even.

For any n € N, Z, is the group of integers modulo n. We denote by Z" the
group obtained by taking direct product of m copies of Z,.

Proposition 1.1.10. Let S = M(m,r) = (a) be a monogenic semigroup. Then

|lCai|:(i—”r), where 1 <1 <m+47r—1.

Proof. In view of Lemma 1.1.6, we have K, = (a™977) for some g, where 0 < g <
r—1,1<j<m+r—1and m+ g = 0(mod r). We prove the result through the

following cases:

Case 1: g = r—1. Then clearly K, = (¢™). Note that the map 9 : K, — Z, defined
by #(a™™=1) = j, where 1 < j < r is a group isomorphism. Then ¢ (a™"1) = 4.
By division algorithm, we get x; and ¢’ such that ¢ = rxz; + ¢ where 0 < ¢/ < r.
Also note that (i,r) = (¢,r). By Lemma 1.1.6, K,i = (a™ 1) = (qmF™1) =
(amAreti=1y — (gm+'=1) " Therefore |Kyi| = o(a™"~1) = o(#). It follows that
Kel =7m =an

Case 2: 0 < g < r—1. Then clearly K, = (a™"9!). Note that the map ¢ : K, — Z,

defined by ¢(a™*o+7) = jfor g < g+j < r— 1 and ¢(a™) = (r—g) + for

0 < j < g is a group isomorphism. Now if ¢ +7 < r then |K,:| = o(a™"9") = o(i) in
Z,. Thus |[Kyi| = (zr—r) If g+ > r, then by division algorithm we get g +i = Ir +74
where 0 < i < r. We prove the result through the following subcases:

Subcase 1: g < i'. Then ¢ = g+1" for some natural number 7”. Since K, = (a™977)
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= (amHr Ty = (gt = (mFt9H") | Therefore, we have

|Kui] = 0(i”) in Z, because g +1" < r
r r r

(¢, r)i(i’—g, r) (g+i—=Ilr—g, 1)
r r

B (i—lT, T) B (Z7 T).
Subcase 2: g > 1'. Then

|ICai| _ 0(am+g+i) — O(am-&-lr—&-z‘/) _ O(CLm—H/) _ 0(—7" gt i/) in Z,.

It follows that

| = r B r B r
al (r—g—+17,r) B (r—g4+g+i—1Ir,r) B (r(l=10+1i, r)

T

(i, )

O

A semigroup S without zero is said to be simple if it has no proper ideals. A
semigroup S with zero is called 0-simple if (i) {0} and S are its only ideals and
(i) 5% # {0},

A nonzero idempotent in a semigroup S is said to be primitive if it is a minimal
element in E(S) \ {0} with respect to the partial order relation < on E(S) defined
by, for a,b € E(S),a <b <= ab=ba = a.

A semigroup S is said to be completely 0-simple if it is O-simple and has a
primitive idempotent. Let G be a group and let I, A be non-empty sets. Let P =
(pxi) be a Ax I matrix with entries in G°(= GU{0}), and suppose P is regular, in the
sense that no row or column of P consists entirely of zeros. Let S = 9MM°[G, I, A, P] =

(I x G x A)U {0}, and define a composition on S by

7, apxb, if pa; #0
(a N Gby = ) T 7 (.1
0 if py; =0

(4,a,A)0 = 0(z,a, A) = 0.
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Theorem 1.1.11 ([Howie, 1995, Theorem 3.2.3]). Let S be a semigroup. Then
S is a completely 0-simple semigroup if and only if S = MO[G, I, A, P] for some

non-empty index sets I, A, reqular matriz P and a group G.

Theorem 1.1.12 ([Howie, 1995, Theorem 5.1.8]). A finite semigroup S is both
completely 0-simple and an inverse semigroup if and only if S is isomorphic to the

semigroup B, (G) for some group G.

Lemma 1.1.13. Let x = (i,a,A) € M[G, I, A, P] such that o(x) is finite.
(i) If pxi # 0, then m, = 1.
(i) If px; =0, then m, = 2. Moreover, x € M.

