Chapter 3

The Enhanced Power Graphs

In order to see how close the power graph is to the commuting graph, Aalipour
et al. [2017] introduced the notion of enhanced power graph of a group. The en-
hanced power graph P.(G) of a group G is a simple undirected graph with vertex
set G and two vertices are adjacent if they belong to the same cyclic subgroup.
A significant number of publications devoted to enhanced power graphs associated
with algebraic structures. Bera and Bhuniya [2017] classified the abelian groups
and the non abelian p-groups having dominatable enhanced power graphs. Ma and
She [2020] investigated the metric dimension of an enhanced power graph of finite
groups. Zahirovié¢ et al. [2020] supplied a characterization of finite nilpotent groups
whose enhanced power graphs are perfect. Recently, Bera et al. [2021] achieved an
upper bound for the vertex connectivity of the enhanced power graphs of an abelian
group. Additionally, they characterized the class of an abelian group such that their
proper enhanced power graph is connected. The enhanced power graph of semigroup
can be defined analogously.

This chapter concerns the study of enhanced power graph associated with groups
and semigroups. This chapter is arranged as follows. In Section 3.1, we study var-

ious graph invariants, viz. minimum degree, independence number and matching
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42 THE ENHANCED POWER GRAPHS

number for P.(G), where G is any finite group and then determine them when G
is a finite abelian p-group, the dihedral group Ds,, the semidihedral group SDsg,,
the dicyclic group Q4,, Ug, or Vg,. In Section 3.2, first we ascertain the structure
of enhanced power graph of a semigroup S. Then we classify the semigroup S such
that P.(S) is bipartite, acyclic, planar and complete etc. Finally, we obtain the
minimum degree and independence number of P.(S). The content of Section 3.1
has been partitioned into two parts and these parts are published in SCIE jour-
nal “Communications in Algebra”, 49(4),1697-1716, 2021 and in SCOPUS indexed
journal “Discrete Mathematics, Algorithms and Applications”, 13(1) : 205009, 2021,

respectively.

3.1 The Enhanced Power Graph of Groups

The enhanced power graph P.(G) of a group G is a simple undirected graph with
vertex set G and two vertices are adjacent if they belong to the same cyclic sub-
group. In this section, we study the enhanced power graph of various groups. In
this connection, first we consider the minimum degree, independence number and
matching number of enhanced power graph of finite groups. Then we determine
them when G is a finite abelian p-group, the dihedral group Ds,,, the semidihedral
group SDg,, the dicyclic group Qu,, Us, = (a,b : a® = 0> = e,ba = ab™') or
Ven = (a,b : a® =0 =¢, ba=a 7', 07 a = a~'b) in respective subsections. If
G is any of these groups, we prove that P.(G) is perfect and then obtain its strong
metric dimension. Additionally, we give an expression for the independence number
of P.(G) for any finite abelian group G. These results along with certain known
equalities yield the edge connectivity, vertex covering number and edge covering
number of enhanced power graphs of the respective groups as well.

We begin with minimum degree and edge connectivity of enhanced power graphs

of groups. In view of Theorem 1.2.8, we have the following lemma.
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Lemma 3.1.1. For any finite group G, the edge connectivity and minimum degree

of P.(G) coincide.

In light of Lemma 3.1.1, the following determines the edge connectivity of P.(G)

as well.

Theorem 3.1.2. For any finite group G, the minimum degree 6(P.(G)) = m — 1,

where m s the order of a smallest maximal cyclic subgroup of G.

Proof. Let x € G. Then x belongs to some maximal cyclic subgroup, say (y), of G.
Since (y) induces a clique in P.(G), we have deg(x) > o(y) — 1. Moreover, as (y) is
a maximal cyclic subgroup of G, N(y) = (y) \ {y}. This implies deg(y) = o(y) — 1,
so that deg(z) > deg(y). Now let M be a maximal cyclic subgroup of G of least
order. Then deg(x) > |M| — 1 for any x € G, and that deg(z) = |M| — 1 for any z

generating M. Accordingly, the proof follows. O
Recall that the following theorem will be useful in the sequel

Lemma 3.1.3 ([Robinson, 1996, Theorem 5.2.4]). A finite group G is nilpotent if

and only if G is isomorphic to a direct product of its Sylow subgroups.
Now we study the independence number of enhanced power graphs.

Theorem 3.1.4. For any finite group G, the independence number of P.(G) co-
incides with the number of mazximal cyclic subgroups of G. Furthermore, if G is
nilpotent and the prime factors of |G| are p1,ps, ..., py, then the independence num-

ber

a(P.(G)) = mimay - - - my,
where m; 1s the number of maximal subgroups of a Sylow-p; subgroup.
Proof. Let 1(G) denote the number of maximal cyclic subgroups of G. If z and y are

two elements generating two different maximal cyclic subgroups of GG, then they are

non-adjacent in P.(G). As a result, a(P.(G)) > 1(G). Now consider an independent
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set S in P.(G). Recall that any group can be written as the union of its maximal
cyclic subgroups. Since a maximal cyclic subgroup induces a clique in P.(G), no
two members of an independent set in P.(G) belong to the same maximal cyclic
subgroup. As a result, a(P.(G)) < p(G). Thus we conclude that a(P.(G)) = u(G).

Next let G be a nilpotent group and F; be a Sylow-p; subgroup of G for 1 < < r.
By Lemma 3.1.3, we have G = P % --- .. Then H is a maximal cyclic subgroup
of G if and only if H = H;H,--- H,, where H; is a maximal cyclic subgroup of P,
for 1 < i < r (see Chattopadhyay et al. [2020b]).

Let H;, H! are maximal cyclic subgroups of F, for 1 < ¢ < r. If H, # H) for
any 1 < k < r, then H1Hy--- H, # H{H}--- H/. This is because the generators
of Hy belong to HiHy--- H,, but not to H{H}--- H]. Therefore, if the number of

maximal subgroups of P, is m;, then a(P.(G)) = mymy - - - m,. O
In view of Lemma 1.2.10(i), we have the following consequence of Theorem 3.1.4.

Corollary 3.1.5. For any finite group G, the vertex covering number B(P.(G)) =
|G| — u(G), where u(G) is the number of mazximal cyclic subgroups of G.

We next compute values and bounds of the matching number of enhanced power
graphs of finite groups. First we recall some necessary definition and notations. For
any x € G, (x) is the cyclic subgroup of G generated by z. For any x,y € G, we
write x ~ y if (x) = (y). Observe that ~ is an equivalence relation on G. We denote
by [z] the ~-class containing x. Note that [z] is precisely the set of generators of
(x). For any x € G with o(x) > 3, the set [x] of vertices is a clique in P.(G). Since

¢(o(r))
2

I[z]| = ¢(o(x)), we have a matching, denoted by M,, of order consisting of

edges with ends in [z].

Theorem 3.1.6. Let G be a finite group. If G is of odd order, then o/ (P.(G)) =
Gl -1
2

. If G s of even order, then

|Gl

Gl = (-1) 1G]
27

5 < (P(G)) <
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where t is the number of involutions in G.

Proof. First let G be of odd order. Observe that for distinct x1,22 € G\{e}, either
(1] = [x2] or [x1] N [xs] = 0. Accordingly, either M,, = M,, or M,, N M,, = 0.

Gl—-1
Hence M := Uyeq\jey M, is a matching of order | |2 in P.(G). On the other
hand, the order of a largest matching in a graph of order n is LgJ Hence we get
Gl—1
0Py = 1E =L
Now suppose G is of even order. Then it has at least one involution, say v.
We denote the edge with ends ¢ and y by . Then M = {c} |JU,cq 0()>3 M, is a

Gl—(t-1)
2

matching of order n P.(G), where t is the number of involutions in

G
(. Additionally, as o/(P.(G)) < % holds trivially, we get the desired inequality

when G is of even order. O

Considering Lemma 1.2.10(ii), we have the following corollary of Theorem 3.1.6.

Corollary 3.1.7. Let G be a finite group. If G is of odd order, then B'(P.(G)) =

1
%. If G is of even order, then
G , Gl+(t-1
Bl < ppiay < =D,

where t is the number of involutions in G.

From the two preceding results, for any finite group G with a unique involution,
' (P(G)) = B'(P(G)) = |—§| Recall that for any prime p, a finite p-group G
has exactly one subgroup of order p if and only if G is cyclic, or p = 2 and G is
generalized quaternion (see Robinson [1996]). These facts along with Lemma 3.1.3

yield the following corollary.

Corollary 3.1.8. If G is a nilpotent group with a cyclic or generalized quaternion

Sylow-2 subgroup, then o/ (P.(G)) = '(P.(G)) = @

Now we investigate various structural properties of enhanced power graphs of

the groups under consideration.
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3.1.1 Finite p-Group.

Throughout this subsection, p denotes a prime number. The following lemmas will

be useful in the sequel.

Lemma 3.1.9 ([Aalipour et al., 2017, Theorem 28|). For any finite group G,
P.(G) = P(G) if and only if every cyclic subgroup of G has prime power order.

Lemma 3.1.10 ([Panda and Krishna, 2018a, Proposition 3.2]). For any prime p
and finite p-group G, each component of P(G\{e}) has exactly p — 1 elements of

order p.

Lemma 3.1.11 ([Cameron, 2010, Proposition 4]). Let G be a finite group, and S
be the set of vertices of P(G) that are adjacent to all other vertices. If |S| > 1, then

one of the following occurs.
(i) G is cyclic of prime power order,and S = G

(ii) G is cyclic of non-prime-power order n. and S consists of the identity and the

generators of G

(i) G is generalized quaternion and S contains the identity and the unique invo-

lution.
In view of Lemma 3.1.9, we have the following straightforward remark.
Remark 3.1.12. For any finite p-group G, the graphs P(G) and P.(G) are equal.

Accordingly, we consider power graphs of p-groups in this subsection. Let G be
a finite p-group. Then P(G) is perfect, since more generally, the power graph of
any finite group is perfect (see Doostabadi et al. [2015]). It is known that a finite
abelian group G is isomorphic to a unique direct product of cyclic groups of prime
power order. In this product, let 7(G) be the order of the smallest cyclic group.

Then the following is a consequence of Theorem 3.1.2.
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Theorem 3.1.13 ([Panda and Krishna, 2018b, Theorem 5.1]). For any finite abelian
p-group G, the minimum degree of P(G) is 7(G) — 1.

Before proceeding further, we are required to fix some notations.

Notation 3.1.14. Consider a prime p and positive integers ay; > --- > «, and
mi,...,ms. Forany 1 < 5 < s, we denote n; = pzz=1 iy = Zgzl m;, and

that n = n, and r = r,. Additionally, we write ng = 1 and rq = 0 for consistency.

Lemma 3.1.15 ([Ma, Fu and Lu, 2018, Corollary 2.11]). If G is a finite p-group,
then a(P(G)) = |IM(G)|.

Note that Theorem 3.1.4 and Lemma 3.1.9 together yield the above lemma as
well. In the next theorem, we compute |[M(G)| and thus a(P(G)) for any finite
abelian p-group G. To state as well as to prove it, we follow Notation 3.1.14 through-
out. Moreover, as every finite abelian group is a direct product of cyclic groups of

prime power order, assume in the following that G = Zjay x -+ X Zpz, .

Theorem 3.1.16. For any finite abelian p-group G,

(@) =3 T

Ny

where

P —1 o
Zk_lp S ! pri=DB if k> 1,

j=1 , B=arjt1
1

0ifk=1,

M =

and k is such that r_1 <t < ry.

Proof. 1t is enough to prove the theorem for G = ZJ X -+ X Zya,. Notice that
|G| = n and G is direct a product of r cyclic subgroups. If G is cyclic, then
a(P(G)) = 1 since P(G) is complete. Now let G be noncyclic, that is, r > 2.

By Lemma 3.1.15, the objective is to compute |M(G)|. For that, we shall par-

tition M(G) as follows. For any x € GG, we denote the ith component of x by x;.
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For any maximal cyclic subgroup (z) of G, observe that (z;,p) = 1 for at least
one 1 < ¢ < r. Forany 1 < ¢ < r, we define M; = {{x) € M(G) : (as,p) =
L and (x1,p) # 1,..., (x—1,p) # Lif t > 1}. Thus a(P(G)) = > 1, M.

Now we fix 1 < ¢t < r and compute |[M;|. We have t = r,_; + m for some
1 <k <sand 1 <m < my. So that if (x) € M,, then o(x) > p*. Next for any
B> ay, we define M, 6 = {(x) € M, : o(x) = p°}. Then we have,

{z = (x) € Mypor}]

(0% m— Qe — (8% n
= plk-t ’“-p( 1) (o 1).¢(p OF

no(p™*)

- plEymiei—ar) e tm—1

Np_q - Pk

Hence,

n
p{zfﬁ mi(a—og) ag+m—1"

|Mt7p0‘k | - (31)

Suppose that ¢ < m;. Then k = 1 and that ¢ = m. Moreover, o(x) = p™ for
any (r) € My, so that M; = M, pa.. Thus we have

(r1—1)a
. n . n P
|Mt| 7 pa1+t—1 o pt—l { ny }

Consequently, the proof follows for ¢ < m;.

