Chapter 2

The Cyclic Graph of Semigroups

Abdollahi and Hassanabadi [2007] introduced the noncyclic graph of a group GG. The
noncyclic graph of a group G is the simple undirected graph whose vertex set is G\ T,
where T'= {x € G : the subgroup generated by x,y is cyclic for all y € G} and two
distinct vertices x,y are adjacent if the subgroup generated by x,y is not cyclic.
The complement of noncyclic graph of G is called the cyclic graph of G. Further,
the notion of cyclic graph was slightly modified by Ma et al. [2013] as follows. The
cyclic graph I'(G) is the simple undirected graph whose vertex set is G and two
distinct vertices x and y are adjacent if the subgroup generated by x,y is cyclic. Ma
et al. [2013] studied the graph-theoretic properties of cyclic graph of a finite group
namely, bipartite, diameter, clique number etc. Particularly, they have investigated
the graph invariants of the cyclic graph I'(G) when G is dihedral group D,, or
dicyclic group Qu,. Also, Ma et al. [2013] proved that Aut(G) = Aut(I'(G)) if and
only if G is a Klein group Zy x Z,. The definition of cyclic graph has been extended on
semigroups by Afkhami et al. [2014]. The cyclic graph I'(S) is the simple undirected
graph whose vertex set is the semigroup S and two distinct vertices z and y are
adjacent if (x,y) is a monogenic subsemigroup of S. Afkhami et al. [2014] provided

the structure of I'(S), where S is a finite semigroup and discussed the graph-theoretic
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22 THE CycLIC GRAPH OF SEMIGROUPS

properties of I'(S), viz. planarity, genus, girth etc. This chapter concerns to study
the graph-theoretic properties of I'(S) as well as structural properties of I'(S). This
chapter is arranged as follows. In Section 2.1, first we provide the structure of
['(S) for an arbitrary semigroup S. Then the basic properties of I'(S), namely:
completeness, bipartite, tree and regularity etc. are discussed. Section 2.2 is devoted
to the study of chromatic number of I'(S) and it is proved that the chromatic number
of I'(S), where S is an infinite semigroup, is at most countable. In Section 2.3
and Section 2.4, we obtain the clique number and independence number of I'(S),
respectively. The content of Section 2.2 is published in SCIE journal “Graphs and
Combinatorics”, 36,109-113, 2020, Springer.

2.1 Basic Properties of I'(.9)

In order to study some basic properties of I'(S), first we discuss the structure of

['(S) for an arbitrary semigroup S. For x € S and m,n € N, we define
S(x,m,n)={yeS: 2™ =y"}

and we write C(x) = |J S(xz,m,n). The following proposition describes the
m,neN

structure of I'(S).

Proposition 2.1.1. The set C(x) is a connected component of I'(S). Moreover, the
components of the graph I'(S) are precisely {C(x) | x € S}.

Proof. Let y,z € C(x). Then y € S(x,m,n) and z € S(x,p,q). It follows that
2™ = y" and 2P = z9. Note that y ~ 2 ~ z. Thus, C(x) is connected in I'(.S).
Now suppose that the element z of S is adjacent to a vertex y in C'(x). Since y ~ z
implies (y,z) = (¢) for some t € S. For y € C(x), we have 2™ = y" for some
m,n € N. Tt follows that y = t*, z = t* and 2" = 2™5. Thus, z € C(z). Hence,

C(z) is a connected component of I'(.S). O
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In view of Equation 1.2, we have the following corollary.

Corollary 2.1.2. For f € E(S), we have C(f) = Sy. Moreover, if x € S such that
o(x) is finite then x € Sy for some f € E(S5).

Let S be a semigroup of exponent n. Each connected component of ['(S) is of
the form Sy for some f € E(S) (see Remark 1.1.26 and Corollary 2.1.2). Since Sy is
a connected component and f ~ x for all z € Sy \ {f}. Thus, £(S) is a dominating

set of ['(S). Consequently, we have the following Lemma.

Lemma 2.1.3. Let S be a semigroup of exponent n. Then the dominance number

of I'(S) is equals to the number of idempotents in S.

Let x € S such that x # x?. Then x ~ x? in I'(S). Consequently, we have the

following corollary.

Corollary 2.1.4. For any semigroup S, I'(S) is a null graph if and only if S is a
band.

Theorem 2.1.5. Let S be a semigroup of exponent n. Then I'(S) is complete if and
only if one of the following holds:

(iii) S = {a: a®™ = a®), where r is odd.

