Chapter 4

The Commuting Graphs

The commuting graph has been attracted a great attention in last two decades
and published a large number of articles (see Bates et al. [2003a]; Bundy [2006];
Giudici and Parker [2013]; Segev [2001]). The commuting graph A(G, Q) of a group
G is a simple undirected graph whose vertex set is {2 C G and two vertex x,y are
adjacent if and only if xy = yx. The commuting graphs were introduced by Brauer
and Fowler [1955] with Q = G\ {e}. In recent years, the commuting graphs of vari-
ous algebraic structures have become a topic of research for many mathematicians,
see Ali et al. [2016]; Aratdjo et al. [2015]; Shitov [2016, 2018] and references therein.
Aradjo et al. [2011] calculated the diameter of commuting graphs of various ideals of
full transformation semigroup. Also, for every natural number n > 2, a finite semi-
group whose commuting graph has diameter n has been constructed in Araujo et al.
[2011]. Iranmanesh and Jafarzadeh [2008] studied diameter, girth, clique number,
independence number etc. of the commuting graph associated with symmetric group
and alternating group. Tolue [2020] introduced the twin non-commuting graph by
partitioning the vertices of non-commuting graph and studied the graph-theoretic
properties of twin non-commuting graph of AC-group and dihedral group. The dis-

tant properties as well as detour distant properties of the commuting graph on the
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98 THE COMMUTING GRAPHS

dihedral group D,, were investigated by Ali et al. [2016]. Moreover, they obtained
metric dimension of the commuting graph on Dy, and its resolving polynomial. Re-
cently, Kakkar and Rawat [2018] studied the detour distance properties and obtained
the resolving polynomial of the commuting graph of generalized dihedral group.

In this chapter, we discuss graph-theoretic and algebraic properties of commut-
ing graph associated with groups and semigroups (in particular, Brandt semigroups).
We begin with the investigation of the commuting graph A(G, Q), with Q = G, de-
noted by A(G). In Section 4.1, we calculate the minimum degree, edge connectivity
of commuting graph of a finite group G. Also, we give a formulae of matching
number of A(G) when |G| is odd, otherwise we give bound of matching number of
A(G). Further, we prove that if the automorphism group of commuting graphs of
two groups are isomorphic and one of them is an AC-group then other is also an
AC-group. Moreover, we investigate the other graph-theoretic properties of com-
muting graph for a finite group G, viz., boundary graph J(A(G)), interior graph
Int(A(G)), eccentric graph of Ecc(A(G)). In this connection, we prove that for
finite group G, 0(A(G)) = Ecc(A(G)). Section 4.2 comprises the study of various
graph invariants of A(SDg,) viz. Hamiltonian, perfectness, independence number,
clique number, vertex connectivity, edge connectivity, vertex covering number, edge
covering number etc. Moreover, we study the Laplacian spectrum, metric dimen-
sion, resolving polynomial and the detour properties of the commuting graph of
SDg,. In Section 4.3, we study the commuting graph of Brandt semigroups B, -
an important class of inverse semigroups. The content of Sections 4.1 and 4.2 is
accepted for publication in SCIE journal “Bulletin of the Malaysian Mathematical
Sciences Society”, To appear, DOI: https://doi.org/10.1007 /s40840-021-01111-0.
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4.1 The Commuting Graph of Groups

In this section, we investigate the commuting graph of an arbitrary group G. First,
we show that the edge connectivity and the minimum degree of A(G) are equal.
For a € G, let cl(a) be the conjugacy class of G containing a. The centre of G is
denoted by Z((G) and the centralizer of a is denoted by

Cela) ={be G :ab=ba}.
The following remark follows from the definition of A(G).

Remark 4.1.1. In the commuting graph of a group G, we have N[z| = Cg(x) for

each x € G.

Theorem 4.1.2. Let G be a finite group and t = max{|cl(a)| : « € G}. Then

K (A(0) = s(a(e) = 1 -

1.

Proof. In view of Remark 4.1.1, §(A(G)) = r — 1, where r = min{|Cg(a)| : a € G}.
For a graph I, since </(I') < 6(I") we obtain «'(A(G)) < r—1. By Menger’s theorem
(cf. [Bondy et al., 1976, Theorem 3.2|), to prove another inequality, it is sufficient to
show that there exist at least » — 1 internally edge disjoint paths between arbitrary
pair of vertices. Let x and y be the distinct pair of vertices in A(G). Suppose
|Ca(x) N Ca(y)| = q. For z € Cg(x) N Cq(y), we have x ~ z and y ~ z. Then
A(G) contains at least ¢ internally edge disjoint paths between x and y. Further
there exist @1, 22,..., 2,41 € Cq(2)\ Ca(y) and y1,¥a, . .., Yr—g—1 € Ca(y)\ Ca(2).
Consequently, we get x ~ x; ~ e ~ y; ~ y internally edge disjoint paths between

x and y which are r — ¢ — 1 in total. Thus, we have at least r — 1 internally

(€]
ICa(x)]”

K(A(G)) = §(A(G)) = 9 — 1, where t = max{|cl(a)| : a € G} O

t

disjoint paths between x and y. Since for x € G, we have |cl(x)| = Hence,

In the following theorem, we obtain the matching number of A(G).
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Theorem 4.1.3. Let G be a finite group and let t be the number of involutions in

G\ Z(G). Then

% if 1G] is odd:
(i) &'(A(G)) =
|_§| if |G| is even and t < |Z(G)];

(ii) fort > |Z(G)| and G is of even order, we have

|Gl +12(G)] ¢t
2

< o'(A(G)) < '—2'

Proof. (i) Let G be a finite group of odd order. Observe that for x € G\{e}, we

have x # 27! as o(x) > 2 and x ~ xz7'. Thus, M = {(x,z7') : x # ¢ € G} is
Gl—1

a matching of order % in A(G). On the other hand, the order of a largest

_Gl-1

2
Now we assume that G is of even order and ¢t < |Z(G)|. Note that x € Z(G) if

and only if x7! € Z(G). Consider the set A = {a € G\ Z(G) : o(a) = 2} whose

matching in a graph of order n is LgJ Hence, we get o (A(G))

cardinality is t. Further, we denote the edges with ends a; and z; by ¢;, where a; € A
and z; € Z(G). Let M ={e; : 1 < i <t} J{(m,a™) :x #£e € G\ Z(G)} is a
matching such that G\ Gy C Z(G), where Gy = {x € G : (2 € G), (x,2') €
M}, Clearly, |G\ Gyl is even as both |G| and |G| are even. Consequently,

|G

M = MU{(x,2)) : x # 2 and x,2’ € Gy} is a matching of size 7| Since
G
o' (A(G)) < |2—|, we have the result.

(ii) Suppose |G| is even and t > |Z(G)|. By the proof of part (i), we have a matching

Gl +12(G)] =t

M of size at least . Thus, we get the desired inequality. O

In view of Lemma 1.2.10(ii), we have the following corollary.

Corollary 4.1.4. For a finite group G and let t be the number of involutions in
G\ Z(G), we have
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|G| +1
2

if |G| is odd,

(i) 5'(A(G)) =
|Gl

5 if |G| is even and t < |Z(G)|;

(ii) fort > |Z(G)| and G is of even order, we have

1G]

: _161=12(@)|+ .

2

< B'(A(G))

For x € G\ Z(G), Cg(x) is called mazimal centralizer if there isnoy € G\ Z(G)
such that Cg(x) is a proper subgroup of Cg(y). In the following proposition, we

compute the vertex connectivity of A(G).

Proposition 4.1.5. Let GG be a finite non-abelian group such that, for some x € G,

Ce(x) is a maximal centralizer and an abelian subgroup of G. Then k(A(G)) =

|1Z(G)].

Proof. Suppose Cg(x) is an abelian subgroup of G for some = € G. Clearly, Co(x) #
(G as (G is a non-abelian group. For y € Cg(x), we have zy = yz for all z € Cg(x) as
Ce(z) is an abelian subgroup of G gives Cg(x) C Cg(y). Since Cg(x) is a maximal
centralizer so Cg(z) = Cg(y) for all y € Cq(x)\ Z(G). As G is a non-abelian group,
there exists z € G such that xz # zx. It follows that there is no path between x
and z in the subgraph induced by the vertices of G\ Z(G). For instance if there is a
path z = xy ~ 2y ~ -+ ~ x, = y for some r > 1 then it follows that x; € Cg(z) for
all 7, where 1 < ¢ < r. Thus, xz = 2x; a contradiction. Thus, the subgraph induced
by the vertices of G\ Z(G) is disconnected so k(A(G)) < |Z(G)|.

If there exists a vertex cut-set O which do not contain Z(G), then there exists
a € Z(G) such that a ¢ O. For distinct x,y € G\ O, we have z ~ a ~ .
Consequently, the subgroup induced by the vertices of G\ O is connected implies
the set O is not a vertex cut-set; a contradiction. Thus, any vertex cut-set always

contains Z(G). Consequently, x(A(G)) > |Z(G)| and hence K(A(G)) = |Z(G)|. O
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A group G is called an AC-group if the centralizer of every non-central element

is abelian.

Theorem 4.1.6. Let G be a finite group such that A(G) = A(H) for some AC-
group H. Then G is an AC-group.

Proof. Suppose A(G) = A(H), where H is an AC-group. By [Dutta and Kanti
Nath, 2017, Lemma 2.1], the subgraph induced by the vertices of H \ Z(H) is
O K\x,— 1z, where X, Xy, ..., X, are the distinct centralizers of non-central el-
Ze:rrllents of H. Note that for each x € Z(H), we get x ~ y for all y € H. Therefore,
we have A(G) = A(H) = Kiz(m) V <O K|Xi|_|Z(H)|>. If x € G\ Z(G), then clearly
N[z] = X for some i. The subgraph irlljiluced by the vertices of X; is complete follows
that Cg(x) is an abelian subgroup of GG. Thus, G is an AC-group. O

Proposition 4.1.7. Let K be a clique in A(G). Then w(A(G)) = |K| if and only

if K is a commutative subgroup of maximum size in G.

Proof. Let K be any clique of maximum size such that x,y € K. Then zy commutes
to every element of K. Consequently, we get zy € K as |K| is maximum. Note that
the identity element e of G is in K. If x € K, then x7! € (x) so 7! commutes
with every element of K. Since K is a clique of maximum size we obtain 27! € K.
Therefore K forms a subgroup of GG. Clearly, K is a commutative subgroup of

maximum size. Converse part is straightforward. O
The proof of the following lemma follows from the definition of complete vertex.

Lemma 4.1.8. An element x is a complete vertez in A(G) if and only if Ca(x) is

a commutative subgroup of G.

Proposition 4.1.9. For any group G, we have

A(G) \fep i 12(G) =15
A(G) Otherwise.

Ecc(A(G)) =
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Proof. Let x € G\ {e}. Then d(x,e) = ecc(e) so that x is an eccentric vertex
for e. Thus, each non identity element of G is an eccentric vertex of A(G). If
|Z(G)| > 1, then there exists x € Z(G) \ {e}. Note that e is an eccentric vertex
for . Thus the result holds. For Z(G) = {e}, one can observe that e is not an
eccentric vertex of A(G). For instance, if e is an eccentric vertex for some y € G,
then d(x,e) = 1 = ece(y). Asy € G\ Z(G), there exists z € G such that z = y

gives ecc(y) > 1; a contradiction. O

Corollary 4.1.10. Let G be a group with |Z(G)| > 1. Then A(G) is an eccentric

graph.

In the next lemma, for each x € G, we obtain the condition on y € GG such that

y is a boundaryboundary vertex of x.

Lemma 4.1.11. An element y is a boundary vertex of x in A(G) if and only if one

of the following hold:
(i) y ¢ Ca(x)
(ii) Caly) € Calz).

Proof. 1f x € Z((G), then by the definition of boundary vertex the result holds. Now,
let x € G\ Z(G). Suppose y is a boundary vertex of z. On contrary, we assume that
y € Cg(x) and Cg(y) € Cq(x). Then there exists z € Cg(y) such that 2z ¢ Cg(x).
Consequently, we get d(z,z) > 1 and d(x,y) = 1; a contradiction. On the other
hand, we assume that y satisfy either (i) or (ii). Suppose y ¢ Cg(x). Since e is
adjacent to all the vertices of A(G) so diameter of A(G) is at most two. Therefore,
d(x,y) = 2 as & =~ y implies d(x,y) > d(z,z) for all z € G. Consequently, y is a
boundary vertex of x. If Cu(y) C Cg(x), then clearly y is a boundary vertex of
x. O

Proposition 4.1.12. For the graph A(G), we have I(A(G)) = Ecc(A(G)).
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Proof. For x # e, we have Cg(x) C Cg(e), so by Lemma 4.1.11, = is a boundary
vertex of e. Therefore, x is a boundary vertex of A(G). If |Z(G)| > 1, there exists
x # e € Z(G) so e is a boundary vertex of A(G). For Z(G) = {e}, note that e is
not a boundary vertex of A(G). For instance, if e is a boundary vertex of x for some
x € G\ {e}, then d(x,y) < d(x,e) = 1for all y € N(e) = G\ {e}. Consequently, we
get x € Z(G) which is not possible. Thus, by Proposition 4.1.9, the result holds. [

Lemma 4.1.13 ([Ali et al., 2016, Lemma 1.2]). For any group G, Cen(A(G)) is
the subgraph induced by the vertices of Z(G).

Further, we characterize the group G such that Int(A(G)) = Cen(A(G)).

Theorem 4.1.14. Let G be a non-abelian group with |G| > 2. Then Int(A(G)) =
Cen(A(G)) if and only if G is an AC-group.

Proof. In view of Lemma 4.1.13, we show that Int(A(G)) is the subgraph induced
by the vertices of Z(G) if and only G is an AC-group. First we assume that G is
an AC-group. We claim that v is an interior point if and only if v € Z(G). Let
v e G\ Z(G). Since Cg(v) is a commutative subgroup of G as G is an AC-group so
by Theorems 1.2.11, 1.2.12 and Lemma 4.1.8, v is not an interior point of A(G). On
the other hand, we assume that v € Z(G). Then clearly v is not a complete vertex
as G is a non-abelian group. In view of Theorems 1.2.11 and 1.2.12, v is an interior
point. Thus, Int(A(G)) is the subgraph induced by the vertices of Z(G).

Suppose Int(A(G)) is the subgraph induced by the vertices of Z(G). Let x €
G\ Z(G). Then x is not an interior point in A(G) implies x is a complete vertex
(cf. Theorems 1.2.11, 1.2.12 and Lemma 4.1.8). Consequently, C(x) is an abelian
subgroup of GG. Thus, G is an AC-group. O

Since the dihedral group Dy, is an AC-group, we have the following corollary.

Corollary 4.1.15 ([Ali et al., 2016, Theorem 2.11]). For n > 1, the interior and

the center of the commuting graph of the dihedral group D», are equal.
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4.2 Commuting Graph of the Semidihedral Group
SDSn

In this section, we obtain various graph invariants of A(SDs,) viz. vertex connec-
tivity, independence number, edge connectivity, matching number, clique number
etc. As a consequence, we obtain the vertex covering number and the edge cover-
ing number of A(SDsg,). Further, we also study the Laplacian spectrum, resolving
polynomial and the detour properties of A(SDsg,,) in various subsections. For n > 2,

the semidihedral group SDsg, is a group of order 8n with presentation
SDg, = <a,b catt =2 = e, ba = a2n—lb>.

First note that

A a*™~' if i is even,
ba' = A (4.1)
a®"~ if 4 is odd.
Thus, every element of SDg,\(a) is of the form a’b for some 0 < i < 4n —1. We

denote the subgroups H; = (a*b) = {e,a*b} and T; = (a* 1) = {e,a®", a¥ b, a® T2 1p}.

SDgn = (a> U <261 HZ> U <U Tj> .

i=0 §=0

Then we have

{e,a®"} when n is even,
Further, note that Z(SDg,) =

{e,a",a® a*"} otherwise.