For remaining of the proof, we take ¢ > my, that is, & > 1. We observe that

p* < o(x) < pM~! for any (x) € M,. Let 8 > ay, be such that ay,; < 8 <oy —1
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for some 1 <! <k —1. Then

H{a: (x) € My}l
= {p(p”) ()T 4 PGP ) (pF )R g (pP Ty g (pP) )

m—1)(ap—1 o
e N N n-ptm Ve g(p)

pm1a1 .. .pmk71ak71 . pmak
_ (mitetmy—1)(8-1) <pm1+m+ml _ 1>
=p
p—1
IR CTIRE S D B TS DA p(m_l)(ak_l) - P(p™) - gb(pﬁ)
p p pm1a1 .. .pmk71ak71 . pmak

— p(m1+..~+ml—1)(/8—1) <pm1+"'+ml _ 1)

o m(ag—1) | 3
,pml+1(al+1—1),,,pmkﬂ(akﬂ—l), n-p @) $(p°)

pm1a1 .. .pmk71ak71 . pmak
ng(p?) (p=im = 1)
T mi@ A mim et ptmo1
Hence,
|Mt pB | =

p{z —1 mi(og— )H‘Z _q Mi— —mp+B4+m—1"
From (3.1), we get

k;7
pzf=1 mi(og—og) +3 0 mitag+m—1 pzf=1 mi(ovi—ag)+3 8 mitag+m—1"

|Mt,p°‘k | =

Additionally,

k-1 <p2 =1 M __ 1) aj—1 (Z s
= i=1 T~
Z: pzz 1 mlo‘l+zz 1 mitm—1 Z P

B= Qj+1

k—1 23—1 mi _ 1 ]
_ n p== Y pOiamins,
pi;ll mitm=1 £ ng=1 micy
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Therefore, we have

k-1 aj—1
M= Y Moyl
i=1 f=aj1
k—1 aj_l n <pZZ=1 mg o __ 1)
n
o pzlemi(ai—ak)Jrzf;f m+ap+m—1 T Z Z ngzlmi(ai—ﬁ)Jrzf;f m;+B+m—1
J=1 B=ajt1
k—1 J ) oj—1
n 1 pi=1mi — ] .
= — +Z— Z p(zl—1 m4 )5
k=1 L m— k mi(o—a o =1 T
pzi=1 m;+ 1 pzl=1 z( 7 k)+ k j:l pzz:l 1 ﬁ:aj+1
r (re=Dox FZLory g %!
_ n p p (r;—1)8
P L W
t=1 k j=1 T B=ajn
This concludes the proof of the theorem. O

Since every abelian group is nilpotent, from Lemma 3.1.3 and Theorem 3.1.16,

we have the following corollary.

Corollary 3.1.17. For any finite abelian group G with the Sylow subgroups Py, Ps, ..., P,
of G, the independence number a(P.(G)) = [[;_, p(F), where u(F;) can be com-

puted using Theorem 3.1.16 for 1 < i <r.

The following theorem computes the matching number of enhanced power graphs

of finite groups.

Theorem 3.1.18. For any finite p-group G,

G| -1
. B 2 p > 2,
CPEN = 6= -
I

where t is the number of involutions in G.

Proof. For p > 2, the result follows from Theorem 3.1.6. So for the rest of the proof,
we take p = 2.
Observe that the only common vertex between any two distinct blocks in P(G)

is e. Thus the number of blocks in P () coincides with the number of components
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of P(G\{e}). Following Lemma 3.1.10, every block in P(G) has exactly one vertex
of order two. So that the number of blocks in P(G) coincides with the number of
involutions, say ¢, in G. Moreover, in light of Lemma 1.1.9, the number of vertices
in any block in P(G) is even.

Consider a matching M in P(G). Let M’ be the subset of M containing all
elements of M whose endpoints are non identity elements of G. Let B be any
block in P(G). Since |V(B)| is even, F(B) contains at most % elements

of M’. From this and the fact that e is a vertex in every block in P(G), we have

Gl —(t+1
M| < % Additionally, M contains at most one edge with ¢ as an

Gl—(t—1)
5 .

Therefore, to prove the theorem, it is enough to produce a matching of cardinality
Gl—(t—1)
2
the definition of M, for any x € G. We consider M¢ := {e} |JUses, o(a)>2 Mz, where

endpoint. Thus we have |[M| < |M'|+1 <
. Let € be an edge with e as one end and the other an involution. Recall

S is a subset of G containing exactly one element from each ~-class. Then all
elements of Mg, except ¢, have both ends in same ~-class, and ¢ does not have

common endpoints with any other element Mg. Hence Mg is a matching in P(G).
Gl=(+1D) ,_Gl=t-1)

Finall Mg| =
ma Y7 as | G| 2 2

, the proof follows. O

Theorem 3.1.19. Let G be any finite abelian p-group with exponent p®. Then the

strong metric dimension of P.(G) is
(i) |G| = (a+1) if G is non-cyclic,
(i) |G| =1 if G is cyclic.

Proof. The proof is straightforward when G is cyclic. Now let G be noncyclic. Then
G = (] x -+ x €, for some cyclic p-groups C1, ..., C,, r > 2. Consider two distinct
elements z = (21, x2,...,2,) and y = (y1,¥y2,. .., ¥-) in G with o(x) > o(y). Suppose
that N[x| = N[y|. Clearly, x ~ y.

If y = e, we have N[z] = N[y] = G. However, this is impossible in view of Lemma
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3.1.11. Analogous situation occurs when x = e. Hence both z and y are nonidentity
elements.

If possible, let o(x) = 2. Then o(y) = 2, since o(x) > o(y). As x ~ y, we thus
have (x) = (y). That is, x = y, which is a contradiction.

So that o(x) > 3. Now suppose o(x) > o(y). Then as x ~ y, there exists an

integer ¢ with p|¢ such that y = 2'. We have the following cases.

Case 1: z; = e for some fixed 1 <7 < r. We define an element z = (21, 2,..., 2,)
such that z; is an element of order p in Cj and z; = x; for 1 < j <7, j # 4. Then
notice that o(z) = o(x) and (z) # (x). As a result, z = x. However, as y = 2", we

have z ~ y. This contradicts our assumption that N[x] = N[y].

Case 2: z; #eforall 1 <j <r. Let 1 <k <r be such that o(x;) < o(x;) for
all 1 < j <r. We define an element w = (wy, ws, ..., w,) such that wy = a7
where o(x;,) = p®, and w; = x; for 1 < j < r, j # k. Then y = w', so that
w ~ y. Moreover, as o(w) = o(x), we have w = z* for some (s,p) = 1. Accordingly,
o(z;)| (s —1) forall 1 < j <, j# k. Since o(xy) < o(x;) for all 1 < j <r, we
thus get p® | (s — 1). This implies 27" '+1 = 2, which is not possible. As a result,
w ~ x. This again results in a contradiction.

Consequently, o(x) = o(y). Hence as = ~ y, we have (x) = (y).

Since converse is trivial, we therefore conclude that N[x] = NJy] if and only if
o(x) > 3 and (x) = (y). From Lemma 3.1.11, we get € = {e}. Moreover, if p = 2,
then ¥ = {x} for every element x of order 2 in G. Hence the =-classes and ~-classes
coincide for every x € G.

Now consider a clique C' in 73(G) with at least two vertices. Then for any
pair of distinct vertices Z, y in C, we have o(x) # o(y). Additionally, for any
r € G, we have o(x) = p’ for some 0 < i < a. Thus w(?g(G)) < a+ 1. Since
G is p-group of exponent p*, there exists 2 € G of order p®. We observe that
{e} U {ﬁ 0 <i<a—1}isaclique in P(G). Therefore, we get w(P(G)) = a + 1
and subsequently, sdim(P(G)) = |G| — (a + 1), by Theorem 1.2.15. O



3.1 THE ENHANCED POWER GRAPH OF GROUPS 53

3.1.2 The Group Uy,

For n > 1, the group Us, of order 6n is defined in James and Liebeck [1993] as the

group generated by the elements a and b such that a®® = 0% = e, ba = ab™* i.e.
Usn = (a,b: a® =b* = e,ba = ab™").

Further, in order to discuss the existence of an orthogonal basis associated with U,
the conjugacy classes and the characters of Us,, have been obtained in Darafsheh and
Poursalavati [2001]. To investigate the graph invariants of P.(Us,) first we study

the structure of Us,.
Remark 3.1.20. The group Us, is of order 6n if and only if b ¢ (a).
Since ba = ab™!, for any 0 <4 < 2n — 1, we have

b a'b if i is even, 4 P a'b? if i is even,
at = an a' =
a'h?® if 1 is odd, a’b if 7 is odd.

Thus every element of Us,\(a) is of the form a'b’ for some 0 < 7 < 2n — 1 and
1<jy<2
Moreover, for any 0 < < 2n — 1,
A a’ if 4 is even, i a’ if 4 is even,
(ab)' = A and (ab®)' = A (3.2)
a'b if 7 is odd, a'b?® if 1 is odd.
Consequently, we have the following remarks.

Remark 3.1.21. For x € Uy, we have x = a®**1b for some 0 < s < n — 1 if and

only if z € (ab)\(a).

Remark 3.1.22. For x € Us,, we have x = a®**1b? for some 0 < s < n — 1 if and

only if z € (ab?*)\(a).

Remark 3.1.23. Every element of Ug,\ ({a) U (ab) U (ab?®)) is of the form @b and

a®b? for some 1, j.
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From the presentation of Us, and by mathematical induction, we have

a9 if j = 0(mod 3), a*37if j = 0(mod 3),
(@3 b)Y =< @%b ifj = L(mod 3), and  (a*¥ ) =< 23982 if j = 1(mod 3),
a®39p? if j = 2(mod 3), a*37b if j = 2(mod 3),

(3.3)

In the rest of this subsection, we shall write n = 3¢ for integers k¥ > 0 and ¢t > 0
such that 31 ¢.

By Remark 3.1.23 and (3.3), we have the following lemma.
k , .
Lemma 3.1.24. Forn > 1, we have U, = (a)U{ab)U(ab*)UJ ((a2'3lb> U (a2'3162>> :
i=0

For the remainder of this subsection, we shall denote P, = (a>*'b), Q; = (a®3'1?)
for 0 <4 <k, and Py = (ab), Qpy1 = (ab?).
Thus we have

Usn = (a) U|J (P, U Q) U (Pis1 UQpp1). (3.4)

=0

We observe that that {b,a23"} C (a23°b) N (a23*b?). As consequences, we have

the following remarks.
Remark 3.1.25. For i = k, we have P, = @);.
Remark 3.1.26. For 0 <i < k — 1, we have (a®¥ ") C (a®%).
Remark 3.1.27. For i = k, we have (a®*"") = (a®%").
Since o(a) = 2n, we have the following remark.
Remark 3.1.28. In Ug,, we have o(a?%") = t.

In view of (3.2) and (3.3), we have the following lemma.
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Lemma 3.1.29. For i < k, we have P, N {a) = Q; N {(a) = (a**"). Moreover,
Pyn{(a) = (a*¥).

Proof. By (3.3), we have (a*>*'b)7 € P, (a) if and only if j = 31 for some I. Then
PN {a) = ((a®¥b)?) = (a**"""). Similarly, we have Q; N (a) = (a®>*""). For i = k,
we have P, N (a) = (a®*"). Since a3 € (a**"), and

2641
ak+1) 3 .
- <a23 ) if { = 1mod 3,
a = 41
3

<a2'3k+1> if £ = 2 mod 3,
we get P, N (a) = (a**"). O
Lemma 3.1.30. For the group Us,, we have

() [P = Qi = 3531, where 0 < i < k — 1. Morcover, |P\(a)] = |Q\{a)] =
2. 3k—i—1t

(i) |Px| = |Qk| = 3t. Moreover, |P,\(a)| = |Qr\(a)| = 2t.
(il)) [Pr1| = |Qrta| = 2n. Moreover, [Py \(@)| = |Qr1\(a)| = n.

Proof. (i) Since P; = (a23'b), we have (a23'0)3" " = e. If | < 3k, then by (3.3)
and Remark 3.1.20, (a23'b)' # e. So that |P,| = 3"t. Now we observe that
o(a?¥"") = 3¥==1¢. Thus we get |P,\(a)| = 2- 3*"~1¢, by Lemma 3.1.29. Similarly,
Q@) =2 311

(ii) Since P, = (a2¥D), by (3.3), we have a®¥" € {(a®¥" )2+, (a**"b)"*!} and
(a®3"b) € {b,t?} . Consequently, a®* b € (a¥b). By Remark 3.1.28 and as
o(a®®") = t, it follows that (a23*)b, (a*>3")70? and (a?3")! are all distinct elements
in (a2%'b), where 1 < 4,7,1 < t. As a result, o(a®3"b) > 3t. Since (a23"b)* = e,
we obtain o(a23'b) = 3t = |P|. Accordingly, by Lemma 3.1.29 and Remark 3.1.28,
| P\ (a)| = 2t. The proof for () is similar.

(iii) The proof is straightforward following (3.2). O
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The next result describes structure of Ug,, further.