Proof. Suppose that I'(S) is complete. Since o(x) < 2n for all x € S. Now choose
x € S such that o(x) is maximum in 7(S). Let x,y € S. Then x ~ y implies
(x,y) = (z) for some z € S. Therefore, y € (z) = (x). It follows that S = (x).
Consider S = M(m,r) for some m,r € N. On contrary, suppose that S is not of
the form given in (i), (ii) and (iii). Then either S = M(3,r) such that r is even or
S = M(m,r), where m > 4.
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If S = M(3,r) such that r is even, then clearly 34+ r — 1 and 3 +r + 1 are
even. Since a®>™" = a® implies a’™" = a* so that (a?) = {a?,a’,...,a*""}. Note that
a® ¢ (a?). If a® € (a®), then a®> = a3* for some k € N. Thus m < 2; a contradiction
for m = 3. Consequently, a®> ¢ (a3). Let if possible (a?,a®) = (a’) for some a' € S.
We now show that no such t € N exists. If t = 1, then (a2, a®) = (a) so that a = d',
where [ > 2. Thus, m = 1; a contradiction. If ¢t € {2,3}, then either a*> € (a®)
or a® € (a®); again a contradiction. Thus, we have (a?, a®) = (a') such that ¢ > 3.
Since a? € (a?,a®) = (a') so that a®> = (a')* for some k € N. Consequently, m < 2;
a contradiction. Thus, (a2, a) is not a monogenic subsemigroup of S implies a? is
not adjacent to a® in T'(S) so that I'(S) is not complete which is a contradiction.
We may now suppose S = M (m,r), where m > 4. In this case, first note that

3 a' all are distinct elements of S. Now, we show that (a?,a®) is not a

a,a’, a
monogenic subsemigroup of S so that a? and a® are not adjacent in I'(S), which is
a contradiction of the fact I'(S) is complete. If possible, let (a?,a®) = (a') for some
a € S. If ¢ = 1, then a € (a® a®). Thus, a = a', where ¢ > 5 so that m = 1; a
contradiction. For i = 2, note that a® € (a?) gives a® = a®* for some k > 3. Thus

m < 3; a contradiction. If i > 3, then a® € (a'), which implies that a* = a’* for

some k € N. Thus m < 2; again a contradiction.

Conversely, suppose S is one of the form given in (i), (ii) and (iii). Thus, we

have the following cases.

Case 1: S = M(1,7) i.e. S={a,a? ...,a"}. Since S is a cyclic group, for any
two distinct x, y € S, note that (x,y) is a cyclic subgroup of S. Consequently, (z,y)
is a monogenic subsemigroup of S (cf. Lemma 1.1.5) so that (x,y) = (z) for some
z € 5. Thus, x ~ y in ['(S). Hence, ['(S) is complete.

Case 2: S = M(2,r) ie. S = {a,a? ...,a"™} with a®*™ = a2 Clearly,
Ko ={a*a* ....,a""}. For 2 < <r+1, we have a’ € (a) so that (a’,a) = (a).
Thus a ~ a' in T'(S). Since K, is a cyclic subgroup of S and for any a’,a’ € K,,

the subsemigroup (a’,a’) is monogenic in S so that a’ ~ @’ in T'(S). Thus, ['(S) is
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complete.
Case 3: S = M(3,r) such that r is odd. Clearly, S = {a,da? da?,...,a*""} with

37 = ¢3. By the similar argument used in Case 2, note that for 2 < ¢ < 2 47,

a
we have a ~ a' in T'(S). Since 3 + r is even implies 3 + r = 2k for some k € N.
Thus, @® = **" = a®* = (a®)* so that a® € (a®). Consequently, a® a”,--- ,a*'" €
(a*). For i > 2, note that (a*a’) = (a?) and it gives a® ~ a' in T'(S). Now,
K. = {a3 a, ... ,a*™"} is a cyclic subgroup of S and for any a’,a’ € K, note that

(a’,a’) is a monogenic subsemigroup of S. Thus a' ~ o’/ in ['(S). Hence, I'(S) is

complete. O

Corollary 2.1.6. [Ma et al., 2013, Theorem 9] Let G be a finite group. Then the
cyclic graph U'(G) is complete if and only if G is a cyclic group.

Theorem 2.1.7. Let S be a semigroup. Then the following statements are equiva-

lent:

(i) =(5) € {1,2}
(i) T(S) is acyclic
(iii) T'(S) is bipartite.

Proof. (i) = (ii) Suppose 7(S) C {1,2}. Clearly, S is of bounded exponent. Let if
possible, there exists a cycle C' : ag ~ay ~ -+ ~ a ~ ag, in I'(S). Then C C S
for some f € E(S). If none of the vertices of C' are idempotents, then ag, a; € (21)
for some z; € S. Consequently, o(z;) > 3; a contradiction. If one of the vertex of C'
is idempotent, then note that there exist two non idempotent elements a;, a; such
that a; ~ a;. Thus, a;,a; € (z) for some z € S. Since (z) contains an idempotent
element also, we get o(z) > 3; again a contradiction.

(ii) = (iii) Since I'(S) is acyclic graph so that it does not contain any cycle. By
Theorem 1.2.2, I'(S) is bipartite.
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(iii) = (i) Suppose I'(S) is a bipartite graph. By Theorem 1.2.2, I'(S) does not
contain any odd cycle. To prove 7(S) C {1,2}. Let if possible, there exist a € S
such that o(a) > 3. If o(a) is infinite then clearly a ~ a®> ~ a* ~ a is a triangle
in I'(S); a contradiction (see Theorem 1.2.2). Now we assume that o(a) is finite.
Note that there exist z, f € S such that f € E(S)N (a) and x € (a) \ {a, f}. As a
consequence, the vertices x,a and f forms a triangle; again a contradiction of the

fact that I'(S) is bipartite. O

Corollary 2.1.8. Let S be a semigroup of bounded exponent. Then I'(S) is a tree
if and only if |E(S)| =1 and n(S) C {1,2}.