Proof. Suppose x = (i,a,\) € M°[G, I, A, P] such that o(x) is finite and let py; # 0.
Then (i,a, \)" = (4, (apin)"*a, \). Choose n such that n— 1 is the order of ap;y, we
get (7,a, \)" = (i,a,A). Consequently, m, = 1. Now to prove (ii), we assume that
pri = 0. Then 2% = (4,a, \)?> = 0 implies m, = 2. Let if possible, (x) C (y) for some
y = (j,b,u) € MG, I, A, P]. Since o(x) is finite so that o(y) is finite. Note that
pu; = 0. Then y? = 0 gives x = y; a contradiction. O

For any relation R on a set X, we define R~! by
Rl'={(z,y) e X x X : (y,x) € R}
and 1x denote the identity relation on X. Now we define another relation
R =| J{R": n>1},

where R™ is the n time composition of B. We denote the relation R¢ is the smallest

equivalence relation containing R.

Proposition 1.1.14 ([Howie, 1995, Proposition 1.4.9]). For every relation R on a
set X, we have R® = [RU R™' U 1x]>™.
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Proposition 1.1.15 ([Howie, 1995, Proposition 1.4.10]). If R is a relation on a set
X and R° is the smallest equivalence relation on X containing R, then (x,y) € R®

iof and only if either x =y or, for some n € N, there is a sequence of transitions
X=21 =22y =Y
in which, for each i in {1,2,...,n — 1}, either (2;,2i+1) € R or (241, 2:) € R.
Definition 1.1.16. Let S be a semigroup. A relation R on S is left compatible if
(Va,s,t € S) (s,t) € R = (as,at) € R,
and right compatible if
(Va,s,t € S) (s,t) € R = (sa,ta) € R.
It is called compatible if
(Vs,s',t,t' €8) (s,8)€ R and (t,t') € R = (ss,tt') € R.

A left [right] compatible equivalence relation is called left [right] congruence. A

compatible equivalence relation is called congruence.

Proposition 1.1.17 ([Howie, 1995, Proposition 1.5.1]). A relation p on a semigroup

S is a congruence if and only if it is both left and right congruence.

Theorem 1.1.18 ([Howie, 1995, Theorem 1.5.4]). Let S be semigroup and let p be
a congruence on S. Then S/p = {ap : a € S} is a semigroup with respect to the

operation is defined by (ap)(bp) = (ab)p.

The smallest congruence relation containing R is denoted by R#. By S! we shall
mean the monoid obtained from S by adjoining an identity element ( if S does not

already have such an element). Now we define another relation R° by

R¢ = {(zay,xby) : x,y € S* ,(a,b) € R}.
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Lemma 1.1.19 ([Howie, 1995, Proposition 1.5.5]). The relation R is the smallest

left and right compatible containing R.

Proposition 1.1.20 ([Howie, 1995, Proposition 1.5.8]). For every relation R on a
semigroup S, we have R* = (R°)e.

Green’s relations were introduced by J.A Green in 1951 that characterize the
elements of S in terms of principals ideal. They become a standard tool for investi-

gating the structure of semigroup. These relations are defined by
1. x Ly if and only if Stz = Sty.
2. x Ry if and only if 25! = yS*.
3. v J y if and only if S'zSt = StyS*t.
4. x Hy if and only if x Ly and x R y.

5. x Dy if and only if x £ 2 and 2 R y for some z € S.

Remark 1.1.21 ([Howie, 1995, p. 46]). Let GG be a group. Then
L=R=H=D=J=GxAG.

Corollary 1.1.22. Let S be a semigroup and f be an idempotent element of S.
Then the H-class Hy containing [ is a subgroup of S.

A semigroup is said to be completely regular if every element a of S lies in
a subgroup of S. Further, we have the following characterization of completely

regular semigroup.

Proposition 1.1.23 ([Howie, 1995, Proposition 4.1.1]). Let S be a semigroup. Then

the following statements are equivalent:

(i) S is completely regular



12 BACKGROUND

(ii) every H-class in S is a group.

