Chapter 3

Uniqueness of differential
characters and differential

K-theory

As discussed in the introduction, there are several models (e.g. [27, 7, 8, 32, 31, 14])of
differential characters and differential K-theory (e.g. [33, 9, 46]). In order to compare
different constructions, it helps to have an axiomatic characterization. For the case of
differential characters, Simons and Sullivan show [45] that the differential character

functor is uniquely determined up to a natural equivalence by the following diagram

0 0
N /
H=Y(—R/Z)  — 2 HY(—2)
N N S
H*'(—;R) o*(—R/Z) H*(—R)
SN e N
82:13 ! %)

@]
]
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For a precise statement, see Proposition 36. In [46], Simons and Sullivan construct
a model of differential K-theory and show that there is a corresponding hexagon
diagram. They ask whether this hexagon diagram uniquely determines K-theory. In
this chapter! we show that for a fixed compact manifold M, the hexagon diagram
indeed uniquely determines the differential K-theory groups.

Our argument is based on the recent work Proc. Math. Sci. 129, 70(219) [41] of
Rakesh Pawar. In that article, Rakesh Pawar find necessary and sufficient conditions

for the diagram

Diagram 1

with short exact rows and columns to extend to

0 0 0
1 v g

0 s P2+ F > R > 0

n E

N N 2

0 ----- y H ---» X --Thy F oo > 0
1 3 g

0 > S > G > () > 0
0 0 0

Diagram 2

with short exact rows and columns. He further gives necessary and sufficient condi-

tions for such an extension to be unique up to isomorphism.

IThis chapter is based on the author’s article ‘Uniqueness of differential characters and dif-
ferential K-theory via homological algebra’ arXiv:2005.02056 a revised version of which has been
accepted for publication in Journal of Homotopy and Related Structures.
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In this chapter we refine and extend Rakesh Pawar’s results. We give necessary and
sufficient conditions for the extension to be unique up to an isomorphism compati-
ble with all the other maps in the diagram. We also state necessary and sufficient

conditions for this isomorphism itself to be unique.

This chapter is organised as follows. In section 3.1 we summarise the results
of the article [41] that we need for our purposes. Thereafter in section 3.2 we
extend these results and apply them to discuss the uniqueness results for differential
characters, differential K-theory, and generalised differential cohomology theories.

A strong and general result showing the uniqueness of differential refinements of
generalized cohomology theories (and hence differential K-theory, in particular) has
been proved in [10] by a different approach. For a proof of uniqueness of differential

character functor defined on smooth spaces, see [1].

3.1 Statement of Rakesh Pawar’s results

In this section, we summarise the results of [41] that we need for present purposes.
Let us begin by recalling some standard preliminary definitions and results from
homological algebra (see, for example, [48, 43]). If A is an abelian category with
enough projectives, then for any two objects P, () in A, one can consider the groups
Ext™(Q, P) as the derived functor of the Hom functor.

Alternatively, one can consider the group of Yoneda extensions of P by @) as
follows. Consider the set of long exact sequences ( : 0 - P — X,, — -+ — X; —
Q—-0Id:0-P—X,— - — X = @ — 0is another such extension, a

map f: ( — (' is a collection of maps f; : X; — X/ such that the diagram

0 > P X, > . > X1 > () > 0
0 > P > X/, o . ¢ > Q) > 0

commutes. Define an equivalence relation ( ~ n <= 3 a finite zigzag chain

( = aj < ag — az < --- — n. Quotient of the set of extensions considered above
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by this equivalence relation gives us the set of Yoneda extensions Exty,,...(Q, P).
On this set, define additionas ( +{' =0 > P =Y, - X & X1 — -+ —
Xi® Xy — Y1 — @ — 0]. Here Y] is the pullback X; x¢ X7, and Y,, is the quotient
by a skew diagonal copy of P, of the pushout of P — X,, and P — X/. The set

FEat?

