Chapter 2

Invariants of families of flat

connections

In this chapter! we consider the problem of associating R/Z cohomology elements
to families of flat connections on a fixed vector bundle. This chapter is organised
as follows. In section 2.1, we recollect the results concerning geometric chains and
fiber integration of differential characters. Then in section 2.2, we describe our
construction, and in section 2.3 we discuss the comparison of our results with other

constructions in the literature.

2.1 Preliminaries

In this section we briefly state the definitions and results that are used later in the
paper. Subsection 2.1.1 describes a geometric chain model of differential characters
on smooth spaces, and subsection 2.1.2 discusses the construction of fiber integration
of differential characters and its properties.

We assume that the reader is familiar with smooth spaces and stratifolds. The
required notions and results are summarised in section 2 of [1], and the book [35]

contains a detailed description.

'This chapter is based on the author’s article ‘Invariants of families of flat connections
using fiber integration of differential characters’, Lett. Math. Phys. 110, 639-657 (2020).
https://doi.org/10.1007/s11005-019-01234-3
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The discussion in this section is based on the framework developed in [1]. Nothing

contained in this section is original.

2.1.1 Geometric chain model of differential characters

Definition 4. Let Ci(X) be the set of equivalence classes of smooth maps ¢ : M — X
where M is an oriented k— stratifold such that OM is an oriented (k — 1)— stratifold
under the following equivalence relation:

(M —= X)~ ((': M — X)if 3 an orientation preserving diffeomorphism
W M — M’ such that (' o = (. The operation of disjoint union makes Ci(X) an

abelian semi-group. Elements of Cr(X) are called geometric chains.

Definition 5. The boundary operator O : Ci(X) — Cx—1(X)is defined as 9[C - M —
X] =[Clonm : OM — X].

By [ : M — X], we denote the element in C given by the same map [¢ : M — X]

but with the orientation of M reversed.

Definition 6. The set kerd := Z,(X) is called the group of geometric k— cycles.
The set im0 := By_1(X) is called the group of geometric boundaries. The quotient

Hi(X) = i:gg is the homology of the complex defined by 0.

The homology H(X) is an abelian group, where the inverse of [( : M — X] is
given by [ : M — X].

Let C,(X;Z) denote the group of smooth singular n—chains on X. A chain
c € Co(X;Z) is called thin if Yw € Q*(X), [ w = 0. We denote the group of thin
n—chains by S5, (X,Z).
We now define maps ¢ : Cp(X) — Co(X,Z)/Sh(X,Z) by [( : M — X]| — [((¢)]s,
where ¢ denotes a fundamental cycle of H,(M,0M,Z) (or H,(M,Z) it OM = ¢).
This map takes boundaries to boundaries, and chains to chains thereby giving us

the commutative diagram:
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— X)) — B, X)) —mm— Z,(X) — C,(X) ——

L Cuii(X,2) . Bu(X.2) C Zn(X,2) . Cu(X,7)
R &) ? B8ni1(X.Z) ’ B8 11(X.Z) ? S(X.Z)

This chain map induces a map on homology of the two chain complexes: H,,(X ) :=

Zn(X)
Bn(X)

ther it is shown there that the product H,,(X) X Hp(Y) = Hmin(X x Y') given by

— H,(X,Z). This map is an isomorphism (see Theorem 20.1 in [35]). Fur-

(M —=X]xn:N—=>Y]—[(xn:MxN— X xY]is compatible with the
isomorphism above and the usual multiplication in smooth singular homology.

Bér and Becker show (lemma 7 of [1]) that

Proposition 7. There exist homomorphisms ¢ : Cpy1(X,Z) = Cpy1(X), a: Cp(X,Z) —

Coi1(X,2), and y : C, i1 (X,Z) = Zni1(X,7Z) such that the following hold:

9¢(c) =(¢0(c) Vee Ch(X,Z), (2.1)
[C(O)]sn41 = [e = a(dc) = dalc +y(e)]s,.. Ve Con(X,Z), (2.2)

and
[C()os,in = [z = Dal2)]os,, V2 € Zna (X, Z). (2.3)

2.1.2 Fiber integration of differential characters

Before discussing fiber integration, let us fix our conventions regarding orientation.
We use the same convention as in [1] which is: if M is a manifold with boundary
OM, a tangent vector pointing outward at a boundary point p € @M followed by an
oriented basis for T,(0M) gives us an oriented basis for the manifold M at p. For a
fiber bundle with oriented fiber and oriented base, the orientation on the total space
is chosen to be given by an oriented basis of the base followed by an oriented basis
of the fiber. We now discuss fiber bundles over smooth spaces. As remarked in [1]
(sec 7.1), there are multiple non-equivalent generalisations of the concept of fiber

bundles over smooth spaces. We use the same definition as by the above authors,
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which is stated below:

Definition 8. A smooth surjective map p : £ — B is a fiber bundle with fiber F,

if for any smooth map f: M — B from a finite dimensional stratifold M, the pull
back f*E — M is locally trivial with fiber I

Let FF — X — B be a fiber bundle where M, I, and E are smooth manifolds of
finite dimension and F' is compact oriented. Then we have a fiber integration map
of differential forms (see, for example, [6])
£ Q(E,R) = Q" "(B) for n > r where dimF = r. This map satisfies the Stokes