Lemma 4.2.1. In A(SDg,),
(i) for even n, we have N[x] = SDsg, if and only if x € {e,a®"}.
(ii) for odd n, we have N[x] = SDsg, if and only if x € {e,a", a*",a*"}.

Proof. The result follows from Remark 4.1.1. O
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By Theorem 1.2.1, we have the following corollary.
Corollary 4.2.2. The commuting graph of SDs, is not Eulerian.
The following remark will be useful in the sequel.

Remark 4.2.3. For even n and 1 < i < 4n, we have a’b commutes with a’b if and

only if j = 2n + 1.

Proof. Let 1 < i # j < 4n. In view of (4.1), we have

ok a®™ when 17 is even, it a®™ when 17 is even,
o a'ba*""'h = and a*'ba'b =
e  when ¢ is odd, e  when ¢ is odd;
A A a® when i is even, . a”™ when i is even,
o a'ba"t'h = and a"'ba'b =
a"™ when 7 is odd, a®  when 7 is odd;
S a”™ when 17 is even, Sit i a® when 1 is even,
o a'ba’"t = and @®"Tba'b =
a®™  when 7 is odd, a" when 7 is odd;
o a*™ =7 when j is even, . a**7=% when i is even,
o a'ba’b = o and a’ba'b = o
a’* =7 when j is odd, a* 7=t when 7 is odd.

Further notice that a’ba’b = a’ba’b if and only if |i — j| = 2n. Thus the result
holds. 4

Similar to the Remark 4.2.3, we have the following remarks.

Remark 4.2.4. For even n and 1 < i < 4n, we have a'b commutes with «’ if and

only if j € {2n,4n}.

Remark 4.2.5. For odd n and 1 < ¢ < 4n, we have a’b commutes with o’ if and

only if j € {n,2n,3n,4n}.

Remark 4.2.6. For odd n and 1 < i < 4n, we have a'b commutes with /b if and

only if j € {n+14,2n +1,3n + i}.
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In view of the Remarks 4.2.3 - 4.2.6, we obtain the neighbourhood of each vertex

of A(SDg,).

Lemma 4.2.7. In A(SDg,), for even n, we have
(i) N[z] = {e,a®", a’b,a®" b} if and only if x € {a'b,a®* b}, where 1 < i < 4n.
(ii) Nlz] = (a) if and only if x € {(a) \ {e,a®"}.

Lemma 4.2.8. In A(SDs,), for odd n, we have

(i) N[z] = {e,a™, a®",a", a'b, a™ b, a® b, a> b} if and only if

x € {a‘b, a" b, a® b, a>" 0}, where 1 <14 < 4n.
(ii) Nfz] = (a) if and only if x € {(a) \ {e,a", a®", a®"}.
In view of Section 4.1 and Lemmas 4.2.7, 4.2.8, we have the following proposition.

Proposition 4.2.9. The commuting graph of S Ds,, satisfies the following properties:

(i) sdim(A(SDsy)) is 8n — 2

(il) w(A(SDsgy)) = 4n

(iii) Cen(A(SDs,)) = Int(A(SDs,))

(iv) A(SDs,) is an eccentric graph

(v) A(SDs,) is a closed graph

3 if n is even ;

(vi) K (A(SDsg,)) = o
7 if n is odd.

Proof. (i) One can observe that the graph A(SDgn) is a star graph. Thus by The-
orem 1.2.15, the result holds.
(ii) For 1 < ¢ < 4n, note that the element a’b is commute with at most eight

elements of A(SDg,). Since the commutative subgroup generated by a is of size
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4n. It follows that any commutative subgroup of SDg, of maximum size does not
contain the elements of the form a’b. Thus, (a) is a commutative subgroup of S Dy,
of maximum size 4n and hence the result holds (cf. Proposition 4.1.7).

(iii) For any x € SDg, \ Z(SDs,), we have N[x] = (x). By Remark 4.1.1, Cg(x)
is a commutative subgroup of SDg,. Thus by Theorem 4.1.14, Int(A(SDsg,)) =
Cen(A(SDg,)).

(iv) Since |Z(A(SDs,))| > 1 (see Lemma 4.2.1) so that by Proposition 4.1.9, the
result holds.

(v) Note that for non-adjacent vertices x and y, we have |N(x)|4+|N(y)| < |V(A(SDs,))| =
8n (cf. Lemmas 4.2.7 and 4.2.8). Consequently, deg(x) + deg(y) < [V(A(SDsy,))|

for all non-adjacent vertices x and y. Thus, by [Ali et al., 2016, Lemma 2.15 |, the
result holds.

(vi) For even n, by Lemma 4.2.7, note that §(A(SDs,)) = min{|Cs(z)| : = €
SDg,, }—1 = 3 and for odd n, by Lemma 4.2.8, note that 6 (A(SDs,)) = min{|Cq(x)] :

x € SDg,} —1=7. Thus, by Theorem 4.1.2, we have the result. O

As a consequence of Lemmas 4.2.7 and 4.2.8, we have the following proposition.

Proposition 4.2.10. Forn > 1, we have

Ky V (Kg2 U2nKy) if nis even ;
Ky V (Kin—aUnKy)  if nis odd.

A(SDgy) =

Now, we obtain the automorphism group of the commuting graph of SDg,,. First,

we recall the notion of wreath product.

Semidirect product: Let N be a normal subgroup of the group G and let H be
a subgroup of G. Then G is said to be the internal semidirect product of N and H
if G=HNand HNN = &. We denote it by G = H x N or G = N x H. For
each h € H, conjugation in N by an element A, yields an automorphism A% of N

and « : h — h® is a homomorphism from H to Aut(V).
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Conversely, suppose H and N are two groups, together with a homomorphism
a: H — Aut(N). The esternal semidirect product of H and N is the set {(h,n) :
h € H,n € N} with the binary operation

(R, 1) (hay 119) = (hyhg, ny ny),

where nlfg = h%(nq), forms a group. We shall denote it by H x, V.

Wreath product: Let F' and H be groups and H acts on the sets {1,2,...,n}.
Then there is an action of H on F™ (F™ is the direct product of n copies of F') by

(fbe)"')fn)h = (f1h7f2h7"'7fnh)'

Define a map ¢ : H — Aut(F™) by ¢(h) = ¢y, where

Qsh(fl;f% <. 7fn) = (flh)th) e 7fnh)-

The semidrect product H x, F™ is known as the wreath product of F' by H, and is
written as F'! H.

Theorem 4.2.11 ([Ashrafi et al., 2017, Theorem 2.2]). Suppose I' = n1I'; Unsl'y U
e Undy with Ty # T for i # 5. Then

Aut(l) = Aut(l'y) 1S, X Aut(l2) 1S, X -+ x Aut(l'y) 1 Sy,

Remark 4.2.12. If A is the set of all vertices adjacent to every vertex in a graph
[’ and I' — A is the subgraph of I' induced by the vertices of V(I') — A, then Aut(I')
is isomorphic to Sj4; x Aut(I' — A).

By Proposition 4.2.10 and Theorem 4.2.11, we have the following theorem.
Theorem 4.2.13. For n € N, we have

SQ X ((S4n_2 l Sl) X (SQ l Sgn)) an 15 even ;
Sy X ((Sgn_a1S1) X (S41S,))  if n is odd.

Aut(A(SDy,)) =
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Next, we obtain the vertex connectivity, independence number and the matching

number of A(SDg,,).

Theorem 4.2.14. In the graph A(SDs,,),

(i) the vertex connectivity of A(SDsg,) is given below:

2 ifn is even ;

4 if n s odd.

R(A(SDsy)) =

(ii) the independence number of A(SDsgy) is given below:

1 ifn=1;
a(A(SDg,)) =14 2n+1 ifn is even;

n+1 otherwise.
(iii) the matching number of A(SDsg,) is 4n.

Proof. (i) In view of Remark 4.1.1 and Lemmas 4.2.7, 4.2.8, Cg(ab) is an abelian
subgroup of SDg, and maximal centralizer. By Proposition 4.3.22, x(A(SDs,,)) =
|Z(SDs,,)|. Thus, we have the result.

(ii) Suppose n is even. Consider the set I = {a’b: 1 < i < 2n} U {a}. In view of
Lemmas 4.2.1 and 4.2.7, [ is an independent in A(SDg,) of size 2n + 1. If there
exists another independent set I’ such that |I’| > 2n + 1, then there exist x,y € I’
such that either z,y € (a) or x,y € {a'b,a* b} for some 7, where 1 < ¢ < 2n as
SDg, = (a) U (ij {a’b,a®"Tb}). In both cases, we have x ~ y (see Lemma 4.2.7);
a contradictionlgé the fact that I’ is an independent in A(SDyg,). Thus the result
holds.

On the other hand, we assume that n is odd. By using the Lemma 4.2.8 and

similar to even n case, we get an independent set I = {a’b: 1 <1i < n}U{a} of the

maximum size n + 1.



4.2 COMMUTING GRAPH OF THE SEMIDIHEDRAL GROUP SDyg, 111

(iii) In view of Lemmas 4.2.7 and 4.2.8, a'b ~ a*"*'b for all ¢, where 1 < ¢ < 2n.
Consider the set M = {(a'h, a®™b) € E(A(SDg,)) : 1 < i < 2n} U {(a’, a® ) €
E(A(SDs,)) : 1 <14 < 2n} which forms a matching of size 4n. Consequently, we get
o/ (A(SDsgy,)) > 4n. It is well known that o/ (A(SDsg,)) < MQDB"))' = 4n. Thus,
o' (A(SDg,)) = 4n. O

In view of Lemma 1.2.10, we have the following corollary.
Corollary 4.2.15. Forn > 1,

(i) the vertex covering number of A(SDs,) is given below:

7 ifn=1;
B(A(SDs,)) = 6n—1 ifn is even

™ —1 otherwise.
(ii) the edge covering number of A(SDg,) is 4n.
Now, we investigate perfectness and Hamiltonian property of A(SDsg,,).
Theorem 4.2.16. The commuting graph of SDyg,, is perfect.

Proof. In view of Theorem 1.2.4, it is enough to show that A(SDs,) does not con-
tain a hole or antihole of odd length at least five. Note that neither hole nor
antihole can contain any element of Z(A(SDg,)) (cf. Remark 1.2.5). First sup-
pose that A(SDyg,) contains a hole C given by @y ~ @y ~ -+ ~ X9 ~ X1,
where [ > 2. Note that any hole can contain at most two elements of (a), oth-
erwise (' contains a triangle which is not possible. In view of Lemmas 4.2.7 and
4.2.8, N[z] = (a) if and only if x € (a) \ Z(A(SDs,)). It follows that z; ¢ (a)
for all 4, where 1 < 4 < 2] + 1. Consequently, we get a’b € C for some i. If
n is even, then we must have a'b ~ a**b in A(SDg,) as N[a'b] =N[a?"Th] =
{e,a® a'b,a®" b} (cf. Lemma 4.2.7). As a result a’b is adjacent with only one ele-

ment in C'; a contradiction. In case of odd n, there exist z,y € C' N N(a'b). Note that
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N[a’b] =N[a""b] =N[a*"Tb] =N[a*"Tb] = {e,a", a*", a®", a'b, a""'b, a* b, a>" b}
(cf. Lemma 4.2.8) implies z,y € {a""b, a® b, a>b}. Therefore, we have x,y and
a'b forms a triangle in C'; a contradiction. Thus, A(SDg,) does not contain any hole
of odd length at least five.

Now assume that C” is an antihole of length at least 5 in A(SDyg,), that is,
we have a hole y; ~ yo ~ -+ ~ Yoy ~ vy, where [ > 2, in A(S—Dgn). Clearly,
yi & Z(A(SDs,)) for all i, where 1 < i < 2l + 1. Suppose y; € (a) for some i. Then
clearly y;_1,yi11 € SDg, \ (@), otherwise y; ~ y;_1 and y; ~ y;r1 in A(SDg,); a
contradiction. Further note that for 1 < j <2l+1and j ¢ {i —1,4,i+ 1}, we have
y; € (a). For instance, if y; € SDg, \ ({(a@) U {yi—1,¥i, ¥it1}) for some j, then y; ~ y;
in A(SDg,) as y; ¢ Z(A(SDs,)) (see Lemmas 4.2.7 and 4.2.8); a contradiction.
Therefore, there exists y; € (a) gives y; ~ y;_1 and y; ~ vy, in A(SDg,). As a
result {y;,Yi—1,Yi, Yir1} forms a cycle of length four in A(S—Dgn); a contradiction.
Thus, y; ¢ (a) for all i.

If . is even, then a’b ~ a’b for all j # 2n+i in A(SDsg,) (see Lemma 4.2.7) implies
(" is not an antihole; again a contradiction. Now we assume that n is odd. Let y; =
a'b for some i. Then we have y3,ys € N(a'd) = {e,a", a®",a®",a" b, a®" b, a®" b}
gives y3 = y4 in C’ (see Lemma 4.2.8); a contradiction. Thus, A(SDsg,) does not
contain any antihole of odd length at least five. O

Theorem 4.2.17. The commuting graph of SDs, is Hamiltonian if and only if
n € {1,3}.

Proof. First suppose that n is even. By Lemma 4.2.7, {e,a?"} is a vertex cut
set in A(SDg,) so that by deletion of these vertices, the connected components
of the subgraph induced by the vertices V(A(SDg,)) \ {e,a®"} are {a'b, a®" "0}
and (a) \ {e,a®} where 1 < ¢ < 2n. Therefore, it is impossible to construct
Hamiltonian cycle in A(SDsg,). Thus, A(SDs,) is not Hamiltonian graph when
n is even. Now we assume that n is odd. By Lemma 4.2.8, {e,a", a*",a*"} is

a vertex cut set in A(SDg,) so that by deletion of these vertices, the connected
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components of the subgraph induced by the vertices V(A(SDg,)) \ {e,a", a*",a*"}
are {a'b, a"™'b,a* b, a> b} and (a) \ {e,a", a*",a*"} where 1 < i < n which are
n+ 1 in total. It follows that for the construction of Hamiltonian cycle in A(SDsg,,),
we required at least n + 1 element from the vertex cut set. Thus, for n > 3,
A(SDg,) is not Hamiltonian graph. For n = 1,3, in view of Lemma 4.2.8, we have
deg(z) > MQDE‘"))' for all x € SDg,. Thus, by [West, 1996, Theorem 7.2.8],
A(SDsg,,) is Hamiltonian. O

4.2.1 Laplacian Spectrum

In this subsection, we investigate the Laplacian spectrum of A(SDg,,). Consequently,
we provide the number of spanning trees of A(SDg,,). In the following theorem, we

obtain the characteristic polynomial of L{A(SDsg,)).

Theorem 4.2.18. For even n, the characteristic polynomial of the Laplacian matrix

of A(SDg,) is given by

O(L(A(SDgy)), x) = x(x — 8n)*(x — 4)*"(x — 2)**(x — 4n)*" 3.

Proof. The Laplacian matrix L(A(SDsg,)) is the 8n x 8n matrix given below, where

the rows and columns are indexed in order by the vertices e = a**, a®**, a,da?, ..., a*" !,
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a®*t g?*2 . a*! and then ab,a?b, ..., a*"D.
8n— 1 1 =1 =1 e 1 =1 e 1
1 81 —1 —1 —1 «ve-n- 1 =1 e 1
-1 -1
-1 -1 A @)
L(A(SDg,)) =
-1 -1
—1 -1
o’ B
—1 -1
31271 _1271 . .
where A = 4nly,_ o — Jyp_o, B = , O is the zero matrix of size (4n —
_1271 31271

2) x (4n) and O’ is the transpose matrix of O. Then the characteristic polynomial

of L{A(SDg,)) is

x—(8n—1) 1 1 1 e 1 1 eeeeee 1
1 r—(8n—1) 1 1 e 1 1 e 1
1 1
1 1 (3514”_2 — A) @)
1 1
1 1
o’ (xly, — B)
1 1

Apply row operation Ry — (x—1)R; — Ry — - - - — Rg,, and then expand by using
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first row, we get ®(L(A(SDg,)),x) =

z—8n—1) 1 1 .. 1 1 eeen. 1
1
(.I'I4n_2 — A) @)

z(x—8n)
@D 1

1

o (xly, — B)

1

Again, apply row operation Ry — (x —2)Ry — Ry — R3 — -+ - — Rg, 1 and then

expand by using first row, we get

x(x —8n)? |tlpm_o — A O

P(L(A(SDgy)), ) = (@—2) o L. — Bl

By using Schur’s decomposition theorem (see Cvetkovic et al. [2009]), we have

x(x — 8n)?