Proposition 3.1.31. For 0 <@ < k+ 1, the following hold:

(i) Iz € P\(a), then « ¢ < U Pj) y <U @j)

J=0,j7#i

(ii) If x € Qi\(a), then x ¢ <U Pj) U < U Qj>.

j=0 j=0,j#i

Proof. (i) If possible, let x € Ug,\ P;. Then in view of (3.4), we have the followings.
Case 1: x € ;. For i =k + 1, we have x € (ab) N (ab?). By Remark 3.1.21 and
Remark 3.1.22, we have x = a*"*'b and v = a*T1b? for some r,s. Consequently,
b € (a), a contradiction of Remark 3.1.20. Suppose 0 < ¢ < k. Then by (3.4),
z = (a*¥b)? and 2 = (a*¥'b?)?, where p,q < 3"t (see Lemma 3.1.30(i)). Clearly,
31 pand 31q. Otherwise, x € (a), a contradiction. If p = 1(mod 3) and ¢ = 2(mod
3), then by (3.3), z = a**?b and & = a**%. Since p,q < 3577t, we have 2-3*.p < 2n
and 2- 3" - ¢ < 2n. Consequently, a®3"?b = a®>3"b gives p = ¢, which is not possible.
Similarly, we get p = ¢ for the case p = 2(mod 3) and ¢ = 1(mod 3), again a
contradiction. For the case p = 1(mod 3) and ¢ = 1(mod 3), we have z = a**?b and
& = a?3"9h%. Consequently, b € (a), a contradiction. We get a similar contradiction
for the case p = 2(mod 3) and ¢ = 2(mod 3).

Case 2: z € FP; with 5 # 4. If j = k + 1, then by Remark 3.1.21, we have
x = a'b for some odd I. Since j # i, we get either z = a’'b or x = a"'b? for some
even ', a contradiction. Similarly, we get a contradiction when ¢ = k + 1. Let
0<4,j<k Thenz = (a2'3ib)“ and z = (a2'3jb)” for some u < 3¥t and v < 3F9¢t
(see Lemma 3.1.30 (i)). Clearly, u,v are not divisible by 3. Otherwise, = € (a), a
contradiction. If % = 1(mod 3) and v = 2(mod 3), then by (3.3), we get x = a>* b
and x = a2¥ b2, Consequently, b € (a), a contradiction of Lemma 3.1.20. Similarly,

we get a contradiction if v = 2(mod 3) and v = 1(mod 3). For the case u = 1(mod

3) and v = 1(mod 3), we have z = a*3¥*b and = = a®¥"b. Since u < 3*7i¢ and
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v < 3Ft, we have 2- 3" - u < 2n and 2- 3 - v < 2n. Consequently, a3 b = a>¥p
gives 2-3"-u = 2-3/-v. Without loss of generality, we assume that 7 < j. Now, we
get u = 3~y implies 3| u, a contradiction. Similarly, we arrive at a contradiction if
u = 2(mod 3) and v = 2(mod 3).

Case 3: x € Q; with j # 4. If j = k+ 1, then by Remark 3.1.22, we get x = a™b?
for some odd m. Since i # j, we have either = a™b or z = o™ b? for some even m’
which is not possible. Similarly, we have a contradiction if : = k£ + 1. So, we assume
that 0 < i,j < k. Then z = (a*¥b)" and x = (¥ b?)* for some r < 3t and
s’ < 3*7Jt (see Lemma 3.1.30 (i)). Clearly, /, s’ are not divisible by 3. Otherwise,
x € (a), a contradiction. For the case 1’ = 1(mod 3) and s’ = 2(mod 3), we have
x=a*""band x = a®¥*'b. Since ' < 3*~t and s’ < 3*7J¢, we have 2- 3¢ -7/ < 2n
and 2-37 - ¢ < 2n. Consequently a®¥ b = a*¥%'b gives 2- 3" -1/ = 2.3/ . ¢
Without loss of generality, we assume that ¢ < j. Now, we get v’ = 3'~%s’ implies
3|7, a contradiction. Similarly, we get 3| if ' = 2(mod 3) and s’ = 1(mod 3).
For v/ = 1(mod 3) and s = 1(mod 3), we have x = a**"'b and z = a2¥ %2
Consequently, b € (a), again a contradiction. We get a similar contradiction when
r’ = 2(mod 3) and ¢ = 2(mod 3).

(ii) The proof is similar to that of (i). O

As a consequence of Proposition 3.1.31, we have the following lemma.

Lemma 3.1.32. Let x € P)\(a), where 0 < i < k+1. Then x ~y in Pe(Usy) if
and only if y € P;.

Proof. Suppose x ~ y for some y € Ug,\ P;. Then x,y € (z) for some z € Us,. Note
that z ¢ P, and so x € Us, \ P;, a contradiction of Proposition 3.1.31 (i). Since F; is

a cyclic subgroup and x,y € F;, the converse holds. O

The proof of the following lemma is similar to the proof of Lemma 3.1.32.

Lemma 3.1.33. Let x € Q;\(a), where 0 < i < k+ 1. Then x ~y in P.(Us,) if
and only if y € Q;.
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The following proposition determines neighbourhoods of vertices of P, (Us,).
Proposition 3.1.34. For the graph P.(Us,), we have
(i) N[z] = P; if and only if x € P\(a), where 0 < < k+ 1.
(ii) N[z] = Q; if and only if x € Q;\(a), where 0 < i < k+ 1.
(iii) Nlx] = {(a) if and only if x = a' for some odd i.

(iv) N[z] = Usn if and only if x € Py 0 {a) = (a®3").

i—1

(v) Nzl = U (P UQ)) U Presy U Qpir U (a) if and only if x € (a®*)\(a**""),

=0
where 0 <3 <k — 1.

Proof. (i) If x € B;\(a), then by Lemma 3.1.32, we have N[z] = P;. Conversely,
suppose that x ¢ P;\(a). Then either x € P, N (a) or x € Ug,\F;. If x € P, N {a),
then clearly x ~ a. But a ¢ P, so that N[z] # P;, a contradiction. On the
other hand, if x € Us,\F;, then by Lemma 3.1.32, we have N[z] # F;, again a
contradiction. This proves (i).
(ii) The proof is similar to that of (i).
(iii) Let « = o’ for some odd i. By (3.2), (3.3) and (3.4), we have o’ ¢ P; U Q; for
all 0 < j <k + 1. Consequently, a’ ~ z if and only if z € (a). Thus N[z| = (a).

Now let x € Us, be such that N[z] = (a). If x = a* for some ¢, then by (3.2),

x € (ab). This implies x ~ ab, which is a contradiction. Moreover, from (i) and (ii),
we have x ¢ (B UQ;)\(a). Thus x = a’ for some odd i.

(iv) Let © € P, N {a) = (a*3"). By Remark 3.1.26, (a?3") C (a®%") for all 0 < i <
k — 1. By Lemma 3.1.29, since P, N (a) = (a®3""") = Q; N (a), we have a?3" € P,
N Q; for all 0 < ¢ < k. Accordingly, x € P, N Q; for any 0 < 72 < k. Since
Prv1 N{a) = (a*) = Qry1 N {a), we get ¥ € Py NQpr1- Thus x € (a) N (PN Q;)
for any i, 0 <i < k+ 1. For any y € Us,, by (3.4), we have x ~ y. Consequently, x

is a dominating vertex of P, (Us,).
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Conversely, suppose r is a dominating vertex. Then z is adjacent with every
element of P, and Q; for all 0 < i < k+1. Consequently, x € P,NQ;N(a) = (a**"")
for all 0 < i < k. Hence x € P, N (a) = (a®3").

(v) Let € (a**)\(a**""). Clearly, i < k. We prove that

i—1

x ~y if and only if y € U (P UQ;) U Pry1 UQp Ua).
=0

In order to prove this, by (3.2), we have x € P,y N Q1. Clearly, z € (a).
By Lemma 3.1.29, we have P; N (a) = (a**""). Moreover, by Remark 3.1.26,
x € (a2'3j+1> for all 0 < j < ¢— 1. Thus it follows that x € P;. Similarly, one can

i—1
observe x € ();. Consequently, for any y € |J (F; U Q;)UFyi1 UQg+1U(a), we have
7=0

y ~ x. If possible, let y ¢ Dl (P, UQ;) U Prp1 UQpt1 U (a). Then in view of (3.4),
we have either y € R\(a}jzor y € Q;\(a) for some j, where i < j < k. If z ~ y,
then by Lemmas 3.1.32 and 3.1.33, we have either x € P; or x € );. If x € P;, then
clearly z € P;N(a) = (a*¥""). Since j > 4, by Remark 3.1.26, we get z € (a®>¥"'), a

contradiction. Similarly, we get a contradiction when x € ;. Consequently, x ~ y.

i—1
Hence if z ~ y, theny € |J (P;UQ;) U Pr1 UQpi1 U(a). O
j=0

In view of Theorem 3.1.34, the enhanced power graph of Us,, shown in Figure 3.1,
where T = {a®: 0<i<n—1}, T ={a*:1<i<n—1}, T, = (a®¥)\ (a**")
and 0 <7 <¢—1.

Applying preceding results of this subsection, we now show that the enhanced

power graph of Uy, is prefect.
Theorem 3.1.35. The enhanced power graph of U, is perfect.

Proof. In view of Theorem 1.2.4, it is enough to show that P,.(Us,) does not contain
a hole or antihole of odd length greater than or equal to five. Suppose first that
P.(Usy) contains a hole C' given by @y ~ x9 ~ -+ ~ x; ~ x1, where [ > 5. Then we
have the following two cases and each of them ends up contradicting the fact that

(' is a hole.
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FIGURE 3.1: The enhanced power graph of Ug,

Case 1: z; ¢ (a) for all i. In view of (3.4), we obtain either x; € P;\(a) or
x1 € Q;\(a) for some j. Without loss of generality, we suppose that x; € P;\(a) for
some j. Since x; ~ X1 ~ 2, by Lemma 3.1.32, we have x;, 22 € P;. Consequently,
X ~ Xa.
Case 2: z; € (a) for some i. Without loss of generality, we assume that x; € (a).
Since x4 is not adjacent with z; so by (3.4), either z, € P;\(a) or x4 € Q);\(a) for
some j. Also, x3 ~ x4 ~ x5, by Lemmas 3.1.32-3.1.33, we have either 23,25 € P; or
x3, %5 € (). We obtain 3 ~ xs.

Now suppose C” is an antihole of length at least 5 in P,.(Us,), that is, we have

a hole y; ~ yp ~ -+ ~ 1y ~ yy, where [ > 5, in P.(Ug,). Then again we arrive at

contradiction in each of the following cases.

Case 1: y; ¢ (a) for all i. Since y1 ¢ (a), by (3.4), either y; € P;\(a) or y1 € Q;\(a)
for some j. Since y; ~ y3 and y; ~ y4 in Pe(Us,). By Lemma 3.1.32 and Lemma
3.1.33, we get either y3,ys € P; or y3,ys € Q. Thus we have y3 ~ y, in P.(Usy,).

Case 2: y; € (a) for some i. Without loss of generality, we assume that y; € (a).

Notice that we have y; ~ yo in P.(Us,). Consequently, either y, € P;\(a) or
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Yo € Q;\(a). Moreover, yo ~ y, and yo ~ y5 in P.(Usy,), as €’ is an antihole in
P.(Uspn). Thus either y4, ys € Pj or ys,ys € Q5. As aresult, x4 ~ y5 in P.(Usy,). O

In the following theorem, we compute various graph invariants under considera-

tion for P.(Usy,).
Theorem 3.1.36. Forn > 1, the following hold:
(i) The minimum degree of P.(Usy) is

2% —1 ifk=0,
3t—1 ifk>0

6(P6(U6n)) =

(ii) The independence number of Pe(Usy) is 2k + 4
(iii) Forn > 1, the matching number o/ (P.(Usy)) is 3n and o/ (P.(Us)) = 2
(iv) The strong metric dimension of P.(Us,) is 6n —k — 2.
Proof. (i) By Proposition 3.1.34, we have
(a) deg(x) =2n —1 for all x € (Pry1 UQrr1)\(a).
(b) deg(z) = 3% — 1 for all x € (P, U Q;)\(a), where 0 < i < k — 1.
(c) deg(x) =3t —1 for all x € P\ (a).
(d) deg(a’) = 2n — 1, where ¢ is odd.
(e) deg(x) =6n — 1, where x € P, N (a).

Moreover, for 0 <i < k—1 and x € (a**)\(a®3""), we get

i—1

N[z] = | J (P UQ;) U Pi1 UQpr U {a).

j=0
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As a result,

deg(x |+Z (1A (@)] + 1@\ @) + [P\ (@] + [Qria\(@)| =1

-1

Z a) -1
— 4n + 2t3’f—"(3i —1)—1.

Let x € Ug,. If k =0, then clearly n = t. Then in view of (3.4) and from above,
deg(x) € {2n — 1,3n — 1,6n — 1}. Thus §(Pe(Usn)) =2n— 1 =2t — 1.

Now take & > 0. From above we observe that deg(z) > 3t — 1, and when
x € Py\(a), we have deg(x) = 3t — 1. Hence 6(P.(Us,)) = 3t — 1.
(ii) Consider the set I = {a,ab,ab? a>3" b} U{a?¥b:0<i<k—1}U{a®¥b?:0<
i < k—1}. Then by Lemma 3.1.32 and Lemma 3.1.33, [ is an independent set of size
2k + 4. If there exists another independent set I’ such that |I’| > 2k +4, then there
exist x,y € I’ with the following possibilities: (a) z,y € P; for some 0 <7 < k+ 1,
or (b) x,y € Q; for some 0 < j < k+1, or (c) z,y € (a). For each case, we have
x ~ y, which is a contradiction. So that a(P.(Us,)) = 2k + 4.

