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Chapter 2: Data Capturing and 
Pre-processing 

In this chapter, we bring out details of how the data was collected and 

pre-processed for building ML models. 

2.1 Capturing Data for Machine Learning (ML) 
In ML, the prediction is as good as the quality of the data used to train the 

models. Since the thesis focuses on using Artificial Intelligence (AI) for cross-

device web security solutions, there is a need for high-quality data. Mainly two 

datasets, as per the requirements specified against each, are required to fulfill 

the scope of this thesis. 

 Dataset of Benign and Malicious Webpages: The data should be 

recently collected and should have an acceptable representation of the 

both the classes (at least 1.5-2% representation of the 'malicious' class), 

and should capture as many relevant attributes as possible. 

 Dataset of Android hybrid Apps: This too should have been collected 

recently from the Google Play store and should have an acceptable 

representation of malicious Android hybrid apps. 

 From where could we source the datasets listed above? Were they readily 

available on the Internet? Were the datasets that were already available 

complete, credible, and met the quality requirements? While few similar 

datasets were hosted on the Internet, none could meet the requirements of data 

considered for the study. Thus, due to the unavailability of suitable datasets, 

data collection became an important aspect. Further, pre-processing of a dataset 

is as essential as other steps in a ML process. This chapter is devoted to the 

collection and pre-processing of data for this thesis. Analysis and visualization 

of the datasets prepared is given in Chapter 3. Details of the pre-processing 

steps for the two datasets, including code extracts, are given in Appendices A 

and B, respectively. 
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Data collection from the Internet requires a web crawler. Like Google 

bot, the best of the crawlers can reach only an estimated 4% of the total Internet 

for indexation  [37]. Over the years, this percentage has increased, but the non-

indexed Darknet has proliferated even further, keeping this proportion nearly 

constant.  Even in the indexed web, the pro-rata share of malicious webpages 

is less than 1%, as per the Sitelock report [5]. So, if a generic crawler is used 

for data collection, the malicious webpages will comprise less than 1% of the 

dataset and represent less than 0.04% of the total malicious webpages present. 

Thus, a focused crawler was required that could seek more malicious websites 

to collect a better share of malicious webpages on the Internet for this research. 

Moreover, this focused crawler was expected to have the necessary capabilities 

of handling the complexities associated with crawling and downloading a 

malicious webpage. These requirements led us to develop 'MalCrawler', a 

crawler for seeking and crawling malicious webpages. MalCrawler was 

developed as part of the thesis and is the backbone of the data collection carried 

out. Section 2.2 will detail the design, working, and performance of 

MalCrawler.  

The dataset on 'Malicious and Benign Webpages', which was collected 

using MalCrawler, is described in Section 2.3, Chapter 3 (preliminary analysis 

and visualization) and Appendix A (pre-processing code). 

The dataset on 'Hybrid Android apps', which too was prepared for this 

thesis, is described in Section 2.4, Chapter 3 (preliminary analysis and 

visualization) and Appendix B (pre-processing code).  

2.2 MalCrawler 
These days, the Internet has become a source of information, 

entertainment, and e-commerce, resulting in its augmented utilization. With this 

increased use, the reprobaters have become quite active. The web crawlers, in 

this context, are making a fruitful contribution towards web security nowadays. 

Focused web crawlers are being used for a variety of purposes to maintain the 

safety of the Internet. They have been used extensively for scientific research, 

apart from being used for selective search indexing. As part of the work of the 
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thesis, one such focused web crawler has been developed with the objective to 

search malicious web pages efficiently and accurately. While the need for 

MalCralwer was prompted by the absence of any credible datasets, the benefits 

of MalCrawler go beyond being a mere crawler for data collection. 

Malicious websites are now a major concern in the field of cybersecurity. 

As per Annual Internet Threat Report published by Symantec, web attacks 

using malicious websites have increased [12]. Out of the billions of URLs 

present on the Internet, one in every 1,126 websites is infected with malware. 