F
][dw = d][w + (—1)d@9w+d"mF][w (2.4)
F F

theorem:
oF

Similarly there is a push-forward map (see [5, 15]) for singular cohomology with
coeflicients in an arbitrary group np : H*(E,G) — H" (B, H" (I, G)). Generally
I is a connected, closed and oriented manifold of dimension r, and the above map
becomes 7 : H*(FE,G) — H"7(B,G). Fiber integration maps have been studied
for various models of differential cohomology, see for example [19, 28, 37]. For our
purpose, the construction given by Béar and Becker [1] is suitable. We briefly describe
this construction below. For this purpose, they use the transfer maps at the level of
chains A : Cy—.(B,Z) — Ci(I,Z) satisfying [A(2)]as,,, = [PBe(((2))]ss,., Vz €

Zk—r(B,Z) where PBp denotes the pull-back along the map £ — B.

Definition 9. Let E — B be a fiber bundle with oriented closed fibers F', and let
dimF = r. We then have fiber integration 7p : H*(E) — H*"(B) for k > r given

by h — mp(h), where

(mir(h))(z) = h(A(2)) X exp(Zm'/ curv(h)) (2.5)

a(z) V'

The authors of [1] show that this construction does not depend on the choice of

functions A,(, and a.
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Remark 10. The above construction in [1] is done for the case where M, and E
are smooth spaces, but I' is assumed to be a finite dimensional closed manifold.
However, their construction as well as the properties cited below hold for the case
when I is a compact boundary-less finite dimensional stratifold. This is because all
that is required in their construction and proofs is that (a) the fiber integration of
differential forms is defined, and that (b) the integration of forms satisfies the Stokes
theorem. These hold good when I is a compact oriented stratifold by the virtue of

results proved in [21].

When the fiber has a boundary, the fiber integration (along the boundary) of the
restriction of a differential character, finds an expression in terms of the integral of
the curvature of the differential character. This is a very useful identity, and in fact
several of our results are a direct consequence of this formula. The precise statement

(Proposition 54 of [1]) is as follows:

Proposition 11. Let F' — E — B be a fiber bundle where I is a compact manifold
with boundary OF, such that OE — B is a fiber bundle with fiber OF. If h €
H*(E,Z), then

o (Blo) = L((—l)k_dimF][curv(h)) (2.6)

F
As observed in example 56 of [1], this is a generalisation of the famous Cheeger—

Simons homotopy formula (2.7).

They further show that fiber integration is compatible with the exact sequences i.e.

the diagrams:
0 ——— QF1(E)/QFY(E) HY(E) —— HME,Z) —— 0

£ mE mF

0 —— QFY(B)/Q"YB) ———— H*"(B) ——— H*"(B,Z) —— 0
and
0 —— HY(BE,R/Z)) ———— H¥E) ———— Q¥(E) —— 0

mE e £

0 —— H*""Y(B,R/Z) —— H*"(B) —— QF"(B) —— 0
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commute.

2.2 Cohomological invariants of the space of flat
connections using fiber integration of differ-

ential characters

In the seminal paper [14] Cheeger and Simons showed how to associate a differ-
ential character to a bundle equipped with a connection. We denote this differ-
ential character by csp(E — B,0) € H*(B). Here P € I’(GL(n,R)), and u €
H*(BGL(n,R),Z) are assumed to be compatible with each other. Often when there
is no possibility of confusion, we simply write these as cs(F,#). When the connection
is flat, this characters lies in the image of the inclusion H**~'(B,R/Z) — H*(B).
They further prove that for p > 2, c¢s(E,6,) = cs(F, ) if the connections 6, and
0, are connected by a smooth family of flat connections and are therefore rigid in-
variants of the space of flat connections. This is a consequence of their ’homotopy

formula’:

d
cspu) (Vi) — cspuy (Vo) = p/P(avt,V?,V?, e ,Vf). (2.7)
I

In this article, we consider the problem of attaching invariants to a family of flat
connections. More precisely, we formulate the problem as done in [34]: Let D(E)
be the simplicial set, whose r-simplices are (r + 1)— tuples? (D° D! ---  D") of
relatively flat connections on the vector bundle £ — B of rank k. (The connections
DY D ... D" are called relatively flat if the linear combination ¢,D° + ¢, D! +
<+ 41, D" is a flat connection for each choice of tg,--- ¢, such that > t; = 1.)
If ¢ : [r] — [s] is an increasing function (where [r] := {0,1,--- ,7}), we then

define the corresponding map ¢* : D(E)s — D(E), by ¢*(D°, D', ... D% =

2To avoid duplicity, we shall choose any ordering on the set of all connections and require that
DP<D'<...<D"
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(D?O) D) .. D) In this section we construct maps:
Upr : H.(D(E)) = HP"YB,R/Z) forp#r,r+1 (2.8)

using fiber integration of differential characters. In the next section we show that in
the p > r + 1 case they agree with the maps constructed in [34], and vanish in the
p <1 case.

