LIST OF FIGURES

Figure 1.1: Number of connected devices in the IoT network
Figure 1.2: Sources of energy harvesting
Figure 1.3: Burst mode operation characteristic of IoT devices
Figure 2.1: Hierarchical memory organization
Figure 3.1: Different checkpointing techniques employed in energy harvesting based IoT
applications (a) Conventional checkpointing scheme (b) Checkpointing scheme with NVM hierarchy
Figure 3.2: Percentage of the forward progress with conventional architecture and NVM
checkpointing scheme under unstable power supply47
Figure 3.3: Proposed hybrid 7T SRAM Cell
Figure 3.4: Writing logic '1' into the proposed hybrid 7T SRAM cell using single-phase write operation
Figure 3.5: Phase I: Writing logic '1' into the MTJ device of the hybrid 7T SRAM cell using two-phase write operation
Figure 3.6: Phase II: Writing logic '1' into the internal nodes of the hybrid 7T SRAM cell using two-phase write operation
Figure 3.7: Reading Logic '1' in hybrid 7T SRAM cell
Figure 3.8: Restore operation in hybrid 7T SRAM cell
Figure 3.9: Transient waveform of proposed non-volatile hybrid 7T SRAM Cell
Figure 3.10: Energy consumption during the various operation in proposed hybrid 7T SRAM cell at different technology nodes (a) Energy consumption during the write/backup operation in single phase and two phase write scheme (b) Energy consumption during the read and restore operation
Figure 3.11 : Access latency while performing the write/backup, read and restore operation in the proposed hybrid 7T SRAM cell at different technology nodes
Figure 3.12: Proposed hybrid 8T SRAM cell
Figure 3.13: Direction of current flow and status of control signal during backup operation in

hybrid 8T SRAM cell
Figure 3.14: Restore operation in hybrid 8T SRAM cell
Figure 3.15: Simulation waveform of non-volatile hybrid 8T SRAM cell
Figure 3.16: Energy consumption and latency of various operation of hybrid 8T SRAM cell at different technology nodes
Figure 3.17: Proposed hybrid 11T SRAM Cell. 61
Figure 3.18: Simulation waveform of proposed hybrid 11T SRAM cell
Figure 3.19: Energy consumption and latency of various operation of hybrid 11T SRAM cell at different technology nodes
Figure 3.20: Layout design of (a) Hybrid 6T SRAM cell (b) Hybrid 8T SRAM cell (c) Proposed hybrid 8T SRAM cell
Figure 4.1: Proposed hybrid multi-storage SRAM cell
Figure 4.2: Store operation in proposed multi-storage SRAM cell
Figure 4.3: Load operation of proposed multi-storage SRAM cell
Figure 4.4 : Simulation waveform of activating a context in proposed multi-storage SRAM cell
Figure 4.5: Simulation waveform performing context switch in proposed multi-storage SRAM cell
Figure 4.6: Proposed single-bit hybrid 8T SRAM cell with write termination circuit79
Figure 4.7 : Write operation of proposed hybrid 8T SRAM cell80
Figure 4.8: Simulation waveform of the proposed single-bit 8T SRAM cell
Figure 4.9: (a) Block Diagram of proposed multi-storage SRAM cell (b) Proposed multi-storage SRAM cell with write/store assist circuit
Figure 4.10: Timing Waveform during store operation
Figure 4.11 : Generation of WRE control signal by Store Enable circuit85
Figure 4.12: (a) Generation of detection signal (b) Self-termination of store operation in multi-storage SRAM Cell
Figure 4.13: Simulation waveform for store operation in proposed multi-storage SRAM cell

86
Figure 4.14: Energy consumption and latencies are plotted for hybrid cell against number of
contexts87
Figure 5.1 : Different approaches to state retention (a) Out-of-place Retention b) In-place Retention
Figure 5.2: Mutoh MTCMOS State Retentive FF
Figure 5.3: Balloon Flip-flop circuit
Figure 5.4: Operational mode and associated control signals for Balloon Flip-Flop95
Figure 5.5: Memory Flip-Flop
Figure 5.6: Memory TG Flip-Flop
Figure 5.7 : (a) Hybrid D Flip-Flop (b) NVM unit of FF-I connected to cross-coupled inverter of slave latch
Figure 5.8 : Operational waveform of hybrid Flip-Flop (HFF-I)
Figure 5.9: Proposed Hybrid Flip-Flop (HFF-I) in its normal mode
Figure 5.10: Backup operation of HFF-I circuit (a) Phase I of backup operation of HFF-I circuit (b) Phase II of backup operation of HFF-I circuit
Figure 5.11: Restore operation of proposed hybrid flip-flop (HFF-I)
Figure 5.12: NVM unit of HFF-II connected to cross-coupled inverter of slave latch 101
Figure 5.13: Operational Waveform of hybrid Flip-flop FF-II
Figure 5.14: Normal mode of hybrid FF-II
Figure 5.15: Backup operation of hybrid FF-II
Figure 5.16: Restore operation of HFF-II
Figure 5.17: Test circuit for analyzing hybrid flip-flop
Figure 5.18: (a) Dynamic and (b) Static energy consumption for the proposed hybrid flip-flop HFF-I with respect to different activity factor
Figure 5.19: (a) Dynamic and (b) Static power consumption for the proposed hybrid flip-flop HFF-II with respect to different activity factor