Drive-by download web attacks by malicious websites, in which the attack 

malware gets downloaded as the user clicks and browses the web page, are a 

major threat to internet security [38]. Conventional security measures, such as 

antivirus based on signature detection, have limited success in today's scenario 

[39]. Drive-by download attacks from malicious web pages that compromise 

attacks through the browser route on computers/mobiles have become the 

primary means of spreading infected code [39]. With ever-increasing web 

traffic, the vulnerability from this type of attack is also on the rise. Generally, 

cybersecurity agencies and antivirus firms are on the lookout for such malicious 

sites. These agencies typically maintain a blacklist of infected websites and 

keep updating them by crawling new sites. These agencies also analyze the 

malwares to develop an antivirus signature or prevention mechanism for the 

type of attack detected. As it emerges from this discussion, web crawling is the 

first step towards seeking such sites. This section describes the focused crawler, 

named "MalCrawler", developed specifically to identify malicious websites 

efficiently and accurately. Comparing MalCrawler to a generic crawler used for 

search indexing, the following aspects are highlighted: 

 MalCrawler finds more malicious webpages compared to the existing 

web crawlers. If the probability of encountering malicious webpages by 

a generic search crawler is 'x', then the probability of finding a malicious 

webpage by this crawler is 'a*x', where a>1. 

 MalCrawler is capable of handling cloaking (websites which cloak, 

show a different webpage to a web crawler and a different page to a 

user's browser). It uses various tricks to detect whether the HTTP request 
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has come from a web crawler or a web browser. The commonly used 

trick is to read the User-Agent string of the HTTP request. MalCrawler 

sends multiple HTTP requests to a website, staggered in time, with 

different User-Agent strings, one being of a popular search bot and 

others of common browsers. Thus, it would detect cloaking by 

comparing the response to these HTTP requests.  

 Generally, sites with extensive content, for example, social networking 

sites, have a very complex graph of hyperlinks. Such sites are also 

targets of cross-site scripting attacks by hackers. Thus, these sites may 

have malicious code implanted by such attacks. Many small and big 

loops exist in such sites, which can entangle a crawler and leave it stuck 

for a long time. MalCrawler is designed to avoid such entanglements 

while doing a detailed crawl in depth. Therefore, MalCrawler will be 

able to handle entanglements  [40]. 

 Nowadays, AJAX has become a prevalent web technology 

(Asynchronous JavaScript and XML- AJAX is a web technology for 

showing dynamic webpages using JavaScript). Since we are looking for 

malicious webpages and malwares in them, we need to probe a little 

deep and hence cannot avoid AJAX content. With its ability to crawl 

deep while avoiding entanglement, MalCrawler is capable of managing 

webpages with AJAX content well.  

To ensure that the crawler spends more time crawling malicious websites, 

MalCrawler has an advisory engine, which uses various information to advise 

the crawler. The advisory engine keeps track of the URLs being crawled 

currently, and if the crawler gets entangled in the site, it helps the crawler 

recover from it. The advisory engine also advises the crawler on the breadth 

and depth of crawl for the website. 

Certain aspects of the crawler design were considered while designing 

this focused crawler. Firstly, the crawler needs to crawl and reach malicious 

web pages. Crawling the complete web is difficult. How to crawl to reach 

maximum malicious pages in minimum time? Secondly, most malicious 

content is hidden deep into websites and is only accessible through queries to 
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their linked databases. How to crawl deep to catch malicious code? Thirdly, on 

many websites, mainly social media portals, malicious content is found in 

dynamic pages that use JavaScript extensively. Social media sites are generally 

not crawled by commercial search crawlers. These sites are nowadays used 

extensively for malicious drive-by-download attacks by injecting malicious 

JavaScripts. How to crawl social media sites with dynamic content? A generic 

web crawler cannot do these jobs, and thus, we require a specially designed 

crawler. MalCrawler meets all these requirements. Subsequent sub-sections 

(2.2.1 to 2.2.6) describe these capabilities of MalCrawler. 

2.2.1 Maximizing Malicious Page Seek Rate 

Malicious page seek rate ( ) is defined as: 

 

The main objective is to maximize  for a crawl. As the Internet is vast, 

we might end up wasting time crawling benign sites when we start looking for 

malicious content. Crawling the entire Internet is infeasible, and the crawl cycle 

may take months. If we take a long time looking for malicious websites, the 

malicious content might get removed by that time. So, how do we maximize ? 

