

CHAPTER 7

7 ENERGY-EFFICIENT LOGIC AND
ARITHMETIC CIRCUITS

7.1 Introduction
The next-generation computing systems will be designed to meet the requirement of energy-

efficient computing in big data applications. The recent rise in the use of data-intensive

applications such as multimedia, artificial intelligence, and pattern/voice recognition has led

to the emergence of huge streaming data [1]. The processing of huge amount of data have

become one of the biggest challenges for the conventional von-neumann based computing

system. The von-neumann architecture-based systems have separate processing and memory

units. The instruction and data are stored in the memory while computation takes place in the

processor. For executing any instruction, the processor fetches the data from memory and

writes the results back to memory, as shown in Figure 7.1.

The processing of large data set in a conventional von-neumann system results in more

communication time than computation time due to limited memory bandwidth [2]. At the

same time, frequent data movement between the memory and core results in considerable

power consumption [3]. These challenges are most commonly known as memory wall or von-

neumann bottleneck [4]. Therefore, new computing paradigms are needed to handle the

demands of rapidly growing big data applications. To overcome the von-neumann bottleneck,

there has been significant effort in the past to move processing closer to the memory [5] [8].

These attempts are broadly classified into two categories: Near-Memory Computing (NMC)

and In-Memory Computing (IMC). In near-memory computing, the physical distance between

the processor and memory is reduced by integrating both of these units on the same chip, as

shown in Figure 7.2 (a). However, integrating a high-performance processor with high-density

Figure 7.1: Conventional Von-Neumann Architecture

memory on a single die is challenging due to different design rules [9], [10]. Recently,

researchers are working in the direction of in-memory computing, which utilizes memory

block to perform the computations, as shown in Figure 7.2 (b).

The key benefit of performing computations within the memory is the elimination of data

movement overhead, which results in large internal bandwidth and low-power consumption.

The emerging non-volatile devices are considered as one of the most promising candidates to

realize in-memory computation. In addition to energy-efficient computing, their non-volatile

nature allows power-hungry blocks to be turned off during the long idle period, which results

in the elimination of standby power consumption. This technique is known as normally-off

computing, and it is highly beneficial for low-power applications that spend a significant

amount of their time in idle state. Among the various emerging non-volatile devices, magnetic

tunnel junction has attracted a lot of attention as an ideal candidate for future embedded

memory. It offers high integration density, high scalability, unlimited endurance, and CMOS

compatibility [14], [15]. While magnetic technology has shown promising results as an

embedded non-volatile storage element, its unique properties can also be exploited for in-

memory computations. The spin-transfer torque and spin-hall effect based magnetic tunnel

junction devices (STT-MTJ & SHE-MTJ) are considered as most suitable for on-chip cache

applications. They can achieve the integration density of DRAM and potentially match the

performance of SRAM. Compared to other competing non-volatile devices, STT-MTJ and

SHE-MTJ have high retention time, high endurance, and compatibility with the CMOS

fabrication process [1], [2]. Therefore, in this work, we utilize STT-MTJ and SHE-MTJ to

develop computational magnetic random-access memory (C-MRAM), which can implement

boolean function within the memory itself. To further reduce the power consumption, we

realize the concept of approximate computing in the proposed C-MRAM array based on SHE-

MTJ device. In recent times, approximate computing has emerged as a potential solution to

achieve low power computing [16]. It is based on the fact that many real-time applications

Figure 7.2: (a) NMC (b) IMC

such as multimedia, wireless sensors, data mining, and search engines can produce output of

acceptable quality even though the computational accuracy is low [17], [18]. The ability to

relax the requirement for computational accuracy is leveraged to improve the area, delay, and

power metrics. To incorporate the aforementioned concept and demonstrate the application

level benefits of the proposed C-MRAM array, we design an approximate full adder (Ax-

ADD), which can be used in low power and low precision applications.

7.2 STT-MTJ based Computational Magnetic Random-Access Memory
(C-MRAM)

Computational Magnetic Random-Access Memory (C-MRAM) is a concept in which

memory array based on STT-MTJ device is used to perform basic computation. Figure 7.3 (a)

illustrates the general structure of C-MRAM [15]. It consists of a 2T-1MTJ bitcell structure.

The two access transistors allow memory to work in two modes: memory mode and logic

mode.

During the memory mode, the proposed C-MRAM array work as a typical memory with the

additional advantage of non-volatility. Whereas during the logic mode, the proposed array

performs the logic operation on input operands within the array itself.