Y oneda (@5 P) becomes an abelian group under this operation. If the category

A has enough projectives, then Fxt} ... (Q, P) is isomorphic to Ext™(Q, P) (see,
for example, section 3.4 of [48]). Throughout this article we shall assume that the
category A has enough projectives. Let us now discuss Rakesh Pawar’s criterion for
the existence of an extension of diagram 1 to diagram 2.

Using the sequences 0 - P - F - R —-0and 0 - P —- H — S — 0, we con-
struct the short exact sequence 0 - P& P — EF 4 H — R& S — 0. Now pushout

this short exact sequence along the map V : P& P — P given by (p1, p2) — p1+ pa:

0 —— PP —FpH— RS —— 0

I | |

0 s P s W s RpS —— 0

to obtain the short exact sequence 0 - P —- W — R® S — 0. Denote the
class of this sequence in Ext'(R® S, P) by [W]. Next, pull back the exact sequence

00— R— I — @ — 0 by the map G — @ to get:

0 y R y Y > G > 0
for L]
0 > R > F > () > 0

Applying the Snake lemma, Rakesh Pawar obtains
0 0

idn

0 > S > Y > I > 0
lz-ds

0 > S > G » () > 0
0 0 0

38



The injective maps B — Y, and S — Y induce a map R & S — Y making the
sequence 0 - R& S — Y — Q — 0 exact. Applying the functor Hom(—, P), one

obtains the long exact sequence

Hom(Y, P) % Hom(R&S, P) % Ext'(Q, P) 5 Bxt'(Y,P) 5 Bat'(ReS, P) 2 Ext(Q, P).
(3.1)
(Here ¢ denotes the restriction map.) Thereafter, Rakesh Pawar shows (lemma 3.4

of [41]) that diagram 2 exists if and only if the following diagram exists:

0 0 0
0 s P s W s RS —— 0
0 —— P -——--- » X —------ »Y ——— 0
v i
0 0

In turn, this diagram exists if and only if the pullback of [0 - P —- X — Y —
0] € Ext*(Y,P) under the map RH S — Y equals [0 = P - W — R& S — 0].
Therefore the question of extending diagram 1 to diagram 2 is equivalent to finding
an element [X]:=[0 = P - X — Y — 0] € Ext!(Y, P) which maps to [0 — P —
W — R& S — 0] under the map v ie. y([X]) = [W]. By using the long exact
sequence 3.1, [X] € Ext!(Y, P) exists if and only if dy ([W]) = 0. In lemma 3.6 of
[41], it is shown that Jy ([W]) = Baer sum of [E] U [F] and [H] U [G]. Thus,

Proposition 26. (Theorem 1.1, [41]) Let A be an abelian category. Let Diagram 1
have exact rows and columns of objects of A. The diagram 1 extends to diagram 2
with exact rows and columns if and only if the Baer sum of [E]U [F| and [H| U [G]
is zero in Ext*(Q, P).

In [41], this proposition is stated for small categories, however as noted in Remark

3.3 of [41], the result holds good for general abelian categories.
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The exactness of the sequence 3.1 yields a necessary and sufficient condition for the

uniqueness of the extension. Towards this end, define:

Definition 27. Let S C Ext*(Y, P) be the set {[X'] € Ext (Y, P)|(X',7, 5, m', n')

is an extension of diagram 1 with all rows and columns exact}.

Proposition 28. Assume that Diagram 1 admits an extension (X,i,j,m,n). Then

s ={[X]+ BOYA € Bat'(Q. P) } = [X] + Im(8).