Definition 1.1.24. A semigroup S is said to be of bounded exponent if there exists

a positive integer n such that for all z € S, 2" = f for some f € E(S).

If S is of bounded exponent then the exponent of S is the least n such that for

each x € S, 2™ = f for some [ € E(S5).
Lemma 1.1.25. Let S be a semigroup with exponent n. Then for x € S, we have
(i) o(z) < 2n forallx € S.

(ii) the subsemigroup (x) is contained in some maximal monogenic subsemigroup

of S.

Proof. (i) Since 2™ = f for some f € E(S), we have (x) = M(m,r) for some
m,r € N. There exists g with 0 < g < r and m+ g = 0(mod r) such that 29 = f.
Clearly, n > m as x™ is the idempotent element of (x). Let if possible n < m + g.
Form <i#j <m+r—1, we have ' # 27 in (x). Therefore, x" # ™9 which is
not true because ™ = ™9 = f. Thus, n > m+g. Alsor | m+ ¢ and m < n gives
r < n. It follows that o(x) < m +r < 2n.

(ii) If (x) is a maximal monogenic subsemigroup, then the result holds. Otherwise,
(x) € (x1). If (x1) is maximal monogenic then this completes our proof. By (i),

—=

since o(x) < 2n, we get a finite chain such that (x) C (z1) -+ C (xg_1) T (Tk),

where k& < 2n and (zj) is a maximal monogenic subsemigroup of S. This complete

the proof. O

We often use the following fundamental properties of semigroups without refer-
ring to it explicitly.
Let S be a semigroup of bounded exponent. For f € E(S), we define

Sy={aeS : a™ = ffor some m € N}. (1.2)

Remark 1.1.26. S = |J Sy and for distinct f, [’ € E(S), we have Sy (S = 0.
FEE(S)
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1.2 Graphs

In this section, we recall necessary definitions, results and notations of graph theory
from West [1996]. A graph G is a pair G = (V, £), where V = V(G) and £ = E(G)
are the set of vertices and edges of G, respectively. We say that two different vertices
a,b are adjacent, denoted by a ~ b, if there is an edge between a and b. We are
considering simple graphs, i.e. undirected graphs with no loops or repeated edges.
If ¢ and b are not adjacent, then we write a ~ b. The neighbourhood N(x) of
a vertex x is the set of all vertices adjacent to x in G. Additionally, we denote
Nlx] = N(x) U {x}. A subgraph of a graph G is a graph G’ such that V(G’') C V(G)
and E(G') € E(G). A subgraph G’ of graph G is said to be a spanning subgraph of
G if V(G) = V(@) and we shall write it as G’ < G. A walk A in G from the vertex
u to the vertex w is a sequence of vertices u = vy, vy, ..., v, = w (m > 1) such that
v; ~ w41 forevery i € {1,2,...,m—1}. If no edge is repeated in A, then it is called
a trail in G. A trail whose initial and end vertices are identical is called a closed
trail. A walk is said to be a path if no vertex is repeated. The length of a path is the
number of edges it contains. If U C V(G), then the subgraph of G induced by U,
denoted by G(U), is the graph G’ with vertex set U/, and two vertices are adjacent
in G’ if and only if they are adjacent in G. A graph G is said to be connected if there
is a path between every pair of vertex. A graph G is said to be complete if any two
distinct vertices are adjacent. We denote K, is the complete graph of n vertices. A
path that begins and ends on the same vertex is called a cycle. A graph G is said to
be acyclic if G does not contain any cycle. A cycle in a graph G that includes every
vertex of G is called a Hamiltonian cycle of G. If G contains a Hamiltonian cycle,
then G is called a Hamiltonian graph.