Figure 7.3: (a) STT-MTJ based C-MRAM array (b) 2T-1MTJ bitcell (c) C-MRAM row

(b)

(c)
(a)

Memory Mode (MM): In memory mode, Word Enable (WE) signal is asserted high whereas

Logic Enable (LE) signal is asserted low, which connects MTJ device to the bitlines, as shown

in Figure 6.3 (b). The read and write operations are performed through the two bitlines: Write

Bit Line (WBL) and Common Bit Line (CBL).

Logic Mode (LM): In logic mode, Logic Enable (LE) is asserted high to connect the MTJ to

the Connector Line (CL) in each row, as shown in Figure 6.3 (c). Several MTJ are connected

to CL to realize multiple input single output logic function. The different logic functions can

be performed by choosing the appropriate voltage at the CBL.

7.2.1 Implementing logic operations

The key to realize a logic function in the proposed STT-MTJ based C-MRAM array is to

supply biasing voltage (Vbias) to the input MTJ devices through a common bitline (CBL).

The bitline corresponding to the output is grounded. The conditional switching of the output

MTJ device based on the state of the input MTJ device implements the logic function. Let us

consider the case where two input logic operations generate a single output, as shown in

Figure 7.4. The inputs are stored as MTJ resistances, R1 and R2 and output as MTJ resistance,

Rout. The initial value of Rout is set to either (LHS) or high resistance state (HRS). All three

MTJ devices (input and output) are connected through a common Connector Line (CL). To

realize a logic function both the input MTJ devices are supplied with biasing voltage (Vbias)

through common bitline (CBL1=CBL2=Vbias) while the output bitline is grounded

(CBL3=GND).

As a result, a summation current (I = I1 + I2) flows through the connector line (CL) which is

expressed as follows:

 (7.1)

Figure 7.4: Logic function being performed by STT-MTJ based C-MRAM

If the magnitude of the resultant current is greater than the critical current of the MTJ device

(I > Ic), the output MTJ switches its state. Whereas, for the case when magnitude of the

resultant current is less than the critical current of the MTJ device (I < Ic), the output MTJ

retains its previous state. The type of logic function to be performed in the proposed STT-

MTJ based C-MRAM depends on two factors: 1) Biasing Voltage (VBias) applied at the CBL

control line, (2) Preset or Initial value of the output MTJ device. The corresponding bias

voltage and the preset value required to implement NAND and NOR logic gates are presented

in the following sub-section.

7.2.1.1 NAND logic gate

Table 7.1 presents the boolean expression and truth table for NAND logic function. The first

two column A & B, represent all the possible states of input and the third column C, represent

the state of output.

TABLE 7.1: TRUTH TABLE OF NAND LOGIC OPERATION

In this work, we assume that the high resistance state (HRS or RH) of MTJ device is mapped

(LRS or RL) of the MTJ device

The resultant current (I) flowing through the output Cout for all the cases of A & B are given

by equations 7.2, 7.3, and 7.4.

 (7.2)

 (7.3)

) (7.4)

 the high resistance state of the MTJ device and

 the low resistance state of the MTJ device, it can be implied that

monotonically decreases as given by equation 7.5.

 I00 < I10/I01 < I11 (7.5)

A B Cout = A . B

0 0 1

0 1 1

1 0 1

1 1 0

From the truth table of NAND, it can be observed that first three cases should result in logic

1

current would be maximum in case 4. Assuming the preset value for the NAND gate to be

logic 1 Then by choosing an appropriate bias voltage, switching of output MTJ from logic

1 to 0 only for the fourth case (A and B = 1). However, if the preset value

is assumed to be logic 0 then the first case with lowest current value (I00) should switch the

output while fourth case with greater current value (I11) should not. Therefore, the correct

functionality of NAND is achieved only

biasing voltage meet the following criterion: the current I11 should be greater than Ic while

I10/I01 and I00 should be less than Ic.

7.2.1.2 NOR logic gate

Table 7.2 presents the boolean expression and truth table for the NOR logic gate. From the

truth table of NOR gate, it can be observed that the last 0

while the first 1 high resistance represents

would be minimum in case 1. Assuming the preset value for NOR gate to be logic 1 Then

by choosing an appropriate bias voltage, switching of the output MTJ from 1 to 0

can be obtained for all three cases (A/B = { 0/1, 1/0, 1/1}).