Few strategies used in this work to maximize  are given below: 

 Starting Crawl with Malicious Seed: Usually, crawling begins with a 

seed of URLs. Using the initial seed of URLs, the crawler follows the 

hyperlinks and crawls further. We can start our crawl from known 

malicious sites. Since a malicious site is more likely to host hyperlinks 

to other malicious sites [41], this approach, as compared to random 

crawling, gives us a higher probability of encountering malicious sites. 

 Seeking Dynamic Content: Dynamic content is more likely to contain 

malicious code. Dynamic content uses many server-side scripts and 

client-side scripts (JavaScripts) to provide an interactive intuitive web 

experience. While this is appealing to users, and the web is embracing it 

(also popularly called Web 2.0) , it is also vulnerable to hacks like cross-

site scripting [40]; and thus, ends up hosting malicious drive-by-
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download JavaScript code. Therefore, if more malicious content is 

sought, such sites with dynamic content need to be crawled more.  

 Smart Filtering: With smart filtering techniques, we reduce the number 

of pages that need to be examined in detail [42]. This fast filter uses a 

static heuristics algorithm to identify and discard pages likely to be 

benign quickly.  

2.2.2 Crawls Deep to Detect Hidden Pages 

A vast amount of web pages are placed deep and are generally difficult to 

be handled by crawlers. It has been observed that malicious content is found 

deep in website structure, especially in dynamic pages linked with databases, 

as they are more vulnerable to cross-side scripting [40]. A traditional crawler 

avoids crawling in-depth and will not submit dynamic queries during the crawl. 

On the contrary, MalCrawler, designed as a deep web crawler, checks for 

dynamic content and submits queries [43]. It crawls deep while taking 

precautions to avoid getting stuck or entangled.  

2.2.3 Uses Anti-cloaking Measures 

With time, malicious sites have evolved and become smart. They sense 

the user agent trying to send them HTTP request and accordingly guide them 

to different pages on a site. For example, if the malicious site gets a HTTP 

request from a 'Mozilla Firefox Browser', it guides it to a malicious page, and 

if it receives a HTTP request from the Google bot, it shows a benign page. They 

show malicious pages to users (who are targeted victims) and different benign 

pages to crawlers (search engines and malware detection firms). MalCrawler is 

capable of detecting cloaking and, it does this by manipulating the user agent 

field of the HTTP request.  

2.2.4 Emulates Different Browsers 

Some malwares hosted on sites are targeted for a particular browser and 

environment [44]. For example, there might be a targeted malware for 'Internet 

Explorer 8.0'. The malicious site may not redirect us to the malware location 

until it is sure that we have 'Internet Explorer 8.0'. Thus, the focused crawler 
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should be able to emulate all browser environments. We have implemented 

emulation for popular browsers like 'Internet Explorer', 'Mozilla Firefox', and 

'Google Chrome'. 

2.2.5 Emulates a User  

Crawling speed and pattern should be similar to a user. Patterns available 

from web usage statistics could be emulated. To compensate for the slow pace 

of crawling, parallelization could be adopted, and multiple sites could be 

crawled simultaneously. However, it has been designed to keep browsing 

patterns similar to any user's browsing style (like opening breadth-first links, 

etc.).  

2.2.6 Crawls AJAX Pages while Avoiding Entanglement 

Web 2.0 AJAX concept has made browsing more interactive and 

integrated to backend databases. A link to a weblog is expected to point to a 

perennially changing page. The depth of such dynamic sites varies and 

increases as more links are added by user actions. How deep should a crawler 

crawl such sites? If the crawler goes too deep, then the crawler might get 

entangled. MalCrawler has used the crawler guidance engine to guide the 

crawler through such sites and prevent it from getting tangled. 

The design of "MalCrawler" has been validated on the Internet by 

implementing it as a Java application. Subsequent sub-sections will provide the 

background and literature survey, methodology and design, testing 

methodology, results and analysis of the crawler. 

2.2.7 MalCrawler: Background and Literature Survey 

Web crawling for search indexing is an extensively researched field, 

which has now matured to a certain extent. The search engines like Google, 

Yahoo, Bing, etc., are a testimonial to this advancement.  

