Chapter 5

Equality of Graphs

Aalipour et al. [2017] characterise finite groups such that an arbitrary pair of graphs
P(G),P.(G) and A(G) are equal. In order to extend their results from groups
to semigroups, in this chapter, we classify finite semigroups such that the pair of
graphs, viz. P(S),['(S),P.(S) and A(S) are equal. In this chapter by A(S) we
mean A(S, Q) with Q= S.

We begin with an example of a semigroup whose cyclic graph and enhanced

power graphs are not equal.

Example 5.0.1. Let S = M(3,2) = {a,d?, a® a*}, where a® = a®. Note that P,(S5)
is complete (cf. Theorem 3.2.4) but I'(S) is not complete (cf. Theorem 2.1.5). Then
P.(S) # I'(S). See Figure 5.1.

Theorem 5.0.2. The enhanced power graph P.(S) is equal to I'(S) if and only if

for each a € S, we have one of the following form:
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FIGURE 5.1: P(S) and I'(S) of the semigroup S = M(3,2)

Proof. First suppose that P.(S) = I'(S). On contrary, suppose that there exists
a € S such that (a) is not of the form given in (i), (ii) and (iii). Then either
(a) = M(3,r) with r is even or (a) = M (m,r), where m > 4. If (a) = M(3,r) with
r is even, then by the similar argument used in the proof of Theorem 2.1.5, note that
a’ and a® are not adjacent in I'(S). Since a? a® € (a), we have a®> ~ a® in P,(5).
Thus P.(S) # I'(S); a contradiction. If (@) = M(m,r) with m > 4, then again
by the proof of Theorem 2.1.5, note that a? is not adjacent to a® in T'(S). Clearly,
a® ~ a® in P.(S). Consequently, P.(S) # I'(S); again a contradiction. Hence, for
each a € S, (a) must be one of the form given in (i), (i) and (iii).

Conversely, suppose that for each a € S, (a) is one of the form given in (i), (ii)
and (iii). Since I'(S) is a (spanning) subgraph of P.(S) (cf. Lemma 1.2.16), it is
sufficient to show that for any x,y € S such that x ~ y in P.(5), we have z ~ y
in I'(S). Let x ~ y in P.(S). Then there exists z € S such that z,y € (z). By
the hypothesis, (z) is one of the form given in (i), (ii) and (iii). By Theorem 2.1.5,
['((z)) is complete. Consequently, (x,y) is a monogenic subsemigroup of S. Hence,

x ~yin ['(S). O
Corollary 5.0.3. For a finite group G, we have I'(G) = P.(G).

Example 5.0.4. Let S = M(2,6) = {a,d? a3 a*,a’ a® a’"} where ¢® = a®>. By
Theorem 2.1.5, I'(S) is complete. Further, note that neither a® € (a®) nor a® € (a?).
Thus, a® and «® is not adjacent in P(S). Hence, I'(S) # P(S). See Figure 5.2.
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FIGURE 5.2: Power graph and cyclic graph of the semigroup S = M (2,6)

Lemma 5.0.5. Let S = M(m,r) be a monogenic semigroup. Ifi < m and a' is not

adjacent to o in P(S), then a' is not adjacent to a’ in T'(S).

Proof. If possible, let a' ~ a’ in T'(S). Then (a’,a’) = (a*) for some k € N. Note
that k # i,j. Otherwise, we have a’ ~ @/ in P(S); a contradiction. Now we have
the following cases on 1, j, k:

Case 1: i,j < k. Since a’ € (a*), we have a’ = a'* for some t € N. It follows
that m < 7; a contradiction .

Case 2: k < i,j. Since a* € {a’,a’), we get m < k < 4; a contradiction.

Case 3: i < k < j. Since a' € (a*), we have a’ = a'* for some ¢t € N.
Consequently, m < ¢; again a contradiction.

Case 4: j < k < i. Since ¢/ € {a*), we get o/ = a'* for some ¢t € N. Conse-

quently, m < j < k < i; again a contradiction. O
The following theorem will be useful in the sequel.

Theorem 5.0.6 ([Chakrabarty, Ghosh and Sen, 2009, Theorem 2.12]). Let G be a
finite group. Then P(G) is complete if and only if G is a cyclic group of order 1 or

p™, for some prime p and m € N.
Theorem 5.0.7. For a semigroup S, the following are equivalent:

(i) The cyclic graph I'(S) is equal to P(S)
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(ii) Fvery cyclic subgroup of S has a prime power order
(iii) For each a € S, we have (a) = M(m,p") for some prime p and m,n € Ny.

