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1 Introduction 

The normal hearing (or auditory) process is a highly non-linear biological 

signal processing system. Younger adults with normal hearing (YNH) have a 

remarkable ability to understand the speech of a human speaker in the presence 

of multiple speakers. This ability to focus on a specific human voice in a complex 

(Cherry, 1953). 

However, this distinct ability to identify the speech of a target speaker is reduced 

due to changes in the speech characteristics (e.g., shorter duration and lower 

sound level), and physiological and anatomical changes resulting due to 

increase in age and hearing loss. Generally, a YNH listener utilizes different cues 

to identify the speech during a multi-speaker scenario. Some of these cues are 

the differences in sound levels and their durations, the variations in speech 

spectral characteristics (e.g., formant difference cues), and the difference in 

fundamental frequency (F0) between the speakers (Bregman, 1990; Brokx and 

Nooteboom, 1982; Calandruccio et al., 2019; Cherry, 1953; Han et al., 2021; 

Meister et al., 2020; Zwicker, 1984). Among these various cues, F0 difference is 

widely studied as it is commonly used to understand the segregation of speech 

sounds (Micheyl et al., 2010).  

Concurrent vowel identification is a classical experimental paradigm to 

understand the role of F0 difference in the perceptual segregation of two 

synthetic vowels (simplest form of speech). In this experimental paradigm, two 

steady-state synthetic vowels with equal duration and sound level are presented 

simultaneously to one ear (i.e., monaural presentation) of a listener. The task of 
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the listener is to identify the two vowels by varying the F0 difference between 

them. This controlled experimental setup had enabled the researchers to study 

the effect of F0 difference as a segregation cue on vowel identification. Figure 

1.1 shows the concurrent vowel scores for YNH subjects. The common 

observation is that the percent identification of both vowels improves with 

increasing F0 difference between the two vowels and then typically asymptotes 

at ~3 Hz F0 difference or higher (Arehart et al., 1997, 2005; Assmann and 

Summerfield, 1990; Chintanpalli et al., 2016; Chintanpalli and Heinz, 2013; 

Culling and Darwin, 1993; Summerfield and Assmann, 1991; Summers and 

Leek, 1998; Vongpaisal and Pichora-Fuller, 2007). 

 

Figure 1-1 Effect of F0 difference on concurrent vowel scores (Chintanpalli et al., 2016).  

The speech recognition ability in a multi-speaker scenario depends on the 

speaker's speech characteristics and the listener's hearing ability. The duration 

and sound level of the speech can limit the neural mechanism underlying the 

identification for YNH listeners. Apart from these acoustical changes, the neural 

mechanism can also be limited due to the auditory changes due to increases in 

age or hearing loss. Hence, there is a need to understand the neural 
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mechanisms underlying identification with changes in (1) acoustic and (2) 

physiological and anatomical factors resulting from increase in age and hearing 

loss. These issues had motivated the researchers to conduct various behavioral 

studies to understand the concurrent vowel scores across F0 differences for (1) 

YNH listeners with the acoustic variations (e.g., vowel duration and sound level) 

and (2) normal-aging and hearing impaired listeners. For YNH subjects, the 

concurrent vowel scores across F0 differences are reduced with the shorter 

duration vowel, when compared with the longer duration vowel (Assmann and 

Summerfield, 1990, 1994; Culling and Darwin, 1993; McKeown and Patterson, 

1995). The level-dependent changes on concurrent vowel scores are increased 

from low to mid-levels and declined at higher levels for same and different F0 

conditions in the YNH subjects (Chintanpalli et al., 2014). With increased age 

and hearing loss, the concurrent vowel identification scores across F0 

differences are also reduced across F0 differences (Arehart et al., 1997, 2005, 

2011; Chintanpalli et al., 2016; Snyder and Alain, 2005; Summers and Leek, 

1998; Vongpaisal and Pichora-Fuller, 2007). These findings suggest there is a 

need to develop a biological-based signal processing model to understand the 

possible neural mechanisms underlying the identification due to acoustic and 

auditory changes across listeners.  