O(L(A(SDsy)), x) = (x — 2)

|ZCI4”_2 — A| : |£L’I4n — B|

($ - 3)1271 1271 . . L.
Clearly, |zly,—B| = . Again by using Schur’s decomposition
Ign (ZL’ — B)Ign

theorem, we obtain

@l — B| = |(2 = 3)Ton | (& — 3)Ion — @—ig)bﬂ (e — 4Pz — 2)™

Now we obtain |zly, o — A| = |xl4y_2 — (4ndy,_o — J4n_o)|. It is easy to compute
the characteristic polynomial of the matrix Jy,—o is 2" 3(z — 4n + 2). Tt is well
known that if f(x) = 0 is any polynomial and A is an eigenvalue of the matrix P,
then f()) is an eigenvalue of the matrix f(P). Consequently, the eigenvalues of

the matrix A are 4n and 2. Note that if x is an eigenvector of J, corresponding
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to the eigenvalue 0, then x is also an eigenvector of the matrix A corresponding
to eigenvalue 4n. since dimension of the null space of Jy,_5 is 4n — 3 so that the

multiplicity of the eigenvalue 4n in the characteristic polynomial of the matrix A is

4n — 3. Thus, |xly,_o — A| = (x — 4n)""3(x — 2) and hence the result holds. [
Corollary 4.2.19. For even n, the Laplacian spectrum of A(SDs,) is given by

0 2 4 4n, 8n
1 2n 2n 4n—-3 2

By [Brauer and Fowler, 1991, Corollary 4.2], we have the following corollary.
Corollary 4.2.20. For even n, the number of spanning trees of A(SDg,,) is 2! =3nin=2,

Theorem 4.2.21. For odd n, the characteristic polynomial of the Laplacian matrix

of A(SDg,) is given by
P(L(A(SDgy)), x) = x(x — 8n)*(x — 4)"(x — 8)*"(x — 4n)*"~.

Proof. The Laplacian matrix L{A(SDs,)) is the 8n x 8n matrix given below, where

the rows and columns are indexed by the vertices e = a**, a®", a®*, a", a,a?, ..., a" !,
a™tt a2 att gt a2t et @ a2 et and then ab, a?b,
.., atmh.
Sn—1 —1 1 1 1 -1 e 1
1 8n—-1 -1 I 1 -1 e 1
1 1 Sn—1 -1 e 1 -1 e 1
1 1 T T 1 -1 e 1
1 -1 -1 -1
LASDY) =] -1 1 1
1 -1 -1 -1 A O
1 -1 -1 -1
O’ B
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where A = 4nl 44y — Jun—a), B = , O and O are defined

-1, -1, 7, —I,

1, —I, —I, TI,
in Theorem 4.2.18. Then the characteristic polynomial of L(A(SDs,)) is

x— (8n—1) | 1 1 11
| x—(8n—1) 1 1 11
| 1 x— (8n—1) 1 S U B |
| 1 1 r—8n—1) - 11 -1
1 1 1 1
1 1 1 1 xl — A @
1 1 1 1
1 1 1 1

o xl — B
1 1 1 1

Apply the following row operations consecutively

o Ri = (x—1)R1 — Ry —--- — Ry,
e Ry —» (r—2)Ry— R3— -+ — Rg,
e Ry — (x —3)R3 — Ry — -+ — Rs,
e Ry = (x—4)Ry— Rs —--- — Rs,

and then expand, we get
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x(x—8n)t |xl — A @ x 4
P(L(A(SDsy)), x) = & = ( |zl — Al||xl — B].

x — 8n)
(l’—4) O/ I — B ($—4)

By the similar argument used in the proof of Theorem 4.2.18, we obtain

|zl — Al = (z — 4n)*"5(x — 4). To get

($ - 7)171 In In In
L (-7, I I,
|zl — B| = :
I, L, (-7, I,
I, I, 1, (x =71,
apply the following row operations consecutively R; — (z —5)R; — Rit1 — - - — Rap

where 1 < ¢ < n and then on solving, we get

@-71 I, I,
(z—4)"(z —8)"
|zl — B| = @ =5 I, (x — 7)1, I,
1, I, (x =TI,

Again apply the following row operations consecutively
e For1<i<n,R,— (x—6)R,— R,y — - — Rz,
eForn+1<i<2n,R —(x—T)Ri— Rix1—--— Rsp

and then expand, we obtain

(z —4)"(x — 8)*
(x—=T7)"

Thus, the result holds. O

|zl — B| = ((x —T),| = (x — 4)"(x — 8)*".

Corollary 4.2.22. For odd n, the Laplacian spectrum of A(SDg,) is given by

0 4 8 4n 8n
1 n 3n 4n—-5 4

By [Brauer and Fowler, 1991, Corollary 4.2], we have the following corollary.

Corollary 4.2.23. For odd n, the number of spanning trees of A(S Dy, ) is 219"~ 1pin=2,
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4.2.2 Resolving Polynomial
In this subsection, we obtain the resolving polynomial of A(SDsg,).
Proposition 4.2.24. The metric dimension of A(SDsg,) is given below:

) 6n — 2 when n is even ;
dim(A(SDyg,)) =
™m — 2 otherwise.

Proof. First we assume that n is even. In view of Lemma 4.2.7, we get twin-sets
(a) \ {e,a®},{e,a®"} and {a’b,a® b} where 1 < ¢ < 2n. By Remark 1.2.13,
any resolving set in A(SDsg,) contains at least 6n — 2 vertices. Now we provide a
resolving set of size 6n — 2. By Lemma 4.2.7, one can verify that the set Reyen =
{a'b:1<i<2n}U{a’:i+# 1,2n} is a resolving set of size 6n — 2. Consequently,
dim(A(SDg,)) = 6n — 2. We may now suppose that n is odd. By Lemma 4.2.8,
note that (a) \ {e,a™, a®",a®"}, {e,a"a®", a®"} and {a’b,a" b, a®" b, a" b}, where
1 < i< n, are twin sets in A(SDsg,). In view of Remark 1.2.13, any resolving set in
A(SDg,) contains at least 7n — 2 vertices. Further, it is routine to verify that the
set Roqq = {a'b,a™"b,a® b : 1 <i<n}U{da":i#1,2n} is a resolving set of size

7n — 2. Thus, dim(A(SDs,)) = Tn — 2. O

Theorem 4.2.25. For even n, the resolving polynomial of A(SDs,,) is given below:

8n—2
B(A(SDgy), ) = 2% + 8na® =t + 2212 (2n — 1)a%"~2 + Z riat,

i=6n—1

where r; = 28771 {(2”+1) + (2n — 1)( 2ntl )} for6n —1<1i<8n —2.

8n—i 8n—i—1

Proof. In view of Proposition 4.2.24, we have dim(A(SDg,,)) = 6n—2. It is sufficient
to find the resolving sequence (r¢n—2,T6n—1, - - Tsn—2,Tsn—1,Tsn). By the proof of

Proposition 4.2.24, any resolving set R satisfies the following:
o [RN({a)\{e,a®})] = 4n —3;

o |[RN{e,a®™}| > 1;
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o |[RN{a'b,a® b} > 1 where 1 <7 < 2n.

For |R| =i > 6n — 2, there exist vy,vs,...,08,—; € SDg, \ R. Therefore we have
one of the following:

(i) v; € (a) \ {e,a*"} for some j and
2n

i o 2n+i 2
U1, V2, .o Ujm1, U1, Ujg2s - - - Ui € <U{a b,a b}> U{e,a*"}.

i=1

2n
(i) v1,v9, ..., Vgn_i € <U{aib,a2”+ib}> U {e,a®"}.
i—1

For ¢ = 6n — 2, (ii) does not hold so v; € (a) \ {e,a*"} and

2n
V1, Vg ey Vi1, Vg1, Ujgay -« - s Ugni € <U{alb,a2”+lb}> U {e,a®"}. Therefore, we
-1

obtain rg,_» = 22+1(4n — 2). Now for fixed i, 6n — 1 < i < 8n — 2, we get
r; = 28— {(2”+1> + (2n — 1)( 2ntl )} By Proposition 1.2.14, rg,_1 = 8n and

8n—i 8n—i—1

sp = 1. O

Theorem 4.2.26. For odd n, the resolving polynomial of A(SDg,,) is given below:

8n—2
B(A(SDgy), x) = 2% 4 8nz® 1 + 22T (n — 1)2™ 2 + Z rix’,
i=Tn—1
where r; = 216n=2 {(”H) +(n — 1)( ntl )} forin—1<1i<8n—2.

8n—i 8n—i—1

Proof. In view of Proposition 4.2.24, we have dim(A(SDs,,)) = Tn—2. It is sufficient
to find the resolving sequence (r7n—2, T7n—1,- - -, Tsn—2,Tsn—1,Tsn). By the proof of

Proposition 4.2.24, any resolving set R satisfies the following:
o |[RN({a)\{e,a™ a®, a®*})| > 4n — 5;
o |[RN{e,am a®, a*}| > 3;
o |RN{a'b,a™"b,a* b, a>Th}| > 3 where 1 <7 < n.

For |R| =1 > Tn — 2, there exist vy,vs,...,08,—; € SDg, \ R. Therefore we have

one of the following
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(i) v; € (a) \ {e,a",a®",a*"} for some j and
n
V1,V2, .+, Uj—1,Vj41,Uj42, - - -, UBn—i c <U{alb’ an—&-ib’ a2n+ib) a3n+ib}> U{e, an) a2n) a?m}
i—1

n

(11) UV1,V2,...,U08p—; € <U{Cblb, an—‘rib’ a2n+ib’ a3n+ib}> U {6, an’ a2n’ a?m}.

i=1
< .. 2”
For i = Tn — 2, (ii) does not hold so v; € (a) \ {e,a*"} and
n
iy iy 2ndip o 3neti o 3
V1, U2,y ey Vi1, Vi1, Vg2, - - 5 Usnei € U{a’b, a""'b,a""b, a”" b} |U{e, a”, a*", a’"}.

i=1
Therefore, we have r,_o = 4" (4n — 4). Now for fixed 4, Tn — 1 <4 < 8n — 2, we

A +1 n+1
. — 9l6n—2i n _1 .
" {<8n—i R U P

By Proposition 1.2.14, rg,—1 = 8n and rg, = 1. O

get

4.2.3 Detour Distance Properties

In this subsection, we study the detour distance properties of A(SDg,) viz. de-
tour radius, detour eccentricity, detour degree, detour degree sequence and detour

distance degree sequence of each vertex.
Theorem 4.2.27. In A(SDs,), we have for each x € Z(SDs,,),

dn+1  when n is even;
eccp(x) =
dn + 11 when n is odd.

and for each x € SDg, \ Z(SDg,),

dn+3  when n is even;
eccp(x) =
dn + 15 when n is odd.

Proof. We split our proof in two cases depend on n.
Case 1: n is even. First note that x ~ y for x € Z(SDs,) and y € SDs, \ {z};
x' ~ gy for all distinct 2,y € (a) \ {e,a®"}; for each 1 < ¢ < 4n, a'b ~ a**b,

a’b = alb for all j # 2n +1, a’b = o’ for all &/ € (a) \ {e,a*}. Thus we have (i) for
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each x € Z(SDyg,), there is a x - y detour of length 4n — 1 for all y € Z(SDg,) \ {x};
a x - y detour of length 4n + 1 for all y € SDg, \ Z(SDg,) as Z(SDs,) = {e,a*"};
(ii) for each 1 < ¢ < 4n, there is a a'b - a®" b detour of length 4n + 1; for distinct
1 <14,7<4nand j # 2n+1, a a'b - a/b detour of length 4n + 3; for each 1 < ¢ < 4n
and for each o/ € (a) \ Z(SDsg,), a a’b - a’ detour of length 4n + 3; and (iii) for
distinct 1 < 4,5 < 4n and 4, j # 2n, there is a a’ - @’ detour of length 4n + 1.

Case 2: n is odd. First note that x ~ y for x € Z(SDs,) and y € SDsg, \ {z};
x' ~ gy for all distinct o',y € (a) \ {e,a",a®,a*}; for each 1 < 7 < n and for
each j € {n+4,2n +14,3n + i}, a’b ~ a’b; for each 1 < ¢ < 4n, a'b = a’b for all
j & {n+i,2n+1,3n+1i}, a'b = o for all @ € (a)\ {e,a™, a®",a*" }. Thus we have (i)
for each x € Z(SDs,,), there is a z - y detour of length 4n+7 for all y € Z(SDs,,)\{z};
a x - y detour of length 4n + 11 for all y € SDg, \ Z(SDs,); (ii) for each 1 < i < 4n,
there is a a’b - a’b detour of length 4n + 11 for all j € {n +,2n + 4,3n + ¢}; for
distinct 1 < ¢ < 4n and j ¢ {n+14,2n +i,3n + i}, a a’b - a’b detour of length
4n + 15; for each 1 < ¢ < 4n and for each o/ € (a) \ Z(SDs,), a a'b - a/ detour of
length 4n + 15; and (iii) for distinct 1 < 4,5 < 4n and i, j ¢ {n,2n,3n,4n}, there is
a a' - o/ detour of length 4n + 11. O

By the definition of radp(A(SDs,,)) and diamp(A(SDs,)), we have the following

corollary.

Corollary 4.2.28. In A(SDy,), we have

dn+1 ifn is even

dn + 11 if n s odd.

(i) radp(A(SDg,)) =

dn+3  ifn is even

dn + 15 if n s odd.

(ii) diamp(A(SDs,)) =

The detour degree dp(v) of v is the number |D(v)|, where D(v) = {u € V(I') :
dp(u,v) = eccp(v)}. The average detour degree D,,(I') of a graph I is the quotient
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of the sum of the detour degrees of all the vertices of I' and the order of I'. The
detour degrees of the vertices of a graph written in non-increasing order is said to
be the detour degree sequence of graph I'; denoted by D(I'). For a vertex x € V(I),
we denote D;(x) be the number of vertices at a detour distance i from the vertex
x, then the sequence Do(x), Di(x), Do(x),. .., Decepy(a) (%) is called detour distance
degree sequence of a verter z, denoted by ddsp(z). In the remaining part of this
paper, (a",b%,¢") denote a occur r times, b occur s times and ¢ occur ¢ times in the

sequence. Now we have the following remark.
Remark 4.2.29 ([Ali et al., 2016, Remark 2.6]). In a graph I', we have
(i) Do(v) =1 and Deeep, (v) = dp(v).

(ii) The length of sequence ddsp(v) is one more than the detour eccentricity of v.

eccep (v)

i) S D) =1l

=0

Proposition 4.2.30. In A(SDsg,), we have for each x € Z(SDs,)

() 8n — 2 when n is even,
D\X) =
8n —4 when n is odd;

for each 1 <1 < 4n,

A 8n —4 when n s even;
dD(a’b) =
8n — 8 when n s odd;

and for each x € (a) \ Z(SDs,), dp(x) = 4n.

Proof. Let x € Z(SDsgy,). In view of Theorem 4.2.27, eccp(x) = 4n + 1 when n
is even. Otherwise eccp(x) = 4n + 11. In each case, by the proof of Theorem
4.2.27, one can observe that D(x) = SDsg, \ Z(SDs,). Similar to x € Z(SDg,), for
x € (a) \ Z(SDsg,) we obtain D(x) = SDg, \ (a) (cf. Theorem 4.2.27). Now let
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x = a'b for some i, where 1 < ¢ < 4n. Similar to x € Z(SDg,), when n is even, we
get
D(a'b) = ({a’b:1 < j <4n}\ {a'b,a®*'b}) U ({a) \ Z(SDs,)).

and for odd n,
D(a'd) = ({a’b:1 < j < 4n}\ {a"""b,a® b, a® b, a™"b}) U ({a) \ Z(SDsy)) -
O

Corollary 4.2.31. In A(SDs,), we have

(i)
((4n)*=2 (8n — 4)*™, (8n — 2)?) if n is even;

D(A(SDs,)) = L
((4n)*=1 (8n — 8)1", (8n — 4)*) if n is odd.
(i)
—12”22_712”_1 if nois even;
Du(A(SDsy)) =

—2(3”2;”_1) if n is odd.