Proof. By the discussion above Proposition 26, the set S is given by the solutions
of the equation ([X']) = [W]. [X'] € Ext!(Y,P) is a solution to this equation,
if and only if v([X']) = [W] = v([X]). Equivalently [X'] — [X] € Ker(y). From
the exactness of 3.1, we have Ker(y) = Im(3). Hence [X'] € S if and only if
(X' € [X]+ Im(B). O

Proposition 29. Suppose diagram 1 admits an extension (X,1i,j,m,n) to diagram

2. Then the following are equivalent:
1. For any other extension X', [X'] = [X] € Ext'(Y, P)
2. The map « is surjective

Proof. In the view of the Proposition 28,
(1) is true

< Im(p) =0

& Ker(B) = Ext*(Q, P)

& Im(a) = Ext}(Q, P) (by the exactness of sequence 3.1). O

Remark 30. We wish to state that the Proposition 28 is a reformulation of corollary
3.7 of [41]. As noted in [41], the map « can be described in the following way. If
¢ € Hom(R®&S, P), then push-forward the exact sequence 0 — RBS — Y — Q — 0
by the map ¢ : R & S — P to obtain a(¢) := ([0 = RBS — Y — Q — 0]).
There is an alternate description of the map « as follows. Write ¢ = f & g where

f:R— Pandg: S — P. We have two exact sequences 0 — R — ' —
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Q - 0and 0 - S - G — Q — 0. Upon applying the functor Hom(—, P),
we obtain two connecting homomorphisms ép : Hom(R, P) — Ext*(Q, P) and d¢ :
Hom(S, P) — Ext'(Q, P). One can define o f@g) := Baer sum of p(f) and 6c(g).
In the discussion above corollary 3.7 of the article [41], it is shown that these two
descriptions of the map a coincide. Hence Im(dp+dc) = Im(a). Since the sequence

3.1 1is exact, the map (3 induces an injective map 0 — Im(ogf;%];zréc) LN Ext'(Y, P).

For simplicity and parity with the notation in [41], the induced map on the quotient
is also denoted by 3. Thus, S = {[X] + BN € %} as stated in corollary
8.7 of [41]. It follows that [X] is uniquely determined in Ext*(Y, P) if and only if

Im(a) = Im(ép + d¢) = Ext (Q, P), since 3 is an injective map on the quotient

Ext1(Q,P)
Im(a)=Im(ér+iag) "

Thus, in case coker(a) = 0, if X; is another abelian group together with maps
i1, j1,m1,n1, then [X] = [X;] € Ext' (Y, P). Equivalently there is an abelian group

isomorphism ¢ : X — X; such that the diagram

0 > P > X > Y > 0
lldp l(ﬁ lzdy
0 7 P Xl 7 Y > 0
commutes. Since Y is the pullback
Y=FxG—
Q

F
Q

it follows that the morphism ¢ is compatible with (m,m) and (n,ny) i.e. myodp =m

Q— =

_

and n; o ¢ = n, and that ¢ oi|p = i1|p, ¢ 0 j|lp = ji|p. (Here we are considering
P as a subgroup of H via p, and of F via v.) Alternatively we could say that
gporou=1;0pu, and ¢ojor = j or. However, we need a stronger compatibility

result for our purposes: ¢oi =iy, and ¢oj = j;. We obtain this in the next section.

41



3.2 Existence and uniqueness results for differen-

tial cohomology theories

Let (X1,11,j1,m1,n1) and (Xa,4a, jo, M2, na) be two extensions of Diagram 1. Let
us say that an isomorphism ¢ : X7 — X5 is a compatible isomorphism between these
two extensions if ¢ oi; = iy, ¢ o j1 = ja, Mo 0@ = mq, and ny o ¢ = ny. The following
proposition gives a necessary and sufficient criterion for an extension (assuming it

exists) to be determined up to a compatible isomorphism.

Proposition 31. Suppose (Xi,i1,j1, m1,n1) is an extension of Diagram 1. Let

FEy = j1(E) C Xy, and Hy = i1(H) C Xy. The following are equivalent:

1. For any other extension (X, is, jo, Mo, no) of the diagram, there exists an iso-

morphism ¢ : X1 — Xy compatible with the two extensions.

2. The map Hom(R @ S, P) % Ext'(Q, P) is surjective, and every homomor-
phism X\ : Ey + Hy — P which vanishes on P, C Ey + Hy admits an extension

A3X1—>P.