Proof. (i) <= (iii). First assume that for each a € S, we have (a) = M(m,p")
for some prime p and m,n € Ny. In view of Lemma 1.2.16, it is sufficient to show
that I'(S) is a subgraph of P(S). Let a ~ b in I'(S). Then (a,b) = (c) for some
c € S. Thus (¢) = M(m,p") for some prime p and m,n € Ny. By Theorem 5.0.6,
P(K.) is complete. If a,b € K., then a ~ b in P(K.) so that one of a,b is power of
other. Thus, a ~ b in P(S). Without loss of generality, assume that a ¢ K.. Since
a,b € (c), we have a = ¢ and b = ¢/ such that ¢ < m. By Lemma 5.0.5, we have
a~bin P(S).

Conversely, suppose that P(S) = ['(S). For a € S, clearly (a) = M(m,r) for
some m,r € N. Then it is routine to verify P(K,) = I'(K,). Since I'(K,) is complete
(cf. Corollary 2.1.5) so is P(K,). By Theorem 5.0.6, we have |K,| = p™ for some
prime p and n € Ny. Thus r = p™ for some prime p and n € Nj.

(ii) <= (iii). Suppose every cyclic subgroup of S has prime power order. For
a € S, we have (a) = M(m,r). Since K, is a cyclic subgroup of S of order r, we
have r = p" for some prime p and n € Ny. Thus, (a) = M (m, p™) for some prime p
and n € Ny. Conversely, let H be a cyclic subgroup of S so that H = (a) for some
a € S. Clearly, H= M(1,r). By the hypothesis, we have r = p" for some prime p

and n € Ny. Thus, the order of H is a prime power. O

In view of the Corollary 5.0.3, we have the following corollary of the above

theorem.

Corollary 5.0.8 ([Aalipour et al., 2017, Theorem 28 |). For a finite group G, P(G)
is equal to P.(G) if and only if every cyclic subgroup of G has prime power order.

Theorem 5.0.9. The enhanced power graph P.(S) is equal to P(S) if and only if
for each a € S, we have either (a) = M(m,p™) where m € {1,2} or (a) = M(3,p")

such that p is an odd prime.



165

Proof. Suppose that P(S) = P.(S). Since P(S) = I'(S) = P.(S) (cf. Lemma
1.2.16), we have I'(S) = P.(S) and P(S) = I'(S). By Theorems 5.0.2 and 5.0.7, the
result holds. O

In general, the cyclic graph and the commuting graph of S are not equal (see
Example 5.0.10). Now we present a necessary and sufficient condition on S such

that these two graphs are equal.

Example 5.0.10. Let S = Z4 = {0,1,2,3} be a semigroup with respect to multi-
plication modulo 4. Being a commutative semigroup, clearly A(S) is complete but
['(S) is not complete as ( 0,1 ) is not a monogenic semigroup. Hence, A(S) #£ T'(S).
See Figure 5.3.
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FIGURE 5.3: Commuting graph and cyclic graph of the semigroup (Z4, ©4)

Proposition 5.0.11. If the cyclic graph I'(S) is equal to A(S), then for f, [ € E(S)
such that ff' = f'f, we have [ = [

Proof. 1f possible, let f # f'. Since ff' = f'f, we have f ~ f"in A(S). Conse-
quently, by the hypothesis, we have f ~ f" in I'(S) which is a contradiction of the
fact that every connected component of I'(S) contains exactly one idempotent (cf.

[Afkhami et al., 2014, Theorem 2.3]). Hence, f = f’. O

Proposition 5.0.12. If the cyclic graph I'(S) is equal to A(S), then for each a € S,
we have either (a) = M (m,r) with m € {1,2} or (a) = M(3,r) with r is odd.
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Proof. Suppose that I'(S) = A(S). If possible, for some a € S, let (a) is not of the
given form. Then either (a) = M(3,r) with r is even or (a) = M (m,r) with m > 4.
Then by the similar argument used in the proof of Theorem 2.1.5, in each of the
case, we have a? is not adjacent to a®. Clearly, a® ~ a® in A(S). Thus I'(S) # A(S);

a contradiction. Hence, the result holds. O

Theorem 5.0.13. The cyclic graph I'(S) is equal to A(S) if and only if every

commutative subsemigroup of S is monogenic.