Also, recall that the girth of a graph G is the length of the shortest cycle in G, if
G has a cycle; otherwise we say the girth of G is co. The distance between vertices u
and w, denoted by d(u,w), is the length of a minimal path from u to w. If there is

no path from u to w, we say that the distance between u and w is co. The diameter
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of a connected graph G is the maximum distance between two vertices and it is
denoted by diam(G). The degree of a vertex v is the number of edges incident to v
and it is denoted as deg(v). The smallest degree among the vertices of G is called
the minimum degree of G and it is denoted by §(G). The chromatic number x(G)
of a graph G is the smallest positive integer k& such that the vertices of G can be
colored in k colors so that no two adjacent vertices share the same color. A graph
G is Eulerian if G is both connected and has a closed trail (walk with no repeated

edge) containing all the edges of a graph.

Theorem 1.2.1 ([West, 1996, Theorem 1.2.26]). A connected graph is Eulerian if

and only if its every vertexr is of even degree.

A clique of a graph G is a complete subgraph of G and the number of vertices in
a clique of maximum size is called the clique number of G and it is denoted by w(G).
An independent set of a graph G is a subset of V(G) such that no two vertices in the
subset are adjacent in G. The independence number of G is the maximum size of an
independent set, it is denoted by «(G). A graph G is said to be bipartite if V(G) is
the union of two disjoint independent sets. A graph G is called complete bipartite
if G is bipartite with V(G) = AU B, where A and B are disjoint independent sets
such that x ~ y if and only if x € A and y € B. We shall denote it by K, ,,, where
|A| = n and |B| = m. A graph G is said to be star graph if G = K, for some

n € N.

Theorem 1.2.2 ([West, 1996, Theorem 1.2.18)). For a graph G, we have G is bi-

partite if and only if G does not contain an odd cycle.

Also, recall that a dominating set D of a graph G is a subset of the vertex set
such that every vertex not in D is adjacent to some vertex in ) and the number
of vertices in a smallest dominating set of G is called the dominance number of G.

A vertex v in G is said to be dominating if N[v] = V(G). The identity element e is
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a dominating vertex of every graph G, where G € {I'(G),P.(G),A(G)}. We call a
graph G dominatable if it has a dominating vertex other than e.

The following lemma will be useful in the sequel.

Lemma 1.2.3 ([West, 1996, Lemma 3.1.33]). A set of vertices in a graph is an

independent dominating set if and only if it is a maximal independent set.

The graph G is perfect if w(G') = x(G’) for every induced subgraph G’ of G.
Recall that the complement G of G is a graph with same vertex set as G and distinct
vertices u,v are adjacent in G if they are not adjacent in G. A subgraph G’ of G is
called a hole if G’ is a cycle as an induced subgraph, and G’ is called an antihole of
G if G is a hole in G.

Theorem 1.2.4 (Chudnovsky et al. [2006]). A finite graph G is perfect if and only

if it does not contain hole or antihole of odd length at least 5.
The following remarks will be usefull in the sequel.

Remark 1.2.5. Let G be any graph and x be a dominating vertex of G. Then x

does not belong to the vertex set of any hole of length greater than 3, or any antihole

of G.

Remark 1.2.6. In a graph G, any vertex of degree one does not belongs to any hole

or antihole of length greater than 4.

A planar graph is a graph that can be embedded in the plane, i.e. it can be
drawn on the plane in such a way that its edges intersect only at their endpoints.

The following theorem will be useful in the sequel.

Theorem 1.2.7 ([West, 1996, Theorem 6.2.2]). A graph G is planar if and only if

it does not contain a subdivison of K5 or Kj 3.

A wvertex (edge) cut-set in a connected graph G is a set X of vertices (edges) such

that the remaining subgraph G \ X, by removing the set X, is disconnected or has
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only one vertex. The vertez connectivity (edge connectivity) of a connected graph
G is the minimum size of a vertex (edge) cut-set and it is denoted by x(G) (£'(G)).
For k > 1, graph G is k-connected if k(G) > k. The following results will be useful

in the sequel.

Theorem 1.2.8 (Plesnik [1975]). If the diameter of any graph is at most 2, then

its edge connectivity and minimum degree are equal.

Theorem 1.2.9 ([West, 1996, Theorem 4.1.9 |). If G is a simple graph, then
k(G) < K'(G) < (G).