Web crawling for web content mining of malicious webpages is 

somewhat similar to crawling for search indexing, barring a few differences. 

These significant differences are listed below:  
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 Importance of Links to Pages: Forward and back links from a website 

to specific suspicious sites indicate malicious activity.  

 The Seed for Crawling: A good selection of malicious seeds (Seed 

refers to the initial set of URLs from where crawl starts) can help us find 

more malicious webpages, as pointed out by Invernizzi et al. in their 

paper on EVILSEED [41]. 

 Crawling Dynamic Content: Dynamic websites are more prone to 

cross-site scripting and SQL injection attacks [40],[45]. Thus, they 

become the primary source of the spread of malware. The depth of crawl 

in dynamic content also varies. At times, the crawler is expected to 

increase the depth, and at times it has to keep it shallow, programmed in 

a way that it avoids getting entangled. The crawler needs to avoid 

entanglements and still be effective.  

 Bot Detection by Malicious Web Sites: Malicious sites nowadays have 

increased awareness of bots that crawl them for malware detection. They 

cloak and provide a different benign page when a bot visits [46]. The 

crawler needs to crawl in a manner to evade such detection.  

The process of finding malicious web pages involves many steps [47]. In 

the first step, the crawler needs a point to start the search, i.e., seeds. In the 

second step, the initial URLs are crawled, downloaded, and parsed to extract 

the hyperlinks. These hyperlinks can be sorted out and queued in priority based 

on the crawler design. In the third step, the crawl is expanded to all those queued 

URLs. While the pages are being queued and crawled, fast filters can tell us 

whether the crawler is finding more malicious sites or not [42],[48]. For the 

fourth step, we need detection systems with high accuracy in predicting the 

maliciousness of web pages. For this, 'Honey Clients' can be used [49] [50]. 

'Honey Client' based systems use browser emulation, client emulation, and 

various other methods to detect malicious code. Such 'Honey Clients' are very 

accurate but are slow by magnitudes. Resources for checking malicious 

websites are neither free nor infinite. Thus, the number of URLs given to such 
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'Honey Clients' should be reduced by making the first three steps more efficient.

MalCrawler has been explicitly designed to meet this requirement. 

2.2.8 MalCrawler: Design and Methodology

The overall system architecture of MalCrawler is depicted in Figure 2.1.

Figure 2.1: Architecture of MalCrawler

Focused Crawler Module.  This module is capable of carrying out 

focused crawling (focused crawling refers to crawl covering specific category 

of webpages). It has the following sub-modules:

Figure 2.2: Focused Crawler Module

Seeding Sub Module: The seeding module provides the initial seed for 

the crawl. In crawlers, the initial seed is the set of links and webpages 

from which a crawler starts crawling. As it crawls, it extracts links from 

all pages visited and provides them to a FIFO queue. The crawler, after 

that, keeps picking up URLs from the FIFO queue and keeps crawling. 

This is how the process of crawl starts and continues. Since we have 

made a focused crawler crawl malicious sites, the initial seed is chosen 
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to be malicious as proposed in EVILSEED [41]. We have taken the 

initial seed from the website 'Malware Domain List' [51]. After that, the 

crawl proceeds by following the links extracted from the URLs provided 

in the initial seed. The links extracted are processed, as described in the 

next paragraph, and the crawled malicious URLs are added to the FIFO 

queue for the crawl. 

 Link Extraction Sub Module: The link extraction sub-module is 

responsible for extracting URL links from the pages crawled by the 

crawler. It extracts all these links and stores them in a linked list for 

evaluation. After that, the URL maliciousness assessment module works 

on these links to select the malicious links. Links that are not likely to 

be malicious are dropped. 

 URL Maliciousness Assessment Module: The URL maliciousness 

assessment module is responsible for picking up the URLs and assessing 

whether they are malicious or not using keyword analysis (keywords in 

URLs are compared with a list of keywords generally found in malicious 

websites). 