Let > € Z,.(D(E)) be a cycle representing the homology class [¥] € H,(D(FE)).
Then 3 decomposes as > = 3! + -+ + 3™ where " = (D% DY ... D", For
simplicity, we use the same symbol 3 to denote the geometric realization A" of
the chain Y*. The geometric realisation of the cycle > (again denoted by the same
symbol ) is obtained by first taking the disjoint union |7| >* and then identifying
the suitable faces in the boundaries 93¢ i.e. [?"-face of 3¢ is identified with m-face
of 37 if 3y = +%7 .
On the bundle £ x > — B x i, we define a connection as follows. A" is conve-
niently parameterised by tuples (to,--- ,t¢,) such that to +¢; +--- +¢. = 1. Let
D" = %]tij’i be a connection on the bundle F x >* — B x ¥. Schematically speak-
ing, we could patch the connections D® on E x 3 — B x Y%, to get a connection D
on F x> — B x > and then apply Cheeger-Simons theory to obtain a character
hpys € f[Qp(B x 33). We could then integrate along fibers of the bundle B x ¥ — B
to get a character in H2~"(B), and show that it lies in the image of the inclusion
H»="=Y(B;R/Z) — H*~"B. Broadly, this is indeed the idea used in this paper.
However carrying it out rigorously requires some care since > is a stratifold, and
not a manifold in general. In order to apply Cheeger—Simons theory to the bundle
E x 3 — B x 3, we need to ensure that (i) the connection we endow it with is
indeed smooth (in the sense described below), and (ii) that this connection is the
pull back, under some smooth classifying map, of the universal connection on a clas-
sifying bundle (in the sense of Narasimhan-Ramanan [39]). To ensure smoothness,
we need to modify each connection D* so that it commutes with a small collar near

the boundary 9%*. We do this in a precise manner below.
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First we describe the notion of smoothness of a connection w on the bundle I x > —
B x>, Choose a trivializing open cover U of B . Foreach U € U, let {¢* : U — Ely}
for p € {1,...,n} be a frame of smooth sections of this vector bundle. Then
{¢" x idy : U x 3 — FE|y x %} form a frame for the bundle £ x 3 — B x 3]
restricted to U x Y. Let {w#} be the 1-forms corresponding to the connection w
with respect to this frame. We say that w is a smooth connection if for each U, w¥
are smooth® 1-forms on the stratifold U/ x 3. This definition depends neither on the
choice of the cover, nor on the frame.

Now let us describe the stratifold structure on the geometric realisation of >.. Note
that geometric realisation of > is an r—simplex A" for each i. Geometric reali-
sations of simplicial complexes, and hence simplices 3¢ in particular, can be given
a stratifold structure by an inductive process as in section 2.1.2 of [38] (described
below). Thereafter, the c-stratifolds (“collared-stratifolds”) Y* are pasted together?
to obtain the required stratifold structure on > so that a real valued continuous
function on X is smooth iff for each i, its restriction to > is smooth with respect to
the c-stratifold structure on 3.

Let us now briefly recall the construction of a c-stratifold structure [38] on (A™, OAT).
The construction proceeds by induction on r. (A! dA!) is simply a line segment
with two end points, and already carries the structure of a c—stratifold. Assume
that we have equipped (A*™', A1) with a c—stratifold structure. To complete the
inductive step, we shall construct a stratifold structure on (A% dA*). The bound-
ary OA" has i + 1 faces, each of which is a geometric realisation of A*~!. The
stratifold structure on the boundary is the stratifold structure obtained by pasting
together the faces (which already have the stratifolds structure by the inductive
hypothesis). Thereafter, we choose a bijective map 7; : D* — A* which is a diffeo-

morphism on the interiors and takes the boundary dD* = S*~! smoothly to HA®.

3For background on the notions of smoothness of forms on stratifolds, we refer the reader to
the book [35], or to C.-O. Ewald’s works [21, 20].

4Collared stratifolds can be pasted along their boundary, or part thereof, to obtain another strat-
ifold. For the details of this construction, see Propositions 3.1 (p.37) and Proposition Al(p.194)
of [35]
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There is a collar v : S x [0,¢) — D* which in the polar coordinates (7,0, ..., 0;_;)
is given by (r = 1,0y,...,0;_1) X t — ((1 —t),64,...,6;,_1). Using the bijective map
n;, this translates into a collar (denoted by the same symbol v for convenience)
v OA % [0,¢) — A*. Amap ¢ : A" — R is declared to be smooth if (i) ¢ restricts to
a smooth map on OA?, (ii) ( on; : D* — R restricts to a smooth map on the interior
of D* and (iii) if it is compatible with the germ of 7 i.e. if there exists ¢ > 0 such
that ((v(p,t)) = ((p)¥p € OA* and t € [0,€). In this manner (A?, JA*?) becomes a
c-stratifold with boundary thereby completing the induction step.

We now proceed to define a smooth connection on F x X' — B x ' for each
i. Without loss of generality, assume that D% ..., D™ are distinct. For each 1,
the bundle &/ x >* — B x X' is an isomorphic copy of £ x A" — B x A". On
E x A" — B x A", the smooth connection is defined inductively starting from
the O0—skeleton of A”. The 0—skeleton of A" is the disjoint union of r 4+ 1 points
{0,1,...,r}. If D* = (D% DY ... D", then the connection on F x {l} — Bx {l}
is defined to be D%, To carry out the inductive step, assume that a smooth connec-
tion has been constructed on £ x S;_1 — B X S;_; where S;_; is the (j —1)—skeleton
of A". Now 0S; C S;_; consists of several faces (each of which is diffeomorphic as
a stratifold to A"1) which combine to yield copies of JA’. S; is obtained by at-
taching j—cells A7 to S;_;. In this manner, the problem reduces to extending a
smooth connection on the bundle F x A7 — B x 0A? to a smooth connection on
the bundle F x A7 — B x A7. We do this below.