8. Ext'(Q,P)=0

Proof. Let us first show that (2) = (1).

By Proposition 29, there is an isomorphism ¢ : X; — X5 such that myo¢p = my, and
noo@ = ny. The strategy is to find a morphism 7 : X; — X, such that the morphism
¢ = ¢+ n is a compatible isomorphism i.e. ¢’ oiy = ig, ¢’ 0 j1 = jo, Mz 0 ¢ = My,

and ny o ¢ = ny.
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0 > P Y y I sy R > 0
H J1
0 >H<(l " >y F . 0
2 \¢\‘\)/ /
ni X2
0 > S y G > () > 0
0 0 0

For convenience, let us denote P, = iyopu(P) = jiov(P) C X1, and P, = is0pu(P) =
joov(P) C Xy. Similarly let Fy = j1(F), By = jo(F), H =i, (H), and Hy = i2(H).
Now consider j = jo — ¢ 0 j; : 2 — X,. Note that my 0 j = my 0 js —meo g o j; =
myojy—myoji =0, and ngoj =mnyojy—mngodoj =mygojy—mnoj =0
Thus :j(E) C P,. Similarly E(H) C P,. Also note that since ¢ o i1|p = is|p
and ¢ o ji|p = ja|p (by the discussion after Proposition 29), we conclude that
jlp = 0 = 4|p. Hence, i1+ j : By + Hi — X, is a well defined abelian group
homomorphism taking values in F. Here we have identified I with F, and H with
H,, for notational simplicity we use the same notation for the maps 7 and j. We
thus have a commutative diagram:

0—>E1+H1HX1

z-‘r]l 7]

I

Py

By hypothesis, there exists an extension 1 : X; — X5. Let ¢/ = ¢ + 1. Then
¢ oip=¢oig+noig=¢oiy+ (ia—¢poiy) =iy, and ¢ 0ojy =poj +noj =
¢oj1+ (j2 — @ oj1) = jo. Further since n takes values in P, ms on = 0. Thus
mood = meop+moon = mgo¢d = my, and similarly ny, o ¢’ = ny. ¢ is an
isomorphism by the three lemma. Hence ¢’ is a required isomorphism.

Proof that (1) = (2): By Proposition 29, it follows that « is surjective. Thus
it remains to show that every homomorphism A : £y + H; — P which vanishes on

P, C Ey + H; admits an extension A : X; — P. The proof is by contradiction.
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Thus assume that there is a A : Iy + H; — P which vanishes on P, C F, + H, and
which does not admit any extension to X;. Put Xy = X, ms = mq,n2 = 1y, and
i =11 + AlH;j2 = j1 + A|E. Then it follows that (Xs, ig, ja, m2, n2) is an extension
of diagram 1. By assumption, there is a compatible isomorphism ¢ : X; — X,.
Then A := ¢ —idx, : X; — P is an extension of A. (As previously, we identify £, H
with By = 51 (L), Hy = 41 (H) respectively for convenience.)

Now let us show that (2) <= (3). First note that El+1H1 = R& S. Thus maps
A from Fy + Hy to P which vanish on P, are in one-to-one correspondance with
elements of Hom(R @ S, P). And the extensions A : X; — P which vanish on P
are in one-to-one correspondance with elements of I/ om(%, P) = Hom(Y, P). (For
the equality we have used that 0 — P — X — Y — 0 is exact.). But the statement
that every A € Hom(R & S, P) extends to an element of Hom(Y, P) says precisely
that the map ( in 3.1 is surjective. By the exact sequence 3.1, we see that both (

and « are surjective <= Fuxt(Q, P) = 0. O

Corollary 32. If P is an injective object, there exists an extension of the diagram 1.
Further for any two such extensions, there exists a compatible isomorphism between

them.

Proposition 33. Suppose (X1,i1,j1,m1,n1) is an extension of diagram 1. Let

(X2, 12, J2, M2, n2) be any other such extension of diagram 1, and
U={¢: X1 — Xs|¢ is a compatible isomorphism}.