Proof. Let I'(S) = A(S) and H be an arbitrary commutative subsemigroup of S.
First, we prove that I'(H) = A(H). For that, let x ~ y in A(H), thus zy = yz.
Consequently, we have x ~ y in A(S) = I'(S). Thus, (x,y) = (z) for some z € S.
Because of z € (x,y), we get z € H. Therefore, x ~ y in I'(H) so that A(H) is
a subgraph of I'(H). As a result, I'(H) = A(H) (cf. Lemma 1.2.16). Since H is
commutative, we have A(H) is complete and so is I'(H). By Theorem 2.1.5, H is
monogenic.

Conversely, suppose that every commutative subsemigroup of S is monogenic.
In order to prove I'(S) = A(S), it is sufficient to show A(S) < I'(S) (cf. Lemma
1.2.16). Let a,b € S such that a ~ b in A(S), we have ab = ba. Consequently,
(a,b) is a commutative subsemigroup of S. By the hypothesis, (a,b) is a monogenic

subsemigroup of S. Thus, a ~ b in I'(S). Hence, we have the result. O

Example 5.0.14. Let S = {—1,0,1} be a semigroup with respect to usual multi-
plication. Note that 0 ~ 1 in A(S) but there is no edge between 0 and 1 in P.(.5).
Thus, A(S) # P.(S). See Figure 5.4.

Remark 5.0.15. Let S be a commutative semigroup. Then P.(S) = A(S) if and

only if S is monogenic.

Theorem 5.0.16. The enhanced power graph P.(S) is equal to A(S) if and only if
the following holds:
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FIGURE 5.4: A(S) and Pe(S) of the semigroup S = ({—1,0,1},-)
(i) For f,f € E(S) such that ff = f'f, we have f = f'
(i) S has no subgroup C, x C, for prime p

(iii) For x,y € S with xy = yx and at least one of my, my is greater than 1, we

have x,y € (z) for some z € S.

Proof. First, suppose that P.(S) = A(S). In order to prove (i), let f, f' € E(S), ff' =
f'f sothat f ~ f" in A(S). Since P.(S) = A(S), we have f ~ f" in P.(S). Thus
[, f' € (z) for some z € S. Consequently, f = f’ (cf. Lemma 1.1.4). Next, we shall
show that S has no subgroup of the form C), x C, for some prime p. On contrary, we
assume that S has a subgroup C, x C), for some prime p. For each z € C, x C,,, we
have o(z) = 1, p, p*. Since C, x C, is a non-cyclic subgroup of S, we get o(x) = p
for all z € (C, x C,) \ {e}, where ¢ is the identity element of the group C, x C,. For
x € (Cp, x Cy) \ {e}, we get (x) C C, x C,,. Thus, there exists y € C, x C, such that
y ¢ (x). Note that (x) N (y) = {e}. Otherwise, if there exists a nonidentity element
z € (x) N (y), then we have (z) C (x) and (z) C (y). Since o(x) = o(y) = o(2) = p,
we get (x) = (z) = (y). Consequently, y € (x); a contradiction. Further, note that
(2,5 = [z -1 (9] = 52 = G, x Gyl and {2, 5} € Cy x Gy, we get {z, ) = Cy X Cy.
Thus, xy = yx so that x ~ y in A(S). Since P.(S) = A(S), we get x,y € (z) for
some z € S. Also, we have x,y € C, x C, so that m, = m, = 1. It follows that
x,y € K, which is a cyclic subgroup of S. Thus (z,y) = C, x C, is a cyclic subgroup
of S; a contradiction. Thus, (ii) holds. To prove (iii), let z,y € S, xy = yx and at
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least one of m,, m, is greater than 1. Thus, x ~ y in A(S). Since P.(S) = A(S),
we have x ~ y in P,.(S5). Hence z,y € (z) for some z € S.

Conversely, suppose S satisfies (i), (ii), and (iii). Since P.(S) =< A(S) (cf. Lemma
1.2.16), we need to show that A(S) is a subgraph of P.(S). Let x ~ y in A(S) so
that xy = yx. If at least one of m,,m, is greater than 1. Then by (iii), there
exists z € S such that z,y € (z) so that x ~ y in P.(S). Hence, P.(S) = A(S). If
m, = my, = 1, then (z) and (y) are the cyclic subgroup of S. Since, x,y € S, by
Remark 1.1.26, x € S¢, y € Sy for some f, f' € E(S). Then there exist m,n € N
such that ™ = f, y" = f’. Note that (zy)™" = 2™y = (™)"(y")™ = ff' and
(yx)™ = f'f. Since xy = yx, we have ff' = f'f. By (i), we get f = f’. Since
f € BE(S)and f € (x)N(y), thus f is the identity element of the subgroups (x) and
(y). Consequently, f becomes the identity element of (x,y). Because of zy = yx,
note that