An edge cover in a graph G without isolated vertices is a set L of edges such
that every vertex of G is incident to some edge of L. The minimum cardinality of an
edge cover in G is called the edge covering number, it is denoted by 5'(G). A vertex
cover of a graph G is a set () of vertices such that it contains at least one endpoint
of every edge of G. The minimum cardinality of a vertex cover in G is called the
vertex covering number, it is denoted by 3(G). A matching in a graph G is a set of
edges with no share endpoints and the maximum cardinality of a matching is called
the matching number and it is denoted by o/(G). We have the following equalities

involving the above parameters.
Lemma 1.2.10. Consider a graph G.
(i) a(G) +8(9) = V(9)]-
(ii) If G has no isolated vertices, o/ (G) + 5'(G) = |V (G)|.

The concept of detour distance was introduced by Chartrand et al. [1993]. The
detour distance, dp(u,v), between two vertices v and v in a graph G is the length
of longest w — v path in G. The (detour) eccentricity of a vertex u, denoted by
(eccp(u)) ece(uw), is the maximum (detour) distance between w and any vertex of G.

The minimum (detour) eccentricity among the vertices of G is called the (detour)
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radius of G, it is denoted by (radp(G)) rad(G). The detour diameter of a graph G
is the maximum detour eccentricity in G, denoted by diamp(G). A vertex v is said
to be eccentric vertex for w if d(u,v) = ecc(u). A vertex v is said to be an eccentric
vertex of the graph G if v is an eccentric vertex for some vertex of G. A graph G is
said to be an eccentric graph if every vertex of G is an eccentric vertex. The centre
of G is a subgraph of G induced by the vertices having minimum eccentricity and it
is denoted by Cen(G). The closure of a graph G of order n is the graph obtained
from G by recursively joining pairs of non-adjacent vertices whose sum of degree is
at least n until no such pair remains and it is denoted by CI(G). The graph G is
said to be closed if G = Cl(G) (cf. Chartrand and Zhang [2004]).

A vertex v in a graph G is a boundary vertex of a vertex w if d(u,w) < d(u,v)
for w € N(v), while a vertex v is a boundary vertex of a graph G if v is a boundary
vertex of some vertex of G. The subgraph G induced by its boundary vertices is
the boundary 0(G) of G. A vertex v is said to be a complete vertez if the subgraph
induced by the neighbours of v is complete. A vertex v is said to be an interior
vertex of a graph G if for each u # v, there exists a vertex w and a path u — w
such that v lies in that path at the same distance from both u and w. A subgraph
induced by the interior vertices of G is called interior of G and it is denoted by

Int(G).

Theorem 1.2.11 ([Chartrand and Zhang, 2004, p.337]). Let G be a connected
graph and v € V(G). Then v is a complete vertex of G if and only if v is a boundary
vertez of x for all x € V(G) \ {v}.

Theorem 1.2.12 ([Chartrand and Zhang, 2004, p.339]). Let G be a connected graph
and v € V(G). Then v is a boundary vertex of G if and only if v is not an interior

vertex of G.

Slater [1975] introduced the concept of metric dimension and then separately

studied by in Harary et al. [1976]. For z in G, we say that z resolves u and v if
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d(z,u) # d(z,v). A subset U of V(G) is a resolving set of G if every pair of vertices
of G is resolved by some vertex of UU. The least cardinality of a resolving set of
G is called the metric dimension of G and is denoted by dim(G). An i-subset of
V(@) is a subset of V(G) of cardinality i. Let R(G, ) be the family of resolving sets
which are i-subsets and r; = |R(G,7)|. Then we define the resolving polynomial of
a graph G of order n, denoted by 3(G,z) as 5(G,x) = Z?:dim(g) r;x'. The sequence
(Tdim(@)> Tdim(G)+1 - - - »Tn) Of coefficients of 5(G,x) is called the resolving sequence.
Two distinct vertices u and v are said to be true twins if Nju] =N[v]. Two distinct
vertices u and v are said to be false twins if N(u) =N(v). If w and v are true twins
or false twins then u and v are twins. For more details on twin vertices, we refer
the reader to Hernando et al. [2010]. A set U C V(G) is said to be a twin-set in G if
u, v are twins for every pair of distinct pair of vertices u,v € U. In order to obtain

the resolving polynomial S{A(SDs,), z), the following results will be useful.

