Chapter 1

Introduction

Let us begin by briefly recalling some results from the articles [16] and [14]. Let
G be a Lie group with finitely many connected components, and let g denote its
Lie algebra. Let & — B be a smooth principal G-bundle. Further let G — BG
be a classifying bundle for the group G. Denote g' = g @ ... @ g (I-times) and
I'N(G) = {f : ¢ — R|f is linear, symmetric, and ad—invariant}. There is a universal
Weil homomorphism W : I'(G) — H?(BG,R) given by P — [P(Q)] where Qg is
the curvature of any connection 8 on EG — BG.

Let 0 be a connection on the GG-bundle £ — B, and let {2 denote its curvature.

Set ¢ = tQ + 1(t* — t)[0,0]. Chern and Simons define [16]
1
TP(O) = l/ PO A ¢ dt € O*H(E) (1.1)
0

and show that

dI'P(0) = P(Q) (1.2)

They further show that

Proposition 1. Let {0(s)} be a 1-parameter family of smooth connections depending

smoothly on the parameter ‘s’. Then

d%TP(@(s)ﬂso = PO AQ7Y) + exact (1.3)



where 0' = L0(s)|

and

Proposition 2. Let £ — B be a G—bundle with connection 0 and let P € I}(G).
If P(Y) =0, then 3 U € H2=Y(B;R/Z) such that TP(0) = 7*(U) where™ denotes

mod 7 reduction.

Here I} = {P € I'(G)|W(P) € H*(BG,Z)r} and H*(BG,Z)g denotes the im-
age of the change of coefficients map H*(BG,Z) — H*(BG,R).

In [14], Cheeger and Simons define the abelian group
HY(B;R/Z) = {f € Hom(Zu_1(B),R/Z)|f 0§ € QX(B;R)} (1.4)

They show that there are exact sequences

0 — H*Y(B,R/Z) % H*(B;R/Z) <% QX (B:R) — 0 (1.5)
Qk—l B L~ .
0— k_l( N H*(B;R/Z) < H*(B,7) = 0. (1.6)
5 (B)

Here QF~'(B) denotes the set of closed (k—1)—forms on B with integral periods. For
a description of the maps in these sequences, see [14]. Given a G—bundle £ — B,
there is a map B 7y BG such that [*(FG — BG) is isomorphic to & — B. The
map f is unique up to homotopy. Hence there are well defined induced maps in
cohomology making the diagram

H*(BG,Z) —— H*(B,Z)

| |

H*(BG,R) —— H*(B,R)
commutative. There is also the Chern-Weil map W : I*(G) — H*(BG,R). The im-
age of I;(G) under this map lies in the image of the map H*(BG,Z) — H*(BG,R).
If the bundle £ — B has a connection 6, there is also a map [*(G) — Q}(M,R).

These maps fit together in the diagram



*G) —Y—— H*(BG,R) +———— H¥*(BG,Z)
w I I
O%(B;R) —=— H*(B;R) «———— H*(B;Z)

Let K?*(G) denote the pull-back of the upper horizontal line i.e.
K*(GQ) = {(P,u) € I"G) x H*(BG,Z)|W(P) = r(u)} (1.7)
and similarly let R?*(B;Z) be the pullback of the lower horizontal line i.e.
R*(B;Z) = {(w, @) € O (B) x H*(B; Z)|de Rh(w) = r(a)} (1.8)

Then the pair (W, f*) induces a map K*(G) — R?**(B;Z).