There are computational models that validate the effect of F0 difference 

on concurrent vowel identification for a particular duration (e.g., 400 ms) and 

sound level (e.g., 65 dB sound pressure level (SPL)) for the YNH subjects 

(Chintanpalli and Heinz, 2013; Meddis and Hewitt, 1992). However, there are no 

modeling studies in the literature that could validate and explain the concurrent 

vowel identification scores across different sound levels and shorter durations 
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for YNH subjects. Additionally, there are also no modeling studies that can 

analyze the effects of age and hearing loss on concurrent vowel scores across 

F0 differences. These research gaps had motivated the current dissertation work 

to understand the possible neural mechanisms for these reduced concurrent 

vowel scores in YNH (duration and level), normal-aging subjects and hearing-

impaired subjects with aging. More specifically, in this dissertation work, a 

physiologically based computational model will be developed to predict the 

concurrent vowel scores for: (1) different levels in the YNH subjects, (2) shorter 

duration in the YNH subjects and (3) normal-aging subjects and hearing-

impaired subjects with aging. The concurrent vowel data from different 

behavioral studies will be used to validate the model predictions. The concurrent 

vowel modeling predictions in this research work will provide the underlying 

neural mechanisms for the challenges faced by the listeners due to acoustic 

(duration and sound level) and auditory (age and hearing loss) changes in a 

complex listening environment.  

1.1 Background: Auditory System 

The auditory system is responsible for hearing and is generally divided 

into peripheral and central auditory systems. The speech signal has to pass 

through both of these systems for its perception. Both systems play a crucial role 

in the perception of sounds by the listeners. However, this dissertation primarily 

investigates the effect of peripheral system on speech perception; hence it will 

be described in a greater depth.  
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1.1.1 Ear: Anatomy and Physiology   

Figure 1-2(A) shows the diagram of the human ear. The peripheral 

auditory system includes the outer ear, middle ear, inner ear and auditory-nerve 

(AN) fibers, whereas the central auditory system includes many subsystems 

ranging from the cochlear nucleus to primary auditory cortex (located in the 

brain). An ear converts any acoustic signals [e.g., sinusoidal tone in Fig. 1-2(A)] 

into neural spikes at the AN fiber. The sound waves enter the outer ear and then 

passes through the external auditory canal, which makes the eardrum (or 

tympanic membrane) to vibrate [Fig. 1-2(A)]. These vibrations are sent to the 

middle ear. The middle ear transmits these vibrations to the inner ear with 

minimal energy loss due to impedance matching [Fig. 1-2(A)]. The inner ear 

contains a fluid-filled coil-shaped structure called the cochlea, which converts the 

vibrations from the middle ear into neural spikes at the AN fiber [Fig. 1-2(A)]. 

Inside the cochlea, a basilar membrane (BM) and an organ of corti [Fig. 1-2(B)] 

runs along the length of the cochlea to encode the various frequencies of the 

speech signal. Each place in the BM is tuned to a particular frequency. More 

specifically, the higher frequencies are encoded at the basal range of the 

cochlea, whereas the lower frequencies are encoded at the apical range of the 

cochlea. In other words, BM acts like a spectrum analyzer in terms of signal 

processing. The organ of corti contains inner-hair-cells [IHCs, Fig. 1-2(B)] and 

outer-hair-cells [OHCs, Fig.1-2(B)], which are responsible for normal hearing at 

the periphery.  

The OHCs [green color in Fig. 1-2(B)] either amplify or reduce the BM 

vibrations as per the input level of the acoustic signal. If the sound level is very 

high, then the OHC reduces the BM vibrations to protect the ear from hearing 
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loss. Similarly, if the sound level is too soft, then the OHC amplifies the BM 

vibrations so that soft level sounds can be heard. The OHCs are responsible for 

cochlear non-linearities that are important for the normal functioning of cochlea. 

These properties are BM compression, two-tone suppression and distortion 

 

 

 

 

 

 

 

 

 

 

 

 

product otoacoustic emissions (DPOAE). For each position (or frequency) along 

the length of cochlea, the BM vibration would be maximum to a particular 

stimulus frequency called as the characteristic frequency (CF). The BM vibration 

(in terms of velocity (mm/s)) shows a linear response at low levels, compressive 

Figure 1-2 A) Anatomy of the human ear (https://www.highpointaudiological.com/hearing-loss). 
B) Major components of the cochlea (Junqueira et al., 1977). The input to the normal ear can be 
any acoustic signal and the output is the neural spikes of the corresponding acoustic signal. 

https://www.highpointaudiological.com/hearing-loss).
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response at moderate levels and again a linear response at higher levels 

(Charaziak et al., 2020; He et al., 2021; Rhode, 1971, 1978; Sellick et al., 1982). 