(x'y!)™" = ()™ () = (@) () = S =

so that 2’y € Sy. As a result, we have (z,y) C Sy. Thus (z,y) contains exactly one
idempotent f. Since (x,y) is a finite monoid containing exactly one idempotent so
that (x,y) becomes a subgroup of S, and hence is the direct product of two cyclic
groups, say C, x Cs for some r,s € N. Let ged(r,s) = d. If d = 1, then C, x Cj
is a cyclic subgroup which makes (z,y) to a cyclic subgroup of S. Consequently,
x,y € (z) for some z € S. Thus, x ~ y in P.(S).

If d > 1, then there exists a prime p such that p divides r and s. By Cauchy’s
theorem, there exist x € C, and y € C, such that o(z) = o(y) = p. Conse-
quently, we get (z,e2) and (e1,y) in C, x Cy such that o(x,es) = o(er,y) = p,
where €1, e5 are the identity elements of C,. and Cj, respectively. Note that (z,es)
and (e1,y) commute with each other and ((x,e2)) N {(e1,y)) = {(e1,e2)}. It follows
that |{(z,e2), (e1,9))| = p*. Now ((z,€e2)'(e1,y)7)" = (e1,€2) so that there does not

exist an element of order p? in the group ((x,e3), (e1,4)). Thus, ((x,es), (e1,y)) is
non-cyclic group of order p?. Consequently, ((x,es), (e1,y)) is of the form C, x Cj;
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a contradiction of (ii). O
Now, we have the following corollary of the above theorem.

Corollary 5.0.17 ([Aalipour et al., 2017, Theorem 30]). Let G be a finite group.
Then the enhanced power graph P.(G) is equal to A(G) if and only if G has no
subgroup C, x C, for prime p.

Example 5.0.18. For S = By, note that 0 ~ (1,1) in A(S) whereas there is no
edge between 0 and (1, 1) in P(S). Hence, A(S) # P(S). See Figure 5.5.
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FIGURE 5.5: Commuting graph and power graph of the Brandt semigroup B»

Theorem 5.0.19. The power graph P(S) is equal to the commuting graph A(S) if
and only if

(i) the order of every cyclic subgroup of S is of prime power.

(ii) every commutative subsemigroup of S is monogenic.

Proof. In view of Lemma 1.2.16, the proof is strightforward by Theorems 5.0.7 and
5.0.13. X

Lemma 5.0.20. Let G be a nontrivial group and its every cyclic subgroup has prime
power order. Then every commutative subgroup of G is cyclic if and only if G has

no subgroup of the form C, x C,, for some prime p.
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Proof. Suppose every commutative subgroup of G is cyclic. On contrary, let G
has a subgroup of the form C, x C,, where p is a prime. Then by the similar
argument used in the proof of Theorem 5.0.16, there exist x,y € C, x C, such that
(x,y) = C, x C,. As a result, we have a commutative subgroup (x,y) of G which is
non-cyclic; a contradiction. Thus, G has no subgroup of the form C, x C,, for some
prime p.

Conversely, suppose ' has no subgroup of the form C, x C,. Let H be an
arbitrary commutative subgroup of G. To prove H is cyclic i.e. H = (x), for some
x € H, we choose an element x € H such that o(z) is maximum. First, we shall
show that for an arbitrary y € H, we have either = € (y) or y € (x). Fory € H, we
get (z,y) is a commutative subgroup of H. Consequently, (x,y) is a cyclic subgroup
of H (see proof of Theorem 5.0.16). By the hypothesis, |(x,y)| = ¢", where g is
a prime and n € N. Then by Theorem 5.0.6, P({x,y)) is complete so that either
x € (y) or y € (x). Now we claim that H = (z). If possible, let (x) C H. Then
there exists y € H such that y ¢ (x). We must have z € (y). Because of o(x) is
maximum, we have (z) = (y); a contradiction of y ¢ (z). Hence, the subgroup H is

cyclic. (I
In view of Lemma 5.0.20, we have the following corollary of the Theorem 5.0.19.

Corollary 5.0.21 ([Aalipour et al., 2017, Theorem 22 |). The power graph P(G)
of a group G is equal to A(G) if and only if

(i) every cyclic subgroup of G has prime power order.

(ii) G has no subgroup of the form C, x C, for some prime p.