(iii) The result is straightforward for n = 1. Now let n > 1. In order to prove that
/' (Pe(Ugp)) is 3n, we provide a partition of V(P.(Us,)) into subsets of even size
such that the subgraph induced by each subset is complete. Note that (3.4) can be

written as

UU (P\(a) U Qi\(@) U (F\(@)) U (Pra\(@)) U (Qria\(@)) -

These sets on the the right hand side of above expression forms a partition of
V(Pe(Usn)). For 0 < i < k, the subsets F;\(a) and Q;\(a) are of even cardinality
(cf. Lemma 3.1.30 (i)). If n is even, then by Lemma 3.1.30, the subsets Fj11\(a)
and Qr41\(a) are of even size. Also, the subgraph induced by each subset of the
given partition is complete. Consequently, o/ (P.(Us,)) = 3n.
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Also, notice that the subsets on the right hand side of the following expression

k-1

Usn = ({a)\{e.a®}) U | (P\(a) UQi\(a))

=0

U (Pe\@) U (P \ (@) U{e}) U ((Qusr\{a)) U {a’})

forms a partition of V(P.(Us,)). If n is odd, then by Lemma 3.1.30, size of each

subset of this partition is even. Thus we have o/ (P, (Usy,)) = 3n.

(iv) We denote
Vi = {ab,ab®} U{@¥b:0 <i<k}U{@¥2:0<i<k—1}

and

Vo= {&a}U{a®¥ :0<j<k—1}

Then in view of the properties of U, derived earlier and Proposition 3.1.34, ﬁﬁ\n =
ViU Vs, For any =z € Va5, we have = € (a). So that V4 is a clique in ’]/)\e(Uﬁn), and
thus w(ﬁe(RU%)) > k + 2. If possible, let C' be another clique in 73@(U6n) with
|IC| >k + 2.

By Lemma 3.1.32 and Lemma 3.1.33, x +¢ y for every pair of distinct elements
Z, ¥y in V1. Accordingly, Vi is an independent set in 73@(U6n). Then |V1 N C| < 1,
so that V5 C C. In fact, comparing the cardinalities, |V} N C| = 1. We denote
ViNnC = {x}. Consequently, x € P\(a) or x € @;\(a) for some 0 < ¢ < k+ 1.
Moreover, a € C, so that x ~ a in P.(Us,). Then by Lemma 3.1.32 and Lemma

3.1.33, a € P, or a € (Q);. Since this is a contradiction, we get w(Pe(Usn)) = k + 2.
Hence sdim(P,(Us,)) = 6n — k — 2, by Theorem 1.2.15. O

3.1.3 The Dihedral Group

For n > 3, the dihedral group D, of order 2n is defined in terms of generators and
relations as

Dy, = {a,b : a" =1* =e, ab=ba™").
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It is known that every element of Dy, \(a) is of the form a’b for some 0 < 7 < n—1,
and that (a'b) = {e, a’b}. In particular,

n—1

Doy = {ay U | (a'D).

1=0

Theorem 3.1.37. The enhanced power graph of Ds, is perfect.

Proof. We apply Theorem 1.2.4 to prove the theorem. Let C be a hole of P.(Dsy,).
We have deg(a’b) = 1, so that a'b ¢ C for all 0 <47 < n — 1. Thus the vertices of C
belong to (a). Since the subgraph induced by (a) is complete, C' is a cycle of length
three.

Now let €’ be an antihole of length at least 5 of P.(Dsy). If possible, suppose
that V(C’) N (a) # (. Then there exists z; € C' N (a) such that 2; ~ z; in P,(Da,)
for some vertex x of C’. Equivalently, z; < x5 in P,(Ds,). Thus zy = a'b for some
i. As|V(C")| > 5, there exists x3 € V(C")\{x1, x2} such that x; ~ x5 and 9 » z3 in
P.(Dsy,). This implies x3 € (a). Similarly, there exists x4 € V(C")\{x1, x2, 23} such
that x3 »~ x4, ¥1 ~ x4 and x5 ~ x4 in P.(Dy,). Note that none of these x}s are e. As
x1 ~ x4, we get x; € (a), whereas, x3 = x, yield x; ¢ (a). Since this is impossible,
V(C") N {a) = 0. That is, every element of V(C’) is of the form a’b. However, the
subgraph of P.(Dy,) induced by the set {a’b : 0 < i < n — 1} is complete. This
contradicts the fact that the length of C” is at least 5.

Consequently, the proof follows from Theorem 1.2.4. O

Theorem 3.1.38. Forn > 2, we have the following results:
(i) The minimum degree of P.(Day,) is 1
(ii) The independence number of Pe(Day,) is n+ 1

(iii) The matching number of Pe(Day,) is [5]

(iv) The strong metric dimension of P.(Da,) is 2(n — 1).
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a'*b a’b a?b

FIGURE 3.2: The enhanced power graph of Dy,

Proof. (i) The proof follows from Figure 3.2.

(ii) From Figure 3.2, observe that the set I = {a} U {a'b : 0 < i < n — 1} is an
independent set, and thus «(P,.(Ds,)) > n+ 1. If there exists an independent set I’
such that |I'| > n + 1, then we must have x,y € I’ such that x,y € (a). However,

this results in « ~ y, which is a contradiction. As a result, a(P.(D2y,)) = n + 1.

(iii) If » is even, then observe that the size of maximum matching is % which can be

constructed from the complete graph induced by (a). If n is odd, then the size of

maximum matching is [%] which can be constructed 2% edges of (a)\{e} and one

edge (ab,e) of Hy. Therefore, o/ (P.(D2y,)) = [2].

2

(iv) The =-classes in Day, ate &, @, b, ab, ..., a»~1b, where & = {e}, @ = (a)\{e}
and aib = {a’b}. Then in view of the adjacency relation of elements of these

classes in P,(Ds,), we have P.(Rp,.) = Ky ,11. So that w(P.(Rp,,)) = 2. Hence
sdim(P,.(Dgy,)) = 2(n — 1), by Theorem 1.2.15. O
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3.1.4 The Semidihedral Group

For n > 2, the semidihedral group SDsg, is a group of order 8n is defined in terms

of generators and relations as
SDg, = <a,b catt =2 = e, ba = a2n—lb>.

We have
a*™~ip if ¢ is even,

a® = if ¢ is odd,

ba' =

so that every element of SDg,\(a) is of the form a'b for some 0 < i < 4n—1. We de-

note the subgroups H; = (a*b) = {e,a?b} and T; = (a¥*'b) = {e, a®", a® 10, a®>" 21 T1p}.

son -t (U ) o (0)-

i=0 §=0

Then we have

Theorem 3.1.39. The enhanced power graph of SDs, is perfect.

Proof. We utilize the notion of hole or antihole once again to prove the theorem.
First suppose C'is a hole of P,(SDsg,). For any 0 < 7 < 2n— 1, we notice deg(a*b) =
1, so that a*b ¢ V(C). Since a®" ~ x for all x € (a) UT}, we have a** ¢ V(C).
Then we observe that N[z] = (a) if and only if x € (a)\{e, a*"}, and that N[z] = T}
if and only if x € T;\{e,a*}. Additionally, e ¢ V(C) as well. Thus all vertices
of C either belong to (a)\{e,a®"} or T;)\{e,a®"}. As |T;\{e,a*"}| = 2, we have
V(C) ¢ Tj\{e,a®}. Accordingly, V(C) C (a)\{e,a*"}. Hence the length of C is 3,
as (a) induces a complete subgraph in P.(SDs,,).

Next, if possible, let C” be an antihole of P.(SDyg,) of length at least five. Since
a?'b is adjacent with every element except e in P.(SDs,), and e ¢ V(C"), we have
a®*b ¢ V(C"). Now suppose V(C")N{a) # 0. Then there exists x; € V(C")N{(a) such
that x; ~ 25 in P.(SDsg,) for some x5 € V(C"). Then x;, »~ x5 in P.(SDsy), so that
xy € T)\{e,a®"} for some j. Since |[V(C")| > 5, there exists x3 € V(C")\{x1, 22}

such that x; ~ x3 and xy = w3 in P,(SDg,). As a result, 3 € {(a)\{e,a®"}.
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2n

a’b ash ‘

a*b

(where u; = a®1b, v; = a2 1h for 0 <i<n—1)
FIGURE 3.3: The enhanced power graph of SDg,

Furthermore, there exists x4 € V(C")\{x1,x2, 23} such that x5 = x4, 1 ~ x4 and
X9 ~ x4 in P.(SDg,). Then x; ~ x4 and x3 ~ x4 imply, respectively, that x3 € (a)
and x3 € (a). Since this is impossible, V(C”") N (a) = (). Consequently, every vertex
of C" is of the form a**'b. However, for any 0 < ¢ < 2n — 1, a**'b is adjacent
to every vertex in {a®*1b: 0 < j < 2n — 1}\{a®'b,a® 210} in P,(SDs,). This
contradicts our assumption that C” is an antihole of P,(SDsg,,) of length at least five.

Following Theorem 1.2.4, we therefore conclude that P.(SDs,,) is perfect. O
Now we investigate graph invariants of P.(SDg,) in the following theorem.
Theorem 3.1.40. For n > 1, we have the following results:
(i) The minimum degree of P.(SDsgy,) is 1

(ii) The independence number of P.(SDs,) is 3n + 1
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(iii) The matching number of P.(SDs,) is 3n
(iv) The strong metric dimension of P.(SDsy) is 8n — 3.

Proof. (i) The proof follows from Figure 3.3.

(i) Note that the set I = {a}U{a*b:0<i<2n—1}U{a¥*b:0<j<n—1}isan
independent set in P.(SDsg,,) (see Figure 3.3) so a(P.(SDsg,)) > 3n + 1. If possible,
suppose there exists an independent set I’ such that |I’| > 3n + 1. Then there exist
x,y € I' such that z,y € (a), x,y € H; for some i or x,y € T; for some j. Since
subgraphs induced by (a), H; and T}, respectively forms a clique, we have z ~ y for

each of the possibility, a contradiction. Accordingly, a(P.(SDs,)) = 3n + 1.

(iii) Let M be a matching in P.(SDs,). Consider the set U of endpoints of edges
in M. We observe that a*b ~ x if and only if x = e. As a result, |U] < 6n + 1.
However, as M is a matching, |U| is even. Then |U| < 6n and thus |[M| < 3n.
2n+-1

Now let ¢; be the edge with endpoints a’, a
a®*1h, a2+, Then the set M’ = {¢;: 0 <i<2n—1}U{;:0<j<n—1}is

, and €} be the edge with endpoints

a matching of size 3n in P.(SDsg,). Hence we get o/ (P.(SDg,)) = 3n.

(iv) From the structure of S Dg,,, we have SDg, = {e, a?”,a}u{c% :0< i< 2n—1}U
(%15 :0 < j < n—1}, where & = {e}, a? = {a®}, @ = ()\{e, a®"}, a%b = {a®b}
and a2/+1p = {a?*1p, ¢>T2771p} . Furthermore, @\{@, a?”} is an independent set,

and each of € and a?” are adjacent to the rest of the vertices in 73@ Rsp, ). Thus we
.] 8n

o~

get w(Pe(Rsps,) = 3. Finally by Theorem 1.2.15, sdim(P.(SDs,)) =8n—3. O

3.1.5 The Group Vg,

For positive integer n, the group Vs, (see Mahmiani [2016]) of order 8n is defined

in terms of generators and relations as

Van = {a,b 1 a® =b*=¢, ba=a b7 b7 a = a™'b).
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Since ba = a='b~! and b~'a = a~'b, we have

) - A a*~ if i is even ; Ny a*~ip?  if ¢ is even ;
ba" = a'b®, ba' = A and b’a’ = A
a®=?  if 4 is odd, a®=% if ¢ is odd.
(3.5)

Thus, every element of Vg, \ (a) is of the form a’®’ for some 4, j, where 1 < ¢ < 2n

and 1 <7 < 3.
Remark 3.1.41. The group Vg, is of order 8n if and only if (b) N (a) = {e}.
Lemma 3.1.42. For 1 <1< n, we have
(i) (a®*'b) = {e,a?10}.
(i) (a®+10%) = {e, a? 17}
(iii) (a®0®) = (a*b) = {e, b?, a*b, a®b3}.
Proof. In view of Eq. 3.5 , the proof is straightforward. O

From above presentation of V§, and by mathematical induction, we get

.y o if iis even ;
(@™ b°)" = - (3.6)
a¥? if 4 is odd.
In the remaining part of this subsection, for some non negative integer k and a

positive integer ¢, we shall write n = 2t such that 2t ¢.

Lemma 3.1.43. For x € Vg, \ (a) and 1 < s < n, we have
(i) « = a®V? if and only if x € (a®'1?) for some i, where 1 <4 < k + 1.
(i) = = a®*"™b? if and only if x € (ab?).