Suppose that the conditions (2) in Proposition 31 are satisfied, so that U contains
at least one element ¢. Then there is a free and transitive action of the group
Hom(Q, P) onU. Thus elements of U are in one-to-one correspondance with ele-
ments of Hom(Q, P). In particular, U equals the singleton set {¢} <= ¢: X1 —

Xy is the unique compatible isomorphism <= Hom(Q, P) = 0.

Proof. The proof is by diagram chasing. As in Proposition 31, we shall identify H

(resp. E) with its image H; C X (resp. £ C X;) under the injection i : H — X,
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(resp. j1: £ — X1), and let P, =iy o u(P) = jyov(P) = Ey N Hy C X;. Similarily
Iy, and Hy denote the corresponding images in X5 under j5 and ,.
The composition X; — F — @ is surjective and is equal to the composition

X1 & G — @Q. We claim that the kernel of this surjection 7 : X; — Q is precisely

FEy + Hy, hence El)le = (). First note that if e; = j1(e) € Ey, then ¢(e;) = 0 since
1 is the composite X; % G — @, and n, o j; = 0. Similarily, ¥»(H;) = 0. Thus
FEy+ Hy C ker(¢). To see containment in the other direction, suppose that ¢ (x) = 0
for some x € X;. Then the image of m;(x) € F under the map I’ — @ is zero. Hence
there is an element r € R which maps to mq(x) under the map R — F. Now since
E — R is surjective, we can pick a preimage e € E of r. Using the commutativity of
the top-right square, we have my(z — j1(e)) = my(x) —m1(j1(e)) = 0. Thus, by the
exactness of the middle horizontal sequence, 3k € H, such that i;(h) = x — ji(e) or
x =11(h) + j1(e). Hence ker(¢) C i1(H) + j1(£) = Hi + E.

We now describe an action 7 : Hom(Q, P) x U — U of Hom(Q, P) on U. For any

n € Hom(Q, P), let i) denote the composition X; — El)le ~0Lp aou=Jaov, Xs.
We define 7(n,¢) = ¢ + 7. Since 77 takes values in P, = ker(ms) N ker(ny), it
follows that me o) = 0 = ny o 7. Hence mg o (¢ + 7)) = ma o ¢ = my, and
ne o (¢ + 7) = ng 0o = ny. From the fact that 7 vanishes on F; and Hy, it follows
that (¢ +17)o0iy = ¢poiy =iy and (¢ +17) o j; = jo. An application of the five-lemma
shows that ¢ 4 7 is an isomorphism. The associativity of group action follows by

noting that 17, + 1o = 71 + 7.

If n # 0, then 7 # 0 since X; — ﬁ is surjective, and P faop=Jaoy

Thus for n # 0, 7(n, ¢) # ¢, thereby showing that the action is free.

Xy 1s injective.

We now show that the action is transitive. Suppose ¢’ : X; — X, is another
isomorphism which is compatible i.e. ¢'oi; =iy = poiy, ¢ 0j; = jo = ¢oji, meod =
my = mgo ¢, and nyo @’ =ny = nyo¢. Since (¢ — @) oty =0 = (¢ — @) o jy,
it follows that ¢’ — ¢ vanishes on E; = ji(F) and H; = i;(H), and induces a

map x : El)le = @ — X,. Since mgo (¢ — ¢) = my —my = 0, we conclude

that (¢/ — ¢)(X1) C H,. Similarily, since ny o (¢ — ¢) = ny —ny = 0, we have

45



(¢ —¢)(X1) C Ey. Thus (¢'—¢)(X1) C EsNHy = P». Hence, the map x takes values
in P, and thus is an element of Hom(Q, I%). Identifying P with P via isop = joov,