In two-tone suppression, the BM response to a particular CF tone is reduced due 

to the presence of louder level at non-CF tone (Patuzzi et al., 1984; Rasetshwane 

et al., 2019; Siegel et al., 1982; Zhou and Nam, 2019). DPOAEs are cochlea 

generated sounds that are measured at the ear canal. When two different tones 

(one at frequency f1 and another at f2) are presented to the normal ear, DPOAEs 

(mf1 ±nf2, where m and n are integers) are generated and the most dominant one 

occurs at 2f2-f1 (Liberman et al., 1996; Siegel et al., 1982; Sisto et al., 2018; Zelle 

et al., 2020). These non-linearities are reflected at the level of AN fibers and are 

described in the next section.  

The IHCs [red color in Fig. 1-2(B)] translate the BM vibrations, modified 

by OHCs, into neural spikes at the AN fiber [Fig. 1-2(B)]. These spikes are later 

transmitted through the multiple stages of the central auditory system for sound 

perception. A hearing loss due to a dysfunction of the outer or middle ear is called 

as conductive hearing loss, while any damage to the hair cells (OHCs or IHCs) 

or loss of AN fibers results in a sensorineural hearing loss (SNHL). Conductive 

hearing loss is often corrected with hearing aids or through minor surgery. 

However, SNHL is irreversible because of the reduced cochlear non-linearities 

due to damages in hair cells and AN fibers. The most common form of SNHL is 

noise-induced hearing loss (~2/3 OHC damage and 1/3 IHC damage, Plack et 

al., 2004). The AN fibers send these neural spikes of the acoustic sound from 

cochlea to the central auditory system. There are around 50,000 fibers in cats 

and 30,000 fibers in humans. These fibers span the entire length of BM. Many 

single-unit recordings across various animal subjects like cats, chinchillas, 
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guinea pigs and gerbils are obtained to simple and complex stimuli are used to 

understand AN physiology (e.g., Anderson et al., 1971; Davis et al., 2007; Evans 

and Palmer, 1980; Hauser et al., 2018; Kajikawa et al., 2011; Li et al., 2015; 

Liberman, 1978; Liberman and Dodds, 1984a; Ngan and May, 2001; Sachs and 

Abbas, 1974; Trevino et al., 2019; Winter et al., 1990; Young and Barta, 1986). 

1.1.2 Properties (Physiology) of auditory-nerve fibers  

The AN fiber properties are obtained using the neural responses to simple 

stimuli (e.g., pure tones) and are described below. 

1.1.2.1 Tuning-curve 

The number of AN spikes produced per second in the absence of acoustic 

simulation is called as the spontaneous rate (SR). During an acoustic simulation, 

the number of AN spikes produced per second above SR is defined as driven 

rate. The driven and spontaneous rates together is referred as a neural discharge 

rate (DR). Tuning curve is a plot of frequency versus the lowest sound level for 

a fiber. The lowest sound level for each tone frequency is obtained if DR is 

greater than 10 spikes/sec above SR (Liberman, 1978) [dotted lines in Fig. 1-

3(A) and 1-3(B)]. The parameters that are found from the tuning curve are CF, 

fiber's threshold and Q10 value. The frequency at which fiber responds to the 

lowest level is called CF. The threshold value is the sound level at CF. The Q10 

is a measure of tuning and is the ratio of CF to the 10-dB bandwidth above the 

threshold. The larger Q10 value implies a sharper bandwidth (or sharp tuning) 

and the smaller Q10 value implies a broader bandwidth. The normal tuning curve 

has a high auditory sensitivity (i.e., lower threshold value) and sharp tuning 

[dotted lines in Fig. 1-3(A) and 1-3(B)] (Kiang et al., 1976; Liberman and Dodds, 
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1984b). The high sensitivity helps to detect the soft sound and sharp tuning helps 