Corollary 2.1.9. Let G be a finite group. Then the following statements are equiv-

alent:

(i) =(G) € {1,2}

(ii) I'(G) is acyclic graph
(iii) I'(G) is bipartite

(iv) I'(G) is a tree

(v) I'(G) is a star graph
(Vi) G=Zy X Loy X -+ X Lo.

Theorem 2.1.10. Let S be a semigroup of bounded exponent. Then S is completely

reqular semigroup if and only if all the connected components of I'(S) forms a group.

Proof. Suppose S is completely regular semigroup. Then every H-class of S is
a group (see Proposition 1.1.23). To prove that each connected component I'(S)
forms a group, by Corollary 2.1.2, we show that S; = H; for each f € E(S). Let
a € Hy. Then a" = f for some n € N so that a € Sy. On the other hand, suppose
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a € Sy If a € Hp for some f' # f € E(S), then a € Sp; a contradiction. Thus
Hy=Sy.

Conversely suppose that every connected component of I'(S) forms a group.
To prove S is completely regular, we show that every H-class forms a group (see
Proposition 1.1.23). Let a € S. Then a € Sy for some f € E(S) as S is of bounded
exponent. We claim that H, = S;. Suppose b € Sy. By Remark 1.1.21, (b, f) € H.
Also, we have (a, f) € H so that (a,b) € H. It follows that Sy C H,. On the other
hand, let b € H,. Then a € Sy and it implies that b € Hy. Since H; contains an
idempotent so that Hy forms a group (see Corollary 1.1.22). It follows that ™ = f
for some m € N. Hence, H, = S; for some f € E(S5). O

Theorem 2.1.11. Let S be a semigroup of bounded exponent. Then the cyclic graph
I'(S) is reqular if and only if |S¢| = |Sy| for all f, f' € E(S) and for f € E(S) there

exists a € S with one of the following holds:

(i) Sy =(a:a*" =a)

(ii) Sy =(a:a*™ =da?)

(iil) Sy = (a:a®*"" = a®), where r is odd.

Proof. First suppose that I'(S) is regular and f, f* € E(S). Thendeg(f) = |S¢|—1 =
|Sp| — 1 =deg(f’). Thus |[S¢| = |S¢|. Let f € E(S) and x,y € Sy. Consequently,
Sy forms a clique as I'(S) is a regular graph. Then (z,y) = (z) for some z € S.
Observe that (z) C Sy. It follows that Sy forms a subsemigroup of S. Since I'(Sy)
is complete, by Theorem 2.1.5, Sy satisfies one of the given condition.

Conversely, suppose © € Sy and y € Sy for some f, f' € E(S). By the given
hypothesis, note that I'(Sy) and I'(Sy) are complete (see Theorem 2.1.5). Then
|S¢| = |Sy| follows that deg(x) = deg(y). Thus, I'(S) is regular. O
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2.2 Chromatic Number of I'(5)

Aalipour et al. [2017] proved that the clique number of the power graph of any group
is at most countable. In fact Shitov [2017] has shown that the chromatic number of
the power graph of any semigroup is at most countable. In this section, we show that
the chromatic number of the cyclic graph of any semigroup is at most countable.

To prove our main result of this section, first we develop various lemmas.

Lemma 2.2.1. Let a,b € S such that m, = my = 1 and o(a) = o(b) = n. Then
a~bin T'(S) if and only if a ~ b in P(S).

Proof. Suppose that a ~ b in I'(S). Then (a,b) = (¢) for some ¢ € S. Since
me = mp = 1 so that a,b € K. which is a cyclic subgroup of S. Without loss
of generality, we assume that m. = 1. Since a cyclic group contains exactly one
subgroup of a particular order, we have (a) = (b) so that a ~ b in P(S). The
converse is straightforward as P(S) is the spanning subgraph of I'(S). O

Lemma 2.2.2. Forn € N, let H, = {s € S : my =1 and ry, = n}. Then
x(I'(H,)) = ¢(n), where ¢ is the Euler’s totient function.

Proof. Let = be a relation on H, such that x = y if and only if x is a power
of y. Clearly, this relation is reflexive and transitive. In order to show that the
relation = is symmetric, we assume that x = y. Then x = y* for some k € N.
Since o(x) = o(y) = n and x € (y) implies (x) = (y). Therefore, we have = is
an equivalence relation. By Lemma 2.2.1, x ~ y in ['(H,,) <= x = y. Since the
equivalence class of x forms a clique and it is the set of all the generators of (x), we

have x(I'(Hy)) = ¢(n). O
Lemma 2.2.3. For k > 1, the set I, = {x € S : m, =k} is independent in I'(S).