There is a projection map pry : 9A? x [0,¢) — JA?. The pullback under the bundle
map (idg X pri,idg X pry) of the given smooth connection on the bundle F x ONT —
B x 9A7 yields a connection Deye, on E X (OA? x [0,€)) — B x (0A7 x [0,¢€)). Via
the collar map, we consider JA? x [0, ¢) as an open subset of A7.

Let VO, V!, ... V7 be the (j + 1) connections on £ — B corresponding to the cor-
ners of A7, Let D7 = ,V°+...+;V/ be a smooth connection on £ x A7 — B x AJ
where A denotes the interior of A and (to,...,t;) are the standard simplex coordi-

nates on A7, Choose a smooth function f : [0,1] — [0, 1] such that f(t) = Lon0, 5]
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and supp(f) C [0,¢€). Let ch = f(1 = 7)Deotiar + [1 — f(1 — r)]D?. Here r denotes
the radial coordinate on the disk ID’/. Since we have identified A/ with I’ we can
use the same coordinate on AJ.

In this manner, given a smooth connection on £ x S;_; — B x S;_1, we extend
it to a connection on I x S; — B x S;. Continuing the inductive procedure, we
obtain a smooth connection on £ x A" — B x A" (which is F x ¥* — B x ). By
construction, these connections {D}} are compatible with the respective collars on

>, and hence combine to yield a smooth connection Dy on E x > — B x 3.

We now apply the Cheeger—Simons theory to the bundle £ x > — B x > of rank
k with connection D; to obtain a differential character hf, y, € H2(B x ). Notice
that the original Cheeger—Simons construction [14] was done for the case when the
base is a manifold. In our case, B x > is a stratifold. This is not a problem
however, because all that goes into the proof of Cheeger—Simons theorem is that the
given connection is the pull back under a map from the bundle to the tautological
bundle on a Grassmannian manifold G(N, k) with its canonical connection for some
sufficiently large NV (for simplicity of notation, we shall denote the Grassmannian
G(N, k) by Ay, and the tautalogical bundle by Exy — Ay). While this may or may
not be true for a general connection when the base is a general stratifold, it suffices
for our purposes to show this for the connection Dy on the bundle £ x ¥ — B x X.

We do this below.

We shall again use an inductive procedure to find a desired bundle map (G :
E x Y — Eyn,g: B x> — Ay) such that the pullback of the universal connection
on Ey — Ay under (G, g) is the connection Dy on E x ¥ — B x 3. Let Cj, denote
the k—skeleton of ».. Cj is a collection of points, and hence (by using the result of
Narasimhan-Ramanan [39] )there is a smooth bundle map (Go : E x Cy — En, go :
B x Cy — An), pullback of the universal connection under which is the connection
Dy restricted to £ x Cy — B x Cj. Suppose that there is a smooth bundle map
(Gg—1: EXCroy — Eny,gk—1: BXxCi_1 — Ap,) such that the universal connection

¢ on Iy, — An, pulls-back under gy_; to the restriction of Dy to £ x Cy_y —
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B x Cy_1. Now, C,, is obtained by attaching (possibly several) copies of A¥ to Cj_;.
For each copy of A¥, let g¢?%er : BxOAFx [0,¢) — Ap, be given by gi?%" = g_10pris
where prip : Bx9A*x[0,¢) — BxdA*. Similarly, let G2 : ExdA*x[0,¢) — En,

be given by G¢?" = ()., o pris. We consider dAF x [0, €) to be a subset of A¥ via

£

, <] in A*. This is an open

the collar map. Let U denote the complement of JAF x [0
subset of the interior of A¥, and hence is a manifold. By the Narasimhan-Ramanan
result, there is a bundle map (Gy : ExU — En,,gu : Bx U — Ap,) which induces
the connection Dy on - x U — B x U. By using a partition of unity argument (as in
[39]), we get an extension (G : £ X Cy, — En,, gk : Bx Cy — Ap,), for a sufficiently
large N3, thereby completing the induction step. Since I is a cycle, its geometric
realization is a compact stratifold without boundary. Therefore, by remark 10,
we can apply fiber integration to the bundle B x > — B, to obtain a differential
character 7y (b, 5;) on B. (Notice that, as remarked in [34], geometric realization of
> (or A")is not boundary-less and hence fiber integration of differential characters
can not be applied to the bundle B x 3* — B. However, since X is a cycle, the

geometric realization of I has no boundary. This is what makes it possible to apply

fiber integration to the bundle B x > — B). We have thus obtained a map:
Uy * Zo(D(E)) = H*(B) (2.9)

given by
Y wm (bl s) (2.10)

We often drop one or more of the subscripts P,u and r so as to avoid cluttered
notation.

Below we show that this map vanishes on the boundaries and hence descends to a
map on the homology H,(D(L£)). We further show that this map is independent of
the choice of the function f or e.