TABLE 7.2: TRUTH TABLE OF NOR LOGIC GATE

However, if the preset value is assumed to be logic 0 then the first case with lowest current

value (I00) should switch the output while the other cases with greater current value (I01 /I10/

I11) should not. Therefore, the correct functionality of NOR gate is achieved only when the

currents (I01 , I10, I11) should be greater than Ic while I00 should be less than Ic.

7.2.2 Circuit-level analysis

In this section, we verify the correct functionality of the logic operation in the STT-MTJ based

Computational Magnetic Random-Access Memory (C-MRAM) by performing extensive

A B Cout = A + B

0 0 1

0 1 0

1 0 0

1 1 0

simulation using the SPICE circuit simulator. We simulate the C-MRAM in logic mode to

determine the biasing voltage required for performing NAND & NOR logic operations. The

NAND functionality is achieved when the

(logic 7.3 tabulates

the biasing voltage (Vbias) applied at CBL and the corresponding switching time of output

MTJ.

TABLE 7.3: BIASING VOLTAGE AND SWITCHING TIME FOR NAND & NOR LOGIC GATES

Similarly, for NOR logic function, the output MTJ switches from LRS (logic

7.3 tabulates the

NAND

Biasing
Voltage (V)

Switching
Times (ns)

0.287 39.8

0.29 35.6

0.3 26.4

0.31 21.1

0.32 17.7

0.326 16.1

NOR

Biasing
Voltage (V)

Switching
Times (ns)

0.326 40

0.33 35

0.35 21.9

0.38 14.3

0.41 10.3

0.413 9

Figure 7.5: The transient simulation waveform performing NAND logic function in STT-

MTJ based C-MRAM

biasing voltage (Vbias) applied at CBL and the corresponding switching time of output MTJ.

Figure 7.5 and 7.6 plots the transient simulation waveform for NAND and NOR logic

functions. The NAND operation on the input operand A and B stored in MTJ0 and MTJ1 is

performed using a bias voltage 0.31V. For the case (A=1 & B=1), the output MTJ switches to

arly, NOR operation on operand A and B is performed with a bias voltage of

0.35V.

7.3 SHE-MTJ based Computational Magnetic Random-Access Memory
(C-MRAM)

The proposed SHE-MTJ based C-MRAM array is presented in Figure 7.7. The basic storage

unit of the proposed C-MRAM array is 2T-1MTJ bitcell, which offers the advantage of non-

volatility over the conventional memory bitcell. The 2T-1MTJ bitcell of C-MRAM, as shown

in Figure 7.7, consists of one SHE-MTJ device and two NMOS access transistors (Tx1 and

Tx2) controlled by the global wordlines (WL0 and WL1). The 2T-1MTJ bitcell is connected

to global bitline (BL) through terminal T1 of the MTJ device. Similarly, it is connected to the

global sourceline (SL) and the SHE control line (SCL) through the access transistors Tx1 and

Tx2, respectively, as illustrated in Figure 7.7.

Figure 7.6: The transient simulation waveform for performing NOR logic function in STT-

MTJ based C-MRAM

The proposed array can operate in two modes: memory mode and logic mode. The two modes

of operation are selected using a controller unit and a control signal named, Mode. If the

control signal (Mode) is low, the array operates in memory mode. Conversely, if the control

signal (Mode) is high, the array operates in logic mode. The detailed description of these two

modes of operation are as follows:

Memory Mode: During this mode of operation, the proposed C-MRAM array works as a

standard memory with the additional advantage of non-volatility. In memory mode, the data

is read or written into the 2T-1MTJ bitcell using the read and write operation. During the write

operation, the data is stored into the bitcell using the global BL, SL, and SCL control lines of

the proposed C-MRAM array. The voltage at BL, SL, and SCL control lines are used for

generating ISTT and ISHE currents required for the successful write operation, as shown in

Figure 7.8. Let us consi

BL0 is set to vdd, SL0 is set to gnd, and SCL0 is set to gnd, as illustrated in Figure 7.8 (a).