The crawler was written with the help of JSoup [52] Java library. JSoup 

provides a very convenient API for extracting and manipulating data, using the 

best of DOM, CSS, and jquery-like methods. Though the crawler was written 

from scratch in Java, the JSoup library has been used extensively for parsing 

functions, extractions, etc.  

 Crawler Guidance Engine.  The crawler guidance engine is the one that 

controls the crawler. It does the following: 

 Keeps track of the URLs crawled and being crawled. 

 Keeps track of crawl time. 

 Recovers crawler when it gets entangled or stuck. 

 It decides the depth and breadth of the crawl. 
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This module works closely with the crawler module. The crawler module 

updates its state in the guidance engine by using various local and global 

variables. Every time the crawler sends an HTTP GET request, it updates the 

variable. The crawler module keeps a close watch on the time spent on a domain 

and its URL. It keeps checking the depth and the breadth of the crawl using the 

URL separators. If the crawl-depth goes beyond the laid down limit or the 

crawler is taking too much time, the guidance engine resets the crawler and 

resumes crawling of a different domain. We have not used parallelization while 

designing this crawler to avoid complexity. However, the application is 

multithreaded, with each module running on a separate thread. 

 Malicious Page Analysis Engine.  The malicious page analysis engine 

analyzes the pages crawled to identify maliciousness. Here, primarily an 

analysis of JavaScript-based malwares is done. The HTML Unit Browser [53] 

and Rhino Emulation library [54] have been used in this. Rhino engine and 

HTML Unit emulator check and analyze the following aspects (as listed below) 

of JavaScript-based malwares. Features have been extracted from these aspects 

and classified using the WEKA library [55] (using C4.5 [56] Decision Tree 

classifier) to make predictions for URLs being crawled.  

Redirection and cloaking: Most malicious websites use redirections and 

cloaking. Redirection is used to guide the browser to a page containing the 

exploit code. Cloaking is generally used to avoid showing malicious pages to 

search engine crawlers or to serve different pages for different vulnerable 

browser environments (based on browser & OS fingerprinting results). We used 

the two features described below to detect these activities:   

 Feature 1- Redirections. There are two types of redirections. Firstly, 

HTTP response status 302 redirection, and secondly, redirection 

using JavaScript 'document.location' property. The number of these 

redirections and the URLs where these redirections landed were 

recorded. The HTTP status 302 redirection can be checked by the 

response received by the browser (in this case, the HTML Unit [53] 

emulated the browser). And, 'document.location' based redirect was 

picked up by running the script using Rhino JavaScript Engine [54]. 
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Thus, this feature was recorded as described above with nominal 

values {Yes, No}. 

 Feature 2- Cloaking. We detect cloaking by manipulating the user 

agent field of the HTTP request. We change user agent strings to 

emulate 'Mozilla Firefox', 'Google Chrome', 'Internet Explorer', 

'Google Bot', etc. If we receive a different response every time, 

then it indicates cloaking. This feature will be limited to the values 

{Yes, No}. HTML Unit has been used for detecting cloaking. It 

has been used to taper the User-Agent field in the HTTP request 

header for depicting various browsers.  

De-obfuscation: Generally, malicious JavaScript is found to be 

obfuscated. In obfuscation, JavaScript is encoded/encrypted to avoid detection. 

This obfuscated code is de-obfuscated only at the run time [57]  [58]. Varieties 

of obfuscation techniques are used, e.g., base64; also, encryption is often used. 

No matter how they are encoded/encrypted, JavaScripts have to be 

decoded/decrypted at runtime for execution. Thus, runtime analysis has been 

used to detect de-obfuscated code. Following five features have been extracted 

for this task: 

 Feature 3- String Definitions and their Use in Code. The 

JavaScript code is de-obfuscated at runtime using the eval() 

function in the Rhino emulator and is thereafter analyzed. The 

number of JavaScript functions used to define new strings, e.g., 

substring(), fromCharCode(), etc., and number of their uses, e.g., 

document.write() and eval() were counted. The significant 

presence of such functions indicates maliciousness. The feature 

has a numeric value from 0 to 5. 