to discriminate two or multiple frequency components of the speech signals. The 

IHC damage results in the loss of sensitivity without affecting the tuning [dashed 

line in Fig. 1-3(A)] (Liberman, 1978), whereas an OHC damage results in the loss 

of sensitivity and broad tuning [dashed line Fig. 1-3(B)] (Liberman and Dodds, 

1984b). If the listener is having only an IHC damage, amplification can 

compensate for the loss of auditory sensitivity (Liberman and Dodds, 1984b). If 

the listener is having only an OHC damage, amplification can only compensate 

for the loss of auditory sensitivity, but the tuning cannot be sharpened as it will 

remain broaden [dashed line Fig. 1-3(B)] (Kiang et al., 1976; Liberman and 

Dodds, 1984b; Robertson, 1982). As mentioned previously, SNHL is a mixture 

of both OHC and IHC damages. Thus, it becomes very difficult to restore normal 

hearing because the current hearing aids (provides non-linear amplification with 

frequency) cannot solve the broad tuning problem caused due to OHC damage. 

Thus, it is difficult to develop biological-based signal processing algorithms to 

restore the normal tuning, which is currently a challenge for hearing-aid 

companies.  

1.1.2.2 Rate-level function 

Rate-level function provides fiber's DR (spikes/second) across sound 

levels. Figure 1-3(C) shows the rate-level function of a sinusoidal tone at CF from 

a normal AN fiber. As the level increases, DR increases above the SR and 

eventually saturates at higher levels [Fig. 1-3(C)]. The parameters derived from 

rate-level function are the threshold, saturation and dynamic range [Fig. 1-3(C)]. 

Threshold is the minimum sound level, where the fiber's DR increases 10 

spikes/sec above the SR. The fiber reaches its saturation at higher levels, where 



10 
 

there is no further increase in the DR. The dynamic range is the difference in 

level at which the fiber saturates and threshold level. Based on the number of 

neural spikes per second, the AN fiber is either divided into high-SR (HSR, SR > 

18 spikes/sec), medium-SR (MSR, 0.5  < 18 spikes/sec) or low-SR (LSR, 

SR < 0.5 spikes/sec) (e.g., Liberman, 1978; Winter et al., 1990). For cat's AN 

fibers, the HSR fibers comprise approximately 61%, the MSR fibers comprise 

23% and the remaining 16% of the population are the LSR fibers (Liberman, 

1978). The rate-level function parameters can be used to identify the AN fiber 

type (i.e., HSR, MSR and LSR). More specifically, the HSR fiber will have a lower 

threshold, narrower dynamic range and saturate at lower level, compared to the 

MSR and LSR fibers (Evans and Palmer, 1980; Sachs and Abbas, 1974).   

 

Figure 1-3 Cat tuning-curves and rate-level functions. Tuning curves for normal fiber (dotted 
lines). (A) IHC loss (dashed line) (B) OHC loss (dashed line) (both adapted from (Liberman and 
Dodds, 1984b)). (C) Rate-level functions for three fibers (Liberman, 1978). Threshold is the 
minimum sound level where DR is above SR, the fiber saturates at higher sound levels and the 
dynamic range specifies the limits where there are variations in DR. Notice that the LSR fiber 
have a high threshold, larger DR and saturate at higher level, as compared with the MSR and 
the HSR fibers. 

1.1.2.3 Phase-locking 

Phase-locking is defined as the ability of the AN spikes to lock to the 

stimulus frequency (Bidelman and Powers, 2018; Rose et al., 1967; Verschooten 

et al., 2019; Xu et al., 2017). The period histogram is used to characterize the 
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phase-locking of AN fiber and is obtained by counting the number of AN spikes 

produced over one period of the stimulus frequency for multiple representations 

of the stimulus (Fig. 1-4). The occurrence of these AN spikes is random; 

however, these spikes are largely produced at the positive half-cycle stimulus, 

across all the sound levels (Fig. 1-4). The phase-locking in the AN fibers is 

observed up to 5 kHz (especially in the cat, Miller et al., 1997). Eventually,  the 

ability to phase-lock progressively diminishes with an increase in frequency with 

a relatively low strength still observed at 10 kHz (Anderson et al., 1971; Delgutte 

and Kiang, 1984; Miller et al., 1997; Rose et al., 1967; Sachs and Kiang, 1968).  

