Chapter 5

Equality of Graphs

Aalipour et al. [2017] characterise finite groups such that an arbitrary pair of graphs $\mathcal{P}(G), \mathcal{P}_e(G)$ and $\Delta(G)$ are equal. In order to extend their results from groups to semigroups, in this chapter, we classify finite semigroups such that the pair of graphs, viz. $\mathcal{P}(S), \Gamma(S), \mathcal{P}_e(S)$ and $\Delta(S)$ are equal. In this chapter by $\Delta(S)$ we mean $\Delta(S,\Omega)$ with $\Omega=S$.

We begin with an example of a semigroup whose cyclic graph and enhanced power graphs are not equal.

Example 5.0.1. Let $S = M(3,2) = \{a, a^2, a^3, a^4\}$, where $a^5 = a^3$. Note that $\mathcal{P}_e(S)$ is complete (cf. Theorem 3.2.4) but $\Gamma(S)$ is not complete (cf. Theorem 2.1.5). Then $\mathcal{P}_e(S) \neq \Gamma(S)$. See Figure 5.1.

Theorem 5.0.2. The enhanced power graph $\mathcal{P}_e(S)$ is equal to $\Gamma(S)$ if and only if for each $a \in S$, we have one of the following form:

(i)
$$\langle a \rangle = \langle a : a^{1+r} = a \rangle$$

(ii)
$$\langle a \rangle = \langle a : a^{2+r} = a^2 \rangle$$

(iii)
$$\langle a \rangle = \langle a : a^{3+r} = a^3 \rangle$$
 where r is odd.

FIGURE 5.1: $\mathcal{P}_e(S)$ and $\Gamma(S)$ of the semigroup S = M(3,2)

Proof. First suppose that $\mathcal{P}_e(S) = \Gamma(S)$. On contrary, suppose that there exists $a \in S$ such that $\langle a \rangle$ is not of the form given in (i), (ii) and (iii). Then either $\langle a \rangle = M(3,r)$ with r is even or $\langle a \rangle = M(m,r)$, where $m \geq 4$. If $\langle a \rangle = M(3,r)$ with r is even, then by the similar argument used in the proof of Theorem 2.1.5, note that a^2 and a^3 are not adjacent in $\Gamma(S)$. Since a^2 , $a^3 \in \langle a \rangle$, we have $a^2 \sim a^3$ in $\mathcal{P}_e(S)$. Thus $\mathcal{P}_e(S) \neq \Gamma(S)$; a contradiction. If $\langle a \rangle = M(m,r)$ with $m \geq 4$, then again by the proof of Theorem 2.1.5, note that a^2 is not adjacent to a^3 in $\Gamma(S)$. Clearly, $a^2 \sim a^3$ in $\mathcal{P}_e(S)$. Consequently, $\mathcal{P}_e(S) \neq \Gamma(S)$; again a contradiction. Hence, for each $a \in S$, $\langle a \rangle$ must be one of the form given in (i), (ii) and (iii).

Conversely, suppose that for each $a \in S$, $\langle a \rangle$ is one of the form given in (i), (ii) and (iii). Since $\Gamma(S)$ is a (spanning) subgraph of $\mathcal{P}_e(S)$ (cf. Lemma 1.2.16), it is sufficient to show that for any $x, y \in S$ such that $x \sim y$ in $\mathcal{P}_e(S)$, we have $x \sim y$ in $\Gamma(S)$. Let $x \sim y$ in $\mathcal{P}_e(S)$. Then there exists $z \in S$ such that $x, y \in \langle z \rangle$. By the hypothesis, $\langle z \rangle$ is one of the form given in (i), (ii) and (iii). By Theorem 2.1.5, $\Gamma(\langle z \rangle)$ is complete. Consequently, $\langle x, y \rangle$ is a monogenic subsemigroup of S. Hence, $x \sim y$ in $\Gamma(S)$.

Corollary 5.0.3. For a finite group G, we have $\Gamma(G) = \mathcal{P}_e(G)$.