Figure 5.20: Layout of (a) D Flip-Flop (b) Proposed hybrid HFF-I (c) Proposed hybrid HFF
II
Figure 6.1: Percentage of computation done by different processors against power failure
Figure 6.2: Martin's weak feedback c-element
Figure 6.3: Sutherland c-element 11
Figure 6.4: Van Berkel c-element
Figure 6.5: Proposed hybrid C-Element
Figure 6.6: Backup operation - storing logic '1' and logic '0' into the MTJ
Figure 6.7: Restore operation
Figure 6.8: Conventional Half-Buffer
Figure 6.9: Proposed non-volatile hybrid half buffer
Figure 6.10: Simulation waveform of proposed hybrid c-element
Figure 6.11: Simulation Waveform of proposed hybrid Half-Buffer
Figure 7.1: Conventional Von-Neumann Architecture
Figure 7.2: (a) NMC (b) IMC
Figure 7.3: (a) STT-MTJ based C-MRAM array (b) 2T-1MTJ bitcell (c) C-MRAM row 13
Figure 7.4: Logic function being performed by STT-MTJ based C-MRAM
Figure 7.5: The transient simulation waveform performing NAND logic function in STT MTJ based C-MRAM
Figure 7.6: The transient simulation waveform for performing NOR logic function in STT MTJ based C-MRAM
Figure 7.7: Proposed SHE-MTJ based Computational Magnetic Random-Access Memor
Figure 7.8: Status of control lines and direction of current flow through the 2T-1MTJ bitcel during (a) Write logic '1' operation (b) Write logic '0' Operation (c) Read Operation 13' Figure 7.9: (a) Status of control lines to perform logic operation in proposed C-MRAM arra
(b) Direction of current flow while performing logic function for cases: Case 1: A=0: B=

and Case 4: A=1; B=1 (c) Direction of current flow while performing logic function for cases
Case 2: A=0; B=1 and Case 3: A=1; B=0
Figure 7.10: Simulation waveform for the NAND & AND logic operation in proposed SHE
MTJ based C-MRAM
Figure 7.11: Simulation waveform for the NOR & OR logic operation in proposed SHE-MT.
based C-MRAM
Figure 7.12: Computation steps to generate SUM _{approx} output of the proposed approximate
full adder
Figure 7.13: Computation steps to generate Carry_outapprox output of the proposed
approximate full adder
Figure 7.14: Simulation waveform to validate the SUM _{approx} and Carry_out _{approx} outputs of
proposed adder
Figure 7.15: Simulation waveform to demonstrate all the operational modes of proposed
SHE-MTJ based C-MRAM array

LIST OF TABLES

Table 3.1: Status of control signal during various operational modes of proposed hybrid 7T SRAM Cell. 51
Table 3.2: Energy consumption and access latency of proposed non-volatile hybrid 7T SRAM Cell 54
Table 3.3: Status of control signals during various operation in hybrid 8T SRAM cell 58
Table 3.4: Energy consumption and access latency of the proposed hybrid 8T SRAM cell
during various operation
Table 3.5 : Status of control signal during various operational modes of proposed hybrid 11T SRAM cell 62
Table 3.6: Energy consumption and delay of proposed hybrid 11T SRAM cell
Table 3.7 : Comparison results of different MTJ device based hybrid SRAM cell
Table 4.1 : Status of control signal during normal operational mode
Table 4.2: Status of control signal during load operation 76
Table 4.3: Status of control signal during store operation 84
Table 4.4: Energy Consumption during different operational modes in Yanjun Ma and proposed multi-storage SRAM cell. 88
Table 5.1: Data restoration times of different state retentive flip-flop design
Table 5.2: Total power consumption during active mode by different state retentive flip-flops
Table 5.3 : Energy Consumption during active mode for hybrid flip-flop HFF-I 106
Table 5.4: Energy Consumption during active mode for hybrid flip-flop HFF-II107
Table 5.5: Leakage power consumption during sleep mode by different state retentive flip-flops. 108
Table 5.6: Propagation delay calculated for different state retentive flip-flops 108
Table 5.7: Comparison of proposed state retentive hybrid FF with state-of-art state retentive FF
Table 5.8: Comparison of proposed hybrid flip-flops with existing MTJ based hybrid flip-

flop
Table 6.1: Truth table of c-element
Table 6.2: Simulation results of different volatile c-element
Table 6.3: Performance comparison of volatile and non-volatile hybrid c-element
Table 6.4: Energy consumption by volatile and non-volatile hybrid half-buffer
Table 7.1: Truth table of NAND logic operation 132
Table 7.2: Truth table of NOR logic gate 133
Table 7.3: Biasing voltage and switching time for NAND & NOR logic gates
Table 7.4: Truth Table for Two Input Logic Operations 139
Table 7.5: Truth Table of NAND & AND Logic Gates 139
Table 7.6: Status of Control Lines to Perform NAND & AND Logic Operations in Proposed C-MRAM 140
Table 7.7: Truth Table of NOR & OR gates 140
Table 7.8: Status of Control Lines to Perform NOR & OR Logic Operations in proposed C-
MRAM
Table 7.9: Truth Table of proposed Approximate Adder (AX-ADD) 143
Table 7.10: Average Energy Consumption and Latency for Various Operations Performed in
C-MR AM