Theorem 4.2.32. In A(SDg,), we have

(

(1,02.1,0,8n — 2)2, (1,0%, 4n — 1,0, 4n)*"2,

(1,0%,3,0,8n — 4)*" if n is even ;
ddsn(A(SDgy)) =
(1,045, 3,0% 8n — 4)4, (1,04+10 4y — 1,09, 4n)*n—,

(1,0F107.03 8n — 8)4" if n is odd.

\

Proof. Case 1: n is even. For z € Z(SDs,), by the proof of Theorem 4.2.27

(Case 1), we have eccp(x) = 4n + 1 so ddsp(x) = (1,0,0,...,0,1,0,8n — 2). For
N e’

in —2
x € SDg, \ Z(SDs,), again by the proof of Theorem 4.2.27 (Case 1), we have

eccp(x) = 4n + 3. Thus
(1,0,0,...,0,4n — 1,0,4n) if z € (a)\ Z(SDs,)

ddsp(x) = an
(1,0,0,...,0,3,0,80 — 4) ifx € SDg, \ (a).
———

an
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Case 2: n is odd. For z € Z(SDg,), by the proof of Theorem 4.2.27 (Case
1), we have eccp(x) = 4n + 11 so ddsp(z) = (1,0,0,...,0,3,0,0,0,87 — 4). For
N—_——

4in + 6
x € SDs, \ Z(SDs,), again by the proof of Theorem 4.2.27 (Case 2), we have

eccp(x) = 4n + 15. Consequently,

(1,0,0,...,0,4n — 1,0,0,0,4n) if z € (a)\ Z(SDsy)
N——

ddSD(ZL’): 4n + 10
(1,0,0,...,0,7,0,0,0,8n —8) if x € SDg, \ (a).
N——

4n + 10

4.3 Commuting Graph of Brandt Semigroup B,

Since all completely 0-simple inverse semigroups are exhausted by Brandt semi-
groups, their consideration seems interesting and useful in various aspects. Brandt
semigroups have been studied extensively by various authors (see Jackson and Volkov
[2009]; Sadr [2009, 2012] and the references therein). The Brandt semigroup B,, is
isomorphic to the Rees matrix semigroup M°({1,...,n},1,{1,...,n}, I,), where I,
is the n x n identity matrix (see Howie [1995]). Brandt semigroup B, plays an
important role in inverse semigroup theory and arises in number of different ways
(see Ciri¢ and Bogdanovié [2000]; Katai-Urban and Szabé [2006] and the references
therein). Endomorphism seminear-rings on B,, have been classified by Gilbert and
Samman [2010]. Further, various aspects of affine near-semirings generated by affine
maps on B, have been studied in Kumar [2014]. The combinatorial study of B,
have been related with theory of matroids and simplicial complexes in Margolis et al.
[2018]. Various ranks of B,, have been obtained by Howie and Ribeiro [1999, 2000],
where some of the ranks of B,, were obtained by using graph theoretic properties of
some graph associated on B,. Hao et al. [2011] obtained a necessary and sufficient
condition for the components of Cayley graphs of Brandt semigroups to be strongly

regular. Further, Khosravi and Khosravi [2012] characterized Cayley graphs of finite
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Brandt semigroups and provided a condition to check whether a finite digraph is a
Cayley graph of a finite Brandt semigroup.

Since the central elements of the semigroup S (or group) are always adjacent
with all the elements of S in A(S), various authors (see Ali et al. [2016]; Aratdjo
et al. [2015]) have studied commuting graphs by removing all central elements from
its vertex set. In view of this, we study the commuting graph of A(B,,,{?) such that
Q= B, \ Z(B,). Note that Z(B,) = {0}. Hereafter, we shall denote A(B,,2) by
A(B,) and any vertex x € V(A(B,)) is denoted by (i, j), where i, j € [n].

In this section, we examine various graph invariants of A(B,,), viz. minimum de-
gree, vertex covering number, edge covering number, independence number, match-
ing number, vertex connectivity. Further, we calculate the chromatic number and
strong metric dimension of commuting graph of Brandt semigroup B,. In order
to study algebraic aspects of A(B,,), we have investigated the automorphism group
and endomorphism monoid of A(B,,) in Subsection 4.3.1. Finally, we ascertained a
class of inverse semigroup whose commuting graph is Hamiltonian. This provides a
partial answer to the question posed in Aratjo et al. [2011].

We begin with the results concerning the neighbours (degree) of all the vertices

of A(B,).
Lemma 4.3.1. In the graph A(B,,), we have the following:

(i) N[(@.2)] ={(.k) : .k e€ln], g,k #i} U{(E )}

(i) N[ J)] = {(.D) = L€ [l £ i} U{d) = L€ [l #4.3}U{(kD)

k€ nl, k#i,j andl 14,7} U{(5,))}, where i # j.

Proof. The result is straightforward for n = 2. Now, let n > 3. Note that (k1) ~
(7,7) in A(B,,) if and only if k # i and | # i. Now, let (4, j) be a vertex of A(B,),
where ¢ # j. Then vertices (k,l) ~ (7,7) if and only if (k,[) satisfies one of the

following:

(a) where k # 4,7 and | # 4, j
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(b) where k =i and [ # i, j
(c) where k # 4,7 and [ = j. O

In view of the above proof, we have the following useful remark.
Remark 4.3.2. Two distinct vertices (4, j) and (k, i) are not adjacent in A(B,,).

Corollary 4.3.3. In the commuting graph A(By,), the degree of idempotent vertices

is (n — 1)? and the degree of non-idempotent vertices is n(n — 2).
Corollary 4.3.4. The minimum degree of A(B,) is n(n — 2).

Theorem 4.3.5. For n > 3, the commuting graph A(B,) satisfies the following

properties:
(i) A(B,) is not Eulerian
(ii) The girth of A(B,,) is 3
(iii) A(B,) is Hamiltonian
(iv) A(B,) is connected and diam(A(B,)) = 2.

Proof. (i) If n is even, then the deg(i,7) = (n— 1)? is odd. If n is odd, the vertex
(1,7), where i # j, has degree n(n — 2), which is odd. Thus by Theorem 1.2.1,
A(B,) is not Eulerian.

(ii) In order to find the girth of A(B,,), note that (1,1) ~ (2,2) ~ (3,3) ~ (1,1)

is a smallest cycle with length 3. Thus, we have the result.

(iii) For n = 3, note that (1,2) ~ (1,3) ~ (2,3) ~ (2,1) ~ (3,1) ~ (3,2) ~
(1,1) ~ (2,2) ~ (3,3) ~ (1,2) is a Hamiltonian cycle in A(B,,). Since the
minimum degree of A(B,,) is n(n — 2) (cf. Lemma 4.3.3), for n > 4, we have
n(n—2) — ”72 = 5(n —4) > 0. Hence, by [West, 1996, Theorem 7.2.8], A(B,)

is Hamiltonian.
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(iv) From the Figure 1, note that the diam(A(Bj)) is 2. Now for n > 4, let
(a,b),(c,d) € B,. If all of a,b,c,d are distinct, then (a,b) ~ (c,d). If at
most three from a, b, ¢, d are distinct, then there exists 72 # a, b, ¢, d such that
(a,b) ~ (i,i) ~ (c,d) is a path. Thus, any two vertices of A(B,,) are connected

by a path with maximum distance two.

O

(1,3)

FI1GURE 4.1: The commuting graph of Bs

Since A(B,,) is Hamiltonian so we have the following corollary.
Corollary 4.3.6. For n > 3, the matching number of A(B,,) is L”—;J
In view of Lemma 1.2.10(ii), we have the following corollary.

Corollary 4.3.7. For n > 3, the edge covering number of A(B,,) is n? — {%W :

In the following theorem, we investigate the independence number, dominance

number, planarity and perfectness of A(B,,).
Theorem 4.3.8. For n > 2, we have
(i) the independence number of A(B,,) is 3.
(ii) the dominance number of A(B,,) is 3.

(iii) A(B,) is planar if and only if n = 2.
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(iv) A(B,) is perfect if and only if n = 2.

Proof. (i) For n > 2, first note that the set I’ = {(1,1),(1,2),(2,1)} is an indepen-
dent set of A(B,,). In fact, I is of maximum size for n = 2. Thus, the result hold
for n = 2. Now, to prove the result we show that any independent set in A(B,),
where n > 3, is of size at most 3. Let [ be an independent subset of A(B,). If
I does not contain any non-idempotent vertex of A(B,,), then clearly I = {(i,7)},
for some i € [n]. Thus, |/| < 3. We may now suppose (i,7), where i # j, be-
longs to I. Note that each of the set A = {(4,%),(j,7)}, B = {(x,i) : x # i}
and C = {(j,y) : y # j} of vertices forms a complete subgraph of A(B,). For
(k,l) ¢ AUBUC, we have k # j and | # i. In this case, (k,l) ~ (,7). Thus, the
independent set I must contained in A U B U C. Being an independent set I can

contain at most one element from each of these sets. Consequently, |/]| < 3.

(ii) By part (i), we have a(A(B,)) = 3. Further by Lemma 1.2.3, the dominance
number of A(B,) is at most 3. Now we prove the result by showing that any
dominating subset of A(B,,) contains at least three elements. Let D be a dominating
subset of A(B,,). In view of Corollary 4.3.3, we do not have a vertex of A(B, ) whose
degree is n? — 1 so that |D| # 1. Suppose D = {(a,b),(c,d)}. If a,b,c,d all are
distinct, then it can be verified that the vertex (b, ¢) is not adjacent to any element
of D; a contradiction for D to be a dominating set. If D contains an idempotent, say
(a,b) = (i,7), then clearly both ¢, d can not be equal to i. Without loss of generality,
let ¢ # 4. Then it is easy to observe that (7,c) is not adjacent to all the elements
of D; a contradiction. Thus, in this case (|D| = 2), the dominating set D can not
contain any idempotent vertex and it can not be of the form {(a,b), (¢,d)}, where
all a,b, c,d are distinct. Now we have the following remaining cases:

Case 1: ¢ € {a,b}. Then the vertex (d,a) is not adjacent to any element of D; a
contradiction.

Case 2: d € {a,b}. Then the vertex (b,c) is not adjacent to any element of D;

again a contradiction.
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Thus, a dominating set of two elements in A(B,) is not possible. Consequently,
D] = 3.
(iii) For n = 2, it is easy to observe that A(B,) is planar. For the converse part,
let n > 3. It is sufficient to show that some induced subgraph of A(B,) is not
planar. From the subgraph of A(B,) in Figure 4.2, if we apply edge contraction on
the vertices (1,2) and (2,1), then we get a complete bipartite graph K33. Hence,
by Theorem 1.2.7, A(B,) is not planar.

(1.2)

3.2)

(1,3)
3.1

1)

(2.2)

FIGURE 4.2: The subgraph of A(B,,)

(iv) For n = 2, it is easy to verify that A(B,,) is perfect. On the other hand, let n > 3.
In order to prove that A(B,,) is not perfect, we prove that the chromatic number
and clique number of an induced subgraph of A(B,,) are not equal. In fact, we show
that for the subgraph induced by U = V(A(B3)) \ {(3,3)}, w(A(U)) = 2 whereas
X(A(U)) = 3. By part (i), since the independence number of A(B,) is 3, we must
have at least three subsets in any chromatic partition of A(U). Thus, x(A(U)) > 3.
Further, note that the sets A; = {(1,1),(1,2),(2,1)}, 4> ={(2,2),(2,3),(3,2)} and
Az ={(1,3),(3,1)} forms a chromatic partition of the vertex set of A(U). Hence,
X(A(U)) = 3. O

In view of Lemma 1.2.10, we have the following consequences of Theorem 4.3.8(1).

Corollary 4.3.9. For n > 2, the vertex covering number of A(B,,) is n*> — 3.
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Notation: We denote K as the set of all cliques of A(B,,) having no idempotent
element and & as the set of non-zero idempotents of 5,,.

In order to obtain the clique number of A(B,,), the following lemma is useful.

Lemma 4.3.10. For K € K, we have

TL2 N N .
= if n s even,

K| <

TL2—1 . .
T ifnis odd.

Proof. Suppose K is of maximum size. Consider A = {a € [n] : (a,y) € K for some y €
n]} and B = {b € [n] : (x,b) € K for some x € [n|}. If t € AN B, then there
exist p,q € [n] such that (¢,p),(¢,t) € K. Since K is a clique, we get (¢,p) ~ (g,1)
so that (t,p)(q,t) = (gq,t)(t,p). Consequently, p = g =t gives (¢,t) € K; a contra-
diction. Thus, A and B are disjoint subsets of [n] and so A x B does not contain
an idempotent. If (a,b), (c,d) € A x B, then a # d and b # c¢. As a consequence,
(a,b) ~ (¢,d). Thus, A x B is a clique such that K C A x B. Since K is a clique
of maximum size which does not contain an idempotent, we get K = A x B. If
|A| = k, then |B| = n — k because A x B is a clique of maximum size. Further,
|K| = |A||B| = k(n — k). If n is even, note that |K| = ”TQ which attains at & = %.

Otherwise, |K| = # which attains at either k = %51 or k = .

O

In view of the proof of Lemma 4.3.10, we have the following corollary.

Corollary 4.3.11. For n > 4, there exists K € IC such that

TL2 y y .
= ifn s even,

K| =

TL2—1 . .
= ifnis odd.

Lemma 4.3.12. For n € {2,3,4}, the set £ forms a clique of mazimum size.

Moreover, in this case w(A(B,,)) = n.
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Proof. By Figure 4.1, note that {(1,1), (2,2)} and {(1,1), (2,2), (3, 3)} forms a clique
of maximum size for n = 2 and 3, respectively. Now, for n = 4, clearly K =
{(1,1),(2,2),(3,3),(4,4)} is a clique in A(By). Suppose K’ is a clique of maximum
size. If K’ does not contain an idempotent, then by Lemma 4.3.10, |K'| = 4. Thus,
K is also a clique of maximum size. On the other hand, we may now assume
that K contains an idempotent. Without loss of generality, let (4,4) € K’. Then
K'\{(4,4)} is a clique of maximum size in A(Bs). Since {(1,1), (2,2), (3,3)} is the
only clique in A(Bs) of maximum size. Thus, K"\ {(4,4)} = {(1,1),(2,2),(3,3)}.
Consequently, K’ = {(1,1),(2,2),(3,3),(4,4)} = K. Hence, we have the result. [

From the proof of Lemma 4.3.10 and Lemma 4.3.12, we have the following re-

mark.

Remark 4.3.13. For n = 4, let K be any clique in A(B,) of size 4. Then K is
either £ or K = A x B, where A and B are disjoint subset of {1,2,3,4} of size two.

Theorem 4.3.14. For n > 4, the clique number of A(B,) is given below:

TL2 N N .
- if n s even,

w(A(B,)) =

n2_1 . .
T ifnis odd.

Proof. In view of Lemma 4.3.10, it is sufficient to prove that any clique of maximum
size in A(B,) contains only non-idempotent vertices. Suppose K is a clique of
maximum size such that K contains m idempotents viz. (iy,41), (i2,%2),- -, (¢m, Im)-
Without loss of generality, we assume that {i1,42,...,%n} = {n—m+1,n—m+
2,...,n}. For 1 <r <m, K contains (i,,?,) and no element of the form (x,i,) or
(ip, ) (x € [n]),x # i, isin K. Thus K\{(41,71), ..., (im,im)} is aclique in A(B,_,)
which does not contain any idempotent. Clearly, |K \ {(i1,41),..., (im,im)}| =
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w(A(B,_m)). Then by Corollary 4.3.11

(n—m)*

1 if n —m is even;

(KA A1), (i i) Y| =

(=m?-1 e~ mis odd.