Example 5.0.4. Let $S = M(2,6) = \{a, a^2, a^3, a^4, a^5, a^6, a^7\}$ where $a^8 = a^2$. By Theorem 2.1.5, $\Gamma(S)$ is complete. Further, note that neither $a^2 \in \langle a^3 \rangle$ nor $a^3 \in \langle a^2 \rangle$. Thus, a^2 and a^3 is not adjacent in $\mathcal{P}(S)$. Hence, $\Gamma(S) \neq \mathcal{P}(S)$. See Figure 5.2.

FIGURE 5.2: Power graph and cyclic graph of the semigroup S = M(2,6)

Lemma 5.0.5. Let S = M(m,r) be a monogenic semigroup. If i < m and a^i is not adjacent to a^j in $\mathcal{P}(S)$, then a^i is not adjacent to a^j in $\Gamma(S)$.

Proof. If possible, let $a^i \sim a^j$ in $\Gamma(S)$. Then $\langle a^i, a^j \rangle = \langle a^k \rangle$ for some $k \in \mathbb{N}$. Note that $k \neq i, j$. Otherwise, we have $a^i \sim a^j$ in $\mathcal{P}(S)$; a contradiction. Now we have the following cases on i, j, k:

Case 1: i, j < k. Since $a^i \in \langle a^k \rangle$, we have $a^i = a^{tk}$ for some $t \in \mathbb{N}$. It follows that $m \leq i$; a contradiction.

Case 2: k < i, j. Since $a^k \in \langle a^i, a^j \rangle$, we get $m \le k < i$; a contradiction.

Case 3: i < k < j. Since $a^i \in \langle a^k \rangle$, we have $a^i = a^{tk}$ for some $t \in \mathbb{N}$. Consequently, $m \leq i$; again a contradiction.

Case 4: j < k < i. Since $a^j \in \langle a^k \rangle$, we get $a^j = a^{tk}$ for some $t \in \mathbb{N}$. Consequently, $m \leq j < k < i$; again a contradiction.

The following theorem will be useful in the sequel.

Theorem 5.0.6 ([Chakrabarty, Ghosh and Sen, 2009, Theorem 2.12]). Let G be a finite group. Then $\mathcal{P}(G)$ is complete if and only if G is a cyclic group of order 1 or p^m , for some prime p and $m \in \mathbb{N}$.

Theorem 5.0.7. For a semigroup S, the following are equivalent:

(i) The cyclic graph $\Gamma(S)$ is equal to $\mathcal{P}(S)$

- (ii) Every cyclic subgroup of S has a prime power order
- (iii) For each $a \in S$, we have $\langle a \rangle = M(m, p^n)$ for some prime p and $m, n \in \mathbb{N}_0$.

Proof. (i) \iff (iii). First assume that for each $a \in S$, we have $\langle a \rangle = M(m, p^n)$ for some prime p and $m, n \in \mathbb{N}_0$. In view of Lemma 1.2.16, it is sufficient to show that $\Gamma(S)$ is a subgraph of $\mathcal{P}(S)$. Let $a \sim b$ in $\Gamma(S)$. Then $\langle a, b \rangle = \langle c \rangle$ for some $c \in S$. Thus $\langle c \rangle = M(m, p^n)$ for some prime p and $m, n \in \mathbb{N}_0$. By Theorem 5.0.6, $\mathcal{P}(K_c)$ is complete. If $a, b \in K_c$, then $a \sim b$ in $\mathcal{P}(K_c)$ so that one of a, b is power of other. Thus, $a \sim b$ in $\mathcal{P}(S)$. Without loss of generality, assume that $a \notin K_c$. Since $a, b \in \langle c \rangle$, we have $a = c^i$ and $b = c^j$ such that i < m. By Lemma 5.0.5, we have $a \sim b$ in $\mathcal{P}(S)$.

Conversely, suppose that $\mathcal{P}(S) = \Gamma(S)$. For $a \in S$, clearly $\langle a \rangle = M(m,r)$ for some $m, r \in \mathbb{N}$. Then it is routine to verify $\mathcal{P}(K_a) = \Gamma(K_a)$. Since $\Gamma(K_a)$ is complete (cf. Corollary 2.1.5) so is $\mathcal{P}(K_a)$. By Theorem 5.0.6, we have $|K_a| = p^n$ for some prime p and $n \in \mathbb{N}_0$. Thus $r = p^n$ for some prime p and $n \in \mathbb{N}_0$.