Proof. On contrary, if x,y € I such that x ~ y in I'(S), then (x,y) = (z) for

some z € S. Note that x = 2, y = 2/ and z = 2"y’ implies » = 2112 Ag a
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consequence, we get either z € {z,y} or m, = 1. If m, =1, then m, =m, =1; a
contradiction. Otherwise, x ~ y in P(S). Without loss of generality, we may assume
that x = y' for some ¢t > 1. Clearly, ¢ < k. By division algorithm, we can write
k =tq+r, where 0 <r <t—1. If r = 0, then we have m, = my, = g so that k = q.
Consequently, k = kt; a contradiction as ¢ > 1. If r > 0, then my; = g+ 1 = k.

Thus, k = t(k — 1)+ r > t(k — 1) implies ¢ < ;%5; a contradiction. O

Lemma 2.2.4. Let x € S be an element of infinite order. Then the set S(x,m,n)

is an independent subset of I'(S).

Proof. 1f possible, let y,z € S(x,m,n) such that y ~ z in I'(S). Then (y, z) = (t)
for some t € S. Clearly, y = t*, z = t® for some o, 3 € N. For y,z € S(x,m,n),
we get £ = y" = 2" implies t"* = y" = 2" = ¢". Note that oo # 5. Consequently,

o(t) is finite and so is o(x); a contradiction. O

Theorem 2.2.5. The chromatic number of the cyclic graph of any semigroup is at

most countable.

Proof. First note that if x,y € S such that o(x) is finite and o(y) is infinite, then
x is not adjacent with y. As a consequence, order of all the vertices in a connected
component of I'(S) will be either finite or infinite. Now suppose that x € S such
that o(x) is infinite, then C'(x) is the union of countable number of independent sets
(see Lemma 2.2.4). Thus, the chromatic number of the subgraph induced by C(x)
is at most countable. If o(x) is finite, then C(x) = AU B, where A = {y € C(x) :
my > 1} and B = {y € C(x) : m, = 1}. By Lemma 2.2.3, A is the union of
countable number of independent sets so that x(I'(4)) is at most countable. Since
B = H,, by Lemma 2.2.2, x(I'(B)) is at most countable. Hence, the chromatic
N

ne
number of C'(x) is at most countable and so is of I'(:S). O

Corollary 2.2.6. The clique number of the cyclic graph of any semigroup is at most

countable.



30 THE CycLIC GRAPH OF SEMIGROUPS

Now we provide an upper bound for y(I'(S)) where S is of exponent n, in the

following theorem.

Theorem 2.2.7. Let S be a semigroup with exponent n and let M = max{m, : a €
S,mq > 1} and R =sup{r, :a € S, m, = 1}. Then
R
X(P(S)) < (M = 1) + > o(k),

k=1

where ¢ 1s the Euler’s totient function.

Proof. Consider the sets [; = {zx € S: my, =j > 1} and H, ={x € S: m, =

1, r, = k}. By Lemma 2.2.3, I; is an independent set. Note that x(I'(Hy)) = ¢(k)
M R

(see Lemma 2.2.2). Since S = <‘U2 Ij> U <kU1 Hk>, we have x(I'(S)) < (M —1) +
= =

S (k). O

It is also proved that if S is of unbounded exponent, then y(I'(.S)) is countably
infinite (see Corollary 2.3.7).

2.3 Clique Number of I'(9)

In this section, we obtain the clique number of I'(S). The following lemma is useful

in the sequel.

Lemma 2.3.1. Form > 1, let S = M(m,r) = (a) be a monogenic semigroup such

that i < 3 and i,5 < m. Then the followings are equivalent:
(i) a' ~a
(ii) a’ € (a%)

(iii) i | j.
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Proof. (i) = (ii) First suppose that a' ~ ¢/ in T'(S). Then (a,a?) = (a*) for some
k € N. It follows that ' = a**, @’ = a* and a* = a7 for some s,t € N and
u,v € Ny. First note that a’ # a’/. If a' = @’ then m < ¢ which is not possible.
From a* = a“*¥7, we get a® = a®™*tsv*  Also, observe that either s > 1 or ¢ > 1.
Otherwise, a' = a’; a contradiction. Now if v = 0 then (ii) holds. We may now
suppose that v # 0. If u = 0, then a* € (/) implies a’ € (a’). Thus, a' = @/ for
some [ € N. Since ¢ < j, we have m < ¢ but given that ¢ < m. Therefore, u # 0.
Consequently we have u # 0 and v # 0. Since (su + tv)k > k, we get m < k. Now
consider a’ = a*. If kt # 4, then we get m < 4; a contradiction. Thus, kt = ¢. If
t # 1, then k <isom < k < i; again a contradiction. It follows that ¢ = 1 and so
i = k. Therefore, a’ € (a').

(i) = (iii) Suppose @/ € (a') so that @/ = a" for some ¢ € N. If j # 4t then m < j,
which is not possible. Thus j = it and so i | j.

(iii) = (i) Suppose ¢ | j. Then j = ki for some k € N. It follows that (a’,a’) = (a’)
and hence a’ ~ a7, O

r

For a positive integer k such that k = pi"py?...p%", we denote v(k) = >, «a;
as number of terms in its prime factorization. Now, in the following proposition, we

obtain the clique number of I'(S), where S is a monogenic semigroup.