The ISTT current from BL0 to SL0 and ISHE current from BL0 to SCL0 flow through the device,

log

in Figure 7.8 (b). The ISTT current from SL0 to BL0 and ISHE current from SCL0 to BL0 flow

through the device. Consequently, the state of the MTJ is switched to LRS representing logic

On the other hand, during the read operation, the resistive state of the MTJ is sensed

Figure 7.7: Proposed SHE-MTJ based Computational Magnetic Random-Access Memory

through a sense amplifier to produce output voltage corresponding to a valid logic level. The

read current (IREAD) required to determine the state of the MTJ is generated by setting the

wordline (WL0) to vdd, sourceline (SL0) to vdd and bitline (BL0) to gnd, as shown in Figure

7.8 (c). The wordline (WL1) is set to gnd to disable transistor Tx2, as shown in Figure 7.8 (c),

because only STT current is sufficient to perform the read operation. The sense amplifier reads

esistance state (HRS). Alternatively, the sense amplifier

7.3.1 Implementing logic operation

The key idea behind implementing the logic in memory is to apply both the input operands

simultaneously to the C-MRAM array. The results of logic operations are stored directly in

the memory array (as the resistive state of the MTJ device), which eliminates the need for

separate write-back operations to store the result. To understand the logic mode of operation,

let us consider a case where the logic operation is performed on a single bitcell, as shown in

Figure 7.9. The two input operands are denoted as Op_A and Op_B, whereas the result of the

logic operation is denoted as Out_C. The logic operation is performed by applying input

operand Op_A to the sourceline (SL0), the compliment of Op_A (Op_A_bar) to the bitline

(BL0) and operand Op_B to the SHE control line (SCL0) of the 2T-1MTJ bitcell, as shown

in Figure 7.9 (a). In this implementation, the conditional switching of the MTJ device based

on the applied input operands computes the logic function. The different combination of

operands Op_A and Op_B applied to the MTJ device result in four different cases, as

illustrated in Figure 7.9 (b) and (c). The voltage at sourceline (SL) and bitline (BL) is

responsible for generating the ISTT current, while the voltage at SHE controls line (SCL) is

responsible for generating the ISHE current needed to realize the logic operation through

conditional switching. Now, if both the ISTT and ISHE currents flow through the MTJ, the state

Figure 7.8: Status of control lines and direction of current flow through the 2T-1MTJ bitcell

of the device is flipped as in cases 1 and 4. However, if only ISTT is present, the device retains

its previous state as in cases 2 and 3. Let us analyze these cases individually:

Case 1: ure 7.9

(a), the voltage applied at SL is 0V (Op_A), the voltage applied at BL is vdd (Op_A_bar), and

the voltage applied at SCL is 0V (Op_B). As a result, both the ISHE and ISTT currents flow

through the device, as shown in Figure 7.9 (b). Due to the simultaneous action of ISHE and ISTT

currents, the state of the MTJ is switched to HRS, which represents

Case 2: Th

voltage applied at SL is 0V (Op_A), the voltage applied at BL is vdd (Op_A_bar), and the

voltage applied at SCL is vdd (Op_B). As a result, only ISTT current flows through the device,

as shown in Figure 7.9 (c), which cannot switch the MTJ within the required amount of time.

Hence, the MTJ retains its previous state (PS).

Case 3: voltage

applied at SL is vdd (Op_A), the voltage applied at BL is 0V (Op_A_bar) and the voltage

applied at SCL is 0V (Op_B). Similar to case 2, the MTJ device maintains its previous state

since only ISTT current flows through the device, as shown in Figure 7.9 (c).

Case 4: T

at SL is vdd (Op_A), the voltage applied at BL is 0V (Op_A_bar), and the voltage applied at

SCL is vdd (Op_B). Similar to case 1, the joint action of ISHE and ISTT currents result in the

ure 7.9 (b).

Figure 7.9: (a) Status of control lines to perform logic operation in proposed C-MRAM

array (b) Direction of current flow while performing logic function for cases: Case 1: A=0;

B=0 and Case 4: A=1; B=1 (c) Direction of current flow while performing logic function for

cases: Case 2: A=0; B=1 and Case 3: A=1; B=0.

The results of all the four cases are summarized in a truth table given in Table 7.4.

TABLE 7.4: TRUTH TABLE FOR TWO INPUT LOGIC OPERATIONS

Based on the above truth table, a general expression for implementing logic function in C-

MRAM is presented as follows:

 (7.6)

where, A and B are the input operands Op_A and Op_B applied at SL and SCL control line

of the array, Ci represents the previous state (PS) of the bitcell, and Ci+1 represents the final

result of the logic function (Out_C). The various logic gates in the proposed C-MRAM array

are modeled by controlling two factors: a) initial value of the MTJ (PRESET) b) Voltages at

control lines BL, SL, and SCL.