(ii) \iff (iii). Suppose every cyclic subgroup of S has prime power order. For $a \in S$, we have $\langle a \rangle = M(m,r)$. Since K_a is a cyclic subgroup of S of order r, we have $r = p^n$ for some prime p and $n \in \mathbb{N}_0$. Thus, $\langle a \rangle = M(m,p^n)$ for some prime p and $n \in \mathbb{N}_0$. Conversely, let H be a cyclic subgroup of S so that $H = \langle a \rangle$ for some $a \in S$. Clearly, H = M(1,r). By the hypothesis, we have $r = p^n$ for some prime p and $n \in \mathbb{N}_0$. Thus, the order of H is a prime power.

In view of the Corollary 5.0.3, we have the following corollary of the above theorem.

Corollary 5.0.8 ([Aalipour et al., 2017, Theorem 28]). For a finite group G, $\mathcal{P}(G)$ is equal to $\mathcal{P}_e(G)$ if and only if every cyclic subgroup of G has prime power order.

Theorem 5.0.9. The enhanced power graph $\mathcal{P}_e(S)$ is equal to $\mathcal{P}(S)$ if and only if for each $a \in S$, we have either $\langle a \rangle = M(m, p^n)$ where $m \in \{1, 2\}$ or $\langle a \rangle = M(3, p^n)$ such that p is an odd prime.

Proof. Suppose that $\mathcal{P}(S) = \mathcal{P}_e(S)$. Since $\mathcal{P}(S) \leq \Gamma(S) \leq \mathcal{P}_e(S)$ (cf. Lemma 1.2.16), we have $\Gamma(S) = \mathcal{P}_e(S)$ and $\mathcal{P}(S) = \Gamma(S)$. By Theorems 5.0.2 and 5.0.7, the result holds.

In general, the cyclic graph and the commuting graph of S are not equal (see Example 5.0.10). Now we present a necessary and sufficient condition on S such that these two graphs are equal.

Example 5.0.10. Let $S = \mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ be a semigroup with respect to multiplication modulo 4. Being a commutative semigroup, clearly $\Delta(S)$ is complete but $\Gamma(S)$ is not complete as $\langle \overline{0}, \overline{1} \rangle$ is not a monogenic semigroup. Hence, $\Delta(S) \neq \Gamma(S)$. See Figure 5.3.

FIGURE 5.3: Commuting graph and cyclic graph of the semigroup (\mathbb{Z}_4, \odot_4)

Proposition 5.0.11. If the cyclic graph $\Gamma(S)$ is equal to $\Delta(S)$, then for $f, f' \in E(S)$ such that ff' = f'f, we have f = f'.

Proof. If possible, let $f \neq f'$. Since ff' = f'f, we have $f \sim f'$ in $\Delta(S)$. Consequently, by the hypothesis, we have $f \sim f'$ in $\Gamma(S)$ which is a contradiction of the fact that every connected component of $\Gamma(S)$ contains exactly one idempotent (cf. [Afkhami et al., 2014, Theorem 2.3]). Hence, f = f'.

Proposition 5.0.12. If the cyclic graph $\Gamma(S)$ is equal to $\Delta(S)$, then for each $a \in S$, we have either $\langle a \rangle = M(m,r)$ with $m \in \{1,2\}$ or $\langle a \rangle = M(3,r)$ with r is odd.

Proof. Suppose that $\Gamma(S) = \Delta(S)$. If possible, for some $a \in S$, let $\langle a \rangle$ is not of the given form. Then either $\langle a \rangle = M(3,r)$ with r is even or $\langle a \rangle = M(m,r)$ with $m \geq 4$. Then by the similar argument used in the proof of Theorem 2.1.5, in each of the case, we have a^2 is not adjacent to a^3 . Clearly, $a^2 \sim a^3$ in $\Delta(S)$. Thus $\Gamma(S) \neq \Delta(S)$; a contradiction. Hence, the result holds.

Theorem 5.0.13. The cyclic graph $\Gamma(S)$ is equal to $\Delta(S)$ if and only if every commutative subsemigroup of S is monogenic.