Proposition 2.3.2. Let S = M (m,r) = (a) be a monogenic semigroup. Form > 1,
we have

w(l(9)) = max{p, : 1 <k <m},

w1 =1+r and for k> 2, ukzl—l—u(k)—l—ﬁ-

Proof. Let C be an arbitrary maximal clique of I'(S). To prove the result, we
show that the number of elements of index more than one in C is 1 4 v(k) and
ICNK,| = Gy for some k. First note that Nla] = S and so a € C. Without loss of
generality, we assume that a,a’, a®,...,a% arein C'such that 1 < i; < iy < -+ < i

and index of each of these elements is more than one. We claim that ¢; is a prime. If
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i1 is not a prime, then there exists a prime p such that p | i;. By Lemma 2.3.1, we get
a? ~ a’ for all j € {1,4y,4y,...,1s}. Let a? € C'NK,. Then by the proof of Lemma
2.3.1((i) = (ii)), we get a? € (a’). Again by Lemma 2.3.1, we get (a?) C (aF). It
follows that (a?, a?) = (a?) and so a? ~ a?. Consequently, C'U{a?} forms a clique; a
contradiction to the maximality of C'. Thus, ¢; is a prime and we write i; = p;. Now
aP* ~ a™ implies p; | o (see Lemma 2.3.1). We get iy = pit for some ¢t € N\ {1}.
Note that ¢ is a prime. Otherwise, there exists a prime p’ such that p’ | ¢. Since
pip’ | pit = iy, by the similar argument as used above, C'U {a”?'} forms a clique
and again we get a contradiction. As a result, ¢ is a prime and we write ¢ = p, so
that io = p1p2. On continuing similar process, we get i = p1ps . . . Ds.

Thus, there are 1 4 v(is) elements of index more than one in C. Now we count
the number of elements of index one in C'. We show that C' N IC, = K, so that
ICNK,| = o) (see Proposition 1.1.10).

To prove C'NK, = Kgis, consider a’ € Kgis. Since Kis = K, N {a’) (cf. Remark
1.1.2), we get at € (a**) C (a’) for all j, where j € {1,41,42,...,%s}. Therefore,
a' ~ a’. Since the subgraph induced by K, is complete and a' € K,, we get a’ is
adjacent with all the elements of C' whose index is one. If a' ¢ C, then C' U {a'}
forms a clique; a contradiction to the maximality of C'. Consequently a' € C'NK, so
that K. C K,NC. Let @' € K,NC. Then a' ~ a’. By the proof of Lemma 2.3.1((i)
= (ii)), we get a! € {(a’). Thus, a' € K, N (a®) = Ky, so that K, N {a®) = K.

Now, for each k such that 1 < k < m, we provide a clique of size ux. For k =1,
K. U {a} forms a clique of size 1 +r. For k > 1, we have k = p1py...py. Then
by Lemma 2.3.1, note that {a,aP',a??? ... a*} UK, forms a clique. Because if
x € Koo = (a®)NI,, then x € (a*) C (a’) for all j € {p1,p1ps, ..., k}. Consequently,

x ~ a’ for all j. This completes our proof. O

The following lemma will be useful in the sequel.

Lemma 2.3.3 ([Aalipour et al., 2017, Lemma 32]). Let G be a group and suppose
x,y,2 € G such that (x,y), (y,z) and (x,z) are the cyclic subgroup of G. Then
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(x,y,z) is cyclic subgroup of G.

Proposition 2.3.4. Let S be a semigroup with exponent n and C be a mazimal

clique in I'(S). Then C C {(a) for some a € S.

Proof. Let x € C. Then 2" = f for some f € FE(S). In view of Corollary 2.1.2,
x € Sy and Sy is a connected component of I'(S). Since C' is a clique, we get C' C S.
Now consider M = max{m, : x € C'}. We prove our result through the following
cases:

Case 1: M = 1. First we prove that (C') is a subgroup of S. For that, suppose
x € C C 5S¢ Then 2™ = f for some n € N. Since m, = 1, we get (x) is a
cyclic subgroup of S. It follows that xf = fxr = x. Further note that for any
x,y € C, we have xy = yx. Consequently, for a € (C), we have a = ci*ch? .. cfn,
where ¢; € C and k; € N. Observe that af = a so that (C) forms a monoid

with the identity element f. Since a = f'ck2 ... ckn

, we have ab = ba = f, where
b= (cP)=1. (M)~ Thus, (C) is a subgroup of S. Now we show that C'is a cyclic
subgroup of S and let z,y,z € C. By Lemma 2.3.3, (z,v, z) is a cyclic subgroup of
(C). Consequently, x'y/ ~ z for each 4,7 € N. Tt follows that C'U (x,y) is a clique
of I'(S). Since C' is a maximal clique, we must have (x,y) C C. Therefore, a € C
so that (C) C C gives (C) = C. Thus C is a subgroup of S. In view of Lemma
1.1.25, o(x) < 2n for all x € C. Choose x € C such that o(x) > o(y) for all y € C.
In order to prove C' C (x), let y € C. Then (x,y) = (z) for some z € C implies
y € (z) = (x). Thus the result holds.