Thus,
| W_Fm if n —m is even;
%4_771 if n —m is odd.

Since n > 4 and for m > 0, one can observe that

2 . .
- ifnis even;

2_ . .
”41 if n is odd;

K| <

a contradiction of the fact that K is a clique of maximum size (see proof of Lemma

4.3.10). Thus K has no idempotent. O

By the proof of Lemma 4.3.10 and Theorem 4.3.14, we have the following re-

marks.

Remark 4.3.15. For n > 4, let K be a clique of maximum size in A(B,,). Then all

elements of K are non-idempotent.

Remark 4.3.16. For n > 4 and (i,7) ¢ &, there exists a clique K of maximum size

such that (¢, ) € K.

In view of Lemma 4.3.1, note that for each vertex o of A(B,) we have o = {v}.

o~

Thus, w(A(B,)) = w(A(B,)). Hence by Theorems 1.2.15 and 4.3.14, we have the

following result.
Theorem 4.3.17. For n > 2, we have

S ifnois eveny
sdim(A(B,)) =

2 . .
tlifn is odd.
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Now we obtain the chromatic number of A(B,,). For n € N, we write n = 3a+r

where 0 < r < 2 and a € N. Consider

and

Apr={(m+x,m),(mn—-2m+2—-2z),(n—2m+2—xz,m+x)}

Biy={tl—y),(l —y2n—20+2+y),2n—20+2+y,{)}.

In order to obtain x(A(B,)), first we prove the following claims which will be

useful to obtain the chromatic partition of V(A(B,)).

Claim 4.3.18. Let n = 3a. Then

(i) form e {1,2,...,a} and x € {0,1,2,...,n —3m + 1}, A, are the disjoint

independent subsets of A(B,,).

(ii) for ¢ € {2a+1,2a+2,...,n} andy € {0,1,2,...,3¢ — 2n — 3}, B, are the

disjoint independent subsets of A(By,).

Proof. (i) For m € {1,2,...,a} and x € {0,1,2,...,n — 3m + 1}, note that

m,m+z,n—2m+ 2 —x € [n|]. Thus, A,,. € B,. By Remark 4.3.2, any
pair of vertices in A, , are not adjacent and so each A, , is an independent
subset of A(B,). Now we prove that any two distinct subsets A,,, ,, and
A, o, are disjoint. If possible, let (my + x1,m1) € Ay ay. Clearly, (my +
x1,mq) # (Mg + 29, ms). Then either (my + x1,my) = (Mo, n — 2my + 2 — x3)
or (my +xy,my) = (n—2mg + 2 — 9, My + x2). If (Mmy 4+ 21,m9) = (Mo, n —
2mg + 2 — xq), we get my +x1 = mg and my = n —2my + 2 — x3. As a
consequence, T = (n — 3mae + 1) + 1 + 1 > n — 3my + 1; a contradiction of
e < n—3mg+ 1. Similarly, for (m; + 1, mq) = (0 — 2ms + 2 — 29, My + 13),

we get x1 = n — 3my + 2+ x5 > n — 3my + 1; a contradiction. Thus, (m; +
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xr1,M1) ¢ Ay, Analogously, one can check that (mg + x9,m2) & Ay e
Now, if (my,n—2m; +2— 1) € Ay, .y, then either (my,n —2my +2—x;) =
(mg, n—2my+2—1x3) or (my,n—2m1+2—1x1) = (n—2mae+2—1x9, mo+1xs). For
(m1,n—2my+2—x1) = (Mo, n—2my+2—2x5), we obtain m; = my and z; = x9;
a contradiction so (my,n—2m;+2—x1) = (n—2mg+2—1x9, my+x5). Thus, we
have xo = n—3msy+2+x; implies xo > n—3msy+1; a contradiction. Therefore,
(my,n—2my+2—1x1) ¢ A, 2,- By replacing my, x; with mg, xs respectively,
we get (mao,n—2mo+2—13) ¢ Ay 2. If (n—2my+2—21,m1+71) € Ay aa)s
then (n—2my+2—x1,my+x1) = (n—2my+2—2x9, ma+x3). As a consequence,
mi1+ x1 = Mo + 12 and 2my + 1 = 2mo + T2 gives my = mo and 11 = X9; a

contradiction. Thus, A, », N Apy.zy = 9.

For ¢ € {2a+1,2a 4+ 2,...,n} and y € {0,1,2,...,3¢ — 2n — 3}, note that
60—y 2n—20+2+y e [n. Thus B,, C B,. By Remark 4.3.2, any pair
of vertices in B, are not adjacent and so each By, is an independent subset
of A(B,,). Now we prove that any two distinct subsets By, ,, and By, ,, are
disjoint. If possible, let (¢1,¢1 —v1) € By, Clearly (61,61 —y1) # (€2, 2 —1o).
Then, we get either (¢1,¢1 —y1) = (bo —y2,2n — 205+ 2+ 1yo) or (€1,61 —1y1) =
(2n — 205 + 2 4+ yo,b2). If (61,61 — 1) = (b2 — y2,2n — 205 + 2 + 1), then
bh=by—yand 4 —yy =2n— 200+ 2+ 2 80 4 —y = 2n — 2(61 + o) +
2 + yo. Therefore, we get y; = (3¢1 — 2n — 3) + yo + 1 which is not possible
as y; < 3¢ —2n—3. As aresult, (¢1,61 —y1) = (2n — 205 + 2 4 Yo, ¥5) gives
b1 =2n—20,+2+y; and 1 —y; = f5. Consequently, fo+11 = 2n— 205+ 2+ 1y
implies 1 = 3¢5 — 2n — 3+ y; + 1; a contradiction of y < 3¢y — 2n — 3. Thus,
(61,61 — 1) ¢ By, y,- Analogously, one can show that (¢a, €2 — y2) & By, - If
(61 — 11,20 — 26, + 2 + 1) € By, y,, then either (64 —y1,2n — 20, +2+y1) =
(by—y2,2n— 205+ 2+ys) or (b1 —y1,2n—201+2+1y1) = (2n— 200+ 2+ o, bs).
Suppose (¢1 — y1,2n — 201 +2 4+ y1) = (bo — Yo, 2n — 265 + 2 4 15), we obtain
b —yp = by — 1y and 2n — 20, + 2 +y; = 2n — 205 + 2 + yo. It follows



136 THE COMMUTING GRAPHS

that 2(¢y — ¢1) = ¢, — ¢; which is possible only if ¢; = ¢y and y; = y; a
contradiction. Therefore, we get (/1 —y1, 2n—2014+2+1y,) = (2n—205 4241y, (5)
and this implies ¢; — y1 = 2n —2(2n — 26, + 2+ 1) + 2+ y2. As a result,
y1 = 301 — 2n — 3 4 yo + 1 which is not possible as y; < 3¢; — 2n — 3. Thus,
(64 —y1,2n — 26, + 2+ yy) ¢ By,y,. In a similar lines one can show that
(b2 —y2,2n — 20y + 2 + ya) & By, y,- Thus, if By, ,, N By, # <, then we must
have (2n — 261 + 2+ y1,61) = (2n — 20y + 2 + yo, ¢5). It follows that ¢, = 5
and y; = 10; again a contradiction. Hence, the result hold.

0

The proof of the following claims is in the similar lines to the proof of the Claim

4.3.18, hence omitted.
Claim 4.3.19. Let n =3a+ 1. Then

(i) form e {1,2,...,a} and x € {0,1,2,...,n —3m + 1}, A, are the disjoint
independent subsets of A(B,,).

(i) for € € {2a4+2,2a+3,...,n} andy € {0,1,2,...,3¢ — 2n — 3}, By, are the

disjoint independent subsets of A(By,).
Claim 4.3.20. Let n = 3a + 2. Then

(i) forme {1,2,...,a+1} andx € {0,1,2,... ,n—3m+1}, A, are the disjoint
independent subsets of A(B,,).

(ii) for ¢ € {2a+3,2a+4,...,n} andy € {0,1,2,...,3¢ — 2n — 3}, By, are the

disjoint independent subsets of A(By,).

In view of above claims, a visual representation of A, , and B, can be observed
in the matrix given in Figure 4.3. Independent sets A ,, A, -+ covers the vertices
through dashed triangles, whereas the independent sets B,, ,, B,—1,- -+ covers the

vertices of V(A(B,)) on doted triangles as shown in Figure 4.3.
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(1, Ij ****** (152)----- (1:3)- - -~ {E4) (@A ) s s s s -(Am —2) - -Arn —1)- +(1.n)
@1 (22— 42.83) - -~ {24} =222 b AL o - fzn— 2) 2u-1) (2n)
- B
(3.1) 32 (3.3 3.4)..... Bn-itl) .../ (@b (30" D G
(4,1) (4.2) (4,3) (4,4). ... .. u ..... /,/'(4," 5,2)"" 4n—1) (4.n)
: 7’ . B " i
A2},x
(i1) (i,2) (i,3) (i,4) .. /.,:/. ) (1,1171# 1 .. L (i —2) (m} 1) (y',fm

Aq A
Buo1y
yas |
(n—2.1) (n—2.9) (n;/éfzn (7,,7'2:4) .".,v.".v..(71,72,"7741) ...... P q (7,,723,")
(n—1.1) (nj/r’/m (n. "i,3) (n/;1,4)—.—. T T UUE | B SEE <t (7,,71;,")
(n‘lllr)/// (71,,2),'1 o (B) ()i (A ) — 1) (,,,}J,,)

where p=(n—2n—2),g=n—-2,n—1),s=n—-1Ln—i+1),t=mn—-1n—1),u=4n—i+1)

FIGURE 4.3: Visual Representation of A,, , and By,

Theorem 4.3.21. Forn > 2, we have x(A(B,,)) = {%ﬂ

Proof. For n = 2, it is straightforward that x(A(B,)) = 2. Since x(G) = 75 ))| (cf.
[West, 1996, Proposition 5.1.7]) so that by Lemma 4.3.8, we have x(A(B )) %2
In order to obtain the result, we shall provide a partition of V(A(B,)) in {%ﬂ

independent subsets. Now, we have the following cases:

Case 1: n = 3a. First we prove that the sets A,,, and By,, where m,z, ¢,y are
given in Claim 4.3.18 are disjoint with each other. Note that for (¢, ) € A,,. and
(k,t) € By, wehave i +j <n+1and k+¢>n+2. Thus, A,,, N B, = 2. Now
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we shall show that A, , and By, forms a partition of V(A(B,)). It is sufficient to
show that [(UA,,.) U (UBy,)| = n% If m = a,a—1,...,1 then x € {0,1}, z €

{0,1,2,3,4},...,2z € {0,1,2,...,n — 2}, respectively. Thus, the total number of

n(n+1)
6

sets of the form A,,, is2+5+---+n—1= . Similarly, the total number

of the sets of the form By, is1 +4+---+n—2= %. Consequently, we have

(UAm) U (UBgy) = V(A(B,)). Thus, we have a partition of V(A(B,)) into ”—;

independent sets. Therefore, x(A(B,,)) < %2 Hence, x(A(B,)) = 5.
Case 2: n = 3a + 1. By the similar arguments used in Case 1, the sets A, ,
and By,, where m,x, ¥,y are given in Claim 4.3.19 are disjoint with each other.
Now, we shall show that the number of elements in the union of sets given in Claim
4.319isn?—1. If m=a,a—1,...,1thenz € {0,1,2}, z € {0,1,2,3,4,5},... ,x €
{0,1,2,...,n—2}, respectively. Thus, the total number of the sets of the form A,, ,
is3+6+---+n—1= %. Similarly, the total number of sets of the form By,
is2+54---+n—2= %. Consequently, we get |(UA,, ) U (UBy,)| = n? — 1.

Note that the set C' = {(a + 1,a+ 1)} is disjoint with A,, . and B,,. Thus, the sets
Ay Bey and C forms a partition of V(A(B,)). Therefore, x(A(B,,)) < ”23_1 +1=

2

{%—‘ Hence, x(A(B,)) = {%—‘
Case 3: n = 3a+2. By the similar concept used in Case 1, the sets A, , and By,

where m, x, ¢,y are given in Claim 4.3.20 are disjoint with each other. Now, we
shall show that the number of elements in the union of above defined sets is n? — 1.
Ifm=a+1a,...,1then x € {0}, x € {0,1,2,3},...,2 € {0,1,2,...,n — 2},
respectively. Thus, the total number of sets of the form A, , is1+4+---+n—1=

%. Similarly, the total number of the sets of the form B, is 3+6+---+n—2 =

—(”+1)é”_2). Consequently, we get |(UA,,.) U (UBy,)| = n* — 1. Note that the set

C ={(2a+2,2a+2)} is disjoint with A,, , and By,. Thus, the sets A, , B, and
C forms a partition of V(A(B,)). Therefore, x(A(B,)) < =1 +1 = {%ﬂ so that

W(AB) = | 5] O

Theorem 4.3.22. For n > 3, the vertex connectivity of A(B,,) is n(n — 2).
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Proof. By Theorem 1.2.9 and Corollary 4.3.3, we have x(A(B,)) < n(n —2). By
Menger’s theorem (cf. [Bondy et al., 1976, Theorem 3.2]), to prove another inequal-
ity, it is sufficient to show that there exist at least n(n — 2) internally disjoint paths

between arbitrary pair of vertices. Let (a,b) and (¢, d) be arbitrary pair of vertices

in V(A(B,)). Now consider

A={(b,x): xen]}U{(r,a): ze[n]}

and

B={(d,x): xen]}U{(x,c): x€n]}.

Note that |A| = |B| = 2n—1 and each element of A and B is not adjacent with (a, b)
and (c, d), respectively (see Remark 4.3.2). If T'= AU BU{(a,b), (¢c,d)}, then note
that every element of 77 = V(A(B,)) \ T, commutes with (a,b) and (¢, d). Thus,
for each element (x,y) of 17, we have a path (a,b) ~ (x,y) ~ (¢,d). Consequently,
there are at least 7’| many internally disjoint paths between (a,b) and (¢, d). We
show that there exist n(n — 2) internally disjoint paths between (a,b) and (¢, d) in
the following cases.
Case 1: Both (a,b) and (c,d) are distinct idempotents. Clearly a = b,¢ = d and
a # c¢. Then, we have AN B = {(a,c),(c,a)} so that |T"| = n> —4n + 4. As a
consequence, we get n? — 4n + 4 internally disjoint paths between (a, ) and (c, d).
Furthermore, for x € [n]\{q, c}, we have (a,a) ~ (¢,x) ~ (a,z) ~ (¢,c) and (a,a) ~
(x,¢) ~ (x,a) ~ (c,c) internally disjoint paths between (a,b) and (¢, d) which are
2n — 4 in total. Thus, there are at least n? — 2n internally disjoint paths between
(a,b) and (c,d).
Case 2: Either (a,b) or (¢,d) is idempotents. Without loss of generality, let ¢ = d.
Further, we have the following subcases.

Subcase 2.1: ¢ # a,b. Then AN B = {(b,¢),(¢c,a)} so that [T'| = n? — 4n + 3.
Consequently, we get n? — 4n + 3 internally disjoint paths between (a,b) and (c, d).
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In addition to that, for x € [n] \ {a,b, c}, we have
(a,b) ~ (¢,x) ~ (b,x) ~ (¢, ¢),

(a,b) ~ (x,c) ~ (x,a) ~ (¢, c)

internally disjoint paths between (a,b) and (¢, d) which are 2n — 6 in total. Further,

we have three more paths between («,b) and (¢, d) as follows:
(a,b) ~ (¢,0) ~ (a,a) ~ (¢, 0),

(CL,b) ~ (CL,C) ~ (bab) ~ (07 C)a
(a,b) ~ (c,c).

Thus, there are at least n? — 2n internally disjoint paths between (a,b) and (¢, d).