x € Hom(Q, P). By construction, ¢’ — ¢ = x. Hence ¢' = ¢ + x = 7(x, ¢). O

Corollary 34. With the same setup as in Proposition 33, Hom(G,H) =0 = ¢

18 UNIQUE.

Proof. In view of Proposition 33, it suffices to show that Hom(G,H) = 0 —
Hom(Q,P) = 0. To see this, suppose n : ¢ — P is a non-zero element of
Hom(Q, P). Then since G — (@ is surjective, and P — H is injective, it fol-
lows that the composite G — Q - P — H is non-zero. But Hom(G, H) = 0 by

assumption, therefore we have reached a contradiction. O

Let Man be the category of smooth manifolds and smooth maps between them,

and let Ab be the category of abelian groups and group homomorphisms.

3.2.1 The case of differential characters

As noted in the introduction, the Deligne cohomology groups defined as hypercoho-
mology of a certain double complex [7]| are isomorphic to the differential character
groups H*(M;R/Z) defined by Cheeger-Simons. Similarly, the de Rham-Federer
currents [32, 31] too provide a model of differential cohomology. In order to compare
various models, it is important to axiomatically characterise ordinary differential co-

homology. In [45] Simons and Sullivan define:

Definition 35. A functor H* from Man® to Ab, together with natural transfor-

mations i, j, ¢, curv 18 called a differential character functor if the following diagram

in Fun(Man™, Ab)
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0

\

H*1(—R/Z) _—B, H*(—;7)
NN Y NS
H*1(—;R) ﬁk(—;R/Z) H*(—;R)

SN e S
o —— 06
/ \

Q57 (-)
0 0

@}

commutes and has exact diagonals.
They prove (Theorem 1.1, [45]) that

Proposition 36. If H(—) and Hy(—) are two differential character functors from
Man™ to Ab together with the natural transformations (i1, j1, c1, curvy) and (iz, jo, Co, Curvs)
(respectively), then there exists a unique natural equivalence v H, — H, which is
compatible with the given maps i.e. 1 o1y = 19,90 0 j1 = Jo, 0 0 Y = ¢1, and
Curve 0 = curv.

Here, we observe that the following proposition is a direct consequence of corol-

lary 32.

Proposition 37. Let M be a smooth manifold. Then there exists a group G together

with maps 1, j, ¢, curv such that the following diagram commutes and has short exact

diagonals:
0 0
N
HY(M;R/Z) _— 2, HY(M;Z)
NN S NS
H*=1(M;R) ' G H*(M;R)
/ 3 7’ curv V \
oy L ason
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Furthermore, if G’ is any other abelian group together with maps ', j',c , curv’ which
make the diagram commute and have short exact diagonals, then there exists an

isomorphism ¢ : G — G’ such that ¢poi =1, ¢poj = j', o = ¢, and curv' o¢p = curv.

Proof. The diagram above can be redrawn (Diagram 36, p.25, [1])as:

0 0 0

HF (MR L QP Y(M X 3
0 7 Hkil(M;Z; Qgil(M; 7 ko I(M) EEE—— 0
0 — H*'(M;R/Z) NS v, QF(M) ————— 0

The proposition follows from corollary 32 by noting that P = % is divisible,

and hence injective. O

Note that the Proposition 37 is weaker than the Simons—Sullivan result 36. The
full Simons-Sullivan theorem is a statement about functors. We therefore consider
the category of functors Fun(Man”, Ab). This is an abelian category, having
enough projectives and enough injectives. Therefore by Proposition 31, we have the

following
Proposition 38. The following are equivalent:

1. The Stmons—Sullivan hexagon diagram uniquely determines the functor f[”(—; R/7Z)

up to a compatible natural equivalence.

2. Ext(Hom(Hn(—,Z)aZ)aH> =0

In this proposition, the Ext is taken in the Fun(Man”, Ab) category. For

simplicity of notation, let us denote Hom punmanor,ab)(—, —) by Nat(—,—).
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Corollary 39. Consider the case of differential characters. In this case, we have
P = H, and Q = Hom(Hy(—;Z),7Z). Assume that Ext(Q, P) =0, so that
(by Proposition 31) for any two differential character functors HFE(=) and H¥(—),

there is a compatible natural isomorphism

Then

1. ¢ is unique < Nat (Hom(HA—;Z),Z),H) = 0.