Let us now compute the curvature of the differential character 1/ (3). To do this,

we note that by Proposition 46, and equation (62) of [1], we have a commutative
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diagram:

0 —— H*Y(Bx N R/Z) ——— H*BxY) — 4 Q¥ B x %) — 0
Ty Ty é
0 —— H*""Y(B,R/Z) ——— H*"(B) —=* 5 QF"(B) —— 0

Thus we have

curv(y’ (%)) = ][curv(héxz) = ][P(Qf) (2.11)

5 5

where Q7 is the curvature of the connection D; i.e. Of = dD;+ Dy A Dy. (Strictly
speaking, we should write(Q)% = d(Dy)¥ + (Dy)} A (Dy); where {(Dy)#} are con-
nection 1-forms on U x > with respect to a frame {¢*} over a trivializing subset
U C B. However, in order to avoid clutter of notation, we use the same symbol Dy
to denote the connection, and the connection 1-form w.r.t. a frame {¢*} and omit
the indices p, and v.)
Now we use the fact that for each ¢ € X, the restriction of the connection Dy to
the bundle / x {t} — B x {t} is flat, together with a standard argument in the
literature (see for example, [13, 30, 34]) to prove below that when p > r+1 or when
p < 1, the curvature of 1/ (>) is zero.
First, note that forms on a product manifold can be decomposed as Q(M x N) =

P QM x N). On E x 3 — B x ¢ the connection D, restricts to D% =
ijlij(to, ..., t,) D7 Now if % is the curvature of D% (or equivalently the restriction
of Q7 to ¥), then we have Q) = dyi, gD} + D} A D5
We now use local coordinates (24)i<a<mon on open set ' C B. This gives us a
chart for U x Y.* with coordinates (X1, Tm,yto,-..,t,—1). In these coordinates, we
have

. oc; y .
dZiXBD;c = Za—;idtk A DP + dBD;c (212)
gk

i 9¢j i i i i 9¢j i
]7 ]7
The last equality follows since the restriction of D;} to any slice £ x {t} — B X

{t} gives a flat connection, thereby making the sum of the last two terms vanish.
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Therefore 2y € QYY(B x ¥, gl(n,R)). Since P is a homogeneous polynomial of
degree p, we have P(Q)/) € OPP(B x ¥3). Thus

PQ)Y=0 for p>r (2.13)

In the p < r case, even though P(}/) need not vanish, the integral fP(Q/) still
5

vanishes. We have thus obtained

Proposition 12. When p # r, the curvature of 1)’ (X)) vanishes, and hence 1)f takes

values in H**~""(B,R/Z).

When p = r, the above map gives a differential character in H "(B) rather than
an R /7Z cohomology class. We now proceed to show that 7 evaluated on boundaries
vanishes, and hence it gives rise to a map 9/ : H,(D(E)) — H*~""Y(B,R/Z). To
see this, let ¥ = 0K where K € Z.(D(F)). The geometric realization of ¥ is
the boundary of the geometric realization of K, and hence h’, y, is the restriction
of héx 5 along its boundary. Therefore, we apply Proposition 11 to the bundle
E'x K — B x K to obtain:

P (%) = Tis (M) (2.14)

— L((~1 L curo(h, ) (2.15)

= (=1~ 4K (4 P(Qpyr)) (2.16)

R~ R

Now P(Qpxk) € OPP(B x K), and dimK = r+ 1. Hence if p # r + 1,
Y1, (%) =0V € B.(D(F)). We have thus obtained

Proposition 13. ¢/ (3) = 0 if 3 is an r-boundary and p # r + 1. Thus, for
p# 7+ 1 the map v, induces a map ¢, : H,(D(E)) — H*~"~Y(B,R/Z).

We are now ready to see that the induced map on homology H,.(D(E)) does not
depend upon the choice of f or e. Let fy and f; be two distinct choices of maps

for €y, and €; respectively. Choose a small 6 > 0, and a smooth monotonic function
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g:1=10,1 — [0,1] such that ¢g(¢) = 0Vt € [0,6/2], ¢g(t) =t Vt € [§,1 — 4], and
g(t) =1Vt e [l—6/2,1]. Now consider the bundle £ x > x [ — B x> x I. On
this, define a smooth connection F' such that F' is trivial in the directions tangent
to > x I, and (ii) restriction of F' to F x 3 x {s} — B x > x {s} is given by

g(8)Dy, + (1 — g(s))Dy,. Then, by Proposition (11), we have

B — P (5) = (—1) f curv(h, ss.1)) (2.17)

UxTI
Since curv(hb,.y,) € QPP(B x (3 x I)), and since p # r + 1, the R.H.S. vanishes,

thereby proving the result:

Proposition 14. When p # r+ 1, ¢ (%) € H*"Y(B;R/Z) does not depend

upon the choice of the function f.
We therefore omit the superscript f, and simply write ¢ or 9.

Remark 15. Let G be the group of bundle isomorphisms & : E — E which cover the
identity map on B. Then G acts on the simplicial set D(E) by - (D°,...,D") =
(EH*DO, ... (&7YH)*D"). Let £ € G be connected to the identity map via a smooth
path in G. An argument similar to the proof of Proposition 14 shows that (£ -Y) =
P(3) for any cycle 2 € Z.(D(FE)) and p # r + 1.