 Feature 4- Number of Dynamic Code Executions. The number of 

function call runs for dynamic interpretation of JavaScript code 

were measured (e.g., DOM changes using  

document.createElement(), document.write(), eval() and 

setTimeout()) [59]. This was checked by running the code in 
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Rhino sandbox  [54]. This feature has a numeric value depicting 

the number of dynamic code executions. 

 Feature 5- Length of Dynamically Evaluated Code. The eval() 

function is used for dynamic execution in JavaScript. Thus, the 

string length passed in eval() function as an argument was 

captured. This value depicts the length of dynamically evaluated 

code. The length of dynamic code passed is a good indicator of the 

maliciousness of obfuscated JavaScript (malicious scripts 

generally have high lengths). This value is picked up while 

running JavaScript code in Rhino sandbox. This feature has a 

numeric value depicting the code length. 

 Feature 6- Bytes Allocated in Memory Space. Memory space 

allocated to string functions like concat() is monitored at 

runtime. Heap exploitation techniques generally allocate large 

memory [58]. For example, heap spraying attacks may allocate 

up to 100MB of space. This feature is captured as a numeric 

value using the Rhino sandbox. 

 Feature 7- Number of Likely Shell Code Strings. Exploits those 

target memory violation vulnerabilities which attempt to 

execute shellcode. Shellcode can be embedded in the JavaScript 

or be dynamically created. For identifying shellcode, the script 

was parsed, and Unicode encoded non-printable character 

strings longer than a certain threshold were extracted (we took 

128 bytes as the threshold). Rhino [54] with custom Java code 

was used for this task. The feature has numeric values 0, 1, 2

etc., based on the number of shellcode strings found. 

Exploitation: The last step of any malware attack is exploitation. The 

following three features were analyzed for checking exploitation: 

 Feature 8- Number of Instantiated Browser Components. 

Browser components (plug-ins) are checked for instantiation. 

Exploits generally use vulnerabilities in such components. 
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HTML Unit [53] was used to emulate the browser environment 

and the exploitation actions. This feature has a numeric value 

depicting the number of instantiated components. 

 Feature 9- Attribute and Parameter Values in Method Calls. 

Exploits generally use long strings to cause a buffer overflow. 

Thus, values passed in method calls were tracked, as large string 

values may indicate buffer flow. This has been analyzed using 

Rhino sandbox and custom Java code encapsulating Rhino. The 

feature is nominal with values {Yes, No} describing the 

presence or absence of such attributes or parameters in method 

calls. 

 Feature 10- Sequence of Execution of Method Calls. The 

sequence of execution of method calls is a strong indicator of 

the good or ill intent of the code. Many sequences (like file 

download followed by execution) are known to indicate 

malicious intent. This feature was analyzed using both Rhino 

and HTML Unit. The feature is nominal with values {Yes, No} 

describing the presence of such a malicious sequence of calls. 

2.2.9 MalCrawler: Software Design 

The software design of MalCrawler is based on the modular architecture 

described above. The complete application has been designed as a standalone 

application on Java SE 7. The various modules are running on multiple threads 

to improve responsiveness. Postgres SQL has been used as the database for this 

application. The Java application connects to the Postgres SQL server using the 

JDBC connector. The thread-level architecture of the application is given in 

Figure 2.3. 
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Figure 2.3: Thread Wise Software Design of MalCrawler

The crawler has been developed on the Java SE platform. The source code 

of the crawler is hosted online on GitHub to support further research  [60]. The 

complete architecture is modular, and the following libraries have been used in 

the design (more details on these software and libraries is given in Appendix 

C):

JSoup Library:  The JSoup [52] library is a Java-based library with web 

page parsing capability. This library has been used for parsing web 

pages and extracting - hyperlinks, document content, and JavaScript 

tags. 

Rhino JavaScript Emulation Library: Rhino [54] is also a Java based 

library that can run JavaScript. It has been used to run JavaScript in a 

sandboxed environment for analyzing runtime behavior. 

HTML Unit Browser Emulation Library: The HTML Unit [53] is a 

browser emulation library based in Java. It has been used to emulate a 

browser session. Certain features can be tested only by emulating a 

Browser session, e.g., redirection, cloaking, etc. It has been used for 

such testing.