2. Nat(Hk(—;Z),Hk_l(—;R/Z)> =0 = 1 is unique.

Proof. The statement (1) follows by an application of Proposition 33. Corollary 34
implies the statement (2) as G = H*(—;Z), and H = H*"1(—;R/Z). O

Remark 40. If we regard H*(—;Z) and H*='(—;R/Z) as functors from the opposite
category of CW -complexes to the category of abelian groups, a standard argument
shows that

Nat (H*(—;2), H*"*(—;R/Z)) = 0. A non-zero natural transformation in the cat-
egory Fun(CWP©°P, Ab), yields a nontrivial cohomology operation from H*(—;Z)
to H*"'(—;R/Z). But since these functors are represented by [—, K(Z,k)] and
[—, K(R/Z,k — 1)], the cohomology operations are in one-to-one correspondance
with elements of [K(Z,k), K(R/Z,k — 1)] ~ H*YK(Z,k);R/Z) = 0. Hence
Nat(H*(—;Z), H*"*(—;R/Z)) = 0 However, this argument doesn’t work in the cat-
egory Fun(Man™, Ab) since the spaces K(Z,k) and K(R/Z,k — 1) are not finite

dimensional manifolds in general.

As we have seen in the proof of Proposition 37 the corresponding question in

H(MGR) is divisible and hence injective. However
Hn=1(M;Z)r y : )
H (k)

anl(_;Z)R

the category Ab is trivial since
it is difficult to see whether or not the functor is an injective object in

Fun(Man”, Ab).
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The existence of the differential character functor H* : Man” — Ab is already
known by the work [14] of Cheeger and Simons. Combining this with Proposition

26 applied in the category Fun(Man®, Ab), we obtain
Proposition 41. The Baer sum of [0 = 1= =3} — ggjgj — (=) = Hom(Hi(—;7),7) —

0] and [0 — =2 — H*\(—,R/Z) — H*(—Z) — Hom(Hy(—;Z),Z) — 0]

vanishes in Ext*(Hom(Hy(~ Z), Z), fr=(=5))-

3.2.2 The case of differential K-theory

Complex topological K-theory too admits a differential refinement called differential
K-theory.For a survey of various models of differential K-theory, see [11]. In [46],
Simons and Sullivan develop a model of differential K-theory for compact manifolds
as the Grothendieck completion of the semigroup of 'structured vector bundles’ and

show that this group fits into a hexagon diagram:

Proposition 42. The differential K-groups fit into the hexagon diagram

N YN S N S
1H°4(M; C) K(M) «ven(M; C)
TN
gcdj(%) d Qper(M)
0/ \0

Differential K-theory hexagon diagram
Here x is reduction mod Z, and ¢ is induced by the de Rham map.

The sequence of arrows H*™(M;C) — K(C/Z)(M) — K(M) — H®**(M;C)

is the sequence associated to the short exact sequence 0 - Z — C — C/Z — 0
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where K®¢?/°d (M C) has been identified with H****/°¢ (M C) via ch @ C. For
a description of rest of the terms and maps in this diagram, see [46]. Throughout
this subsection, i.e. in the context of differential K —theory, M is assumed to be a
compact manifold. Simons and Sullivan ask whether the diagram determines the
groups K (M) up to isomorphism compatible with the other maps in the diagram.

The following proposition provides a partial answer to their question.

Proposition 43. [ff(’(M) is any other abelian group together with mapsi', j', o', curd’
which makes the above hexagon diagram commute, and have short exact diagonals,
then there exists an isomorphism ¢ : K(M) — K’(M) such that poi =1,poj =

j',0"op =146, and curv' o ¢ = curv.