7.3.1.1 NAND/AND logic gate
To realize the NAND logic gate, only one of the input combinations (Op A = 1 and Op B =

, as

shown in Table 7.5. This functionality is achieved by presetting the output MTJ (Output C)

to high resistance sta

control lines of the bitcell. As a result, the switching of MTJ state occurs only in one case

as illustrated in Table 7.6.

TABLE 7.5: TRUTH TABLE OF NAND & AND LOGIC GATES

 Op_A Op_B
Out_C

(State of the MTJ)

Case 1 0 0

Case 2 0 1 Previous State

Case 3 1 0 Previous State

Case 4 1 1 LRS

Op B Op A NAND AND

0 0 1 0

0 1 1 0

1 0 1 0

1 1 0 1

TABLE 7.6: STATUS OF CONTROL LINES TO PERFORM NAND & AND LOGIC OPERATIONS IN

PROPOSED C-MRAM

 Op A Op B BL SL SCL PRESET Output

NAND

0 0 Vdd Gnd Gnd HRS HRS (1)

0 1 Vdd Gnd Vdd HRS HRS (1)

1 0 Gnd Vdd Gnd HRS HRS (1)

1 1 Gnd Vdd Vdd HRS

AND

0 0 Gnd Vdd Vdd LRS LRS (0)

0 1 Gnd Vdd Gnd LRS LRS (0)

1 0 Vdd Gnd Vdd LRS LRS (0)

1 1 Vdd Gnd Gnd
LRS

the biasing voltage at SL and SCL control lines are applied using the complimented value of

input Op A (Op A_bar) and Op B (Op B_bar). Consequently, the switching only happens for

7.3.1.2 NOR/OR logic gate
The truth table of NOR logic gate as tabulated in Table 7.7, it can be observed that only the

combination of Op B=0 and Op A=0 should res

of input Op A and Op

 TABLE 7.7: TRUTH TABLE OF NOR & OR GATES

The NOR functionality is achieved by presetting the output MTJ (Output C) to LRS (logic

the switching of MTJ state takes place only in one case when both Op A and Op B are logic

7.8.

Op B Op A NOR OR

0 0 1 0

0 1 0 1

1 0 0 1

1 1 0 1

TABLE 7.8: STATUS OF CONTROL LINES TO PERFORM NOR & OR LOGIC OPERATIONS IN

PROPOSED C-MRAM

 Op A Op B BL SL SCL PRESET Output

NOR

0 0 Vdd Gnd Gnd LRS

0 1 Vdd Gnd Vdd LRS LRS (0)

1 0 Gnd Vdd Gnd LRS LRS (0)

1 1 Gnd Vdd Vdd LRS LRS (0)

OR

0 0 Gnd Vdd Vdd HRS

0 1 Gnd Vdd Gnd HRS HRS (1)

1 0 Vdd Gnd Vdd HRS HRS (1)

1 1 Vdd Gnd Gnd HRS HRS (1)

On the other hand, for OR operation, the output MTJ

and the biasing voltage at SL, BL, and SCL control lines are applied based on complimented

value of input operand Op A (Op A_bar) and Op B (Op B_bar). Consequently, the switching

only happens for the case when Op A

7.3.2 Circuit-level analysis

To demonstrate and verify the operation of logic gates within the C-MRAM array, circuit-

level simulations are performed for all input combinations using SPICE simulator, as shown

in Figure 7.10.

Figure 7.10: Simulation waveform for the NAND & AND logic operation in proposed

SHE-MTJ based C-MRAM

The simulation waveform depicted in Figure 7.10 plots the result for NAND & AND logic

operations for the case when both the input operands are logic high. For NAND logic

operation, the state of the MTJ device is first preset to HRS, and then operands are applied,

ND operation. Similarly, for

AND operation, the state of the MTJ is first preset to LRS, and then operands are applied,

Figure 7.11 plots simulation waveform for the NOR & OR gate operation for the case when

For NOR logic operation, the MTJ (output C)

is preset to LRS (logi , and control lines SL and SCL are applied with

, resulting in switching of the MTJ (output C) from LRS to HRS (logic

For OR logic operation, applied on control lines

SL and SCL

7.4 Proposed Low-Power Arithmetic Function
In this section, we implement an approximate adder (Ax-ADD) using the SHE-MTJ based C-

MRAM. The approximate adder is utilized in low-power image processing applications to

implement energy-efficient computing by combining the benefits of both in-memory

computing and approximate computing. In addition to eliminating data transfer overhead, the

proposed approximate adder offers a further reduction in power consumption by relaxing the