WEKA Data Mining Library:  The WEKA [55] Data Mining library has 

been used to classify URLs being visited. A C4.5 [56] Decision Tree

model is trained using a known list of malicious webpages. This trained 

model is then used to predict the maliciousness of the URLs being 

crawled by the MalCrawler. 
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2.2.10 MalCrawler: Result and Analysis 

To test the MalCrawler, as per the scope defined in sub-sections 2.2.1 to 

2.2.6, it must be validated for maximizing malicious page seek rate , crawling 

deep, using anti-cloaking measures, emulating browsers and crawling AJAX 

content. To validate ' ', the Google Safe Browsing API was used  [61]. Pages 

crawled by MalCrawler were cross-checked with the Safe Browsing API to 

determine the number of malicious webpages downloaded. Other metrics, viz., 

crawling depth, number of cloaking incidents, number of AJAX instances, were 

measured using custom Java code. The MalCrawler application was hosted on 

the Internet for crawling. The application log (collected in log file) and 

webpages downloaded (in Postgres database) were analyzed. Summary of the 

results obtained is given in Table 2.1. 

Table 2.1: Summary of Results- MalCrawler 

Parameter Result 
Results with Focused Crawling Off 
Websites Crawled with focused crawling off. 567,898* 
Malicious sites visited with focused crawling off. 702 

crawling off. 
0.123 % 

Results with Focused Crawling Turned On 
Websites Crawled with focused crawling on. 567,544*  
Malicious sites visited with focused crawling on. 11,388 
Malicious Page Seek 
crawling on. 

2.01 % 

Results of Entanglement Avoidance 
Entanglement with crawl depth set to 3 4 
Entanglement with crawl depth set to 5 17 
Entanglement with crawl depth set to 8 56 
Results of Anti-cloaking 
Number of websites where cloaking detected 93 
Results of User Emulation 
Browsers Emulated Mozilla, Chrome, and Internet 

Explorer 
Regulating crawling speed Speed regulated by guidance 

engine 
Results of Handling AJAX  Sites 
AJAX sites handled 7866 
Depth to which handled with 0% entanglement 3 
Depth to which handled with 50% entanglement 8 
*Note: Due to limited computing resources available for this test, crawl had to be 
stopped at about 0.57 million records.  
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Figure 2.4: Malicious Page Seek Rate ( ) 

 
Figure 2.5: Entanglement Avoidance 

The malicious page seek rate was better with focused crawling turned on. 

Thus, this focused crawler is able to seek more malicious pages than benign 

pages. The focused crawler exhibited good entanglement avoidance. The 

Crawler Guidance Engine was able to pull it out successfully in most situations. 

The logs showed that whenever the entanglement happened, it lasted only a few 

milliseconds, and after that, it extracted itself successfully and continued 

crawling. The crawler detected cloaking successfully on many sites. The 

crawler could emulate both the user environment and its browsing behavior 

successfully. Various browsers like Mozilla, Chrome, and Internet Explorer 

were emulated. AJAX content was handled well by the crawler as very few 

entanglements were logged while crawling AJAX webpages. Further, the 

crawler could send and handle XMLHttpRequest (XHR) the way it is done 

while opening an AJAX site in a browser, thereby emulating human behavior 

while opening an AJAX site. 

Evasion: To escape detection by MalCrawler, the intruder can manipulate 

some of its features by detecting the crawler's visits. Also, the IP address of the 

crawler can be tracked by cyber attackers. To mitigate the risk of evasion from 
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detection by the attackers, the crawl can be done from various IP addresses or 

using multiple proxies. 

Comparison with EVILSEED Crawler: EVILSEED, an approach to 

improve the effectiveness of searching malicious web pages, was proposed by 

Invernizzi et al. [41]; where the researchers use a set of malicious seeds. Using 

this information, the researchers utilized the infrastructure of a search engine 

and Google's blacklist URLs to retrieve new malicious URLs. Comparing it to 

MalCrawler, it is seen that MalCrawler is not dependent on an external search 

engine or a blacklist. Further, MalCrawler has specific capabilities not seen in 

EVILSEED, viz., its ability to detect and handle cloaking, handle AJAX 

content, crawl deep, and emulate various browsers.   