Proof. The diagram can be redrawn as

0 0 0
. HOdd(M;(C) QOdd(M) . ~
0 " ker(x)=ker({) " QgL (M) > kGT(S) — 0

The proposition follows from corollary 32 by noting that P = HoW (M5C) ) is divisible

ker(x)=ker(¢

and hence an injective object in Ab. O

This is weaker than the claim of uniqueness of the functor K. Consider the

functor category Fun(Mang;, Ab). From 31, we note the following

Proposition 44. The following are equivalent:

1. If K’(—) is another functor from Mang, to Ab together with natural trans-
formations ', j', &', curv’ which fit in the hexagon diagram with exact diag-
onals, then there is a natural equivalence ¢ : K(=) — K'(=) such that

poi=1,po0j=7,00¢=0, and curv’ o ¢ = curv.
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2. Ext(Q, P) =0 where P = &7;@)) and Q@ = im(r) are objects of Fun(Man.",

cpt)

ker(x)=ker(¢

Since the existence of differential K-theory is well known, Proposition 26 shows

that

Proposition 45. The Baer sum of [0 — P — % — Qper(—) — Q — 0

and [0 - P — K(—;C/Z) — K(—;Z) — Q — 0] vanishes in Ext*(Q, P) where
Hodd —C . .

P = Wiker()C) and Q@ = im(r) = im(s).

Remark 46. Though we have considered the case of even K-theory, we wish to re-
mark that the same proof technique shows that for a fixed compact manifold M, the
odd degree differential K-theory groups too are determined uniquely up to a compat-
wble isomorphism. Note that this is weaker than uniqueness as a functor. A very
general result about axiomatization of differential refinement of generalized cohomol-
ogy theories (as functors) is proved in [10]. In particular, there it is shown that the
even degree differential K-theory functor is uniquely determined by the axioms, and
that the odd degree K-theory has multiple different inequivalent differential refine-

ments (as functors).

We further note that the technique above shows the uniqueness of differential
generalized cohomology groups for any fixed manifold. Let J = > @®J* be any
generalized graded cohomology theory. We use the Simons—Sullivan definition [47]

of a differential refinement of J:

Definition 47. A differential refinement of J is a functor J : Man® — Ab together
with natural transformations i1, 12,01 and do which make the diagram below commute

and have short exact diagonals:

52

Ab).



N

/

J=1(,R/Z) J¥(,Z)
VAN / N
H!(,R) HY(-,R)
X / N
a1k f o
/ N
0 0

Here

Q]

Z@HJ J¥77 (point, R))

Z ®Q (-, J*(point,R)), and

7=0

(de Rham) ™! (Im(ch o ig)).

Similar to the case of differential characters and differential K-theory discussed

above, we have

Proposition 48. For a fized manifold M, there exist abelian groups jk(

M) for all

k > 0 € Z such that the following diagram is commutative and has short evact

diagonals
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0
\ b /
JEUMR/ZY P JR(M,Z)

2
Rem R ™

d

QT (M. QM)

-/ N

Moreover, this hexagon diagram uniquely determines the groups up to a compatible

1somorphism.

In [33], Hopkins and Singer give a prescription for constructing a differential
refinement of an arbitrary generalised cohomology theory. The existence of such a

generalised differential cohomology theory implies (by using Proposition 26):

Proposition 49. Let P be the functor W%?Rm and Q@ = im(de Rh) = im(ig o
ch). Then the Baer sum of [0 — P — J*Y(—R/Z) — J*(—;Z) — Q — 0] and

[0— P — QF1(=)/Q (=) = Q5(—) — Q — 0] vanishes in Ext*(Q, P).

Remark 50. Differential refinements of equivariant cohomology and twisted K-
theory functors too fit into hexagon diagrams ([36, 42][40, 12]). We remark that,
like in Propositions 37, and 43 for a fived manifold M, the abelian group of equivari-
ant differential characters (resp. twisted differential K-theory group) is determined

uniquely up to a compatible isomorphism by the respective hexagon diagram.
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