Figure 7.11: Simulation waveform for the NOR & OR logic operation in proposed SHE-

MTJ based C-MRAM

demand for computational accuracy. A conventional full adder is an arithmetic block which

performs addition of three input operands A, B, and C to produce two outputs, denoted as

SUM and Carry_out. The expressions for the SUM and Carry_out are presented in equations

7.7 and 7.8:

 or (7.7)

 (7.8)

Different from the conventional adder, proposed approximate adder (Ax-ADD) performs the

addition operation on input operands Op A, Op B and Op C to generate numerically

approximate outputs, SUMapprox and Carry_outapprox which deviate from the conventional

adder outputs, as shown in Table 7.9. The SUMapprox and Carry_outapprox are expressed as

follows:

 (7.9)

 (7.10)

 TABLE 7.9: TRUTH TABLE OF PROPOSED APPROXIMATE ADDER (AX-ADD)

Input
Operands

Exact Adder
Proposed Approximate Adder

Ax-ADD

C B A Carry SUM Carry_outapprox SUMapprox

0 0 0 0 0 0 0

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 1 0 1 0

1 0 0 0 1 0 1

1 0 1 1 0 1 0

1 1 0 1 0 1 1

1 1 1 1 1 1 1

The truth table for the proposed approximate adder and conventional adder is presented in

Table 7.9. It can be observed that there are only two cases (C=0; B=0; A=1 & C=1; B=1;

A=0) in which SUMapprox deviates from the conventional adder output SUM. However, there

is no deviation in Carry_outapprox which prevents the propagation of erroneous results to higher

stages when a multi-bit adder is designed.

The proposed approximate adder is implemented in C- MRAM array using the logic

operations realized in Section 7.3. The adder requires three computational steps to generate

the final outputs, SUMapprox and Carry_outapprox. The steps for generating, SUMapprox output of

the proposed approximate adder depicted in Figure 7.12 are given as follows:

Step 1:

Step 2: The C-MRAM array is applied with input operands at the control lines to perform the

logic operation and generate an intermediate result, denoted as SUMintermediate. Specifically, in

a bitcell, the input operand Op_A is applied at both the sourceline (SL0) and the SHE control

line (SCL0), whereas the compliment of operand Op_A (Op_A_bar) is applied at the bitline

(BL0), as shown in Figure 7.12. The following expression for SUMintermediate is derived from

equation 7.6,

 (7.11)

Step 3: The C-MRAM array is applied with rest of input operands at the control lines to

generate the final result, SUMapprox. At the bitcell, the operand Op_B is applied at bitline

(BL0), compliment of operand Op_B (Op_B_bar) is applied at the sourceline (SL0) and the

compliment of operand Op_C (Op_C_bar) is applied at the SHE control line (SCL0). The

output expression for the final result SUMapprox is given in equation 7.12. It is obtained from

equation 7.6, by replacing A with Op_B_bar, B with Op_C_bar and C_i with Op_A_bar.

 (7.12)

Similarly, steps for generating Carry_outapprox output of the proposed approximate adder

depicted in Figure 7.13 are given as follows:

Step 1:

Step 2: Apply operand Op_A to bitline (BL0) and compliment of operand Op_A (Op_A_bar)

to SL0 and SCL0 control lines of the bitcell to compute Carry_outintermediate. The expression

for Carry_outintermediate is given as follows:

 (7.13)

Step 3: Finally, apply operand Op_B to bitline (BL0), compliment of operand Op_B

(Op_B_bar) to sourceline (SL0) and compliment of operand Op_C (Op_C_bar) to SHE

control line (SCL0) of the bitcell to compute Carry_outapprox. The final output Carry_outapprox

is expressed as follows:

 (7.14)

Figure 7.12: Computation steps to generate SUMapprox output of the proposed approximate

full adder

Figure 7.13: Computation steps to generate Carry_outapprox output of the proposed

approximate full adder

7.4.1 Circuit-level analysis

To validate the operation of the proposed approximate adder (Ax-ADD), SPICE simulations

are performed for all the input combinations. The simulation waveform shown in Figure 7.14

depicts the details of approximate arithmetic operation for two input cases: case 1 (C = 0; B

= 0; A = 0) and case 2 (C = 0; B = 0; A = 1). Both the cases take three sequential steps to

generate and store the SUMapprox and Carry_outapprox in two different bitcell (MTJ0 and MTJ1)

simultaneously. In case 1, the state of the MTJ0 and MTJ1 are first initialized to HRS and

LRS, respectively. Then, input operands are applied in second and third sequential step,

uts (MTJ0 and MTJ1), which verifies the correct approximate

arithmetic operation. Similarly, for case 2, the valid result of the addition operation (SUMapprox

approx

Further, to quantitatively analyze all the operational modes of the proposed SHE-MTJ based

C-MRAM array, we perform SPICE simulation in two phases, as illustrated by the simulation

waveform in Figure 7.15. In the first phase, the proposed array is configured in memory mode.