 

Figure 1-4 Period histograms of a fiber at different levels (Rose et al., 1971). Period histogram is 
obtained over one period of stimulus frequency (= 1100 Hz). For all the levels, the spikes are 
evoked largely in one-half of the cycle but with a fixed phase of frequency tone. The phase-
locking is robust across sound levels. 

1.1.2.4 Adaptation 

Peri-stimulus time histogram is used to characterize the adaptation 

property of AN fiber, which is obtained by counting the number of AN spikes 

produced for a given time interval for multiple presentations of the stimulus 

(Rhode and Smith, 1985; Taberner and Liberman, 2005). The fiber's DR is high 

at the stimulus onset and then gradually adapts to the stimulus over its duration 

(Fig. 1-5). The adaptation property is mainly dependent on the SR of the fiber 
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(Müller and Robertson, 1991; Relkin and Doucet, 1991; Rhode and Smith, 1985). 

The HSR fibers have a higher onset response and adapt quickly to the stimulus 

when compared with the MSR and LSR fibers (Relkin and Doucet, 1991).  

 

Figure 1-5 Peri-stimulus time histogram of AN fiber, over the stimulus duration. In this case, DR 
shows high onset response and adapts quickly to the stimulus (Taberner and Liberman, 2005). 

1.1.2.5 Other physiological AN properties  

As the stimulus level is increased, fiber tuning is decreased (or bandwidth 

is increased) along with a shift in CF. This property is referred to as a level-

dependent tuning and CF-shift (Carney, 1999; Carney et al., 1999; Rose et al., 

1971). For CF > 1.5 kHz, the shift is towards the lower value, whereas, for CF < 

0.75 kHz the shift is towards the higher value. There is no shift in the intermediate 

region (Carney, 1999; Carney et al., 1999; Cheatham and Dallos, 2001; Rose et 

al., 1971). One of the important non-monotonic behaviors in AN responses to 

tones at high levels is the component 1- component 2 (C1/C2) transition (Gifford 

and Guinan, 1983; Heinz and Young, 2004; Kiang and Moxon, 1972; Wong et 

al., 1998). The C1/C2 transition occurs at a level, when there is a sudden change 
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in the phase of 180° with increasing sound level (Liberman and Kiang, 1984). 

Additionally, this transition level can also be obtained by a decrease in rate-level 

function after saturation (often called as Nelson notch). For higher sound levels 

(> 90 dB SPL), the responses after the phase shift is referred as the C2 response, 

whereas the responses before the phase shift is called as the C1 response 

(sound levels < 90 dB SPL).   

1.1.3 Auditory-nerve fiber representation for speech-like stimulus 

Rate-place and temporal-place coding have been used to encode vowel 

features in AN fiber. The vowel spectrum of / / [Fig. 1-6(A)] is represented using 

the population responses of AN fibers, as described below: 

1.1.3.1 Rate-place coding 

In rate-place coding, fiber's DR is plotted against the CF at a given sound 

level. The rate-level function, as specified above, is used for this coding scheme. 

Figure 1-6(B) and 1-6(C) shows the rate-level coding for a given vowel / / at two 

levels (28 and 58 dB) (Sachs and Young, 1979). At lower sound levels (e.g., 28 

dB), the local maxima of the DR for HSR fiber represents formants [as shown by 

downward arrows in Fig. 1-6(B)]. However, the same formants disappear at 

higher sound levels [solid line in Fig. 1-6(C)] due to  saturation. An 

alternative solution could be to use the LSR fibers at higher sound levels because 

of their higher dynamic range in the rate-level function (Delgutte and Kiang, 1984; 

Sachs and Young, 1979). However, there are only 16% of LSR fibers available 

(out of 50,000 fibers in cats). Eventually, these fibers may also deteriorate 

because of the saturation rate (Sachs and Young, 1979).   
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Figure 1-6 A) Frequency spectrum of vowel / /. Note that y-axis is in dB, (B  C) Rate coding of 
the vowel / / at 28 dB and 58 dB. The downward arrows in (B) and (C) correspond to formants 
(F1, F2, F3) of / /. Due to rate saturation of HSR fiber, formant peaks disappear at 58 dB (Sachs 
and Young, 1979). 