Proof. Let $\Gamma(S) = \Delta(S)$ and H be an arbitrary commutative subsemigroup of S. First, we prove that $\Gamma(H) = \Delta(H)$. For that, let $x \sim y$ in $\Delta(H)$, thus xy = yx. Consequently, we have $x \sim y$ in $\Delta(S) = \Gamma(S)$. Thus, $\langle x, y \rangle = \langle z \rangle$ for some $z \in S$. Because of $z \in \langle x, y \rangle$, we get $z \in H$. Therefore, $x \sim y$ in $\Gamma(H)$ so that $\Delta(H)$ is a subgraph of $\Gamma(H)$. As a result, $\Gamma(H) = \Delta(H)$ (cf. Lemma 1.2.16). Since H is commutative, we have $\Delta(H)$ is complete and so is $\Gamma(H)$. By Theorem 2.1.5, H is monogenic.

Conversely, suppose that every commutative subsemigroup of S is monogenic. In order to prove $\Gamma(S) = \Delta(S)$, it is sufficient to show $\Delta(S) \leq \Gamma(S)$ (cf. Lemma 1.2.16). Let $a, b \in S$ such that $a \sim b$ in $\Delta(S)$, we have ab = ba. Consequently, $\langle a, b \rangle$ is a commutative subsemigroup of S. By the hypothesis, $\langle a, b \rangle$ is a monogenic subsemigroup of S. Thus, $a \sim b$ in $\Gamma(S)$. Hence, we have the result. \square

Example 5.0.14. Let $S = \{-1,0,1\}$ be a semigroup with respect to usual multiplication. Note that $0 \sim 1$ in $\Delta(S)$ but there is no edge between 0 and 1 in $\mathcal{P}_e(S)$. Thus, $\Delta(S) \neq \mathcal{P}_e(S)$. See Figure 5.4.

Remark 5.0.15. Let S be a commutative semigroup. Then $\mathcal{P}_e(S) = \Delta(S)$ if and only if S is monogenic.

Theorem 5.0.16. The enhanced power graph $\mathcal{P}_e(S)$ is equal to $\Delta(S)$ if and only if the following holds:

FIGURE 5.4: $\Delta(S)$ and $\mathcal{P}_e(S)$ of the semigroup $S = (\{-1, 0, 1\}, \cdot)$

- (i) For $f, f' \in E(S)$ such that ff' = f'f, we have f = f'
- (ii) S has no subgroup $C_p \times C_p$ for prime p
- (iii) For $x, y \in S$ with xy = yx and at least one of m_x, m_y is greater than 1, we have $x, y \in \langle z \rangle$ for some $z \in S$.

Proof. First, suppose that $\mathcal{P}_e(S) = \Delta(S)$. In order to prove (i), let $f, f' \in E(S)$, ff' =f'f so that $f \sim f'$ in $\Delta(S)$. Since $\mathcal{P}_e(S) = \Delta(S)$, we have $f \sim f'$ in $\mathcal{P}_e(S)$. Thus $f, f' \in \langle z \rangle$ for some $z \in S$. Consequently, f = f' (cf. Lemma 1.1.4). Next, we shall show that S has no subgroup of the form $C_p \times C_p$ for some prime p. On contrary, we assume that S has a subgroup $C_p \times C_p$ for some prime p. For each $x \in C_p \times C_p$, we have o(x) = 1, p, p^2 . Since $C_p \times C_p$ is a non-cyclic subgroup of S, we get o(x) = pfor all $x \in (C_p \times C_p) \setminus \{\mathfrak{e}\}$, where \mathfrak{e} is the identity element of the group $C_p \times C_p$. For $x \in (C_p \times C_p) \setminus \{\mathfrak{e}\}$, we get $\langle x \rangle \subsetneq C_p \times C_p$. Thus, there exists $y \in C_p \times C_p$ such that $y \notin \langle x \rangle$. Note that $\langle x \rangle \cap \langle y \rangle = \{\mathfrak{e}\}$. Otherwise, if there exists a nonidentity element $z \in \langle x \rangle \cap \langle y \rangle$, then we have $\langle z \rangle \subseteq \langle x \rangle$ and $\langle z \rangle \subseteq \langle y \rangle$. Since o(x) = o(y) = o(z) = p, we get $\langle x \rangle = \langle z \rangle = \langle y \rangle$. Consequently, $y \in \langle x \rangle$; a contradiction. Further, note that $|\langle x,y\rangle| = |\langle x\rangle| \cdot |\langle y\rangle| = p^2 = |C_p \times C_p|$ and $\langle x,y\rangle \subseteq C_p \times C_p$, we get $\langle x,y\rangle = C_p \times C_p$. Thus, xy = yx so that $x \sim y$ in $\Delta(S)$. Since $\mathcal{P}_e(S) = \Delta(S)$, we get $x, y \in \langle z \rangle$ for some $z \in S$. Also, we have $x, y \in C_p \times C_p$ so that $m_x = m_y = 1$. It follows that $x, y \in \mathcal{K}_z$ which is a cyclic subgroup of S. Thus $\langle x, y \rangle = C_p \times C_p$ is a cyclic subgroup of S; a contradiction. Thus, (ii) holds. To prove (iii), let $x, y \in S$, xy = yx and at