Proof. (i) Suppose x = a*b?. Write s = 271 for some 7 > 1 and r is a positive
integer such that 21 7. By Eq. 3.6, note that # = a2b? = (a2'b?)". Consequently,
x € (a®1?). If i < k+1, the result holds. For i > k4 1, observe that (a®""" 0?)! = b2
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and (a2"'p?)H = """ Thus, 82,02 € (a®7'0%). Since a®b? = (o222,
we have z = a2b? € (a®"'b?). Conversely, suppose that z € (a?'b?) for some i,
where i > 1. Since x ¢ (a), by Eq. 3.6, we have x = a*b? for some s, where
1<s<n.

(ii) Let x = a**'% Then by Eq. 3.6, we have x = (ab?®)?**™' and so x € (ab?).

Converse is straightforward by Eq. 3.6. O

For X; = (a®*10) U (a®*10%) U (a¥b) and Y; = (a2'h?), we have

ot o () (Ur) .

=0

Lemma 3.1.44. In the group Vs,,

(i) o(a®) = 2", where 0 <4 < k + 1.

(ii) for 0 < i <k, we have (a®™") C (a®) and (a®") = (a®").

(iii) for 0 < i<k, we have (a®b*) N (a) = (@) and (@' 12) N (a) = (a®").
(iv) for 0 < i <k, we have o(a®b?) = 2717, Moreover, [(a®b?) \ (a® )| = 2F-¢.

(v) o(a2"""b%) = 2t. Moreover, |(a®"'b2) \ (a®")| = t.

2k+17it

Proof. (i) Since <a2i> — ¢ and for [ < 2"t17%¢ we have (a®)! # e. Thus, the
result holds.

(ii) Clearly, <a2i+1> C <a2i> for all i > 0. For i < k, from part (i) note that 0(a2i+1) -

t4+1
o(a®). Thus, (@®"') C (a¥). Since () C (@) and """ = <a2k+2> © L we
obtain (a2"") = (a2").
(iii) Note that a*” = (a?0?)%. Consequently, (a*") C (a®b?) N {(a). If z €

(a*t?) N (a), then by Eq. 3.6, v = (”'b*) for some p > 0. Thus, z € (a*").

k+1—1
+ lt

(iv) By Eq. 3.6, we get <a2i62> =e. If | < 2¥1=% then 2'] < 2n. For even [,

we have (a?b?)! = a®! # ¢ as o(a) = 2n. For odd [, (a*b?)! = a®'b? # e. Otherwise,
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we get a contradiction of Remark 3.1.41. Thus, o(a?b?) = 21=%t. By part (i), we
have o(a®"") = 287t Also, (a®b?) N (a) = (a® ") follows that |(a? b?) \ (a)| = 2¥¢.
(v) From the proof of Lemma 3.1.43 (i), we have 0%,a¢>""" € (a®"'b%). By part
(i), o(a®"™") = t follows that (a®")" and (a2""")7b* are all distinct elements in
(a®""'b2), where 1 < 4,j < t. Thus o(a®""b%) > 2t. Since (a2 1?)% = ¢, we obtain

o(a2""'b%) = 2t. By part (i) and part (iii), we have |(a2"" %)\ (a®"")| = ¢. O

Proposition 3.1.45. Let x € Vg, \ {b*} such that x & (a). Then the following result
hold:

(i) If x € X; for some i, then

e 0 n)o(Un)

j=1.ji

n k+1
(29:(02)
j=1 j=0,j#i

Proof. (i) In view of Lemma 3.1.42, we get x € {a* "D, a® 6% a*b, a®*b3}. Also,

(ii) If x € Y; for some i, then

note that x ¢ X; for any j # 4. For instance, if x € Xj, then we have either
o(a) < 2n or (b) N (a) # {e}; a contradiction. By Lemma 3.1.43, x ¢ Y; for any j,
where 0 < 7 < k4 1. Thus,
n k+1
x ¢ (a) u< U Xj>u<UYj>.
j=1 g j=0
(ii) In view of Lemma 3.1.43, we have x = a"b? for some r, where 1 < r < 2n.
By Lemma 3.1.42, z ¢ X, for any j. If x € Y] for some j # i follows that x €
(a®0%) N (a®'b?). Further, by Eq. 3.6, x = a*?b? = a?9b? for some odd integers p
and ¢ such that p < o(a?b?) = 28717 and ¢ < o(a? b?) = 21-9¢. Consequently,
p2¢ < 2n and q27 < 2n. If p2° # ¢27 then o(a) < 2n; a contradiction. Thus, we have

p2t = ¢27. Since i # j, we get either p or ¢ is even; a contradiction. O
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In the following theorem, we obtain the neighbours of x for each = € P.(V,).
Theorem 3.1.46. In the enhanced power graph of Vs, we have the following results:
(i) N[z] = (a) if and only if x = a®* 1. Moreover, deg(a**') =2n — 1
(ii) N[z] = (a®10) if and only if x = a®*T'b. Moreover, deg(a®b) =1
(iii) Nlx] = (a®103) if and only if x = a**1b3. Moreover, deg(a®b%) = 1
(iv) N[z| = Vs, if and only if x = e. Moreover, deg(e) = 8n — 1

(v) Nlz] = (a*b) if and only if x € {a®b,a*b*}. Moreover, deg(a®b) = deg(a®b?) =
3

(vi) For 0 < i < k, we have N[x] = Y; if and only if x € Y; \ (a). Moreover,
deg(z) = 2kt —1

(vil) N[z] = Yiq1 if and only if x € Yie1 \ ({a) U {b*}). Moreover, deg(x) = 2t — 1

(viii) Nfx] = <U(a2ib>> UYey1 if and only if x = b?. Moreover, deg(b?) = 2n+2t—1
i—1
i-1 ' '

(ix) N[z] = (a) U <U Yj> if and only if x € (a*)\ (a*"), where 1 < i < k.

4n — k=g 1

) =
(x) N[z] = (a) U < Yi> if and only if x € (a®")\ {e}. Moreover, deg(z) =
4n — 1.

Proof. (i) Let N[x] = (a). Then x € {(a). If z = a* for some 4, then by Eq. 3.6,
x = (ab®)*. Tt follows that x ~ ab?® and so ab? € (a). Consequently, (a) N (b) # {e};
a contradiction. Then z = a**! for some i. Conversely suppose ¥ = a**! for
some ¢. Clearly, (@) C N[z]. Let, if possible z ~ y for some y € Vg, \ (¢). Then
x,y € (z) for some z € Vg,. Clearly z ¢ (a), otherwise y € (a). By Eq. 3.7, we

must have either z € X, or z € Y;. If 2 € X, for some r, where 1 < r < n, then
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z € (a®T10) U (a®T10%) U (a®"b). Consequently, x € (a* T10) U (a®> T10%) U (a*b); a
contradiction (see Lemma 3.1.42). If 2z € Y} for some j, then z € Y;. By Eq. 3.6,

we obtain x = a? for some even g, which is not possible as x = a%*!,

(ii) For x = a**1b, we have (a**'b) C N[z]. Let, if possible y € N[z] such that
y ¢ {e,a*b}. Since y € N[x] so there exists z € Vg, such that x,y € (z). By Eq.
3.7, the possibilities of z are (i) z € (a) (%) z € X; (i17) z € V. If 2 € (a), then
x € (a); a contradiction. If z € X; = {e,b?, a®*'b,a® b3, a%b, a*'b?}, then we have
either o(a) < 2n or (b) N (a) # {e}; a contradiction. If z € ¥, we must have z € ¥}
which is not possible (see Eq. 3.6).

(iii) Proof is similar to part (ii).

(iv) Since for any = € Vg, \ {e}, we have e,x € (x). Consequently, Nle] = Vj,.
Conversely, suppose N[x] = Vg,. By part (ii), we must have x = e.

(v) Suppose N[z] = (a*D). Then x € (a*b). Clearly, x # e. If x = b? then
€ (a0 as © = (a®B?). Tt follows that a"'b* € N[z] = (a®b) which is
not possible by Lemma 3.1.42 (iii). Consequently, x € {a*b,a*b%}. Conversely
suppose x € {a?b,a*b3}. Clearly, (a*b) C N[z]. If y € Vg, such that y ~ x then
x,y € (2) for some z € Vg,. By Eq. 3.7 and Proposition 3.1.45(ii), we have z € X;
and so y € X;. In view of part (i) and part (iii), a®*b,a?*™b* ¢ Nlx]. Since
y € X; \ {a* b, a* 13}, we have y € (a*'b). Consequently, N[x] = (a?'b).

(vi) Let x € Y; \ (a). Then Y; C Nlx]. If x ~ y for some y € Vg,, then there
exists z € Vg, such that x,y € (z). By Eq. 3.7 and Proposition 3.1.45(ii), we have
z € Y;\ (a). Thus y € Y; so that N[z] = Y;. Conversely suppose that N[z| = Y;.
Clearly x € Y;. If © € (a), then x ~ a so that a € N[x] = ¥; which is not possible
(cf. Eq. 3.6). Thus x € Y; \ (q).

(vii) If € Y1 \ ((a) U{b?}), then by the similar argument used in part (vi), we get
N[z] = Yi41. Conversely, suppose N[z] = Yiy1. Clearly, x € Yy, If z = b2 € (a?D),
then x ~ a?b so that a’b € N[x] = Y},1; a contradiction (see Eq. 3.6). Also x € ()

is not possible, otherwise a € Y}, 1; a contradiction of Eq. 3.6.
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(viii) Let 2 = b2. Then by Lemma 3.1.42 (iii), z € (a¥b) for all i and x = (2" "' 0%)" €

(@) = Y. We get <U<a2ib>> UYip © Nzl If 2 ~ gy for some y €

i=1

i—1
y = a**! for some i (i1) y = a® b (iti) y = a* 0 () y € Y; \ (a) for some

Van \ <U(a2ib> U Yk+1> , then by Eq. 3.7, we get the following possibilities of y (4)

j; 0 < 7 <k (v) y = a* for some i. By the above parts of this theorem, the
possibilities of ¥ in (7) - (iv) is not possible. Thus, y = a* for some 7. Since x ~ y
there exists z € Vg, such that z,y € (2). By Lemma 3.1.42 and Eq. 3.6, we have
z €Y, for some 0 <r < k+ 1. Consequently, z,y € Y,.. If r < k4 1, then again by

Eq. 3.6, x ¢ Y,; a contradiction. Thus, y € Yj,1; again a contradiction. It follows

n n

that N[x] = U(a%b>> UY%.1. Conversely, suppose N|x] = <U(a2ib>> UVYei1, we

i—1 i—1

get x € U(a%b> U Yey1. By part (iv), (v) and (vii), z € (a) U {b*}. Also, by
i—1

part (i), x € (a®) U {b?}. If x = ¢ for some i, 1 < ¢ < n, then x ~ a so that a €

Nlx]; a contradiction as a ¢ U(a%b>> U Y%41. Thus, z = 0?.
i=1

(ix) Suppose x € (a®) \ (a*"). Then by Lemma 3.1.44 (i), z € (¥ for all j,

where 0 < j < i — 1. Consequently, by Lemma 3.1.44 (iii), = € (a?b?) N (a). Thus,
i—1

<U Yj> U (a) C Nlz]. If x ~ y, then there exists z € V4, such that x,y € (2).
=0

Clearly, z ¢ X, for any i, 1 < i < n. Otherwise, x € X; which is not possible
by Lemma 3.1.42. If z € Y} for some j > 4 then x € ¥; N (a) = (a®"'). Since

i1
j >4,z e @) C (@®); a contradiction. Thus, z € (a) U <U Yj> and so

=0
i—1 i—1 !
y € (a)U <U Yj> Consequently, N[z] = (a) U <U Yj> Conversely suppose
=0 i—0
i i—1 !
Nlz] = (a) U <U Yj> Then x € (a) U <U Yj> If x € Y]\ (a) for some j, where
=0 =0

0 < j <i—1, then by part (vi) Nz] = Yj; a contradiction. Consequently, x € (q).

If x = a**! for some 7, then by part (i) N[z] = (a); again a contradiction. Thus,
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x = a? for some [. If x € (a¥') for some j > i, then by Lemma 3.1.44 (iii), x € Y;_,
where j —1 > i—1 so that Y;_; C N[z]; which is not possible. Thus z ¢ (a®"). Now
we show that = € (a%). Since Y;_; C N[z] and a?" 'b? € Y;_1, we have z ~ a2 1%
By part (vi), z € Y;_1 N (a) = (a®).

(x) Let z € (a™)\ {e}. Then by Lemma 3.1.44 (i), z € (a') for all i, where
1 <i<k+2 By Lemma 3.1.44 (iii), follows that x € ¥;_; N (a). Consequently,

k+1 k+1
(ay U <U Yi> C Nfz]. If z ~ y for some y € Vg, \ <(a> ] UYi , then by
i=0 i

—0
Eq. 3.7, y € X, for some i, 1 < i < n. In fact y € {a® 10, a® 13, a?'0, a* b3} for

some . By part (ii), (iii) and (v) = y; a contradiction. Consequently, N[z| =

k+1 k+1
<U Yi> U (a). Conversely, suppose N[z] = <U Yi> U (a). Then clearly, x # e
i=0 1=0

(see Theorem 3.1.46 (iv)). Since 2 ~ a2""'b2, we get € N[a2""'b?] = Vipy. Also
& ~ a so that z € N[a] = (a). Consequently, z € Yy N (a) = (a®"""). Hence
z e (a®)\ {e}. 0

In view of Theorem 3.1.46, the enhanced power graph of V4, is as follows, where

k1
T={a*"p*:0<i<n-1},T"={a*":0<i<n—-1}and U = <U YU (a2>>\
i=1

{e,b*}. Moreover, P.(U) denotes the subgraph of P.(Vg,) induced by U.
Since x(G) < k'(G) < 6(G), we have the following consequences of the Theorem
3.1.46.