Subcase 2.2: ¢ = a or ¢ = b. First suppose ¢ = a. Then, we have AN B =
{(x,a) : x € [n]} so that |T’| = n? — 3n + 2. Therefore, A(B,,) contains n? — 3n + 2
internally disjoint paths between (a,b) and (c,d). Additionally, for x € [n]\ {a,b},
we have n — 1 internally disjoint paths (a,b) ~ (a,z) ~ (b, z) ~ (a,a) between (a,b)
and (c,d). Thus, there are at least n*> — 2n internally disjoint paths between (a, b)
and (c,d). Similarly, for ¢ = b, at least n? — 2n internally disjoint paths between
(a,b) and (¢, d) can be obtained.

Case 3: Both (a,b) and (c,d) are non-idempotent element. Clearly, a # b and
¢ # d. Further, we have the following subcases.

Subcase 3.1: a,b,c,d all are distinct. Then, we have AN B = {(b,¢),(d,a)}
so that |T’| = n? — 4n + 2. Thus, there are n? — 4n + 2 internally disjoint paths
between (a,b) and (c¢,d). In addition to that, for x € [n]| \ {a,b,¢,d}, we have
(a,b) ~ (x,c) ~ (x,a) ~ (¢,d) and (a,b) ~ (d,x) ~ (b,x) ~ (c,d) internally disjoint
paths between (a,b) and (c,d) which are 2n — 8 in total. Moreover, we have six

additional paths between (a,b) and (¢, d) as follows:

(CL,b) ~ (CL,C) ~ (bab) ~ (07 d)a
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(a,b) ~ (¢, ¢) ~ (b, d) ~ (¢, d),

(a,b) ~ (d,c) ~ (a,a) ~ (¢, d),

(a,0) ~ (d,d) ~ (ba) ~ (c,d),

(a,0) ~ (d,b) ~ (¢, a) ~ (c,d),
(a,b) ~ (c,d).

Thus, there are at least n? — 2n internally disjoint paths between (a,b) and (¢, d).

Subcase 3.2: ¢ € {a,b}. If c=a, then ANB = {(x,a) : x € [n]} so that [T"| =
n? — 3n. Therefore, A(B,) contains n? — 3n internally disjoint paths between (a, b)
and (c,d). Additionally, for z € [n]\{a,b,d}, we have (a,b) ~ (d,x) ~ (b,x) ~ (a,d)
internally disjoint paths between («,b) and (¢, d) which are n — 3 in total. Besides
these paths, we have three paths between (a,b) and (c,d) as follows:

(CL,b) ~ (d7 b) ~ (CL,CL) ~ (67 d) ~ (CL?d)P

(CL,b) ~ (d7 d) ~ (67 b) ~ (CL?d)P
(a,b) ~ (a,d).

Thus, there are at least n> — 2n internally disjoint paths between (a,b) and (c, d).
On the other hand ¢ = b. Now we have the two possibilities (i) d = a (ii) a,b,d
are distinct. If d = a, then AN B = {(b,0),(a,a)} so that [T'| = n? — 4n +
4. Consequently, we get n? — 4n + 4 internally disjoint paths between (a,b) and
(¢,d). In addition to that, for z € [n] \ {a,b}, we have (a,b) ~ (x,b) ~ (x,a) ~
(b,a) and (a,b) ~ (a,x) ~ (b,x) ~ (b, a) internally disjoint paths between (a,b) and
(¢,d) which are 2n — 4 in total. Thus, we get at least n?> — 2n internally disjoint
paths between (a,b) and (¢, d). For distinct a,b and d, we get ANB = {(d,a), (b,0)}
so that |T"| = n? — 4n + 4. Consequently, we get n? — 4n + 4 internally disjoint
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paths between (a,b) and (¢, d). Additionally, for x € [n] \ {a,b,d}, we have 2n — 6
internally disjoint paths

(a,b) ~ (2,0) ~ (x,a) ~ (b,d),

(a,b) ~ (d,x) ~ (b,x) ~ (b,d)
between (a,b) and (c,d). Besides these paths, we have two more paths (a,b) ~
(d,b) ~ (a,a) ~ (b,d) and (a,b) ~ (d,d) ~ (b,a) ~ (b,d). Thus, there are at least
n? — 2n internally disjoint paths between (a, ) and (c, d).

Subcase 3.3: d € {a,b}. If d = a, then AN B = {(b,c), (a,a)} so that |T"] =

n? —4n+4. Consequently, we get n? —4n +4 internally disjoint paths between (a, b)
and (¢, d). In addition to that, for z € [n]\{a, b, c}, we have (a,b) ~ (a,x) ~ (b,x) ~
(c,a) and (a,b) ~ (x,c) ~ (x,a) ~ (¢, a) internally disjoint paths between (a,b) and
(¢,d) which are 2n—6 in total. Moreover, we have two paths (a,b) ~ (a,c) ~ (b,b) ~
(c,a) and (a,b) ~ (c,c) ~ (b,a) ~ (c,a) between (a,b) and (c,d). Thus, there are at
least n? — 2n internally disjoint paths between (a,b) and (c,d). On the other hand,
let d =b. Then ANB = {(b,x) : x € [n]} so that |T"| = n*—3n. As a consequence,
we get n? — 3n internally disjoint paths between (a,b) and (c, d). Furthermore, for
x € [n]\{a,b, c}, we have n—3 internally disjoint paths (a,b) ~ (x,¢) ~ (x,a) ~ (¢,b)
between (a,b) and (c,d). Besides these paths, we have three more paths between

(a,b) and (c,d) as follows:
(@,b) ~ (¢,¢) ~ (a,a) ~ (¢, b),
(@,0) ~ (a,¢) ~ (b,b) ~ (¢, a) ~ (c,b),
(a,b) ~ (c,b).
Thus, there are at least n? —2n internally disjoint paths between (a, ) and (¢,d). O

In view of Lemma 4.3.1 and since x(G) < £'(G) < §(G), we have the following

corollary.

Corollary 4.3.23. For n > 3, the edge connectivity of A(B,,) is n(n — 2).
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4.3.1 Algebraic Properties of A(B,)

In order to study algebraic aspects of the graph A(B,,), in this subsection we obtain
automorphism group (see Theorem 4.3.30) and endomorphism monoid (see Theorem
4.3.41) of A(B,,). For n = 1, the group Aut(A(B,)) is trivial. For the remaining

subsection, we assume n > 2.

Lemma 4.3.24. Let x € V(A(B,)) and f € Aut(A(B,)). Then x is an idempotent

if and only if xf is an idempotent.

Proof. Since f is an automorphism, we have deg(x) =deg(zf). By Corollary 4.3.3,
the result holds. O

Lemma 4.3.25. For f € Aut(A(B,)) and i,j,k, k" € [n] such that (i,7)f = (k, k)
and (3, 7)) = (K, k'), we have either (i, j) [ = (k, k') or (i, 7)) = (K, k).

Proof. For i # j, suppose that (i,7)f = (x,y). Clearly, (i,j) »~ (i,i) so that
(x,y) = (4,7)f = (i,9)f = (k, k). Since (x,y) = (k, k), we get either x = k or y = k.

Similarly, for (4, ) ~ (j,j), we have either x = k' or y = k/. Thus, by Lemma 4.3.24,
we have (x,y) = (k, k') or (z,y) = (K, k). O

Lemma 4.3.26. For o € S, let ¢, : V(A(B,)) = V(A(B,)) defined by (i,7)¢s =
(to,jo). Then ¢, € Aut(A(B,)).

Proof. 1t is easy to verify that ¢, is a permutation on V(A(B,,)). Now we show that
¢s preserves adjacency. Let (i,7), (z,y) € V(A(B,)) such that (i,j) ~ (z,y). Now,

(4,9) ~ (v,y) <= x # jand y # 1
<= foro € S, we have xo # jo and yo # i0
> (10, jo) ~ (xo,y0)

= (1,0)¢0 ~ (,Y) o

Hence, ¢, € Aut(A(B,)). O



144 THE COMMUTING GRAPHS

Lemma 4.3.27. Let a : V(A(B,)) — V(A(B,)) be a mapping defined by (i, j)o =
(7,9). Then o € Aut(A(B,)).

Proof. 1t is straightforward to verify that a is a one-one and onto map on V(A(B,)).

Note that
(4,7) ~ (v,y) <= x # jand y # 1
= (J,1) ~ (y,2)
= (i, ))a ~ (2,y)a
Hence, a € Aut(A(B,)). O

Remark 4.3.28. For ¢, and «, defined in Lemma 4.3.26 and 4.3.27, we have ¢,oa =

Q0 Py

Proposition 4.3.29. For each f € Aut(A(B,,)), we have either f = ¢, or [ = ¢pyon

for some o € S,.

Proof. Since f € Aut(A(B,)), by Lemma 4.3.24, note that there exists a permuta-
tion o : [n] — [n] such that ic = j <= (i,7)f = (j,J), determined by f. Thus,
we have (i,7) f = (io,i0) for all i € [n]. Let j # ¢. Then by Lemma 4.3.25, we get
cither (i, ) f = (io, jo) o (i, ) = (jo io).
Case 1: (i,j)f = (io,jo). We show that for any (k,l) # (i,7), where k # [, we
have (k,l)f = (ko,lo) so that f = ¢,. We have the following subcases:

Subcase 1.1: k = i. Clearly, [ # j. Then (i,j) ~ (k,1) so that (io, jo) = (4,7)f ~
(k,0)f. We must have (k,l)f = (ko,lo).

Subcase 1.2: | = j. Clearly, k # i. Then (i,j) ~ (k,1) so that (io, jo) = (1,7)f ~
(k,0)f. We must have (k,l)f = (ko,lo).

Subcase 1.3: 1 = 1. Note that (7,7) = (k,l) so that (ic,jo) = (¢,7)f =~ (k1) f.
We must have (k,l)f = (ko,lo).

Subcase 1.4: k = j. Note that (i,7) »~ (k,l) so that (io, jo) = (i,7)f =~ (k,1)f.
We must have (k,l)f = (ko,lo).
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Subcase 1.5: k,l € [n]\ {i,j}. By Subcase 1.1, we get (i,1)f = (io,lo). Thus,
by Subcase 1.2 we get (k,l)f = (ko,lo).
Case 2: (i,j)f = (jo,i0). Let, if possible, there exists (k,l) # (4, ), where k # [,
such that (k,1)f = (ko,lo). Then by Case 1, we get (i,7)f = (io,jo). Conse-
quently, ¢ = j; a contradiction. Thus, for any (k,[) # (4, j), we have (k,l) f = (lo, ko)
so that f = ¢, o a. O

Theorem 4.3.30. Forn > 2, we have Aut(A(B,)) = S,, X Zy. Moreover,
At (A(BL)] = 2(n).

Proof. In view of Lemmas 4.3.26, 4.3.27 and 4.3.29, note that the underlying set of
the automorphism group of A(B,,) is

Aut(A(B,)) ={¢s : 0 €S} U{ds0a : o €8,},

where S, is a symmetric group of degree n. Note that the groups Aut(A(B,)) and
S, X Zy are isomorphic under the assignment ¢, — (o,0) and ¢, o +— (o,1). Since,

all the elements in Aut(A(B,)) are distinct, we have |[Aut(A(B,,))| = 2(n!). O

A mapping f from a graph G to G’ is said to be a homomorphism if x ~ y, then
xf ~yf forall x,y € V(G). If G = G, then we say [ is an endomorphism. Note
that the set End(G) of all endomorphisms on G forms a monoid with respect to the
composition of mappings. First we obtain the endomorphism monoid of A(B,,) for

n € {2,3}. The following remark is useful in the sequel.

Remark 4.3.31. Let f € End(G) and K be a clique of maximum size in G. Then

K f is again a clique of maximum size.

Lemma 4.3.32. End(A(Bs)) = {f : V(A(B2)) — V(A(B)) : E&f = &}, where
E={(1,1),(2,2)}.

Proof. For x,y € V(A(By)), note that x ~ y if and only if x, y belongs to £. Hence,

we have the result. O
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For o € S5, we define the mappings 7 and g" on V(A(B3)) by
e (i,1) AR (io, ia) (1, 2) (1o, 10) (1, 3) (30 30), (2, 3) (20,20),(2,1) AR
(1o, 10), (3, 1) (30, 30) (3, 2) (20, 20) and
e (i,1) N (io, ia) (1,2) ¥ (20, 20) (3,2) ¥ (30,30),(3,1) 2 (1o,10),(2,1)
(20,20),(2,3) 2= (30,30), (1,3) “= (10, 10), respectively.
It is routine to verify that f7,¢” € End(A(Bs)).

Lemma 4.3.33. End(A(B3)) = Aut(A(B3)) U{f : o€ S3}U{g” : o€ S3},
where f? and ¢ are the endomorphisms on V(A(Bs)) as defined above.

Proof. Let ¢ € End(A(B3)). By Figure 4.1, note that {(1,1),(2,2),(3,3)} is the
only clique of maximum size in A(Bj3). Since the image of a clique of maximum
size under an endomorphism is again a clique of maximum size, we get (i,4) is
an idempotent element for all 7 € {1,2,3}. Also note that restriction of ¢ to
E = {(1,1),(2,2),(3,3)} is a bijective map from & to €. If (i,i)y = (j,j) for
some j € {1,2,3}, then define ¢ : {1,2,3} — {1,2,3} by ic = j. Consequently,
o € S;3. Suppose (i,7)1 is an idempotent element for some distinct 4, j € {1,2,3}.
Without loss of generality, let ¢ = 1 and j = 2. Since (1,2) ~ (3,3) we have
(1,2)y ~ (3,3)¢ = (30,30). Consequently, (1,2)y € {(lo,10),(20,20)}. If
(1,2)y = (1lo,10), then ¢ = f?. Otherwise, ¢ = ¢”. On the other hand, if (i, )y
is a non-idempotent for all 7« # j. Let (i,7)¢ = (z,y), where x # y. For k # 1,7,
we have (z,y) = (i, ) ~ (k, k). Thus, (4, j) is either (io, jo) or (jo,io). By the
similar argument used in Proposition 4.3.29, we have ¢) € Aut(A(Bs)). O

Now, we obtain End(A(B,)) for n > 4. We begin with few definitions and
necessary results. If G’ is a subgraph of G, then a homomorphism f : G — G’ such
that zf = x for all x € G’ is called a retraction of G onto G’ and G’ is said to be a
retract of G. A subgraph G’ of G is said to be a core of G if and only if it admits
no proper retracts (cf. Hell and Nesettil [1992]). Let X C A, Y C B and [ be any

mapping from the set A to B such that X f C Y. We write the restriction map of
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ffrom X toVY as fyxy i.e fxxy : X — Y such that x fxxy = xf.

Proposition 4.3.34 ( [J. Cameron, 2006, Proposition 2.4]). A graph G is a core if
and only if End(G) = Aut(G).

Lemma 4.3.35. Let f be a retraction of A(B,). Then a non-idempotent element

maps to a non-idempotent element of By under f.

Proof. Let, if possible there exists a non-idempotent element (i, j) of By such that
(7,7)f is an idempotent element. In order to get a contradiction, first we show
that (a,0)f € € = {(1,1),(2,2),(3,3),(4,4)} for all a # b € {1,2,3,4}. Without
loss of generality, we may assume that ¢ = 1 and ;7 = 2. In view of Remark
4.3.13 , any clique K in A(B,;) of maximum size is either K = £ or K = A x B,
where A and B are disjoint subsets of {1,2,3,4} of size two. Therefore, A(B,)
has two cliques of maximum size which contains (1,2) viz. K; = {1,3} x {2,4}
and Ky = {1,4} x {2,3}. Note that for disjoint subsets A and B of {1,2,3,4},
the clique A x B does not contain an idempotent element. Since (1,2)f is an
idempotent element and by Remark 4.3.31, we have K, f = Ky f = £. By using the
other elements of (K f U Ky f)\{(1,2)f}, in a similar manner, one can observe that
the image of remaining non-idempotent elements belongs to £. Thus, (a,b)f € &
for all @ # b € [n]. Now, we show that for any two distinct x,y € {1,2,3,4}, (z,y)f
is either (x,x) or (y,y). Since image of non-idempotent element is an idempotent
so that (z,y)f = (p,p) for some p € {1,2,3,4}. Note that p € {x,y}. Otherwise,
(p,p) ~ (x,y) implies (p,p) = (p,p)f ~ (x,y)f = (p,p); which is not possible. Now
suppose (1,2)f = (1,1). Since (1,2) ~ (1,k) for k # 1,2, we get (1,1) = (1,2)f ~
(1,k)f. Consequently, (1,k)f = (k, k). Similarly, we get (2,k)f = (2,2). Therefore,
(2,3)f =(2,4)f = (2,2). We get a contradiction as (2,4) ~ (2,3). Similarly, we get
a contradiction when (1,2)f = (2,2). Hence, the result hold. O

Lemma 4.3.36. Forn > 5, let f € End(A(B,)). Then a non-idempotent element

maps to a non-idempotent element of B,, under f.
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Proof. Let (i,j) be a non-idempotent element of B,,. By Remark 4.3.16, there exists
a clique K of maximum size which contains (7,7). In view of Remarks 4.3.15 and
4.3.31, all the elements of K f are non-idempotent. Thus, (4, j)f is a non-idempotent

element. 0

Proposition 4.3.37. Forn > 4, let G' be a retract of A(B,,) such that (i,7) € G’
for alli € [n]. Then G' = A(B,).