During this mode, operands Op_A, Op_B, and Op_C (110) are first written into the bitcell

MTJ00, MTJ01, and MTJ02, respectively. Next, to demonstrate the advantage of non-

volatility and data retention in the proposed array, the supply voltage to the array is cut-off.

During the power-off period, the array bitcells retain their previous state. At the end of the

first phase, supply voltage is restored for normal operation and read operation is performed to

verify the value of operands Op_A, Op_B, and Op_C stored in bitcell MTJ00, MTJ01, and

Figure 7.14: Simulation waveform to validate the SUMapprox and Carry_outapprox outputs of

proposed adder

MTJ02 before power-off. In the next phase, the C-MRAM array is configured in logic mode

to demonstrate the feasibility of performing logic and arithmetic operation within the

proposed array. During this mode, C-MRAM array is first configured to implement NAND

logic operation on operand Op_A and Op_B, which results in valid logic '0' at the output as

depicted by LRS state of bitcell MTJ10 in Figure 7.15. Finally, we implement arithmetic

operation where we perform addition operation on operands Op_A, Op_B, and Op_C, which

d by the HRS of the bitcell

MTJ11, as shown in Figure 7.15. Table 7.10 summarizes the average energy consumption and

latency for the various operation performed in the 2T-1MTJ bitcell. The logic operation is

performed in two computational steps, whereas arithmetic operation is performed in three

computational steps, as described in Section 7.3 and 7.4. Therefore, the total energy

consumption (E) and total latency () for logic operation and arithmetic operation are

evaluated as follows:

 (7.15)

 +

 + (7.16)

where, Epreset, Estep2, and Estep3 are the total energy consumption during the present, second and

third computational steps, preset step2, step3 are the total latency

of the preset, second and third computational steps, respectively.

 Operation
Energy Consumption

(E)
Latency

(

Memory
Operation

Write Operation 276.57 fJ 2 ns

Read Operation 1.7 fJ 2 ns

Logic
Operation

NAND Operation 522.78 fJ 4 ns

NOR Operation 421.25 fJ 4 ns

AND Operation 428.75 fJ 4 ns

OR Operation 525.5 fJ 4 ns

Arithmetic SUM 770 fJ 6 ns

TABLE 7.10: AVERAGE ENERGY CONSUMPTION AND LATENCY FOR VARIOUS OPERATIONS

PERFORMED IN C-MRAM

7.5 Conclusion
In this work, we implement basic logic gates and arithmetic function using a dual-mode

memory/computing unit based on emerging non-volatile magnetic device, which helps in

mitigating the von-neumann bottleneck of the conventional computing systems. We call the

proposed unit Computational Magnetic Random-Access Memory (C-MRAM). The proposed

array works in two modes: 1) Memory mode, where it acts as standard memory with the

additional advantage of non-volatility, and 2) Logic mode, where it performs the computation

inside the memory array. The unique properties of the magnetic tunnel junction device are

Operation Carry_out 668 fJ 6 ns

Figure 7.15: Simulation waveform to demonstrate all the operational modes of proposed

SHE-MTJ based C-MRAM array

exploited to realize logic computation within the C-MRAM array itself. The in-memory

computation offers the advantage of reduce power consumption due to elimination of energy

overhead associated with data movement. The proposed computational magnetic random-

access memory (C-MRAM) arrays utilize emerging spin-transfer torque (STT) and spin-hall

effect (SHE) magnetic tunnel junction (MTJ) to implement basic logic gates such as NAND,

AND, NOR & OR. Further, we realize an approximate adder (Ax-ADD), which reduces the

power consumption of arithmetic function by lowering the demand for computational

accuracy. The approximate adder is implemented using SHE-MTJ device to achieve faster

and energy-efficient computing. The simulation results show that both proposed C-MRAM

array can efficiently perform memory and computation operations. The proposed approach of

logic computation combines the benefits of in-memory computing and approximate

computing in addition to normally-OFF computing. Hence, significant power saving is

achieved to effectively meet the requirement of low power computing in emerging IoT

applications.