Corollary 3.1.47. Forn > 1, we have 6(P.(Vsn)) = k(Pe(Vzn)) = &' (Pe(Vn)) = 1.
Corollary 3.1.48. The graph P.(Vs,) is not dominatable.
Corollary 3.1.49. The graph P.(Vs,) is not Hamiltonian.

Theorem 3.1.50. The matching number of P.(Vs,) is given below:

3n ift>1;
O/(’Pe(vén)) =

3n — 1 otherwise.
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a2n—1b3

FIGURE 3.4: The enhanced power graph of Vg,

Proof. Let M be an arbitrary matching set of P,(Vg,) and ¢t > 1. Clearly, M contains
at most one edge of the form = ~ e for some x € V4, \ {e}. For any i (1 <i < n),
the vertices a**b and a®*'b? are adjacent only with e (see Figure 3.4). Thus, M
contains at most one edge whose end vertices belongs to the set K = {a? 10, ¢* 143 :
1 <i<mn}. Since |K| = 2n it follows that at most 8 — (2n — 1) = 6n + 1 vertices
can be used for a construction of M. Consequently, we get |M| < 3n. Now in
the following, we give a construction of a matching set M’ such that |M’'| = 3n.
For 0 < i < k—1and 1 < j < n, consider the subsets (v}, \ (a)) U {a®""'},
(Y1 \ (@) U {e}, () \ {e,a® "'}, {a¥b,a® b} and Y; \ (a). Each of these subset
is of even cardinality (see Lemma 3.1.44) and these subsets are mutually disjoint
with each other. Also, note that the subgraph induced by each of these subset is
complete. Thus, the required edges for the construction of M’ can be collected from

each of these complete subgraph and the number of such edges is exactly half of the
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total number of elements in these subsets. Thus, in view of Lemma 3.1.44, we have

M| = 10 ) UL H (Vi \ ) U e+ 1)\ e a1 3 50 o
D BIGOAR TS

k1
= 2t+1)+(2n—2)+> 28t +2n
i=0
= 6n
and hence o/(P.(Vs,)) = 3n.

We may now suppose ¢t = 1. In the following cases, for an arbitrary matching

set M of P.(Vz,), we show that |M| < 3n — 1.

Case 1: (x,e) € M for some x € U((a%b> \ {e}). Then for any i, where 1 < i < n,
i=1
the edges (a21b, e), (a®+103, ), (2%, €) ¢ M. By Figure 3.4, we get deg(a2+1b) =

deg(a2t1b) = deg(a®" b?) = 1. Consequently, M does not contain the edges whose
one of end point belongs to {a®h,a® b : 1 < i < n} U {a®"b?}. Thus, the
maximum number of vertices can be used for the construction of M is 8n—(2n+1) =

6n — 1. It follows that |M| < 3n — 1.

Case 2: (z,e) ¢ M for all x € U((a%@ \ {e}). By the similar argument used
i=1
in Case 1, note that at most one vertex from the set {aQ’”“lb,a%“b3 11 < <

n} U {a?'t?} can be used for the construction of M. Thus |M| < 3n. Now we
provide one more vertex x € Vg, such that it is not an end point of any edge
belongs to M. Consequently, |M| < 3n — 1. Since t = 1, Y1 C U(a%b>, again

i=1
n

by Theorem 3.1.46, N[p?] = U(a2%>. For all 1 < ¢ < n, by Figure 3.4, we have
i=1

N[a®b] = {e,b?, a®b,a*b?} = N[a?b?]. Thus for any ¢, M contains at most one edge

from the set {(a®b,0?), (a*b3,0?), (a*'b,a* D)} of edges. Consequently, there exists

a vertex x € (a®b) for some ¢ such that it is not an end point of any edge lies in M.

Now in the following, we give a construction of a matching M’ such that |M'| =

3n—1. For 0 <¢<k—1and 1< j <mn, consider the subsets (a), {a?b, a*b*} and
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Y\ (a). Each of these subset is of even cardinality (see Lemma 3.1.44) and these
subsets are mutually disjoint with each other. Also note that the subgraph induced
by each of these subset is complete. Thus, the required edges for the construction of
M’ can be collected from each of these complete subgraph and the number of such
edges is exactly half of the total number of elements in these subsets. Thus, in view

of Lemma 3.1.44, we have

M| = el 3V ()] + D0 )\ {e.12)

k—1
= 2n+ Z 2k=it 4 2n
i=0
= 6n—2
and hence o/(P.(Vs,)) = 3n — 1. O

In view of Lemma 1.2.10, we have the following corollary.

Corollary 3.1.51. The edge covering number is given below:

on ift>1;
ﬁ/(’])e(‘/én)) =

5n +1 otherwise.

Theorem 3.1.52. The independence number of P.(Vs,) is 3n + k + 3.

Proof. In view of Lemma 3.1.42 and Proposition 3.1.45, the maximal cyclic sub-
groups of Vi, are (a), (a+1), (a2 +10%), (a®b), (a¥ b?), where 1 < i < nand 0 < j <

k + 1. Therefore, it follows by Theorem 3.1.4, we have a(P.(Vs,)) =3n+k+3. O
In view of Lemma 1.2.10, we have the following corollary.
Corollary 3.1.53. The vertex covering number of Pe(Vs,) is 5n — k — 3.

Now we show that the enhanced power graph of Vg, is perfect (see Theorem

3.1.56). For this purpose, the following two lemmas will be useful.

Lemma 3.1.54. Let C be a hole of odd length at least 5 in P.(Vz,). Then b* & C.
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Proof. Let C :xy ~ 29 ~ -+ ~ Ty ~ X941, where | > 2, be a hole in P.(Vg,). By
Remark 1.2.5, we get x, # e for any r, where 1 < r < 2] + 1. On contrary, assume

that x, = b? for some r. Without loss of generality, let x; = b>. Then by Theorem

3.1.46 (viii), N[z;] = <U(a2ib>> U Yjt1. Since xy ~ x1, we get either xo € (a?))
i=1
for some i or w3 € Yiy1. If 23 € (a®'b) for some 4, then again by Theorem 3.1.46 (v),

we obtain x3 € (a®b) as x9 ~ x3. Then x; = b* € (a*b) and x3 € (a®'b) follows that
x1 ~ x3; a contradiction. Consequently, x5 € Y, 1. Also, for x91 ~ 21, we have
either wy,1 € (a®b) for some 7 or wg 41 € Y. If 29 € (a?D) for some i, then
Ty € (a%b>. We get x1 ~ z9; a contradiction. As a result, we get xo 1 € Yii1. It

follows that xo ~ x9,1; again a contradiction. Hence, 0* ¢ C. O

Lemma 3.1.55. Let C' be an antihole of odd length at least 5 in P.(Vsn). Then
v ¢ C.

Proof. Let C be an antihole in P, (Vg,,) of length 204 1, where | > 2 . Then we have

C:xy ~mxg ~ -~ Ty ~ oy is a hole in Pe(Vg,). By Remark 1.2.5, z, # e for

any r, where 1 < r < 2] + 1. Let, if possible x, = b? for some r. Without loss of

generality, let z; = b%. Then by Theorem 3.1.46 (viii), N[x;] = <U(a2ib>> UYji1 in
i—1
Pe(Vgy). Since x3 ~ x1 and x4 ~ x1 in Pe(Vg,), we get x3, 14 € N[z1]. If 23 € (a?D)

for some ¢, then again by Theorem 3.1.46 (vi), we have N[x3] = (a®b). Consequently,
Toy1 € (a?'b) as x3 ~ 19111 in P.(Viy). Since z1 = b? € (a*b), we have 11 ~ 19,41 in
P.(Vzn); a contradiction. Note that xo ~ x4 in Pe(Va,). If x4 € (a®D), then x1 ~ xo
in P.(Vz,); a contradiction. Consequently, 3,24 € Yj;1 so that 3 ~ x4 in P, (Vs,);

again a contradiction. Hence, b* ¢ C' U
Theorem 3.1.56. The enhanced power graph of Vg, is perfect.

Proof. By Figure 3.4, deg(a*1b) = deg(a®*10*) = 1 and deg(e) = 8n—1 in P.(V4,).
By Remarks 1.2.5 and 1.2.6, it follows that the vertices a?*'b, a? '3 and e are

neither belongs to a hole nor to an antihole.
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In order to prove P,.(Vg,) is perfect, we shall show that P, (V%,) does not contain
a hole or an antihole of odd length at least five. On contrary, assume that P.(Vg,)
contains a hole C' : &1 ~ x5 ~ -+ ~ 2911, where [ > 2. We have the following cases.
In each case, we show that such C' is not possible.
Case 1(a): z, ¢ (a) for all r, where 1 < r < 2l + 1. First we show that for
any r, we have x, € £Jl X;. Let if possible, for some r and j, where 0 < 5 <
k+ 1, z, € Y;. Without loss of generality, let z; € Y,;. By Theorem 3.1.46 and
Lemma 3.1.54, N[z,] = Y;. It follows that xs, 2941 € ¥; and so x5 ~ @94 for
[ > 2; a contradiction. As a result, for each r, we get x, € X; for some 7. Since
X ={e,0?,a®1b, a® 103, a®'b, a* 1}, from above and Lemma 3.1.54, we have x, €
{a?b,a*b3}. In particular, x; € {a®b,a*b*} C (a*Db) for some i. Since x; ~ x5 and
T, ~ Tog1, by Theorem 3.1.46(v), we get 1, Ty, Torp1 € {a®'b, a*'0®}; a contradiction.
Case 2(a): x, € (a) for some r. Without loss of generality, let x; € (a). Since
x1 ~ x3, we get either z3 € X; for some ¢, 1 < i < nor zz € Y\ (a) for some
j, where 0 < 57 < k+ 1. If x3 € X;, for some 72, then by the similar argument
used in Case 1(a), x3 € {a?b,a*b3} for some 1. Now x5 ~ x3 and x5 ~ 14 gives
T2, 73,74 € {a®b,a*b*}; a contradiction. If x3 € Y; \ (a) for some j, then by
Theorem 3.1.46 and Lemma 3.1.54, we have x9, 24 € Y;. Consequently, xo ~ x4; a

contradiction.

Next, suppose that P.(Vg,) contains an antihole C' of length at least five. Then

C:xy ~ a9~ ~ Ty ~ Ty, where I > 2, is a hole in P, (Vs,). We show that

such C' is not possible. We have the following cases:

Case 1(b): z, ¢ (a) for all r, where 1 < r < 2l + 1. Let if possible for some r
and j, where 0 < j <k+1, z, € Y;\ (¢). Without loss of generality x; € Y} \ ().
By Theorem 3.1.46 and Lemma 3.1.55, N[x;] = Y¥;. Since x; ~ x3 and z1 ~ x4
in P.(Vsn), we get x3 ~ x4 in P.(Vg,); a contradiction. Consequently, x, € £Jl X;.
Now by the similar argument used in Case 1(a), one can get, r; € (a*b). Now for

x1 ~ x3 and x; ~ x4 in P.(Vg,), we have x3 ~ x4 in P,(V,) which is not possible
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as x3 ~ x4 in C.
Case 2(b): z, € (a) for some r. Without loss of generality, let x; € (a). Since
x1 % Ty in Pe(Vsy), we get either zo € X; for some ¢ or x5 € Y; \ (a) for some j.
If z, € X; for some 7, then we have o € {a*b,a*b%}. Consequently, for x5 ~ 14
and xy ~ x5 in P.(Vz,), we get o, x4, 75 € {a?b,a*1?} which is not possible. If
xy € Yj \ (a) for some j, then we obtain x4, x5 € Y so that x4 ~ 5 in P.(V%,); a
contradiction.

Thus, P.(Vs,) does not contain a hole or an antihole of odd length at least 5.
Hence, P.(Vs,) is perfect. O

Theorem 3.1.57. The strong metric dimension of P.(Vg,) is given below:

8n—k—3 ifk>0;
8n — 4 ifk=0.

sdim(Pe(Vzn)) =

Proof. In view of Theorem 3.1.46, we have the partition of ‘78\71 into V1, V5, V5,V V3
and Vi, where Vi = {6, @, 02}, Vo = {@®1b : 1< i< n},Vy= {a1p

1 <i<nalVi={a%b : 1<i<n)Vi={at?:0<i<k+1}, and

e —~

Ve = {a* : 1 < i < k+1}. Now we show that w(P.(Vg,)) = k + 3. For any
7 € {& a} U Vg, we have = € (a). So that {e, a} U V; forms a clique in P,(Vg,) and
thus w(P.(Van)) > k + 3.