Proof. Since G’ is a retract of A(B,,), there exists a homomorphism f : A(B,) — G
such that xf = x for all z € V(G'). Let (4,) be a non-idempotent element of B,,.
Then (¢,7)f is a non-idempotent element of B,, (cf. Lemmas 4.3.35 and 4.3.36). Let
(1,7)f = (x,y), where x # y. For k € [n]\ {i,j}, we have (7,7) ~ (k,k). Since
(k,k) € G, we get (x,y) € N[(k,k)]. By Lemma 4.3.1(i), x,y # k. Consequently,
(x,y) € {(4,7),(j,4)}. Thus, either (i,7)f = (i,j) or (j,i). Now to prove G' =
A(B,), we show that f is an identity map. Since (i,7) € G', it is sufficient to prove
that for any 4,j € [n] such that i # j, we have (i,7)f = (4,7). Let if possible,
(1,7)f = (j,7) for some i # j. Then (j,i)f = (j,i). For p € [n]\ {i,j}, note
that (j,p)f = (j,p) because if (j,p)f = (p,J), then (j,p) ~ (j,4) implies (j,p)f =
(p,j) = (4,4) = (j,7)f; a contradiction. Further, note that (i,p)f ¢ {(¢,p), (p,7)}
which is not possible. For instance, if (i,p)f = (¢,p) then (i,p) ~ (i,7) gives
(1,p)f ~ (4,7)f. Consequently, we get (i,p) ~ (j,4); a contradiction. On the other
hand, if (4, p)f = (p, 1) f then (i,p) ~ (j,p) gives (i, p)f = (p,i) = (4,p) = (j,p)f; a
contradiction. Hence, f is an identity map so that G’ = A(B,,). O

To obtain the End(A(B,)), following Lemmas will be useful.

Lemma 4.3.38. For n > 4, let f be a retraction of A(B,,) onto G'. Then there
exists a cligue K of mazimum size in G' such that K = A x B where A and B forms

a partition of [n]. Moreover,

(i) if n is even then |A| = |B| = %, or
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(ii) if n is odd then either |A] = 251 |B] = 2 or |A] = 25| B = 221,

Proof. Let f be a retraction on A(B,). For n > 4, in view of Corollary 4.3.11,
Lemma 4.3.12 and Theorem 4.3.14, A(B,,) contains a clique K’ of maximum size
such that all the elements of K’ are non-idempotent. By Remark 4.3.31 and Lemmas
4.3.35, 4.3.36, K'[ is a clique of maximum size and all of its elements are non-
idempotents. Now consider K'f = K, by the proof of Lemma 4.3.10, we get K =
A x B where A and B forms a partition of [n]| together with (i) or (ii). O

In the following lemma, we provide the possible images of non-idempotent ele-

ments of 5,, under a retraction.

Lemma 4.3.39. Let f be a retraction of A(B,) onto G', where n > 4. Then for

p # q € [n], we have

(p,a)f €{(t,p):t € Ay U{(q,t) : t € By U{(p,9)},

for some partition { A, B} of [n]. Moreover,
(i) if p € A, then (p,q)f # (t,p) for any t € A.

(i) if g € B, then (p,q)f # (q,t) for any t € B.

Proof. In view of Lemma 4.3.38, there exists a clique K = A x B of maximum size
in G’ for some partition {A, B} of [n]. Suppose (p,q)f = (x,y). Then, by Lemmas
4.3.35 and 4.3.36, we have z # y. If (p,q)f = (p,q) then there is nothing to prove.
Now let (p,q)f = (x,y) where (z,y) # (p,q). If x,y ¢ {p,q}, then (p,q) ~ (x,y)
gives (p,q)f = (z,y)f = (z,y); a contradiction. Then either x € {p,q} ory € {p,q}.
If x = p, then clearly y ¢ {p,q}. Consequently, (p,q) ~ (x,y) provides again a
contradiction. Therefore, x # p. Similarly, one can show that y # ¢. It follows
that (p,q)f = (x,y) where either x = ¢ or y = p. Now observe that if y = p,
then z € A. 1If possible, let x € B. Then for a € A\ {¢}, (a,2)f = (a,x)
as (a,x) € Ax B C G'. Since x # p as x # y, we get (p,q) ~ (a,x) so that
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(p,q)f = (x,p) ~ (a,x) = (o, x) f; a contradiction of Remark 4.3.2. In a similar
manner it is not difficult to observe if x = ¢, then y € B.

To prove addition part of the lemma, suppose p € A and (p,q)f = (t,p) for
some t € A. For r € B such that r # ¢, we have (p,q) ~ (p,r) and (p,7)f = (p,r)
as (p,r) € K C G'. Consequently, we get (p,q)f = (t,p) ~ (p,r) = (p,7)f; a
contradiction of Remark 4.3.2. Thus, (p,q)f # (t,p). Using similar argument,
observe that for ¢ € B, (p,q)f # (q,t) for any t € B. Thus, the result hold. O

Theorem 4.3.40. For n = 4, we have End(A(B,)) = Aut(A(B,)).

Proof. In view of Proposition 4.3.34, we show that A(B,) is a core. For that it is
sufficient to show A(B,) admits no proper retract (cf. Hell and Nesettil [1992]).
On contrary, suppose A(B,) admits a proper retract G'. Then there exists a ho-
momorphism f : A(B,) — G’ such that zf = z for all x € G’. Since the set
E={(1,1),(2,2),(3,3),(4,4)} forms a clique of maximum size as w(A(By)) = 4 (cf.
Lemma 4.3.12) so that £ f is a clique of size 4 (see Remark 4.3.31). By Remark 4.3.13,
we have either Ef = or £f = Ax Bwhere A, B C {1,2,3,4} with |A| = |B| = 2. If
Ef = &, then by Proposition 4.3.37, G’ = A(B,,); a contradiction. Thus, £f = Ax B.
Let (1,1)f = (i,7) where ¢ # j. Then (4,7)f = (i,j) as (¢,7) € G'. Note that either
i=1orj=1.If bothi,j# 1, then (i,7) ~ (1,1). Consequently, (1,1)f ~ (i,7)f
which is not possible as (i,7)f = (1,1)f = (i,j). Without Loss of generality,
we assume that ¢ = 1 and 7 = 2. Similarly, (2,2)f € {(2,k),(k,2)} for some
k # 1,2, Since (2,2)f ~ (1,2) = (L1)f as (1, 1) ~ (2,2). If (2,2)f = (2,k),
then (2,k) ~ (1,2); a contradiction of Remark 4.3.2 so (2,2)f = (k,2) for some
k # 1,2. Without loss of generality, we suppose k& = 3. In the same way, we get
(3,3)f = (3,4) and (4,4)f = (1,4). Therefore, we have A = {1,3} and B = {2,4}.
In view of Lemma 4.3.39, (2,4) f € {(1,2), (3,2),(2,4)}. Since (1,1) ~ (2,4) so that
(L) f = (1,2) ~ (2,4)f gives (2,4)f = (3,2). Similarly, we get (2,3)f = (3,4).
Again by Lemma 4.3.39, we have (1,3)f € {(3,2),(3,4),(1,3)}. For (1,3) ~ (2,3)
and (1,3) ~ (2,4) we obtained (1,3)f ~ (3,4) and (1,3)f ~ (3,2). Consequently,
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we get a contradiction of Remark 4.3.2. O
Theorem 4.3.41. Forn > 5, we have End(A(B,,)) = Aut(A(B,)).

Proof. In order to prove the result, we show that A(B,) is a core (see Proposition
4.3.34). For that it is sufficient to show A(B,) admits no proper retract (cf. Hell
and Nesettil [1992]). On contrary, suppose A(B,,) admits a proper retract G'. Then
there exists an onto homomorphism f : A(B,) — G’ such that x f = x for all x € G'.
In view of Lemma 4.3.38, there exists a clique K = A x B where A and B forms a
partition of [n]. Without loss of generality, we may assume that A = {1,2,...,¢}

and B={t+1,t+2,...,n} where ¢t € {2,251, 281} Consider the set

X ={ie A\{1}: (LS = (L)} U{l: @ 1)f = 2.1}
The following claims will be useful in the sequel.
Claim 4.3.42. (i) Forie€ X andr #1i € A, we have (r,i)f = (r,1).
(ii)) Forie A\ X andr #1i € A, we have (r,i)f = (i,s) for some s € B.

Proof of Claim (1) Let i # 1 € X. Then (1,4)f = (1,7). If r € A\ {1, 4}, then we

have either (r,4)f = (r,i) or (r,i)f = (i,s) where s € B (cf. Lemma 4.3.39). Now,
we assume that (r,7) f = (i, s) for some s € B. Since (r,¢)f ~ (1,¢)f as (r,i) ~ (1,4)
so that (¢,s) ~ (1,¢); a contradiction of Remark 4.3.2. Thus, (r,7)f = (r,7) for all
r # 4 € A. Similarly one can observe that if ¢ = 1 € X and r # i € A, we have
(r,1)f = (r,1).
(ii) First suppose i # 1 € A\ X. In view of Lemma 4.3.39, we have either (1,4)f =
(1,4) or (1,4)f = (i,s) for some s € B. Note that (1,7)f # (1,i) asi € A\ X so
(1,4)f = (i, s) for some s € B. If r € A\ {1,i}, then we have either (r,7)f = (r,1)
or (r,i)f = (i,8) where s € B (cf. Lemma 4.3.39). Suppose (r,i)f = (r,7). Since
(r,i)f ~ (1,9)f as (r,i) ~ (1,¢) so that (r,i) ~ (i,s); a contradiction of Remark
4.3.2. Thus, (r,i)f = (i,s') for some s’ € B. Similarly, one can observe that if
i=1€ A\ X and r #i € A, we have (r,1)f = (1, s) for some s € B.
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In view of X we have the following cases.
Case 1: Suppose |X| > |A\ X|. Then |X| > 2 as n > 5. In order to get a
contradiction of the fact that G’ is a proper retract of A(B,,), we prove that f is
an identity map in this case. First we show that each non-idempotent element of
A(B,) maps to itself under f through the following claim.

Note: If n > 5, then |A| > 3. For n = 5, we have either |A| = 2, |B| = 3 or
|A|l = 3, |B| = 2. If |A| = 2 and |B| = 3, then X = A = {1,2}. This case we
will discuss separately in the following claim (vi). Therefore, in part (ii) to (v), we

assume that |A| > 3.
Claim 4.3.43. (i) Forpe€ A,q € B, we have (p,q)f = (p,q).

(ii) If p # q such that (p,q)f = (a,p) for some a € A, thena € A\ X.

(iii) Forp e B,q € A, we have (p,q)f = (p,q).

(vi) Forp,q € B, we have (p,q)f = (p,q).

(v) Forp,q € A, we have (p,q)f = (p,q).

(vi) Forn =25, |A| =2, |B| =3 and p # q, we have (p,q)f = (p,q).

Proof of Claim: (i) Since K = A x B is contained in G’ so that (p,q)f = (p,q)

forallpe A, q € B.

(ii) On contrary, we assume that a € X. Clearly, a # p (cf. Lemmas 4.3.35 and
4.3.36). If p € A, then by Claim 4.3.42(i), we get (p,a)f = (p,a). Note that g # a,
otherwise (p,q)f = (p,q) = (gq,p) implies p = ¢; a contradiction. Consequently,
(p,q) ~ (p,a) gives (p,a)f = (p,a) ~ (a,p) = (p,q)[f; a contradiction of Remark
4.3.2. Thus, p € B. Forr € A\ {a,q}, by Claim 4.3.42(i), we have (r,a)f = (r,a).
Since (p,q) ~ (r,a) as a # p and r # ¢ so that (p,q)f = (a,p) ~ (r,a) = (r,a)f
which is not possible. Thus, a ¢ X.
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(iii) Let p € B and ¢ € A. First suppose that ¢ € X. Then by Lemma 4.3.39,
(p,q)f € {(s,p) : s € Ay U{(q,s) : s € B} U{(p,q)}. For r # q € A, we have
(r,q)f = (r,q) (cf. Claim 4.3.42(i)). Note that (p,q)f # (q,s) for any s € B. For
instance, if (p,q)f = (g, s) for some s € B, then (p,q)f = (¢,8) ~ (r,q) = (r,q)f
as (p,q) ~ (r,q), where r # g € A; a contradiction of Remark 4.3.2. It follows
that (p,q)f € {(s,p) : s € A} U{(p,q)}. Suppose (p,q)f = (s,p) for some s € A.
Note that s € A\ X (see part (ii)). Now we claim that for any j # ¢ € X, we
have (p,j)f = (s,p) for some s’ € A\ X. In view of Lemma 4.3.39, (p,j)f €
{(s',p) : s € A}U{(),s) : 8 € B} U{(p,j)}. Note that (p,j)f # (p,j) because
(p,q) ~ (p,j) but (p,q)f = (s,p) = (p,j) (cf. Remark 4.3.2). In a similar manner,
of (p,q)f # (q,s) for any s € B, one can show that (p,j)f # (j,s') for any s’ € B.
It follows (p,j)f = (s',p) for some s € A. By part (ii), we get (p,j)f = (s',p) for
some s € A\ X. Since the subgraph induced by the vertices of the form (p, j) where
j € X forms a clique. Consequently, for any i # j € X, we get (p,i)f = (s,p) and
(p,7)f = (¢, p) are distinct for some s,s" € A\ X. Therefore, we have | X| < |A\ X|;
a contradiction. Thus, (p,q)f = (p,q) for allp € B and q € X.

Now we assume g € A\ X. In view of Lemma 4.3.39, (p,q)f € {(a,p) : v € A}U
{(¢,8) : p € B}YU{(p,q)}. Suppose (p,q)f = (a,p) for some o € A. Infact o« € A\X
(see part (ii)). Choose i € X as |X| > |A\ X/, from above we get (p,7)f = (p,1)
as p € B. Since (p,q) ~ (p,7) so that (p,q)f = (a,p) ~ (p,i) = (p,7)f which is
not possible. Therefore, we have (p,q)f = (g, 8) for some 3 € B if (p,q)f # (p,q).
Again for ¢« € X and from the above we get (8,7)f = (3,4). Since (p,q) ~ (5,17)
as p, € B and ¢,i € A gives (p,q)f = (¢,0) ~ (5,7) = (8,1)f; a contradiction of
Remark 4.3.2. Thus, (p,q)f = (p,q) Vp € B and ¢ € A\ X and hence the result
hold.

(iv) Let p # g € B. In view of Lemma 4.3.39, (p,q)f € {(s,p) : s € A} U{(p,q)}.
Suppose (p,q)f = (s,p) for some s € A. Since (p,s) ~ (p,q) so that (p,s)f =
(p,s) ~ (s,p) = (p,q)f; a contradiction of Remark 4.3.2. Thus, (p,q)f = (p,q) for
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all p,q € B.