REFERENCES

[1] X. Ya -in-memory architecture programming
paradigm for wireless internet-of- Sensors (Switzerland), vol. 19,
no. 1, pp. 1 23, 2019.

[2] M. Zabihi, Z. Chowdhury, Z. Zhao, U. R. Karpuzcu, J. P. Wang, and S. Sapatnekar,
-Memory Processing on the Spintronic CRAM: From Hardware Design to

IEEE Trans. Comput., vol. 9340, no. c, 2018.

[3] -in-memory
architecture for bulk bitwise operations in emerging non-volatile memories -
Des. Autom. Conf., vol. 05-09-June, 2016.

[4] W.-
2017 18th

International Symposium on Quality Electronic Design (ISQED), pp. 23 28.

[5] -in-memory paradigms: An
Micromachines, vol. 10, no. 6, 2019.

[6] W. Kang, H. Wang, Z. Wan -Memory Processing
Paradigm for Bitwise Logic Operations in STT IEEE Trans. Magn., vol.
53, no. 11, pp. 1 4, Nov. 2017.

[7] Proceedings
of the 2017 ACM on International Symposium on Physical Design, 2017, vol. Part
F1271, pp. 43 46.

[8] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam,
Mater. Today, vol. 20, no. 9,

pp. 530 548, 2017.
[9] -Memory Computing Architectures: Opportunities

2018 21st Euromicro Conference on Digital System Design
(DSD), 2018, vol. 1, pp. 608 617.

[10] -purpose in-memory processing
Proc. Asia South Pacific Des. Autom. Conf.

ASP-DAC, pp. 757 763, 2017.
[11]

STT-MTJ/CMOS Energy Solution in Near-/Sub-Threshold Regime for IoT
IEEE Trans. Magn., vol. 54, no. 2, pp. 1 9, 2018.

[12]
MTJ based non-volatile SRAM cell for energy harvesting based IoT applications
Integr. VLSI J., no. October, pp. 2 9, 2018.

[13]
Computer (Long. Beach. Calif)., vol. 50,

no. 6, pp. 27 34, 2017.

[14] dental Approximate Architectures for Extremely Energy-
IEEE

Micro, vol. 38, no. 4, pp. 11 19, 2018.

[15]
Anal in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), 2018, vol. 2018, pp. 411 421.

[16] -
Electronics, vol. 9, no. 1, p. 125, Jan. 2020.

[17] S. Venkataramani, V. Chippa, S. Chakradhar, K. Roy and A. Raghunathan, "Quality
programmable vector processors for approximate computing," in 2013 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Davis, CA,
USA, 2013 pp. 1-12.

[18] -Clustering: Normally-Off Computing Using Non-
IEEE Trans. Comput., vol. 67, no. 7, pp. 949 959, Jul. 2018.

[19] -volatile memory (NVM) technologies and
Solid. State. Electron., vol. 125, pp. 25 38, 2016.

[20] -Based, and Low-Power Inexact Full
Adder Circuits for Computing-in- SPIN, vol. 9, no. 3, pp.
1 11, 2019.

[21]
magnetic arithmetic logic unit using hybrid STT- IEEE Access,
vol. 8, pp. 6876 6889, 2020.

[22] -Hall Assisted STT-RAM Design and Disc in
Proceedings of the 18th System Level Interconnect Prediction Workshop on ZZZ -

 2016, pp. 1 4.

[23] Liang Chang, Z. Wang, Yuqian Gao, W. Kang, Y. Zhang and W. Zhao, "Evaluation
of spin-Hall-assisted STT-MRAM for cache replacement," 2016 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH), Beijing, 2016,
pp. 73-78, doi: 10.1145/2950067.2950107.

[24] I. Ahmed, Z. Zhao, M. G. Mankalale, S. S. Sapatnekar, J.-P. Wang, and C. H. Kim,
-Transfer-Torque and Spin-Hall-Effect

IEEE J. Explor. Solid-State Comput.
Devices Circuits, vol. 3, no. September, pp. 74 82, 2017.

[25] -Hall- Appl.
Phys. Lett., vol. 104, no. 1, p. 012403, 2014.

[26] -anisotropy
magnetic tunnel junction switched by spin-Hall-assisted spin- J. Phys.
D. Appl. Phys., vol. 48, no. 6, 2015.