Suppose C is another clique in 73@(‘/23”) with |C| > k+43. By Theorem 3.1.46, note
that VoUVaUV,UV; is an independent set in 73@(‘/23”). Consequently, | (Vo U V3 UV, U V5)N
C| < 1. Thus, |C| £ k+ 5. Further note that b2 ¢ C. Otherwise, cﬁ“,a ¢ C as
a =~ 0% and a2 = % so that |C| < k 4 3; a contradiction. As a result, we get
IC] < k+4. If somez € (VoUVZUV,UV;) NC, then C = Vg U {Z,e,a}. Con-
sequently, z € Nla] = (a); again a contradiction. Thus, V5 U {€,a} = C implies
|C| = k + 3 which is not possible. Hence, we get w(P.(Vs,)) = k + 3 and by
Theorem 1.2.15, sdim(P.(Vs,)) = 8n — k — 3.

Now we prove the result for £ = 0. In this case, we have the partition of @1

into Vi, Vo, Vs, Vi, Vs and Vi, where Vi = {&,d,a2}, Vo = {a®+1b : 1<i<n},V; =
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(@1 . 1<i<nhVi={a®b : 1<i<n} Vs={0ab a®?}). Note
that {€,a2,a2b?, 0%} forms a clique. It follows that w(P.(Vs,)) > 4. Let, if possible
there exists a clique €' in P,(V4,) such that |C| > 4. Since Vo U VzU V, U {cﬁ), a/Qb\Q}
is an independent set in 73@(‘/23”), we have |C| < 5. But b* = a gives |C] < 4;

a contradiction. It follows that w(P.(Vs,)) = 4 and hence by Theorem 1.2.15,
sdim(P. (V) = 8n — 4. O

3.1.6 The Dicyclic Group (4,

The dicyclic group 4, of order 4n is defined in terms of generators and relations as
Qun = {a,b : a® =e, B> =a", ab=ba™").

Note that every element in Qy, \ (a) can be written as a'b for some 1 < ¢ < 2n — 1.
Also, {a’b) = (a"*'b) = {e,a’b,a™, a"*'b} for all 0 < i < n — 1. We thus have

n—1

Qun = (a) | J(a'D). (3.8)

=0

For n =1, Q4 is a cyclic group of order 4 so that P.(Q4,) is complete.
Theorem 3.1.58. For n > 2, the enhanced power graph of Qu, is perfect.

Proof. In order to prove P.(Q4,) is perfect, we shall show that P.(Qs,) does not
contain a hole or an antihole of odd length at least 5. Suppose C' is a hole of odd
length at least 5. Since e, a” are the dominating vertex of P,(Qy,) we have a™, e ¢ C.
From Figure 3.5, note that N[x] = (a) if and only if x € (a) \ {e,a"}. Also, we have
N[z] = (a’b) if and only if x € (a'b) \ {e,a"}. Consequently all the elements in C'
are either from (a) \ {e,a"} or (a’b) \ {e,a"}. In both the cases C'is not an induced
cycle of odd length at least 5.

Now we show that P.(Q4,) does not contain an antihole of length 2k + 1, where
k > 2. Let if possible C' be an antihole of length 2k + 1, where & > 2. Then C

is a hole in P.(Q4,). Clearly, dominating vertices e and a™ are not the element in
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C. Now suppose C'N {(a) # (. Then there exists x;1 € C' N (a) such that x; ~ xy
in P.(Qu,), where z, € C. Consequently, z; = 25 in Pu(Qun). We must have
xg € {a'b) \ {e,a™} for some 7. Since |C| > 5 so that there exists x3 € C'\ {1, 72}
such that x; ~ x5 and x9 » x5 in Pe(Qu,). Thus x5 € (a). Also for |C] > 5 there
exists x4y € C'\ {x1, 29,23} such that x5 =~ x4, 1 ~ x4 and x5 ~ x4 in Pe(Qyp).
Consequently, z; € ({a) N {a'd))\{e,a"}; a contradiction. Thus we have C'N{a) = 0.
Now, let x1, 22, 23, x4 be consecutive vertices in C'. Then x; ~ x3 and x; ~ x4 in

Po(Quy) so that xy, w3, 74 € (a'b)\{e,a"} for some #; a contradiction. Hence P,(Qy,,)

is perfect. O

K((ay\fe.any)

FIGURE 3.5: The enhanced power graph of Q4

In the following theorem, we investigate various parameters of P.(Qu4y).
Theorem 3.1.59. Forn > 2, we have the following results:
(i) The edge connectivity of Pe(Qun) s 3
(ii) The independence number of Pe(Qun) is n+ 1
(iii) The matching number of Pe(Qun) is 2n

(iv) The vertex connectivity of Pe(Qun) is 2.



84 THE ENHANCED POWER GRAPHS

Proof. (i) In view of [Ma et al., 2013, Proposition 34], §(P.(Q4,)) = 3. Since
K (Pe(Qan)) < 0(Pe(Qun)), we have r'(P.(Qs,)) < 3. By Figure 3.5, we observe
that every edge contained in some clique of size at least 4. Also, note that e and

a" are dominating vertex in P.(Q4,). We conclude that «/'(P.(Q4,)) > 3 and hence
K (Pe(Qun)) = 3.

(i) Considering the structure of Qu,, each of {(a) and {(a'b) is a maximal cyclic
subgroup of Q4,. Therefore, it follows from Theorem 3.1.4 and Eq. 3.8 that
a(Pe(Qun)) =n+ 1.

(iii) Consider the edge set M = {(a’,a™™) : 1 <i < n}U{(a’b,a™b) : 1 <1 <n}.
Note that M is a matching set of size 2n. Consequently, o/ (P.(Q4n)) > 2n. It is

well known that the matching number o/(G) of a graph G is at most 3|V (G)|. Thus
o/ (Pe(Qun)) < 2n. Hence result holds.

(iv) From Figure 3.5, we observe that for any 1 < ¢ < 2n, we have N[a'h] =
{e,a'b,a""b,a"} follows the subgraph induced by the vertices of Q, \ {e,a"} is
disconnected. As a consequence, #(P.(Q4n)) < 2. On the other hand, e,a™ are the
dominating vertex so that #(Pe(Qu4n)) > 1 and hence x(P.(Q4n)) = 2. O

In view of Lemma 1.2.10, we have the following corollaries.
Corollary 3.1.60. The vertex covering number of Pe(Quay) is 3n — 1.
Corollary 3.1.61. The edge covering number of Pe(Qun) is 2n.

In the following, we calculate the strong metric dimension of P.(Q4y).
Theorem 3.1.62. The strong metric dimension of Pe(Qun) is 4n — 2.
Proof. We observe that the partition of @Am into V; and V5, where

Vi={e a b}, Vo={aib : 1<i<n-—1}
From the adjacency relation in P.(Qy4,), we have 73@(624”) = K1 n+1, and hence

w(P.(Qu,)) = 2. Finally, by Theorem 1.2.15, we have sdim(P,(Qu,)) = 2(2n —
1). O
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3.2 The Enhanced Power Graph of Semigroups

In this section, we study the enhanced power graph of a semigroup S. First we
classify the structure of the enhanced power graph of a semigroup S. We categorized
the semigroup S such that P,.(.S) is complete, connected, bipartite, tree, regular and
planar, respectively. Finally, we obtain the independence number and the minimum
degree of P.(9).

We begin with the classification of connected components of P.(S) in the following

theorem.

Theorem 3.2.1. Let S be a semigroup of bounded exponent. Then Sy is a connected
component of Pe(S) with unique idempotent f. Moreover, the connected components
of P.(S) are precisely {Sy : f € E(S)} and the number of connected components
of P.(S) is equal to |E(S)].

Proof. Suppose a,b € Sy. If any one of them is f, then a ~ b in P.(S). If a,b €
Si\{f}, then there is a path a ~ f ~ b in P.(S). Let if possible x € S\Sy such
that x ~ b for some b € Sy so that z,b € (c) for some ¢ € S. Since b" = f for
some n € N so that f € (c). Consequently we get f € (y) for all y € (c) (see
Lemma 1.1.4). It follows that x € Sy; a contradiction. Hence, Sy is a connected
component of P, (S) and by Remark 1.1.26, the connected components of P,(S) are
{5y« feBE) 0

Corollary 3.2.2. For any semigroup S, P.(S) is a null graph if and only if S is a
band.

Corollary 3.2.3. Let S be a semigroup of bounded exponent. Then P.(S) is con-
nected if and only if S contains exactly one idempotent. In this case, diam(P.(S)) <
2.

Unless stated otherwise, hereafter Sy always denotes the connected component

of P.(S) containing the idempotent f.
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Theorem 3.2.4. Let S be a semigroup with exponent n. Then P.(S) is complete if

and only if S is a monogenic semigroup.

Proof. Let S be a monogenic semigroup. Then there exists a € S such that S = (a).
For any x,y € P.(5), we have x,y € (a). Thus, by definition, P.(S) is complete.
Conversely, suppose that P.(S) is complete. By Lemma 1.1.25, o(x) < 2n for all
x € S. Now choose an element z € S such that o(x) is maximum. In order to prove
that S is monogenic, we show that S = H, where H = (x). If S # H, then there
exists y € S but y ¢ H. Since P.(S) is complete, z,y € (z) for some z € S. Also
note that (z) = (x). Consequently, y € (x); a contradiction. Thus, S = (x). Hence,

S is a monogenic semigroup. O

Theorem 3.2.5. Let S be a semigroup. Then the following statements are equiva-

lent:
(i) The set w(S) C {1,2}
(ii) Pe(S) is acyclic graph
(iii) P.(S) is bipartite.

Proof. (i)=(ii) Suppose 7(S) € {1,2}. Let if possible, there exists a cycle, viz.
g ~ a1 ~ -+ ~ ag ~ qp, in P,(S). Since this cycle must belongs to some connected
component of P.(S). Aso(a) < 2forall a € S, we get S is of bounded exponent. By
Theorem 3.2.1, there exists f € E(S) such that a; € Sy for all ¢, where 0 < ¢ < k.
Consequently, at most one ¢ such that a; is an idempotent element. If none of the
vertices of this cycle are idempotents, then ag,a;, f € (z1) for some z; € S and
f € E(S). Consequently, o(z;) > 3; a contradiction. If one of the vertex of the
cycle ag ~ ay ~ -+ ~ a; ~ ag is idempotent, then note that there exist two non
idempotent elements a;,a; such that a; ~ a;. Thus, a;,a;, f € (2) for some z € S

which is not possible as o(z) < 2.
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(ii)=(iii) Since P.(S) is acyclic graph so that it does not contain any cycle. By
Theorem 1.2.2, P.(5) is bipartite.

(iii)=(i) Suppose P.(S) is a bipartite graph. By Theorem 1.2.2, P.(S) does not
contain any odd cycle. To prove 7(S) C {1,2}. Let if possible there exists a € S
such that o(a) > 3, then a ~ a® ~ a® ~ a is an odd cycle in P.(S); a contradiction

of the fact that P.(S) is bipartite. O
In view of Corollary 3.2.3 and Theorem 3.2.5, we have the following corollary.

Corollary 3.2.6. The enhanced power graph P.(S) is a tree if and only if | E(S)| =1
and 7(S) C{1,2}.

Theorem 3.2.7. The enhanced power graph Pe(S) is k-regular if and only if S is

the union of mutually disjoint monogenic subsemigroups of S of size k + 1.

Proof. Suppose P.(S5) is k-regular. Note that the order of each element is at most
k+1. Otherwise there exists « € S such that deg(x) # k; a contradiction of the fact
that P.(S) is k-regular. For each = € S, there exist m,, g, € Ny such that m, + ¢, <
k+1and a™=9 < k41 is an idempotent element. Choose n = (k+ 1)! gives a™ is
an idempotent element for all @ € S. Then S is of bounded exponent. By Remark
1.1.26, S = |JSy. For f, f' € E(S), we get |S¢| — 1 = deg(f) = deg(f’') =|Sp|— 1.
It follows th];etE|(§jc| = |Sp| = k+ 1. Since P.(S) is regular, for each a € Sy, we have
deg(a) = |S¢| — 1. Consequently, for each f € E(S5), the subgraph induced by Sy is
complete. Now we show that S; is a subsemigroup of S. Let x,y € S;. Then there
exist m,n € N such that 2™ = y" = f. Since x ~ y as Sy is complete so z,y € ()
for some z € S. Consequently, (z) C Sy so that xy € S;. By Theorem 3.2.4, Sy is
a monogenic subsemigroup of S.

Conversely, suppose S is the union of mutually disjoint monogenic subsemigroup
S; of S of size k + 1 where ¢ € A and A is an index set. For our convenient, we

assume that S; = (a;), where ¢ € A. Note that a;,a; ¢ Sy for some f € E(S). For
instance if a;,a; € Sy, then f € (a;) N (a;); a contradiction. Also, f € E(S) C S
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implies f € (a;) for some . Consequently, a; € Sy and so (a;) C Sy. If v € S¢\ (@)
then x € (a;) for some j # i. Therefore, x € Sy for some f’ # f; a contradiction
of Remark 1.1.26. Thus, for each f € E(S), we have Sy = (a;) for some i. By
Theorem 3.2.4, for each f € E(S), the subgraph induced by Sy is complete and by
hypothesis the graph P.(S) is regular. O

By the similar lines of the proof of Theorem 3.2.7, the following theorem on the

completeness of the connected components of P, (.5).

Theorem 3.2.8. Let S be a semigroup of bounded exponent. Then the connected
components of the enhanced power graph P.(S) are complete if and only if S is the

union of mutually disjoint monogenic subsemigroup of S.