1.1.3.2 Temporal-place coding 

A temporal coding scheme is based on the phase-locking as discussed 

before and is quantified using the average localized synchronized rate (ALSR). 

It provides a neural spectrum of the acoustic vowel across wide range of sound 

levels (Fig. 1-7) and hence is more robust than rate-place coding (Young and 

Sachs, 1979). The ALSR at a given frequency (e.g., 1000 Hz) is the average 

value of the synchronized rates obtained from all the fibers within ± 0.25 octaves 

of that frequency. This procedure is repeated across many frequencies. The 

synchronized rate is the magnitude of the Fourier transform of PSTH (discussed 

in section 1.1.2.4) and indicates to which vowel formant a given fiber is 

responding (Miller et al., 1997; Young and Sachs, 1979).  

Temporal-place coding has been studied extensively in vowels for the 

normal and impaired fibers (Bruce et al., 2003; Delgutte, 1980; Miller et al., 1997; 

Young and Sachs, 1979). The normal fiber is dominated by formant nearest to a 

[Fig. 1-8(A)], whereas the impaired fiber (caused due to acoustic 

due to broader tuning 

[Fig. 1-8(B)].  
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1.1.4 Motivation behind developing signal processing based 

computational models

In neurophysiological experiments, data collection for a larger set of 

stimuli from animal subjects could be very challenging because of the time, cost 

and life of animals involved. Additionally, these experiments involve highly 

F1

F2

Figure 1-7 Average localized synchronized rate
from 18 to 78 dB. Unlike rate coding, the formant peaks are well represented across levels. The 
downward arrows represent the locations of the formants (Young and Sachs, 1979).

Figure 1-8 Synchronized rates in response to vowel / / for two cat fibers with CF (=2.5 kHz) near 
vowel formant F3. (A) Normal fiber. (B) Impaired fiber. Normal fiber responds to F3, whereas 
impaired fiber responds to a wide range of frequencies (including the lower formants F1 and F2). 
Notice that the impaired fiber is presented at a higher sound level to compensate for threshold shift 
caused by hearing loss (Miller et al., 1997).
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intensive and expensive surgical procedures. To reduce the above-mentioned 

challenges in neurophysiological experiments (Holmes et al., 2004; Sachs et al., 

2002), researchers are continuously developing a signal-processing based 

computational models that could qualitatively capture the AN physiological 

properties, as observed in animals. The major advantage of using the model is 

to obtain AN population responses (either through rate or temporal coding) that 

are required to predict the human identification scores. This dissertation work 

utilized the AN model approach to predict the concurrent vowel scores for YNH 

(across different levels and durations), normal-aging subjects and hearing-

impaired subjects with aging. 

1.1.4.1 Cat auditory-nerve model 

Carney (1993) developed a computational model for the first time to 

predict AN responses to tones for HSR fibers at low CFs. The input stage of this 

model was a narrow-band filter that simulate the BM vibrations. The IHC 

transduction properties were simulated using a non-linear saturating function 

with two low pass filters, (having the same cut-off frequency = 1100 Hz). Some 

of the nonlinear properties (i.e., compressive nonlinearity, saturation and 

adaptation) were also incorporated. Zhang et al. (2001) further extended the 

model by including two-tone suppression by increasing the bandwidth of the 

control path filter bandwidth, relative to the signal path filter. 

Bruce et al. (2003) further extended the Zhang et al. (2001) model to 

simulate impaired (and normal) AN responses. In order to simulate the 

impairment due to OHC and IHC loss, two model parameters Cohc and Cihc were 

introduced. The Cohc and Cihc values are ranged between 0 and 1; the lower the 
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value, the greater is the impairment. Apart from these, middle ear filter was also 

included in the AN model. 