Case 2: M > 1. By Lemma 1.1.25, o(x) < 2n for all z € C'. Now choose x € C' with
m, = M and o(x) > o(y) for all y € C such that m, = M. We show that C' C (x).
Let y € C. Then (x,y) = (z). It follows that x = 2%, y = 27 and z = x%y" for some
i,j € Nand uw,v € Ny. If either v = 0 or i = 1, then observe that y € (z) C (z).
Therefore, C' C (x). We may now suppose that v # 0 and ¢ > 1. If u # 0, then
2z = z%T gives m, = 1 and so m, = 1; a contradiction because m, = M > 1.

Consequently, we get u = 0 and so « € (y). By Lemma 1.1.8, m, < m,. Thus,



34 THE CycLIC GRAPH OF SEMIGROUPS

m, = m, = M gives o(z) > o(y). Since z € (y), we obtain z = y' for some [ € N. If
[ > 1, then o(x) < o(y) (cf. Lemma 1.1.8) which is not possible. Thus, = y and
hence C C (z). O

Theorem 2.3.5. Let S be a semigroup with exponent n. Then
w(l'(S)) =max({r,: me=landae M}U{uf: m,>1, 1<k <m,anda € M}),
pi=1+r, and fork > 2, pf =1+ v(k)+

Ta
(ra, k)*

Proof. Let C be a clique of maximum size in ['(S). Consider the sets

A={r,: aeM, my=1and B={pf: ae M, m,>1, 1<k <m,}. We
claim that |C| € AU B. By Proposition 2.3.4, C' C (d’) for some ¢’ € S and ¢’ € (a)
for some a € M (cf. Lemma 1.1.25). Then C' C (a). If m, = 1, then (a) is a cyclic
subgroup of S and so I'((a)) is complete ( see Corollary 2.1.6). Since C'is a clique
of maximum size in I'(S) so it is of maximum size in I'({a)) also. It follows that
C =TI'({(a)). Consequently, we get |C| = [(a)| = r, € A. Now let m, > 1. Then C
is again a clique of maximum size in I'({(a)). By Proposition 2.3.2, |C| = u$ € B for
some k, where 1 < k < m,. Next we provide a clique of size ¢ for each t € AU B. If
t € A, then there exists a € M such that ¢t = r, and m, = 1. Thus, (a) is a cyclic
subgroup of S and the subgraph induced by (a) is complete ( cf. Corollary 2.1.6).
We get a clique of size V(I'({a))) = o(a) = r, =t. If t € B, then t = uf of some
a € M such that m, > 1 and 1 < k& < m,. Since the prime factorization of & is
p1ps - - - ps and by the proof of Proposition 2.3.2, the set {a, aP', a??2, ... a*} UK

forms a clique of size ¢t = pj. This completes the proof. O

Theorem 2.3.6. Let S be a semigroup of unbounded exponent. Then w(I'(S)) is

countably infinite.

Proof. In view of Corollary 2.2.6, to prove the result, we show that for £ € N there
exists a clique of size |log, k| + 1. We claim that: there exists @ € S such that
a,a?,...,a" are non idempotent elements of S. Let, if possible, there exists i, < k

such that a’e = f for some f € F(S). Now choose n = k!l. Note that a" =
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(ai“)23'"(“_1)(““)""€ = f. Thus, S is of bounded exponent; a contradiction. This
proves the claim. By Proposition 2.3.1, note that the sets {a,aQ,a4, o ,CLQUOg2 kJ}

forms a clique of size |log, k| + 1. This completes our proof. O
In view of Theorem 2.2.5, we have the following corollary.

Corollary 2.3.7. Let S be a semigroup of unbounded exponent. Then x(I'(S)) is

countably infinite.

2.4 Independence Number of I'(S)

In this section, we investigate the independence number of I'(S). First we obtain

a(I'(S)) for a monogenic semigroup S in the following theorem.

Theorem 2.4.1. Let S = (a) be a monogenic semigroup. Then the independence

number of I'(S) is given below:

(

00 if S is infinite;
(1(9)) 1 if S is finite and m, = 1;
(@) =
L%J +1 ifm, >1, (i,7,) > 1 for all i, where (% <i<mg—1;
L%J if my > 1, (i,r,) = 1 for some 7, where (%W <i1<m,—1.

\

Proof. Suppose that S is an infinite semigroup. We first claim that for ¢ < j, we
have a' ~ @’ in T'(S) if and only if ¢ | j. If ¢ | j, then clearly ¢/ € (a’) so that a* ~ o
in I'(S). On the other hand, if a* ~ @, then (a’, a’) = (a*) for some a* € S. Thus,
a = a*, @/ = a'* and aF = a* + a¥7 for some t,¢' € N and u,v € Ny. Therefore,
ab = vt = gtttk CTf fy 4 v # 1, then m, < k which is not possible as S is
an infinite semigroup. Thus, tu + t'v = 1. Further note that both ¢,¢' can not be 1.
Otherwise, a’ = a’ which is not possible. It follows that either ¢t > 1 or ¢ > 1. If
t > 1then u=0astu+tv=1 Wegeta € (a/) so that a’ = @'’ for some [ € N.
For i # jl, we have m, < i; a contradiction. Consequently, i = jl and so j | ¢ which

is not possible as ¢ < j. If ' > 1, then by the similar argument used above, we get
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j =l for some " € N. Thus, ¢ | j. Consequently, the set {a? : p is a prime} is an
independent in I'(S) so that a(I'(5)) = cc.