Remark 16. The p = r case. In view of the Proposition 14 , for @DZJ;T(E) to be
independent of the choice of [, it suffices to have p # r+1. Thus Mi,(E) s a well de-
fined differential character in }AF(B) which depends only on the homology class of 32
and not on f. We therefore get a well defined map @Zm - H,(D(E)) — }AF(B). Note,
however, that since Proposition 12 does not guarantee vanishing of curv(yl, (%)),

we may not conclude that @Em takes wvalues in the image of the inclusion map

H™~YB,R/Z) 4, H"(B) (see the exact sequence 1.5 ).

Remark 17. The p = r + 1 case. In this case, the Proposition 14 does not
imply the independence ofwa’T(Z) € H™"Y(B,R/Z) from the choice of f. Further

Proposition 13 does not apply, and thus we may not conclude that the maps MZFM :
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Z,(D(E)) — H™(B,R/Z) descend to maps ¢/, , : H,(D(E)) - H™*Y(B,R/Z).

Also compare remark 7 in [13].

2.3 Comparison with other constructions in the

literature

In this section, we first derive an explicit computable formula for +(>). We find
that this matches with the formula given by [34] thereby showing that the maps p’
in [34] are equal to the maps @Z here for the p > r + 1 case, and are zero for the
p < r case. We then show that as a consequence of Proposition 11, our invariants
match with the ones constructed in [4] using entirely different methods. We further
show that the results here are compatible with the ones obtained in [13].

Fix any flat connection Dy on £ — B, and let Dy be the connection on £ x 3 —
B x 3. obtained by pulling back the connection Dy on F — B under the pull back

diagram

ExY — F

BxY»@————— B

Now since the space of connections is convex, there exists a connection D on
E x> x I — B x> x [ such that its restriction to £ x 3 x {0} — B x ¥ x {0}
is D, and restriction to the slice £ x ¥ x {1} — B x X x {1} is D. Note that the
restriction of D to the slice £ x {p} x {t} - Bx {p} x {t}for0 <t <1l,pe X
need not be flat.

By Proposition 11, we have

hgxi]x{l} o hngx{O} = (—1)L(][CUTU(h§X2X])) € [:A'TQP_T(B X Z) (2'18)
I
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Applying further integration over the fiber I in the bundle B x ¥ — B, we get

B(S) = (1) f POP)) (2.19)

This is precisely® the construction given in [34] (since the R.H.S. in 2.19 does not

depend upon €, we can take ¢ — 0+). Therefore, we obtain:

Proposition 18. The maps ) : H,(D(E)) — H*""(B,R/Z) are equal to the

maps p constructed in [34] for p > r 4+ 2.

Notice that the equation 2.19 shows that ¥, , does not depend on u, but only on
P. Further it shows that that a different choice of the path of simplices connecting
the trivial simplex to D changes the integral in the R.H.S. of equation 2.19 at most
by a closed form with integral periods. In [34] R.H.S. is taken as the definition of
the invariant associated to the family of flat connections.
Note that ¢([%)]) considered as an element of H%~"(B) lies in the image of both the
inclusion maps H*~"~Y(B,R/Z) — H*~"(B), and % % H?"(B). Thus not
only does the curvature of this differential character vanish, but also its character-

istic class. The vanishing of the characteristic class can also be understood in the

following way.

Proposition 19. The characteristic class of the differential character ¥([%]) van-

1shes.

Proof. By compatibility of fiber integration of differential characters, and singular
cohomology we have ch(mx(hpxs)) = much(hpxs). Now we have an explicit de-
scription of the fiber integration map in singular cohomology (see the discussion
in remark 4.5 of [1]). If u € H*(B x %,7Z), then mx(n) € H*7"(B,Z) is given
by mx(p)(c) = p(EZ(c ® X)) where 3. denotes the fundamental class of the top
homology H,(3.,7Z) ~ Z, and EZ is the Eilenberg-Zilber map. Now observe that if

u € H?(G(k,oc)) is an element of cohomology of the base of the classifying bundle,

°In [34], the results are stated for the case p > r. However, to the best of our understanding,

?

this is an error, and the results there hold for p > r + 1. See remark 17 .
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the characteristic class g of the bundle £/ x 3 — B x Y is given by u(¢) = u(fi())
where f: B x> — G(k,00) is any classifying map. In our case, if g : B — G(k, o0)
is a classifying map for the bundle £ — B, we can choose f = g o prg where
prp: B x> — B is the projection map. Thus f,(EZ(c®>)) = EZ(g.(c) ©0) = 0.
Hence we have my(ch(hpxx)) = 0. O

Since ch o iy is (up to a sign) the connecting homomorphism in the long exact
sequence in cohomology corresponding to the short exact sequence 0 — Z — R —

R/Z — 0, we have the:

Corollary 20. For any [%] € H,(D(E)), ([%]) lies in the image of the map
H>~"=1(B,R) — H» (B, R/Z).

We shall now prove that the invariants vanish in case p < r.
Proposition 21. Forp <r, ¢,,.(3) =0 ¥V > € Z,(D(F))

Note that the differential character bl € H? (B x %) itself may not necessarily
be zero. The above result therefore is a vanishing theorem about the the push-

forward (fiber integral) 75 (k). x).