least one of m_x, m_y is greater than 1. Thus, $x \sim y$ in $\Delta(S)$. Since $\mathcal{P}_e(S) = \Delta(S)$, we have $x \sim y$ in $\mathcal{P}_e(S)$. Hence $x, y \in \langle z \rangle$ for some $z \in S$.

Conversely, suppose S satisfies (i), (ii), and (iii). Since $\mathcal{P}_e(S) \preceq \Delta(S)$ (cf. Lemma 1.2.16), we need to show that $\Delta(S)$ is a subgraph of $\mathcal{P}_e(S)$. Let $x \sim y$ in $\Delta(S)$ so that xy = yx. If at least one of m_x, m_y is greater than 1. Then by (iii), there exists $z \in S$ such that $x, y \in \langle z \rangle$ so that $x \sim y$ in $\mathcal{P}_e(S)$. Hence, $\mathcal{P}_e(S) = \Delta(S)$. If $m_x = m_y = 1$, then $\langle x \rangle$ and $\langle y \rangle$ are the cyclic subgroup of S. Since, $x, y \in S$, by Remark 1.1.26, $x \in S_f$, $y \in S_{f'}$ for some $f, f' \in E(S)$. Then there exist $m, n \in \mathbb{N}$ such that $x^m = f$, $y^n = f'$. Note that $(xy)^{mn} = x^{mn}y^{mn} = (x^m)^n(y^n)^m = ff'$ and $(yx)^{mn} = f'f$. Since xy = yx, we have ff' = f'f. By (i), we get f = f'. Since $f \in E(S)$ and $f \in \langle x \rangle \cap \langle y \rangle$, thus f is the identity element of the subgroups $\langle x \rangle$ and $\langle y \rangle$. Consequently, f becomes the identity element of $\langle x, y \rangle$. Because of xy = yx, note that

$$(x^{i}y^{j})^{mn} = (x^{i})^{mn}(y^{j})^{mn} = (x^{m})^{in}(y^{n})^{jm} = f^{in}f^{jm} = f$$

so that $x^i y^j \in S_f$. As a result, we have $\langle x, y \rangle \subseteq S_f$. Thus $\langle x, y \rangle$ contains exactly one idempotent f. Since $\langle x, y \rangle$ is a finite monoid containing exactly one idempotent so that $\langle x, y \rangle$ becomes a subgroup of S, and hence is the direct product of two cyclic groups, say $C_r \times C_s$ for some $r, s \in \mathbb{N}$. Let $\gcd(r, s) = d$. If d = 1, then $C_r \times C_s$ is a cyclic subgroup which makes $\langle x, y \rangle$ to a cyclic subgroup of S. Consequently, $x, y \in \langle z \rangle$ for some $z \in S$. Thus, $x \sim y$ in $\mathcal{P}_e(S)$.