(curv,ch

Cheeger-Simons show that this map factors through H%(B;R/Z) ) R**(B;7)

i.e. AK?*(G) — H?*(B;R/Z) such that

H*(B;R/Z)
. (curv,ch)
K2(G) ——— R*(B;Z)

commutes. The discussion can be paraphrased as follows. Choose a compatible pair
(P,u). (We say that P and u are compatible if (P,u) € K?(G).) Then given a
bundle o : ¥ — B, and a connection & on it, the Cheeger—Simons construction
yields a differential character & with ch(&) = u(a) and curv(é) = P(2). Thus, this
differential character o contains information about the integral cohomology of the
bundle as well as the Chern—-Weil form (not just the real de-Rham cohomology class).
We denote this differential character by csp,(E — B,#). When the connection is
flat, the curvature of this differential character vanishes and thus, by the virtue of
the exact sequence 1.5, the differential character is the image of a unique element
of H*~1(B;R/Z) under ;. In this way, the Cheeger-Simons construction yields an

element of the R/Z cohomology group for a flat connection.
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Remark 3. Note that even though the above discussion is carried out for the case
of principal G—bundles, it can be written down for vector bundles too using the

correspondence between principal U(n)—bundles and rank n complex vector bundles.
In [34], Jaya lyer considers the following question:

Question 1. Given a flat connection on a bundle, the Cheeger—Simons construction
associates an element of the R/Z cohomology of the base manifold. Can this con-

struction be generalised to associate such invariants to families of flat connections?

In [34] Jaya Iyer associates an element of H?~"~1(B ,R/Z) to an element of r-th
simplicial homology of the simplicial set of relatively flat connections on the bundle
E x B. More precisely, she defines the simplicial set D(E) whose r—simplices are (r+
1)-tuples (D°,..., D") of relatively flat connections'. The collection {D°, ... D"}
of connections is said to be relatively flat if %]tjDi is flat for any choice of ¢;’s such
that Y¢; = 1. She then constructs maps p,, : H,(D(E)) — H*~""'(B,R/Z) for
p>r+ 1,7 > 1. (Recall that given a simplicial set S, the Dold-Kan construction
yields a chain complex S, with S, = Z[S,] and the boundary operator given by the
alternating face map. The homology groups of the simplicial set S are defined to be
the homology groups of this chain complex H,(S) := H,.(S,) )

In the chapter 2 of this thesis, we extend Jaya Iyer’s work (henceforth [34] is referred
to as ‘Jaya Iyer’s paper/work’) to include the p < r case, using the construction of
fiber integration of differential characters developed by Béar and Becker in [1]. Given
an element u compatible with P as above, we construct maps ¢p.., : H,(D(E)) —
H*»="=Y(B,R/Z) for p # r,r + 1. If 3 is an r-cycle in D(F), we consider the bundle
E x> — B x 3 (we use the same symbol ¥ to denote the cycle and its geometric
realization), and endow it with a certain smooth connection. We apply the Cheeger—
Simons theory to this data to obtain a differential character hpyy € H2 (B x %),
and apply fiber integration along the fibers of the bundle B x > — B to get a

differential character in H?~"(B). This map vanishes on the boundaries, thereby

ITo avoid duplicity, we shall choose any ordering on the set of all connections and require that
DP<D'<...<D"



yielding a map on homology. We find that these maps do not depend on the choice
of u € H*(BGL(n,R),Z) but only on the choice of the polynomial P, and that the
characteristic class of the differential character ¢p..([%]) is zero. Thus we deduce
that 9p...([2]) is in the image of the inclusion % s H?~"(B). Using a result
of Bar and Becker [1], we calculate a representative differential form. We find that
for the p > r 4+ 1 case, this form equals the one constructed in [34] thereby yielding
an alternate derivation of the results of [34]. We find that the curvature of these
differential characters is zero, and hence the characters are in the image of the map
H#»~""Y(B,R/Z) — H?*~"(B). When p = r, the curvature may not vanish, and we
get a map 1., : H.(D(E)) — H"(B). Our method extends to the p < r case, and
we show that the fiber integrals vanish in this case.