Zilany and Bruce (2006) extended the Bruce et al. (2003) model to simulate 

the AN responses at higher sound levels. This was achieved by including the 

effect of C1/C2 transition using two parallel paths. Their responses were then 

added and passed through the IHC model to produce the AN spikes. The first 

path was the output of C1 response that included the primary  mode of 

the BM vibration, while the second path was the output of C2 response produced 

by a larger bandwidth filter for the simulation of broader tuning. For low and 

moderate sound levels (<90 dB SPL), the C1 output dominate, whereas the C2 

output dominate at higher sound levels (>90 dB SPL). Zilany et al. (2007) verified 

the above model by qualitatively matching the temporal responses of a vowel / 

with the measured cat data (Miller et al., 1997) for  both normal and hearing-

impaired AN fibers. Zilany et al. (2007) also modeled the synchronized rates plots 

for normal and impaired AN fibers as shown in Fig. 1.8. Zilany et al. (2009) further 

added a model of rate adaptation between the IHC and AN fibers to simulate 

physiologically realistic adaptation properties for HSR, MSR and LSR fibers. 

Zilany et al. (2014) corrected the responses of higher CF model fibers to low 

frequency tones that were erroneously higher than the responses of low CF 

model fibers. More recently, Bruce et al. (2018) exhibit an improvement in several 

measures of AN fiber spiking statistics (e.g., high firing rates, temporal precision) 

and predicted rate-level functions that matched better with the physiological data 

obtained from cats. 
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1.1.4.2 Guinea pig auditory-nerve model 

Lopez-Poveda and Meddis (2001) simulated the characteristics of the BM 

vibrations of the cochlea using the dual resonance non-linear (DRNL) filter bank, 

which contains two independent linear and non-linear paths. This DRNL filter 

bank simulated the BM vibrations in response to sinusoidal tones. Sumner et al. 

(2002) developed an IHC transduction model to produce the responses of AN 

fibers for all three types of fibers but only at high CFs (> 8 kHz). Subsequently, 

Sumner et al. (2003b) cascaded the DRNL model with an IHC transduction 

model (Sumner et al., 2003a) to produce the AN responses across all CFs and 

fiber types.  

Lopez-Najera et al. (2007) developed a triple-path nonlinear filter bank 

(TRNL). The third path is a linear, low-gain, all-pass filter. The TRNL included 

the same DRNL but with a new parallel path that included a linear, low-gain all-

pass filter. This was effective only to simulate BM vibrations at higher levels. 

However, the main focus of this group is to predict the normal AN responses for 

understanding the behavioral measures of normal hearing listeners. As this 

dissertation also focuses on hearing loss, AN model developed fro

will be used.  

1.1.4.3 Justification for using animal subjects to study the human ear 

A debatable question is whether AN responses from either animals or 

model are appropriate for humans. The general properties of cochlea and AN 

fibers are similar across cat and human; however, they differ in the frequency 

range of hearing and the layout of frequencies along the length of the cochlea. 

The human hearing range extends from 20 Hz - 20 kHz in a 35 mm cochlea and 
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the cat hearing range extends from 100 Hz - 60 kHz in a 25 mm cochlea 

(Greenwood, 1990; Kiefte et al., 2001; Recio et al., 2002). However, when the 

frequency range and cochlear length are normalized across different species 

(human, cats, guinea pigs and chinchillas), the resulting cochlear frequency-

position function is exponential (Greenwood, 1990; Kiefte et al., 2001) and is 

given by:  

k
A
F

a
x 10log1  

                                                                      1-1 

 

Where  is the distance along the cochlea,  is the frequency, and 

parameters ,  and  are constants and are functions of species. Comparisons 

among species are mainly done on the tuning. Ruggero and Temchin (2005) 

stated that human tuning is similar to cats and guinea pigs. Whereas the more 

recent studies (Joris et al., 2011; Shera et al., 2010) suggest that human tuning 

is at least twice as sharp compared to animals.  

Based on these qualitative comparisons, cat fibers can be used to study 

the neural coding of perception in human listeners; however, potential species 

differences still remain. Multiple researchers have used the animal AN model to 

predict the speech recognition scores of human behavioral data (Chintanpalli 

and Heinz, 2013; Encina-Llamas et al., 2019; Hedrick et al., 2016; Hines and 

Harte, 2010, 2012; Parthasarathy et al., 2016).  