(v) By Claim 4.3.42(i), we have (p,q)f = (p.q) when ¢ € X so it is sufficient to
prove the result for ¢ € A\ X. In view of Lemma 4.3.39, (p,q)f € {(¢,s) : s €
B} U{p,q)}. Suppose (p,q)f = (q,s) for some s € B. Then by (iv) part, we have
(s,x)f = (s,x) where x # s € B. For p,q € A and s,z € B, we get (p,q) ~ (s,x)
gives (p,q)f = (q¢,8) ~ (s,x) = (s,x)f; a contradiction of Remark 4.3.2. Thus,
(p,q)f = (p,q) for all p # q € A.

(vi) Suppose n =5, |A| =2, |B| =3 and p # ¢. Then X = A so (p,q)f = (p,q)
for all p,q € A (see Claim 4.3.42(i)). If p,q € B, then by Lemma 4.3.39, (p,q)f €
{(s,p) : s € A}y U{p,q)}. Suppose (p,q)f = (s,p) for some s € A. Then there
exists 8’ € A as |A| = 2. Consequently, (s',s)f = (s',s) and (p,q) ~ (¢, s) gives
(p,q)f = (s,p) ~ (§',8) = (¢,s)f which is not possible. Thus, (p,q)f = (p,q) for
all p,q € B. Now we suppose that p € B and g € A. In view of Lemma 4.3.39, we
have (p,q)f € {(r,p) : 7 € A} U{(q,7") : 7" € B} U{(p.q)}. Suppose (p,q)f = (r,p)
for some r € A = X. For g € B\ {p}, we get (p,q) ~ (p,) and (p,B)f = (p,f)
provides (s,p) ~ (p, ) which is not possible. Therefore, (p,q)f € {(g,7') : 7’ €

B} U{(p,q)}. Let (p,q)f = (q,r") for some " € B. Since |B| = 3 so that there
exists z € B\ {p,’'}. As a consequence, we have (r',z) ~ (p,q) and (r', 2) f = (+/, 2)
implies (r',z)f = (1, 2) ~ (¢,7") = (p,q)f; a contradiction. Thus, (p,q)f = (p,q)
for all p # g € [n].

Thus, by Claim 4.3.43, we have (p,q)f = (p, q) for all p # gq. Now we show that
(p,p)f = (p,p) for all p € [n]. On contrary assume that (p,p)f = (x,y) for some
(x,y) # (p,p) € By,. Then (x,y)f = (x,y) as [ is a retraction on A(B,). Note that
x # y. Otherwise, (p,p) ~ (z,y) but (p,p)f = (z,y)f = (x,y); a contradiction.
Also, observe that p € {x,y}. Otherwise, being an adjacent elements (x, y) and (p, p)

have same images; again a contradiction. Without loss of generality assume that

x = p. For z € [n]\ {y,p}, we get (p,p) ~ (y,2) so that (p,p)f = (p,y) ~ (y,2) =
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(y,2)f; a contradiction of Remark 4.3.2. Thus, f is an identity map. Consequently,
G' = A(B,); a contradiction. Thus, Case 1 is not possible.
Case 2: Suppose | X| < |A\ X|. Then X # A. Now, we have the following sub-

cases depend on n. In each subcase, we prove that A = X which is a contradiction.

Subcase 1: n is even. The following claim will be useful in the sequel.

Claim 4.3.44. (i) Leti € A\ X. Then there exists a unique s; € B such that
the restriction map fa,xp,, of f is a bijection from A; = {(r,i) : r # 1 €

A} onto Bs, = {(i,s) : s # s; € B}.

(ii) In view of part (i), for Y = {s; € B:i€ A\ X}, we have Y = B. Moreover,
fori#j € A\ X, we have s; # s;.

(il) Ifx #y€ B, then (x,y)f = (x,y).

(iv) Ifi # j € A, then (i,5)f = (i,7).

Proof of Claim: (i) Let i € A\ X. Then for r # i € A, we have (r,4)f = (i, s)
for some s € B (see Claim 4.3.42(ii)). Consequently, A;f C {(i,s) : s € B}. Since f
is one-one on A; because A; forms a clique, we get |4, f| = |A;| = |4] —1=|B| -1
as n is even. Thus, there exists s; € B such that A;f = B;,, where B, = {(4, s) :

s € B\ {s;}}. Hence, fa,xp,, is a one-one map from A; onto B,.

(ii) Clearly Y C B. We show that ¥ C B is not possible. On contrary, if Y C B
so there exists s € B\ Y. Let x # s € B. By Lemma 4.3.39, (s,2)f € {(a,s) :
a € AU {(s,x)}. We provide a contradiction for both the possibilities of (s,z)f.
Suppose (s,z)f = («,s) for some o € A. By Claim 4.3.43(ii), in fact we have
(s,z)f = (a,s) for some o € A\ X. Then by part (i) there exists s, € B such
that the map fa.xp,, is a bijection. As s, € Y, s # s, so that (a,s) € B,,.
Consequently, there exists r, # a € A such that (r,,a)f = («,s). Now since
Ta,x € A and s,z € B we get (ro, ) ~ (s,x) as A and B forms a partition of [n]

so that (rq,a)f ~ (s,z)f. But (re,a)f = (s,2)f = (a,s) which is not possible.
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It follows that (s,z)f = (s,z). For i € A\ X, there exists s; € Y such that the
map fa,xp,, is a bijection. Since s # s; as s ¢ Y gives (i,s) € B,,. As a result,
there exists r # ¢ € A such that (r,¢)f = (i,s). For r;i € A and s,x € B, we get
(s,x) ~ (r,i); again a contradiction as (s,z)f = (s,x) ~ (i,s) = (r;,7)f. Hence,

Y =B.

(iii) Let x,y € B. Then by Lemma 4.3.39, (z,vy)f € {(o,2) : « € A} U {(z,9)}.
Suppose (x,y)f = (o, x) for some o € A. In fact « € A\ X ( see Claim 4.3.43(ii)).
For x € B =Y, there exists i, € A\ X such that f4, xp, is a bijection. If o # i, €
A\ X, then by part (i) there exists s, € B\{x} such that the restriction map fa,xp,,_
is a bijective map and («,z) € B,,. Consequently, we get (r,«a)f = (a,x) for some
r#a€ A But (r,y) ~ (r,a) as x,y € B and r,a € A gives (z,y)f # (r,a)f.
However, we have (x,y)f = (r,«) f; a contradiction. It follows that o = i,. In view
of Lemma 4.3.39, for v/ € B\{z,y}, note that (x,y)f € {(o/,x) : o/ € AyU{(z,¥)}.
Now observe that (x,y)f # (z,y/). If (x,v)f = (x,v'), then (x,y) ~ (x,y') provides
(a,x) ~ (x,vy); a contradiction of Remark 4.3.2. Thus, (x,y)f = (¢/,z) for some
o' € A\ X. Further note that o # «. Otherwise, (z,y) ~ (x,y') gives (x,y)f ~
(x,y') but (x,y)f = (z,v')f = (o, x) which is not possible. Consequently, o # i,.
By the similar argument used for a # i, we get (1, ¢/) f = (¢/, x) for some 1’ # o' €
A. Since (7',a') ~ (x,y') we get (', ') f ~ (x,y/)f but (', ) f = (z,¥) f = (¢, )

is not possible. Hence, (z,y)f = (z,y) for all x # y € B.

(iv) Suppose i # j € A. Then by Lemma 4.3.39, (i,7)f € {(j,5) : p € BYU{(i,7)}.
If (i,7)f = (j, 8) for some g € B then for x € B\ {8} note that (i,j) ~ (5,x) but
(@,3)f = (4, 8) » (B,2) = (B,2) f (cf. part (iii)). Thus, (z,7)f = (4, )-

By Claim 4.3.44(iv), we get A = X. Therefore, Case 2 is not possible when n

1S even.

Subcase 2: n is odd. By Lemma 4.3.38, we have either [A] = 2 |B| = 21

or |A| = 21 |B| = 2L (see proof of Lemma 4.3.10). First we prove the following
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claim.
Claim 4.3.45. (i) Ifx #y € B, then (x,y)f = (x,y).
(ii) If x € B and it € A, then (z,i)f = (x,1).

Proof of Claim: (i) First, we suppose that |[A] = % and |B| = 25!, Let
x # y € B. Then by Lemma 4.3.39, we get either (z,y)f = (i,z) for some i € A or
(x,y)f = (x,y). Let if possible, (x,y)f = (i,z) for some i € A. In fact i € A\ X
(cf. Claim 4.3.43(ii)). Also, for r #i € Aand i € A\ X, by Claim 4.3.42(ii), we get
(r,i)f = (i,s) for some s € B. As aresult, A;f C B; where A, = {(r,i) :r # i€ A}
and B; = {(i,s) : s € B}. Since A; forms a clique, we have f is one-one on A;.
Moreover, |A;f| = |A4;| = |A| — 1 =|B| = |B;|. Therefore, we get a bijection f4,«p,
from A; onto B;. Then there exists r # i € A such that (r,7)f = (i,z) for some
x € B. Note that (z,y) ~ (r,4) but (x,y)f = (r,4)f = (i, ) which is not possible.
Thus, (x,y)f = (x,y) for all x # y € B.

On the other hand, we may assume that |A| = 25! and |B| = %!, Then |B| > 3.
First, we claim that there exist x,y # B such that (z,y)f = (z,y). On contrary, we
assume that (x,y)f # (x,y) for all x # y in B. Let x # y € B. By Lemma 4.3.39
and Claim 4.3.43(ii), we have (z,y)f = (a,z) for some v € A\ X. Similarly, for
any ¥y € B\ {x,y}, we have (z,y)f = (/, ) for some o/ € A\ X. It follows that
B.f C A, where B, = {(x,2) : 2 #x € B} and A, = {(i,x) : i € A\ X}. Since the
set B, forms a clique so that f is one-one on B, provide |B,f| = |B,|=|B| - 1=
|A| = |A,| = |A\ X|. Consequently, we get fp, x4, is a bijection and X = &. For
r#a € A, we have (r,a)f = (a, §) for some g € B (cf. Claim 4.3.42(1)). If § = =z,
then (x,y)f = (r,a)f = (o, ) but (x,y) ~ (r,«) which is not possible. For g # x,
by using the similar argument used for x, there exist the subsets Bs and Ag such
that the restriction map fp,xa, is a bijective map. As a consequence (o, §) € Ag so

that there exists (8, s) € Bg such that (3,s)f = («,8). Asr,a € Aand §,s € B,
(r,0) ~ (8,5) gives (r,a)f ~ (8,5)f but (r,a)f = (8,5)f = (a,3) which is not
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possible. Thus, there exist p # ¢ € B such that (p,q)f = (p, q).

For any w € B\ {p,q}, we have either (p,w)f = (p,w) or (p,w)f = (i,p)
for some i € A. Since (p,q) ~ (p,w) so that (p,q)f = (p,q) ~ (p,w)f implies
(p,w)f # (i,p) for any ¢« € A. Therefore, (p,w)f = (p,w). Consider the subsets
A'=AU{p} and B’ = B\ {p} of [n]. Note that A" and B’ are the disjoint subsets
of [n] with |A'| = 2 and |B'| = 25! so A’ x B’ forms a clique of maximum size
in G'. If | X] > |A"\ X]|, then in Claim 4.3.43(iv), replace A and B with A’ and
B’ respectively, we get (a,b)f = (a,b) for all a,b € B’. For |X| < |A"\ X|, by
using the similar concept used above we have (a,b)f = (a,b) for all a,b € B’. Since
(p,w)f = (p,w) for all w # x € B so that (a,b)f = (a,b) for all a,b € B and b # x.
If possible, let (a,p)f # (a,p), then by Lemma 4.3.39, (a,p)f = (I,a) for some
[ € A. Choose g € B\ {a,p} so (a,B) ~ (a,p) and (a,5)f = (a, ) as a,f € B’ we
obtained (a, 8)f = (a, ) ~ (I,a) = (a,p); a contradiction of remark 4.3.2. Hence,
(a,b)f = (a,b) for all a,b € B.

(ii)) Let x € B and i € A. Then by Lemma 4.3.39, we have (x,i)f € {(a,z) :
a € AYU{(i,p) : f € By U{(x,7)}. Note (z,i)f # (o, x) for any « € A. For
instance if (z,7)f = (a,x) for some o € A, then (x,y) ~ (z,i) where y # x € B
gives (z,y)f ~ (x,9)f. By part (i), we get (v,y)f = (x,y) so (z,y) ~ (a,2); a
contradiction of Remark 4.3.2. On the other hand now we get a contradiction for
(x,9)f = (i, 8) for some 5 € B. If § = x then for v # x € B, we have (z,v)f = (z,7)
( by part (i)). Since (z,i) ~ (x,7v) but (x,i)f = (i,x) =~ (z,7v) = (x,7)f which is
not possible so § # x. For n > 5, we have |B| > 2. If |B| = 2, then |A| = 3.
There exists j,k € A\ {i}. Consequently, (j,i)f = (i,y) and (k,i)f = (¢,2) for
some y,z € B. Because if (j,72)f = (j,i) (cf. Lemma 4.3.39) then (z,i) ~ (j,17)
gives (x,4)f = (i,8) ~ (j,7) = (4,4)f; a contradiction of Remark 4.3.2. Similarly,
(k,i)f = (k,17) is not possible. Note that {(z,1), (j,1), (k,7)} forms a clique of size 3
so that {(z,7)f, (5,0)/, (k,9) [} =

{(i,y),(1,2), (i,s)}. Consequently, 3,y,z are the elements of B. Thus, |B| > 3; a
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contradiction of |B| = 2. It follows that |B| > 3. For z € B\ {z, s} we have (x,7) ~
(8,2). By part (i), (8,2)f = (8, 2). Consequently, (x,i)f = (i, 3) ~ (8,2) = (8,2)

which is not possible. Hence, (z,i)f = (z,1).

Now if x € A, then ¢ € A\ X. For x € B, by Claim 4.3.45(ii), we have
(x,9)f = (x,4). Since (1,7) ~ (x,7) so that (1,i)f = (i,s) ~ (x,i) = (x,9)f; a
contradiction of Remark 4.3.2. Thus, X C A is not possible. Consequently, X = A;
a contradiction of Case 2. In view of Case 1 and Case 2 such X is not possible.

Thus, A(B,) admits no proper retract. Hence, A(B,) is a core. O

Future work: The work in this chapter can be carried out for other class of
semigroups viz. the semigroup of all partial maps on a finite set and its various
subsemigroups. In view of Theorem 1.1.12; to investigate the commuting graph of
finite O-simple inverse semigroup, it is sufficient to investigate A(B,(G)). In this
connection, the results obtained in this paper might be useful. For example, using
the result of A(B,,), in particular Theorem 4.3.5(iii), we prove the following theorem
which gives a partial answer to the problem posed in [Araidjo et al., 2011, Section

6].
Theorem 4.3.46. Forn > 3, A(B,(G)) is Hamiltonian.

Proof. Let G = {ay,aq,...,a,}. We show that there exists a Hamiltonian cycle
in A(B,(G)). First note that if (¢,7) ~ (k,l) in A(B,), then (i,a,7) ~ (k,b,1) in
A(B,(G)) for all a,b € G. Let G,, = {(i,a1,j) : 4,j € [n]}. Since A(B,) is
Hamiltonian (see Theorem 4.3.5(iii)), we assume that there exists a Hamiltonian
cycle C' . Corresponding to the cycle C, choose a Hamiltonian path P whose first
vertex is (4, j) and the end vertex is (k,[). For the path P, there exists a Hamiltonian
path in the subgraph induced by G,, whose first vertex is (i,a;,j) and the end
vertex is (k,a,l). Since (i,j) ~ (k,1) in A(B,,), we have (k,a,l) ~ (i,a2,7). By
the similar way, we get a Hamiltonian path in the subgraph induced by G,, whose

first vertex is (i, as,j) and the end vertex is (k,as,l). On Continuing this process,
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we get a Hamiltonian path in A(B,(G)) with first vertex is (i, a,j) and the end
vertex is (k,an,l). For (i,7) ~ (k,1), we get (i,a1,7) ~ (k,an,l). Thus, A(B,(G))

is Hamiltonian. O