Thereafter in section 2.3, we examine the relationship of our construction to other
constructions in the literature. Biswas and Lopez [4] consider the set of smooth
maps Maps(S,F) where S is a smooth null-cobordant manifold of dimension r, and
F is the space of flat connections on the principal G-bundle £ — B. Using the
formalism of Atiyah bundle and the bundle of connections, they construct certain
forms L € QF(A, Q> ~*(B)) where A is the space of all smooth connections on the
bundle ¥ — B considered as an infinite dimensional Fréchet manifold. Using these
forms they define certain maps AP, : Maps(S, F) — H*""'(B,R). They show
that the maps can be described as [f : S — F| — [fP(Q)] where f: T — Ais
an extension of f to a manifold 7" whose boundary 12 S, and (2 is the curvature
of a certain connection on £/ x I" — B x T'. They prove that these maps are well
defined i.e. the result is independent of the choice of the extension f or the manifold
T, that A?,, are closed forms which determine elements of the cohomology group
H?="=Y( B, R), and that [A?, (fo)] = [AV1(f1)] € H*""}(B,R) whenever fy, fi
are homologous. In section 2.3, we argue that from the viewpoint of fiber integration
these results proved in [4] can be obtained (modulo Z) directly as consequences of
some properties of fiber integration 11 proved in the article [1].

Thereafter, we discuss the relation of our results with those of [13]. In [13], the



authors consider the principal G-bundle ¥ x 4 — B x A and endow it with the
canonical connection A. If G is a subgroup of Gau(E) which acts freely on A, then
A — A/G is a principal bundle. They prove that a choice of connection 4 on
A — A/G yields a connection Y on (E x A)/G — B x A/G, and apply Cheeger—
Simons theory to this bundle to get maps x, : H,(F/G,Z) x Hop_r_1(B,Z) — R/Z
which are independent of the choice of the connection /. They also prove that their
approach using differential characters yields the same results as in [4] on cycles in
F /G that come from cycles in F.

Our results are a special case of their results for the case G = {e}. (Though we
state and prove our results for smooth vector bundles, the same discussion applies
mutatis mutandis to smooth principal G—bundles.) However, since we deal with
finite dimensional stratifolds, we do not need to assume that the Cheeger—Simons
construction of a differential character given a smooth connection on a bundle holds
good in case the base of the bundle is an infinite dimensional Fréchet manifold (see
section 2.3 for more discussion on this point). Also our approach makes the relation
between various constructions [4, 13, 34| more explicit. We find that all the three
approaches yield the same invariant in R/Z cohomology (up to a possible sign factor
depending upon the orientation conventions).

The idea that fiber integration of differential characters can be employed to obtain
invariants of families of connections was propounded in [24] (also see [37]). How-
ever as noted in [34], the fiber integration developed in [24] can not be used for the
map X X A” — X as the construction in [24] requires that the fibers be compact
manifolds without boundary while A" is not boundary-less and as not a manifold.
In our case, as we shall see, the fibers are compact stratifolds without boundary.
This enables us to make use of the fiber integration construction of [1]. In fact our
results are a direct application of the fiber integration construction (lemma 41), and
Proposition 54 of [1].

The study of invariants of flat connections is the subject of many articles, see for

example [30, 37, 18].



In the next chapter (ch. 3) we discuss an axiomatic approach to differential coho-
mology theories. In addition to the Cheeger—Simons construction, there are several
other constructions of differential refinements of ordinary singular cohomology in the
literature, see for example [27, 7, 32, 31, 8]. It is natural to ask whether these con-
structions are equivalent. In [45], Simons and Sullivan give an axiomatic character-
ization of ordinary differential cohomology. They prove that the diamond/hexagon

diagram with short exact diagonals [45]:

0 0

AN /

H='(M;R/Z) — 2. H*M,7)
NSNS
H*1(M:R) H*(M;R/Z) H*(M;R)
4 NS o\

o0 (M)

0/ \0

Differential cohomology hexagon diagram

uniquely characterizes the ordinary differential cohomology functor up to a natural
isomorphism (for a precise statement, see Proposition 36). The long exact sequence
of the upper arrows is the long exact sequence in cohomology corresponding to the
short exact sequence 0 — Z — R — R/Z — 0. The maps s and g are induced by
the de-Rham morphism.