1.2 General approach used in this dissertation 

A physiologically based computational modeling is used in this 

dissertation work to predict the concurrent vowel scores for the YNH subjects 

(across different durations and levels), normal-aging subjects and hearing-
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impaired subjects with aging. The published identification data from normal, aged 

and hearing impaired listeners will be used to validate the model scores. These 

model predictions help to understand the neural mechanisms underlying the 

changes in the concurrent vowel scores.   

1.3 Research Objectives 

. This dissertation work utilized the AN model approach to predict the 

concurrent vowel scores for YNH subjects (across different levels and durations), 

normal-aging subjects and hearing-impaired subjects with aging. The model 

predictions of the current dissertation were obtained through the MATLAB 

software.  

The objectives of the thesis can be summarized as follows: 

1. Computational model predictions of level-dependent changes on concurrent    

vowel identification scores. 

2. Computational model predictions of shorter duration on concurrent vowel 

identification scores.  

3. Computational model predictions of age and hearing loss on concurrent    

vowel identification scores.  

1.4 Overview of this dissertation work 

Chintanpalli et al. (2014) have used the percent correct identification to 

understand the level-dependent changes in concurrent vowel scores across two 

different F0 differences for YNH subjects. Chapter 2 had predicted these level-

dependent changes through a physiologically based AN computational model 

and the F0-guided segregation algorithm. This modeling study helps to 
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understand the effect of sound level on the ability to utilize F0 difference cue for 

concurrent vowel identification.  

YNH listeners generally have more difficulty in pitch-perception and F0-

discrimination as the stimulus duration is reduced (Gockel et al., 2007; Moore et 

al., 1986). Similarly, concurrent vowel behavioral studies have shown that the 

effect of F0 difference is reduced on concurrent vowel scores, when the vowel 

duration is decreased. Two studies have shown a reduced F0 benefit (Assmann 

and Summerfield, 1994; McKeown and Patterson, 1995), while others have 

shown no F0 benefit (Assmann and Summerfield, 1990; Culling and Darwin, 

1993). These studies suggest across-subjects variability in utilizing the F0 

difference cue for identification. Chapter 3 investigates the predicted effects of 

shorter vowel duration on concurrent vowel scores using the AN model and the 

F0-guided segregation algorithm. Predictions based on the reduced F0 guided 

segregation cue was used to understand the effects of reduced concurrent vowel 

scores at a shorter vowel duration. Additionally, differential reductions in the 

ability to avail F0-guided segregation cue might explain the individual differences 

in F0-benefit across YNH subjects. 

 Relative to the YNH subjects, the ability to identify the speech of the 

target speaker is reduced with increase in age and hearing loss. To understand 

the effects of age and hearing loss, Chintanpalli et al. (2016) collected the 

concurrent-vowel data across F0 differences for (YNH), older adults with normal-

hearing (ONH) and older adults with hearing loss (OHI). The overall identification 

scores across F0 differences were reduced for both ONH and OHI subjects, but 

the lowest scores were observed for OHI subjects. Chapter 4 predicted the 
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concurrent-vowel scores for these three listening groups to understand the 

effects of age and hearing loss by developing a physiologically based 

computational model. The YNH model was developed using the AN model and 

the F0-guided segregation algorithm. The ONH and OHI models were developed 

based on the peripheral changes due to increase in age and hearing loss. All 

three models had the same F0-guided segregation algorithm. This was done 

primarily to understand how peripheral changes due to age and hearing loss 

could affect the concurrent vowel scores. The model predictions were reduced 

across F0 differences for the ONH model and were successful in capturing the 

pattern of identification scores of concurrent-vowel data. For the OHI model, 

predicted concurrent-vowel scores were lowest and captured the pattern of 

identification scores of concurrent-vowel data. The reduced vowel segregation in 

both the ONH and OHI models suggested a limited use of the F0-difference 

segregation cue due to increase in age and hearing loss. 

Finally, Chapter 5 concludes with an overall discussion, limitations and 

possible future work following the dissertation. A clinical application related with 

this work is also discussed. Finally, the dissertation concludes with the possible 

changes in neural mechanisms, which could affect the concurrent vowel scores 

due to acoustic and auditory variations.  

 

 