Now we prove our result, when S is finite. If m, = 1, then S = (a) is a
cyclic group and therefore by Corollary 2.1.6, I'(S) is complete. It follows that
a(l'(S)) = 1. We now assume that m, > 1. Consider the set

T={a": {%—‘gigma—l}.

By Lemma 2.3.1, Z is an independent set of size L%J Further, we split our
proof in two cases:
Case 1: (i,r,) > 1 forall ¢, where [Ze] <4 < m, — 1. Then |Ku| < r, (cf.
Proposition 1.1.10). Since K, = (a™19) for some ¢, where 0 < g < r, — 1 and
mg + g = 1(mod r,). Note that Z U {a™=9} is an independent set. If a™ ™ ~ g’
for some ¢, where [Ze] < i< m, — 1, then a™*9 € (a) (see proof of Lemma 2.3.1
(i) = (ii)). Thus, K, € K, and so K, = K, which is a contradiction of |[ICi| < 7.
To prove our result, in this case, we show that if Z’ is an arbitrary independent set
in ['(S) then |Z'| < L%J + 1. Since the subgraph induced by &, is complete, we get
I, NZ'| < 1. Without loss of generality, consider the set

T'N(S\Ky) = {a™,a™,... a"% a", ... a"},

where i1 < ip < -+ <4y < 5% and Bt < iy < dggp < -0 < 4 < myg. For each
is € {i1,%,...,4}, we have 2i; < m,. Now choose the smallest natural number
a, such that i,2%%!1 > m,. Then e < 42% < m,. We claim that if 1, # i,
then 45, 2%1 # 75,2%2. If 45, 2%1 = 1,,2%2, then clearly a5, # a,,. Without loss of
generality, we assume that ay, > ay,. Thus, 7, (2%17%2) = 4, implies iy, | i5,. By
Lemma 2.3.1, a’1 ~ a’2; a contradiction of the fact that 7’ is an independent set.
Moreover, for each i, € {i1,149,...,4}, a* ~ a*?*** and a**"" € T but a**** can not
be in Z'. Thus, we have [T/ N (S\ K,)| < ¢+ [ Ze| —t = [ 2],

Case 2: (i,r,) = 1 for some ¢, where [Ze] <4 <m, — 1. Then |K,| = r, = |,

and so K, = K,. Thus, K, C (a*). Tt follows that a’ ~ x for all z € K,. Now let
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j < Ma. Then by the similar argument used in Case 1, we get a/ ~ /", where
a2 e T. Consequently, Z is a maximal independent set. Now to prove Z is an
independent set of maximum size, we assume that Z” is an independent set different
from Z. Since the subgraph induced by I, is complete, we get |Z” N K, < 1.
Also, by the similar argument used in Case 1, we get [Z7 N (S \ K,)| < [Ze]. If

17" N Ko| = 0, then |2 < |Ze|. If |T” N K,| = 1, then there exists o/ € I" N K,.
Since K, = Kqi, we get @ € Ky = (a’) N K,. Tt follows that a/ ~ a' and so a' € Z
but a’ ¢ Z". Again by the similar argument used in Case 1, we get |Z”| < [Ze].
Thus, Z becomes an independent set of maximum size |%e|. This completes our

proof. O

Now we determine a lower and upper bound of «(I'(.S)), where S is a semigroup
of exponent n. Consider a relation 7 on S defined by x 7 y if and only if (z) =
(y). Clearly 7 is an equivalence relation. Let X be a complete set of distinct
representative elements for 7. Now, let I, = {x € S: m, = 2} and

Jo={a e MNX: a¢(x)foranyx € I,}.

Theorem 2.4.2. Let S be a semigroup with exponent n and M 1is finite. Then
L]+ 1] < a(T($)) < 1B+ Y | 22|
2 2| < < |J2 -~ 5 |

Proof. To find a lower bound of a(I'(.S)), we show that I, U .J; is an independent set
of I'(S). By Lemma 2.2.3, I is an independent set. If a,b € .J5 such that a ~ b, then
(a,b) = (z) for some z € S. Since o(z) < 2n (see Lemma 1.1.25) and m, = m; = 1,
we get (a,b) = (z) is a cyclic subgroup of S. The maximality of (a) and (b) follows
that (2) = (a) = (b), which is not possible. Consequently, .J; is an independent
set. Further, to show I, U Jy is an independent set, let x € I, and y € J; such
that  ~ y. By Lemma 1.1.7 and by the proof Lemma 2.3.1, we have y € (z); a
contradiction of y € J,. Thus, I, U J5 is an independent set. Since I, N J, = & we
get a(I'(S)) = [I| + |-
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Now we obtain an upper bound for a(I'(S)). Note that the sets
. . [Mg .
A= {aEM: mq > 1, (4,7,) > 1 for all 4, {TW Szgma—l},