Remark 1.2.13 ([Ali et al., 2016, Remark 3.3]). If U is twin-set in a connected
graph G of order n with || =1 > 2, then every resolving set for G contains at least

[ — 1 vertices of U.

Proposition 1.2.14 ([Ali et al., 2016, Proposition 3.5]). Let G be a connected graph
of order n. Then the only resolving set of cardinality n is the set V(G) and a resolving

set of cardinality n — 1 can be chosen n possible different ways.

The concept of strong metric dimension has been introduced by Seb6 and Tannier
[2004]. For vertices u and v in a graph G, we say that z strongly resolves u and v
if there exists a shortest path from z to u containing v, or a shortest path from z
to v containing u. A subset U of V(G) is a strong resolving set of G if every pair
of vertices of G is strongly resolved by some vertex of /. The least cardinality of a
strong resolving set of G is called the strong metric dimension of G and is denoted
by sdim(G). For vertices u and v in a graph G, we write v = v if Nju] = N[v].

Notice that that = is an equivalence relation on V(G). We denote by v the =-class
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containing a vertex v of §G. Consider a graph G whose vertex set is the set of all
=-classes, and vertices u and v are adjacent if u and v are adjacent in G. This graph
is well-defined because in G, w ~ v for all w € w if and only if u ~ v. We observe
that G is isomorphic to the subgraph Rg of G induced by a set of vertices consisting
of exactly one element from each =-class. Subsequently, we have the following result

of Ma, Feng and Wang [2018] with w(Rg) replaced by w(gA)

Theorem 1.2.15 ([Ma, Feng and Wang, 2018, Theorem 2.2|). Let G be a graph
with diameter 2. Then sdim(G) = |V(G)| — w(G).

For a finite simple undirected graph G with vertex set V(G) = {v1, va,...,v,}, the
adjacency matriz A(G) is the n X n matrix with (¢, j)th entry is 1 if v; and v; are ad-
jacent and 0 otherwise. We denote the diagonal matrix D(G) = diag(dy, ds,. .. ,d,)
where d; is the degree of the vertex v; of G, + = 1,2,... ,n. The Laplacian matrix
L(G) of G is the matrix D(G) — A(G). The matrix L(G) is symmetric and positive
semidefinite, so that its eigenvalues are real and non-negative. Furthermore, the
sum of each row (column) of L(G) is zero. Recall that the characteristic polynomial
of L(G) is denoted by ®(L(G),z). The eigenvalues of L(G) are called the Laplacian
eigenvalues of G and it is denoted by A(G) > A (G) > --- > A,(G) = 0. Now let
Ay (G) > Ay(G) = -+ > A\, (G) = 0 be the distinct eigenvalues of G with mul-

tiplicities my, ma, ..., m,, respectively. The Laplacian spectrum of G, that is, the
spectrum of L(G) is represented as {(9) () ©) . We denote the

matrix J, as the square matrix of order n having all the entries as 1 and I,, is the
identity matrix of order n.

An automorphism of a graph G is a permutation f on V(G) with the property
that, for any vertices  and v, we have uf ~ vf if and only if u ~ v. The set Aut(G)
of all graph automorphisms of a graph G forms a group with respect to composition
of mappings.

We conclude this chapter with the following lemma which provides a relation
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between the graphs considered in this thesis.

Lemma 1.2.16. For a semigroup S, we have P(S) =< I'(S) < P.(S) = A(S).
Furthermore, for a finite group G, P.(G) = I'(G).

Proof. By [Afkhami et al., 2014, Theoren 3.13], note that P(S) < I'(S). Now,
suppose a ~ b in I'(S). Then, for some ¢ € S, we have (a,b) = (¢). Consequently,
a,b € (c) so that a ~ b in P.(S). Thus, I'(S) < P(S). Further, by the definition of
the enhanced power graph of a group, we have P.(G) = I'(G). O