2.3 Pre-processing of the Webpages Dataset 
MalCrawler, which was described in the previous section, was developed 

to crawl the Internet for preparing the webpages dataset. This dataset was 

required for the web security research carried out in the thesis (Chapter 4, 5, 6 

and 8 utilize this dataset). The webpages downloaded using MalCrawler over a 

period of one month were pre-processed using custom Python code. The pre-

processing code, description, and analysis of the dataset are described in detail 

in Chapter 3 and Appendix A. The metadata of this dataset is presented in Table 

2.2. 

Table 2.2: Summary of Webpages Dataset 

No of Samples: 1.564 million 

No of Classes: 2 ('benign', 'malicious') 

Sample Distribution: - 1,172,747 (97.73%) 
- 27,253 (2.271%) 

Number of Attributes 
(excluding class label): 

10/25* 

Format: CSV 
*Note: - A different version of this dataset was also compiled in ARFF (Attribute 
Relational File Format). This has 25 attributes and has been utilized in Chapter 4 for 
carrying out a comparative analysis of attributes. Details of this dataset are available in 
Chapter 4. The dataset with ten attributes which is listed in this table, is a subset of that 
larger dataset, from which the ten most relevant attributes (as evaluated in Chapter 4) 
have been selected. 
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2.4 Pre-processing of the Hybrid Android Apps 
Dataset 

Chapter 7 of the thesis analyses web security on mobile platforms, 

particularly the hybrid apps that run on the Android platform. The hybrid apps 

dataset was prepared for carrying out this analysis. Custom Python code was 

used to collect the APKs from the Internet. APK (Android Package Kit) is the 

format in which Android apps are distributed. This dataset was prepared from 

the following sources- Android Malware dataset 2017 (CICAndMal2017) [62], 

Android Application dataset for Malware Application [63], and Android Anti 

Malware dataset [64]. As these data sources did not have a common set of 

attributes, these datasets were processed using customized Python code, and 

some relevant attributes were added and irrelevant attributes deleted. Attributes 

not available in these datasets were extracted after downloading the APKs of 

these apps from a mirror of Google Play named 'APK Combo' [65] as Google 

Play does not permit downloading of APKs by bots. For this reason, a mirror 

site that allows downloading using bots was used. For disassembling the hybrid 

apps downloaded from the 'APK Combo' mirror, JADX Disassembler  [66] was 

used. Further details on pre-processing (including code) and analysis of the 

dataset are given in Chapter 3 and Appendix B. Metadata about the dataset is 

given in Table 2.3. 

Table 2.3: Summary of Hybrid Apps Dataset 

No of Samples: 78,767 

No of Classes: 2 ('benign', 'malicious') 

Sample Distribution: - 76955 (97.7%) 
- 1,812 (2.3%) 

Number of Attributes 
(excluding class 

label): 

12 

Format: CSV 

2.5 Conclusion 
This chapter covered aspects of capturing and pre-processing data. 

Further details of datasets are given in Chapter 3 (Preliminary analysis and 
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visualization), Appendix A (pre-processing details of webpages dataset along 

with code) and Appendix B (pre-processing details of hybrid apps dataset along 

with code). This was a significant facet of the research, as the results of any AI-

based analysis depend entirely on quality, comprehensiveness, and correctness 

of data. A unique focused crawler, named MalCrawler, was developed to 

collect web content. As evident from this chapter, the utility of MalCrawler 

goes beyond a mere data collection agent. MalCrawler, which seeks more 

malicious websites and handles them efficiently compared to generic crawlers, 

has immense potential in the field of web security. It can be used for 

requirements where malicious sites are either to be searched or avoided. Also, 

it can be used by search engines to make the search experience safer, and can 

be used by Internet security firms to discover new malwares. 

The datasets that have been prepared for use in later chapters, can 

facilitate further research in the field of web security. Hence, they have been 

hosted online in the public domain.  

Regarding future scope, MalCrawler may be improved further to 

incorporate the following features: parallelization of crawler instances, adaptive 

crawl speed to emulate various user responses, web response for CAPTCHA 

and login modules, and support for cloud deployment and scalability. 

 