B:{aEM: mq > 1, (i,7,) = 1 for some i, {%W Sigma—l},

and C = {a € M : m, = 1} forms a partition of M. Since S is of exponent n,

by Lemma 1.1.25, note that S = < U (a>> U < U (b>> U < U (c>> Let Z be any
acA beB ceC

independent set in ['(S). We assume that x1, 2o, ..., 2, Y1, Y2, -« Yy 215 225 - - -, Zn

are the elements of index one belongs to Z such that

e for each i, where 1 <i <[ x; € (a) for some a € A and x; ¢ (b) for any
be B. (2.1)

e for each j, where 1 < j <m, y; € (b) for some b € B. (2.2)

e for each k, where 1 < k <mn, 2, € (c) for some c € C and z; ¢ (b) for any
be B. (2.3)

Now consider the set J = {z € Z: m, > 1}. To prove our result, it is sufficient

to show |J|+m < Z L%J and [ +n < |J5|. By Theorem 2.4.1, |Z N (b)] < | ™|
aeM

for all b € B and by the proof of Theorem 2.4.1, |Z N ({(a) \ Ko)| < |%2] for all

a € A. For x € S such that m, > 1, we get x € < UA(a> U <bUB(b>>. It follows
ac €

m m
that [J] +m < L—“J - L—“J
wleme Y || o3|
ac AUB aeM

Next we show that [ +m < |J2|. We establish a one-one map from the set
O = {1, 29,...,21,21,22,...,2m ) to some subset of .J. In view of this, for each
p € O, first we provide an element of J; corresponding to p. Let p € O such that
p = z for some k, where 1 < k < n. Since z; € (¢) for some ¢ € C C M, we
have m. = 1 and so (c) is a maximal cyclic subgroup of S. Choose v € X such that

(c) = (v). Then clearly, v € M. If v € (x) for some x € I, then (v) = () because

(v) is a maximal monogenic subsemigroup of S. But (v) = (z) is not possible
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because m, = 1 and m, = 2. It follows that for p = z, we have v € .J, such that
21 € (v). We may now assume that p’ € O such that p/ = z; for some i, where
1 <i <. Then p = x; € (a) for some a € A. Since m,, = 1, we get x; € K,.
By the similar argument used in proof of Lemma 1.1.25 (part (ii)), we get K, C (d)
for some d € M. If d € {x) for some x € I, then x; € (x). Since m, = 2 , we
have either x € (a) for some a € A or x € (b) for some b € B. If z € (a), then
x = a for some j. Clearly, (d) C {a/) and (d) = K, as d € M. Then K, C (a?)

follows that |K,i| = |[K,| = =r, and so (j, 7,) = 1. Since m, = 2 and x = @/,

(U, 7a)
by Lemma 1.1.7, we get [Ze]| < j < m, — 1. Therefore, (j,r,) > 1 which is not
possible. If z € (b) for some b € B, then x; € (b); a contradiction of (2.1). Now
choose w € X such that (w) = (d). Thus, for p = x; there exits w € .J such that
x; € (w). For each p € O, choose exactly one s € .Jy such that p € (s) for some
s € Jyo. In view of this the assignment f : p +— s is a map from O to some subset D
of J5. In fact, this map is one-one. For instance, if p,q € O such that pf =¢qf = s
then p,q € (s). It follows that p ~ ¢ (see Corollary 2.1.6) which is a contradiction

as p,q € I. Consequently, from above [ +n = |O] < |.J5]. O

In view of Lemma 1.1.13, note that Iy = {(¢,a,A) : a € G and py;, = 0}. Note
that I, C M. If x = (i,a,)\) € MO[G,I,A, P]\ I, then m, = 1. Observe that

Mg

|I5] = Z L?J By Theorem 2.4.2, we get the independence number of I'(S),
a€ls
where S is a finite completely 0-simple semigroup, in the following corollary.

Corollary 2.4.3. Let S be a finite completely 0-simple semigroup. Then

a(0(S) = |1l + Y | 5.

aeM

Theorem 2.4.4. Let S be a semigroup such that it satisfies one of the following

condition

(i) there exists a € S such that o(a) is infinite

(ii) M = sup{m, : a € S} is infinite
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(iii) the set E(S) is infinite

(iv) the set M = {a € S : (a) is a maximal monogenic subsemigroup of S} is

infinite.
Then the independence number of I'(S) is infinite.

Proof. 1f there exists a € S such that o(a) is infinite, then by the similar argument
used in the proof of Lemma 2.3.1, the set {a” : p isprime} is an independent
set of I'(S). Now suppose that M = sup{m, : a € S} is infinite. For k € N,
we establish an independent set of size n(k), where n(k) is the number of primes
less than k. Note that there exists @ € S such that m, > k. By Lemma 2.3.1,
the set {a? : p isaprime and p < k} is an independent set of size n(k). Thus,
a(l'(S)) is infinite. If E(S) is infinite, then a(I'(S)) must be infinite becuase any
two idempotent elements are not adjacent in I'(S). Further, we assume that the set
M is infinite. Then S contains infinitely many maximal monogenic subsemigroup
of S. Let a,b € M such that (a) # (b). Clearly, a = b. It follows that a(I'(S)) is
infinite. |