Proof. QP = QP20 1 QP 11 4 0P 02 ¢ (B x (X x I)). However, as has been

argued above, QP 92 = ( since D is trivial in the directions of 3} x I. Thus

P(QD) cPP(Bx (Ux )PP LB x (Ux)@- -0 (Bx (Xx1)) (2.20)

Since dim(X x I) = r + 1, the R.H.S. in equation 2.19 vanishes. O

Though this result regarding vanishing of invariant for the p < r case has not
been explicitly stated in [34], it is a consequence of Jaya Iyer’s formula i.e. equation
2.19 in this paper.

There is an alternate way of formulating the study of the topology of the space of flat
connections on a bundle £ — B. Rather than constructing a simplicial set D(E) of

relatively flat connections, one considers the set of all connections .4 and gives it the
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structure of an infinite-dimensional Fréchet manifold. The space of flat connections
F is a closed subspace of this space. One then associates cohomological invariants
to elements of smooth singular homology groups [13] or to smooth maps f: S — F
from a suitable manifold S [4]. Our approach of employing fiber integration works
in this formulation of the problem and yields the same answers (up to a sign, which
arises due to differences in orientation conventions) as in [4, 13], as shall be shown
below. Note that though the discussion in [4, 13| is formulated in terms of principal
bundles, it can be written in terms of vector bundles as well.
In [4] the authors consider the set of smooth maps Maps(S,F) where S is a null
cobordant manifold and F denotes the space of all flat connections. Employing
the framework of Atiyah bundle, and the bundle of connections, they construct
certain (r + 1)-differential forms g2, € Q"t1(A, Q*~"~1(B)) on A taking values in
Q*(B) They then define maps AL, : Maps(S,F) — H*7""'(B,R) given by f —
AP ( ff Br., where f:T — Ais any extension of the given map f: S — F
to a manlfold T whose boundary is S. They show that these maps are well defined
i.e the R.H.S. does not depend (considered as an element of cohomology group
H?-"=1(B R)) upon the choice of T or f. As a consequence of certain identities
in their paper, they further show that if fo, fi € Maps(S,F) are homologous, then

AP (fo) = AL (f1). Also they prove that

/ At f ) (2.21)

where (2 is the curvature of the connection induced on the bundle T'x ¥ — T x B.
In this formulation of the problem our approach works as follows. For f € Maps(S, F),
consider the induced connection V7 on the bundle £ xS — BxS. This is the unique
connection which restricts to the connection f(s) on the slice E'x{s} — Bx{s}Vs €
S, and vanishes in the tangent directions along S. Let h € H*(B x S) denote the
differential character corresponding to this connection. Then f — Tis(hpxs) gives

us a map ¢y, : Maps(S, F) — H*"=Y(B,R/Z) for p > r+1. We have the following
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proposition:

Proposition 22. For all f € Maps(S,F)

Dor(f) = (=D)AL () mod Z p # v+ 1 (2.22)

This is a direct consequence of Proposition 11 and the identity 2.21 proved in
[4].The fact that the form AL ,(f) is closed is automatic since the exterior deriva-

=17 5 (hsxB)

tive of this form is the curvature of the differential character (—1)
by virtue of equation 2.11 which vanishes for p # r (see eqn. 2.13). Note that Lopez
and Biswas obtain maps into H*~""!'(B,R) instead of H*~"~!(B,R/Z). From
our standpoint, this is because the differential character has trivial characteristic
class (see corollary 20). Invariance under the homology relation (Proposition 3.8
of [4]) is a consequence of Proposition 11 by an argument similar to the one used
in proving Proposition 14. Their invariants for p < r vanish because the forms /57
themselves vanish. From our point of view, even though P(€Qpxy) does not vanish,
f P(Qpxr) vanishes. Also note that their construction does not require a choice of
Z € H?(BGL(n,R),Z) in the first place, while ours turns out to be independent of
this choice (see the discussion after Proposition 18). Also compare this discussion
with remark 3.4 in [4] where the authors show that A? , can be expressed as fiber
integrals of certain transgression forms which can be used to prove some of their
results.

As a special case, they consider the case where S = S”, and obtain the maps

Ap

oo m(F) = H*»7"~Y(B,R) from homotopy groups of F to H*~""}(B,R). In

contrast to homotopy groups, general homology classes can not be represented by
maps from smooth manifolds, which is why we have used stratifolds in this paper.

In [13], the authors use the theory of differential characters and equivariant charac-
teristic classes to obtain maps Hy,_,_1(B,Z) x H.(F/G,Z) — R/Z for p > r + 1
where G C Gau(P) is a subgroup of the group of global gauge transformations

which acts freely on A. Their approach is to use the canonical connection A on
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the bundle ¥ x A — B x A which is trivial in the directions of A, and whose
restriction to F2 x {#} — B x {0} is 6. They then choose a connection & on
the principal bundle A — A/G. They show that this data determines a con-
nection Y on the bundle (E x A)/G — B x A/G. Cheeger—Simons theory on
this bundle yields a character Y, € H?*(B x A/G). Their maps are the com-
position Zy,_,_1(B,Z) X Z,(F/G,Z) — Zy,_1(B x F/G,7Z) X R/Z. The first
map here is the standard multiplication map. They then show that these maps
vanish when either factor is a boundary, and hence descend to homology groups
Xpor @ Hop—r—1(B,Z) x H,(F/G) — R/Z. They further show that these maps do not
depend on the choice of the connection U.