Theorem 3.2.9. A semigroup S with exponent n is completely reqular semigroup if

and only if each connected component of P.(S) forms a group.

Proof. Suppose S is completely regular semigroup. Then every H-class of S is a
group (see Proposition 1.1.23). In view of Theorem 3.2.1, each connected component
of P.(S) is of the form S; for some f € E(S). To prove that each connected
component P,.(S5) forms a group, we show that Sy = Hy for each f € E(S). Let
a € Hy. Then a" = f for some n € N as S is of exponent n so that @ € Sy. On the
other hand, suppose a € Sy. If a € Hp for some f' # f € E(5), then a € Syr; a
contradiction. Thus H; = ;.

Conversely, suppose every connected component of P,.(S) forms a group. To
prove S is completely regular, we show that every H-class forms a group (see Propo-
sition 1.1.23). Let @ € S. Then a € S for some f € E(S). We claim that H, = S;.
Suppose b € Sy. By Remark 1.1.21, (b, f) € H. Also, we have (a, f) € H so that
(a,b) € H. It follows that Sy C H,. On the other hand let b € H,. Then a € Sy
implies that b € Hy. Since Hy contains an idempotent so that H; forms a group
(see Corollary 1.1.22). It follows that b™ = f for some m € N. Hence, H, = Sy for
some f € E(9). O
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Proposition 3.2.10. An element a of an arbitrary semigroup S is an isolated vertex

in P.(S) if and only if
(i) a is an idempotent in S.

(i) 1, = {a}.
(iii) my, = 1 for each x € S,.

Proof. Let a be an isolated vertex in P.(S). Clearly a € F(S). Otherwise a ~ a®.
Consequently, H, forms a group with the identity element a. Thus, every vertex of
the enhanced power graph induced by H, will be adjacent with a. Let if possible,
x € H, \ {a} then x ~ a; a contradiction. If b # a € S, then 0™ = a for some
m € N. It follows that b ~ a; a contradiction. Thus, S, = {a} and m, = 1.
Conversely suppose for a € S satisfy (i), (ii) and (iii). Let if possible, a ~ x
for some x € S. Then a,z € (b) for some b € S. Consequently, (x) C (b) and
a € (x). Note that r, = 1. If r, > 1, then @ = 2 for some p > m,. Consequently,
(a,x9) € H for some m < ¢ # p and so |H,| > 1; a contradiction. Thus r, = 1 and

m, = 1 implies x = a; a contradiction. O

Now we discuss the planarity of P.(S5). We begin with the following proposition

which ensures the non-planarity of P.(.9).
Proposition 3.2.11. Let P.(S) be a planar graph. Then o(a) <5 for all a € S.

Proof. Let if possible, there exists an element a € S such that o(a) > 5. Then the
subgraph induced by (a) contains K5. By Theorem 1.2.7, P.(S) is non-planar; a

contradiction. O

Theorem 3.2.12. Let S be a semigroup such that the index of every element of
order four is either one or two. Then P.(S) is planar if and only if the following

condition holds

(i) Fora € S, we have o(a) < 4
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(ii) S does not contain a,b,c € S such that o(a) =o(b) =o(c) = 4, m, = m, =

m. = 2 and |{a) N (b) N {(c)| = 3.

Proof. First suppose that S satisfies the conditions (i) and (ii). In order to prove
P.(S) is planar, it is sufficient to show that every connected component of P.(S) is
planar. Since o(a) < 4 for all @ € S so that S is of bounded exponent. In view of
Theorem 3.2.1, each connected component of P.(S) is of the form Sy, where f €
E(S). Now we establish a planar drawing for S;. Consider the set Ay = {a € Sy :
o(a) = 4}. In view of given hypothesis, note that the sets A = {a € A4 : m, = 1}
and B = {a € A, : m, = 2} forms a partition of A4 i.e. Ay =AU B. Let a € A,.
Observe that a ~ b if and only if b € (a). For instance, if a ~ b for some b € S'\ (a),
then a,b € (c) for some ¢ € S. Since o(a) = 4 and o(c) < 4, we have b € (a); a
contradiction. Now we prove that the subgraph induced by the elements of N(A,)

is planar though the following claims:

Claim 3.2.13. The subgraph induced by N[B] is planar.

Proof of claim: First suppose that a € B. Then m, = 2 so that (a) = {a,d? a®, a*:
a® = a*} and (a?) = (a*). Tt follows that a® ~ x if and only if a* ~ x for all x € S.
Further, if a? ~ x for some x € S\ (a), then * x € (y) for some y € S. By (i),
o(y) <4 and x € {a? a*, a'} gives x = y and o(x) = 4. By hypothesis, we get either
m, = 2 or m, = 1. Since o(a?) = 3 and a? € (x) implies that m, = 2. If possible,
let a® ~ y for some y € S\ ({(a) U {x}). Then by using the similar argument, we
get (y) = {y,a? a* a*} and m, = 2. Therefore, we have |(a) N (x) N (y)| = 3 and
m, = m, = m, = 2; a contradiction of (ii). It follows that either N[(a)] = ()
or N[{a)] = (a) U {z} for some x € B. Note that N[x] = (x) = {x,d? a3 a'} as
x € Ay. Thus, we can draw the subgraph induced by all the vertices of N(B) in a

plane without cutting an edge shown in Figure 3.6.

Claim 3.2.14. The subgraph induced by N[A] is planar.
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aj

FIGURE 3.6: Planar drawing of P.(N[B])

Proof of claim: Let a € A. Then (a) is a cyclic subgroup of order 4 and Nla| =
N[a®] = {a). If a*> ~ z for some z € S\ {a), then we prove that N[z] = (z). Since
a’,z € (t) for some t € S, we get 3 < o(t) < 4 as a?, [,z are distinct element
and o(t) < 4 (by (ii)). If o(t) = 3, then we must have t = z. Let if possible,
z ~ s for some s € S\ (z), then z,s € (g) for some ¢ € S. Since o(z) = 3 and
o(q) < 4 (by (i)) implies ¢ = s and o(s) = 4. As a result, m, = 2. Also a® € (s)
and o(a?) = 2 which is not possible because (s) does not contain an element of
order 2. Therefore, N[z] = (z) = {f,z,a*}. We may now assume that o(t) = 4.
Note that m; € {1,2} as t € Ay. For o(a?) = 2 and a?,z € (t), we get m; = 1
and (t) = (z). It follows that N[z] = (z) = {f,2,a% 2® = t}. Therefore, we
have N[{a)] = (a) U PUQ, where P = {z € S; : N[z|] = {z,d% f} = (2)} and
Q =1{z¢€S;: N[z] = {z2,a%2% f} = (2)}. Thus the subgraph induced by the
vertices of N[N[A] \ {f}] can be drawn in a plane without cutting an edge shown in

Figure 3.7.
Moreover, we observed that if x € N[N[A] \ {f}], then N[z] C N[N[A]\ {f}].

Claim 3.2.15. The subgraph induced by the neighbours of As = {x € Sy \ N(A4) :
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FIGURE 3.7: Planar drawing of P.(N[A])
o(x) = 3} is planar.

Proof of claim: Let a € A3 and a ~ «x for some x € Sy \ (a). Note that x ¢ N[A,].
Since a,x € (t) for some t € S gives a € (x) and o(x) = 4; a contradiction. If
mq = 1, then N[(a)] = (a). Otherwise, there exists y, € (a) such that o(y,) = 2.
Now we define A, = {t € A3 : y, € (t)}. Fort € A, , clearly, we have ¢t € As.
Thus the subgraph induced by N[A3] can be drawn in a plane without cutting an
edge.

Additionally, we can conclude that the drawing of the subgraph induced by
N[As] UNIN[A] \ {f}] is planar. Now the set A, consists the remaining vertices is
left in the subgraph induced by Sy \ N[A3] UN[N[A] \ {f}]. For x € A, we must
have o(x) = 2 and N(z) = {f}. Thus, the result follows.
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Conversely, suppose P, (5) is planar. Then by Proposition 3.2.11, o(a) < 4 for
all @ € S. On contrary, we assume S does not satisfies the condition (ii). Then
there exists a,b,c € S such that o(a) = o(b) = o(c) = 4, m, = my, = m. = 2 and
|{(a)N({byN{c)| = 3. Therefore, we have (a)N{b)N{c) = {x,y, z}. Consequently, P.(S)
contains a subgraph K33 whose partitions sets are X = {a,b,c} and Y = {z,y, z};

a contradiction of the fact that P.(S) is planar (see Theorem 1.2.7). O
In view of Theorem 1.1.23, we have the following corollaries of Theorem 3.2.12.

Corollary 3.2.16. Let S be a completely reqular semigroup. Then P.(S) is planar
if and only if o(a) < 4 for alla € S.

Corollary 3.2.17. [Bera and Bhuniya, 2017, Theorem 2.6] Let G be a finite group.
Then P.(G) is planar if and only if 7(G) C {1,2,3,4}.

Now we construct a semigroup S which do not satisfying condition (ii) of Theo-

rem 3.2.12 such that P.(5) is non-planar.

Example 3.2.18. Assume that S = {a,7,y,2,b,c: a® = a®} is a semigroup shown
in Figure 3.8 and the enhanced power graph of a semigroup S given in Figure 3.9.
Clearly, it contains a subgraph K33 with the partitioned sets A = {a,b,c} and
B ={x,y,2z}. So by Theorem 1.2.7, the enhanced power graph of S is non-planar.

Now we obtain the minimum degree and the independence number of P.(S5).
Theorem 3.2.19. Let S be a semigroup with exponent n. Then
(i) 8(Pe(S)) =m — 1, where m = min{o(z) : x € M}.
(i) a(Pe(S)) is the number of mazimal monogenic subsemigroup of S.

Proof. (i) Let € S. Then x € (y) for some y, where y € M. Since the subgraph
induced by (y) forms a clique, we get deg(z) > m — 1. Now choose z € S such that
2z € M and o(z) = m. Then deg(z) = m — 1. Thus, we have the result.
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Table 4
a x Yy z b c
a| z Y 2 x =z =z
T Yy o oz T Y Y Y
Yy
Y z T Yy z z z
z x Y 2z z =z z c
b r Yy z r T
x b 2
c | x Yy 2z z z =z

FIGURE 3.9: P.(S5)
FIGURE 3.8: Cayley table

(ii) First note that for x,y € M such that (x) # (y), we have x ~ y. For instance,
if x ~ y then x,y € (z) for some z € S. Consequently, (x) = (y) = (z); a contra-
diction. Thus, a(P.(S)) is more than or equal to number of maximal monogenic
subsemigroup of S. Further, observed that S is the union of maximal monogenic
subsemigroup of S and the subgraph induced by maximal monogenic subsemigroups
forms a clique in P.(5). It follows that a(P.(S)) is less than or equal to number of

maximal monogenic subsemigroup of S. Hence, the result holds . O

3.2.1 Chromatic Number of P.(S)

Shitov [2017], proved that the chromatic number of power graph of an arbitrary
semigroup is at most countable. In Chapter 2, we have shown that the chromatic
number of cyclic graph of an arbitrary semigroup is at most countable. But this
result need not hold in the case of enhanced power graph associated with semi-
groups. In the following example, we construct a semigroup S such that x(P.(5))

is uncountable.

Example 3.2.20. Consider the sets B = {(i,7) € [1,2] x [1,2] : j < i} and
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A = BUIL,2|. Now we define a relation p on A by
(4,7)%p i and (i, §)p j for all (i, j) € B.

We prove that the chromatic number of the enhanced power graph of the semigroup
A*/p# (see Theorem 1.1.18) is uncountable. First we claim that: ip# # jp* for
i,j € [1,2]. On contrary, we assume that ip? = jp# for some 7,5 € [1,2]. Then
i p*j. Since p* = (p°)¢ (see Proposition 1.1.20) so that there exist 21, 2y, ..., 2, € A*
such that z; = ¢ and 2, = j with z; p¢ 2,1 for all k, where 1 < k < n — 1.
Consequently, we get zp = xparyr and zp1 = 2,bryy for some xy, Y, ag, by € A* and
a p by. Observe that ay, by € {u, (v,w)?, (v/,w')3} for some u,v,w,v',w € [1,2].
For i = 21 = x1a1y;, we have 1 = y; = € and a; = i. Then 2z, = b; because
2y = x1biyr. For z = by p i, we get either 25 = (4,£)% or 29 = (¢,4)3, where t € [1,2].
Suppose 2o = (i,¢)% Since zp = xaagys and so T3 = Yo = € and ay = (4,¢)?. On
continuing this process we obtain either z, =i or z, = (4,¢)? which is not possible
because j # i and j # (i,t)?. Similarly we get a contradiction when 2z, = (¢,4)3.
This completes the proof of claim.

Let 4,7 € [1,2]. Without loss of generality, we assume that j < i. Then
ip? # jp*. Since p¥ is a congruence so that (i,7)™p* = ((4,7)p")™ for all m € N.
Therefore, we have ip? = (4,7)%p% = ((1,7)p")? and jp* = (i,7)°p" = ((3,7)p")>.
This implies that ip?,jp* € ((i,7)p") gives ip? ~ jp* in P.(A*/p#). Thus
the uncountable set C' = {ip# : ¢ € [1,2]} forms a clique in P.(A*/p*). By
w(P.(A*/p™)) < x(P.(A*/p*)), the result holds. O
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