If d > 1, then there exists a prime p such that p divides r and s. By Cauchy's theorem, there exist $x \in C_r$ and $y \in C_s$ such that o(x) = o(y) = p. Consequently, we get (x, e_2) and (e_1, y) in $C_r \times C_s$ such that $o(x, e_2) = o(e_1, y) = p$, where e_1, e_2 are the identity elements of C_r and C_s , respectively. Note that (x, e_2) and (e_1, y) commute with each other and $\langle (x, e_2) \rangle \cap \langle (e_1, y) \rangle = \{(e_1, e_2)\}$. It follows that $|\langle (x, e_2), (e_1, y) \rangle| = p^2$. Now $((x, e_2)^i(e_1, y)^j)^p = (e_1, e_2)$ so that there does not exist an element of order p^2 in the group $\langle (x, e_2), (e_1, y) \rangle$. Thus, $\langle (x, e_2), (e_1, y) \rangle$ is non-cyclic group of order p^2 . Consequently, $\langle (x, e_2), (e_1, y) \rangle$ is of the form $C_p \times C_p$;

a contradiction of (ii).

Now, we have the following corollary of the above theorem.

Corollary 5.0.17 ([Aalipour et al., 2017, Theorem 30]). Let G be a finite group. Then the enhanced power graph $\mathcal{P}_e(G)$ is equal to $\Delta(G)$ if and only if G has no subgroup $C_p \times C_p$ for prime p.

Example 5.0.18. For $S = B_2$, note that $0 \sim (1,1)$ in $\Delta(S)$ whereas there is no edge between 0 and (1,1) in $\mathcal{P}(S)$. Hence, $\Delta(S) \neq \mathcal{P}(S)$. See Figure 5.5.

Figure 5.5: Commuting graph and power graph of the Brandt semigroup B_2

Theorem 5.0.19. The power graph $\mathcal{P}(S)$ is equal to the commuting graph $\Delta(S)$ if and only if

- (i) the order of every cyclic subgroup of S is of prime power.
- (ii) every commutative subsemigroup of S is monogenic.

Proof. In view of Lemma 1.2.16, the proof is strightforward by Theorems 5.0.7 and 5.0.13. \Box

Lemma 5.0.20. Let G be a nontrivial group and its every cyclic subgroup has prime power order. Then every commutative subgroup of G is cyclic if and only if G has no subgroup of the form $C_p \times C_p$, for some prime p.

Proof. Suppose every commutative subgroup of G is cyclic. On contrary, let G has a subgroup of the form $C_p \times C_p$, where p is a prime. Then by the similar argument used in the proof of Theorem 5.0.16, there exist $x, y \in C_p \times C_p$ such that $\langle x, y \rangle = C_p \times C_p$. As a result, we have a commutative subgroup $\langle x, y \rangle$ of G which is non-cyclic; a contradiction. Thus, G has no subgroup of the form $C_p \times C_p$, for some prime p.

Conversely, suppose G has no subgroup of the form $C_p \times C_p$. Let H be an arbitrary commutative subgroup of G. To prove H is cyclic i.e. $H = \langle x \rangle$, for some $x \in H$, we choose an element $x \in H$ such that o(x) is maximum. First, we shall show that for an arbitrary $y \in H$, we have either $x \in \langle y \rangle$ or $y \in \langle x \rangle$. For $y \in H$, we get $\langle x, y \rangle$ is a commutative subgroup of H. Consequently, $\langle x, y \rangle$ is a cyclic subgroup of H (see proof of Theorem 5.0.16). By the hypothesis, $|\langle x, y \rangle| = q^n$, where q is a prime and $n \in \mathbb{N}$. Then by Theorem 5.0.6, $\mathcal{P}(\langle x, y \rangle)$ is complete so that either $x \in \langle y \rangle$ or $y \in \langle x \rangle$. Now we claim that $H = \langle x \rangle$. If possible, let $\langle x \rangle \subsetneq H$. Then there exists $y \in H$ such that $y \notin \langle x \rangle$. We must have $x \in \langle y \rangle$. Because of o(x) is maximum, we have $\langle x \rangle = \langle y \rangle$; a contradiction of $y \notin \langle x \rangle$. Hence, the subgroup H is cyclic.

In view of Lemma 5.0.20, we have the following corollary of the Theorem 5.0.19.

Corollary 5.0.21 ([Aalipour et al., 2017, Theorem 22]). The power graph $\mathcal{P}(G)$ of a group G is equal to $\Delta(G)$ if and only if

- (i) every cyclic subgroup of G has prime power order.
- (ii) G has no subgroup of the form $C_p \times C_p$ for some prime p.