Our method is a variant of their approach, and has the disadvantage that it does
not prove the invariance of the invariants under the action of the Gauge group (or
more precisely, a subgroup G of Gau(F) which acts freely on .A). Thus we have
to restrict our attention to obtaining maps H,(F) — H*~"~1(B,R/Z) rather than
H,(F/G) — H?~""Y(B,R/Z). In this sense our results are a special case of the
results of [13] for the choice G = {e}. (Notice that nothing in our approach ac-
tually uses the fact that the connection on the bundle corresponding to a point
on the geometric realization of the cycle is a linear combination of the connection
corresponding to the vertices. All that is required is that the connection correspond-
ing to any point in the parameter space is flat.) However our approach does not
assume that the Cheeger—Simons construction is applicable in the case when the
base is an infinite dimensional Fréchet manifold. The Cheeger-Simons construc-
tion of a differential character given a bundle with a connection uses the fact (due
to Narasimhan-Ramanan [39]) that any smooth connection on the bundle £ — B
(with the base B a finite dimensional manifold) can be obtained from a universal
connection on a Stiefel bundle by pullback under a smooth classifying map. However
to the best of knowledge of the present author, an analogous result when the base
is an infinite dimensional Fréchet manifold has not yet been proved in the literature

(also see the discussion in section 2.1.1, and footnote 3, p.9 in [2]).
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Notice also that our result that the character ¢(3) does not depend on the choice
of u, proves that the maps xpu : H.(F,Z) X Hop_r—1(B,Z) — R/Z constructed in
[13] do not depend upon the choice of w. In this formulation, we construct maps
U, o H.(F) — H* "1 B ,R/Z) as follows. Let ¢ : > — F represent an element [3]
of the smooth singular homology group H,(F). Let V be the induced connection on
Ex> — Bx>, andlet hpys € f[Qp(B x 31) be the differential character correspond-
ing to V. Then [%] = mix(hpxy) defines a map ¥, : H.(F) — H?~""Y(B,R/Z).
We have already seen that the maps constructed in this article are compatible with
the maps in [4]. In Proposition 10 of [13], it is shown that the maps constructed
there are compatible with the ones in [4]. Also see the discussion in section 8 of
[13] where they consider the relation of their invariants with those in [34]. Below
we show that the the maps x” (of [13]) are compatible with the maps ¥, , defined
above. For this purpose we need the following lemma which follows directly from

the definition of fiber integration.

Lemma 23. Let h € H¥(E), and let f : % — E represent a (k — 1)-cycle z. Then
h(z) = 7x(f*h) (2.23)

where the fiber integration is along the fiber >3 of the fiber bundle > — *.

Let o € H? (B x A) be the character corresponding to the connection A on
ExA— BxA Let f:3 — F — A be a cycle representing a homology class
in H,(F). Then the connection that we used in our construction is the pull back of

the connection A in the diagram

ExYy — Ex A

| |

BxY —— BxA.

Hence hpyy € FIQP(B x ¥) is given by hpys, = (idp X f)*xa. Let g: K — Bisa
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(2p — r — 1)-cycle in B. Then consider g x f: K x > — B x F We then have

U(N)(K) = 7is(hpys)(K)

~

= ik (¢" (in(hpxy)))
= Timxk ((9 % f)"xa)

= )(A(E X K)

The right hand side of the last equality is precisely the definition of the maps " :
Hyy »_1(B) x H.(F) — R/Z for the special case G = {e} constructed in [13], see
equations 8 and 14 in their paper. As they mention in section 8 of their article,
the maps x” above induce maps (denoted by the same symbol) x" : H.(F) —
H*»="=1(B,R/Z). We thus have the proposition

Proposition 24. The maps V,, are equal to the maps x" constructed in [15].

We would like to remark that the maps on H,(D(E)) constructed in section 2.2
factor through the maps on H,(F) constructed in this section. A choice of smoothen-
ing function f as in the construction in section 2.2 gives a map Z,(D(E)) — Z,(F)
as follows. Given a cycle 3 € Z,(D(E)), one constructs a smooth connection D
on F x ¥ — B x ¥ (for the construction of this connection, see section 2.2). But
this connection can be thought of as induced by a smooth map (also denoted Dy)
Dy 3 — F on the stratifold . This geometric chain (see section 2.1.1) gives a
cycle in Z.(F). The map Z,(D(F)) — Z,(F) takes boundaries in the simplicial
set D(F) to boundaries B,(F). Further a different choice f’ of the smoothening
function changes the smooth singular cycle by at most a boundary. Consequently
we have an induced map A : H,.(D(E)) — H,(F) which does not depend on the
choice of the function f. The map ¥, : H,(D(F)) — H*""Y(B,R/Z) forp > r+1
(of section 2.2 or equivalently the map pj,, of [34]) can now be seen, by construc-
tion, to be the composition of the maps A : H,(D(E)) — H,(F) and the maps

U, =x": H.(F) — H®¥"1(B,R/Z). We thus have the following
Proposition 25. The following diagram commutes for p > r + 1:
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Wy r=x"

» H¥==1(B R/Z).
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