This axiomatization of ordinary differential cohomology is useful as it establishes
that different constructions of differential refinements of ordinary singular coho-
mology are equivalent. As an example, since the Deligne cohomology functor [7] -
defined as the hypercohomology of a certain double complex- fits in the hexagon
diagram [27], it follows that the Cheeger-Simons differential character functor is

naturally isomorphic to the Deligne cohomology functor via a natural isomorphism
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compatible with the diagonal morphisms in the respective hexagon diagrams.

Like ordinary singular cohomology, other generalized cohomology theories too
admit differential refinements. Given a generalized cohomology theory represented
by a spectrum, Hopkins and Singer [33] give a prescription for constructing its
differential refinement. In particular, one can construct a differential version of K-
theory using their prescription. There are other models of differential K-theory (e.g.
[9]) as well, for a survey see [11]. In [46], Simons and Sullivan construct another
model of differential K-theory for compact manifolds in terms of structured vector
bundles. They prove that their model of differential K-theory fits in the following

hexagon diagram:

@}

O\
K(C/zZ)(M) —E

NSNS
H%(M;C) | K (M) Hever (M C
V

NN
./

o d
it Qe (M)
Differential K-theory hexagon diagram

K(M

AN
N\

~—

AN
/

Qcr(M)

/

They ask whether, like the case of differential characters,

Question 2. Does the above hexagon diagram determine the differential K-theory
functor (from the category of compact manifolds to the category of abelian groups)

up to a natural isomorphism compatible with the respective diagonal morphisms?

In [41], Rakesh Pawar determines necessary and sufficient conditions for the

diagram



Diagram 1

with short exact columns and rows to extend to

0 0 0
3 v ,

0 > P —— K > R > 0
n ¥
4 <+ L

0 ----- y H -2 X ==t F eeees > 0
1 3 g

0 > S > G > () > 0
0 0 0

Diagram 2

with short exact columns and rows. He further gives conditions for uniqueness of
such extensions.

Here we extend (see Propositions 31, 33) Rakesh Pawar’s results, and show
that they imply (see Proposition 37) the existence and uniqueness of differential
character groups H*(M;R/Z) for any fixed manifold M. Uniqueness of the functor
H ¥(—;R/Z) is a stronger statement, for which we do not have a complete proof.
However, we state a condition 38 which implies the full Simons-Sullivan result.

Similarly we note in Proposition 43 that for any compact manifold M, the differ-
ential K-theory groups are uniquely determined up to an isomorphism compatible
with the respective diagonal maps, thereby partially answering the question 2 of

Simons and Sullivan. We give necessary and sufficient conditions 44 for an affirma-
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tive answer to the Simons-Sullivan question in full generality. The method is quite
general and applies to equivariant /twisted/generalised diffrerential cohomology the-
ories as well.

This thesis is organised as follows. In chapter 2, we discuss the construction of
the cohomological invariants associated to families of flat connections. In chapter
3, we turn to giving an alternate proof of uniqueness of differential characters and
differential K-theory groups. Almost the entirety of the text of this thesis is taken

verbatim from the author’s two articles

e Invariants of families of flat connections using fiber integration of differential
characters, Lett. Math. Phys. 110, 639-657 (2020). https://doi.org/10.1007/s11005-
019-01234-3

e Uniqueness of differential characters and differential K-theory via homological
algebra arXiv:2005.02056 (accepted for publication in Journal of Homotopy

and Related Structures)

on which this thesis is based.

The study of differential cohomology theories is relevant in several ways to Quan-
tum Field Theory and String Theory. The Chern—Simons form was one of the first
examples of topological action functionals in Physics [49, 17]. Since then, differen-
tial refinements of ordinary and generalised cohomology theories have appeared in
Physics in different contexts. The reader interested in exploring these connections

could refer to [3, 26, 25, 29, 44, 23, 22] and the references therein.

11



