
Chapter 5: Detection of Malicious 
Webpages Using Deep Learning: 

Structured Data 

5.1 Background 
In the last chapter, we discussed how malicious websites continue to be a 

threat on the Internet [125]. We also discussed how the detection of malicious 

websites evolved from static heuristics (signature-based detection [107][42]), 

dynamic heuristics (using honey clients, sandboxes, and browser emulators 

[126][50]), and then to ML. ML is the latest technology being explored for such 

web security tasks  [127][72]. We had used conventional ML, wherein we used 

the C4.5, SVM, Naive Bayes and Random Forest classifiers with selected 

attributes to improve classification results. However, these conventional 

models had limitations regarding high false negatives (FN), low precision and 

F1-score, which were not suitable for commercial deployment by web security 

firms. So, we explored newer ML technologies that could surpass these results. 

In this chapter, we will explore deep learning models to further improve the 

classification results for the malicious webpage prediction problem.  

In the past few years, deep learning has emerged as the most promising 

subfield of ML. It uses large neural networks to achieve good classification 

results in image and Natural Language Processing (NLP). We have used deep 

learning to overcome the limitations of previous ML approaches in webpage 

classification, including the one given in the last chapter. We have used a novel 

Deep Neural Network (DNN) model to detect and classify malicious webpages 

with better accuracy, precision, and recall. While deep learning can handle both 

structured and unstructured data, this chapter uses structured attributes to enable 

fast training and quick detection. This approach has given a high accuracy of 

99.81% with very low FP and FN. While training a DNN model takes time, 

runtime on the test set is quick. The trained model takes a test sample (webpage) 

and classifies it in less than 264  in checking, including time for 

preprocessing the sample into a vector. This is an approximate time per 
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webpage without considering network delay. The exact time would vary based 

on the content of the webpage. Such high speed and accuracy make this 

technique suitable for deployment for web security solutions. The contribution 

of the work done in this chapter is summarized below: 

 Deep learning based detection model for malicious webpages with high 

accuracy, precision, and recall. 

 The model's fast detection capability enables its deployment on Web 

Browser platforms without deterioration of browsing experience.  

 The capability of the proposed DNN model to detect Zero-Day attacks. 

This is achieved as the DNN model is able to detect more non-linear 

patterns compared to conventional ML techniques.  

The remaining chapter is structured as follows. Related work is discussed 

in Section 5.2. Section 5.3 introduces the deep learning framework for 

malicious webpage detection. Section 5.4 discusses the results and analysis. 

Lastly, Section 5.5 concludes with a discussion on the utility of the model 

proposed and future work scope. 

5.2 Related Work 
Malicious web page detection approaches have evolved from static 

heuristics, dynamic honey client based detection to ML. Recently, with rapid 

advances in deep learning, it is being explored for solving web security tasks.  

Earlier works using static heuristics include Cova [107] and Canali [42] 

et al., wherein they used signature-based detection techniques. Work utilizing 

dynamic heuristics include high interaction honey clients by Akiyama [128] 

and low interaction honey clients by Ikinci et al  [50]. These approaches had 

limited capability of detecting new patterns. 

Conventional ML approaches for malicious webpage detection have used 

classifiers like SVM, Random Forest, Decision Tree, etc. Eshete [127],  Singh 

[72], Yoo [129] and Wang et al. [130] have used such techniques. However, 

their classification results could not surpass 99% accuracy and suffered from 

high false negatives or false positives. 
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While attempts have been made to use deep learning for malicious web 

page detection, research outcomes are confined mainly to restricted domains of 

Google labs [131] or cybersecurity and anti-virus firms with limited 

information shared in public. Apart from these organizational efforts, few 

research papers, as discussed below, have been published in this field, but they 

have been inadequate to address the problem statement holistically. Shrivastava 

et al. have used a deep learning framework for webpage classification  [132]. 

However, the framework was complex and could not achieve satisfactory 

accuracy while keeping false positives and false negatives low. Compared to 

the model proposed in this chapter, their framework underperforms in all 

metrics, including time. Fang et al. proposed a deep learning based solution to 

detect cross side scripting (XSS) [152]; however, their solution remains 

confined to XSS attacks. Vinaya Kumar et al. have evaluated various LSTM, 

CNN, and RNN layers for feature extraction to classify malicious URLs  [133]. 

Although, their work explored practical feature extraction techniques for such 

tasks, they failed to propose a suitable end-to-end solution for webpage 

classification. Wang et al. have proposed a LSTM bidirectional algorithm based 

on CNN and RNN for expressing the similarity of web content with a malicious 

page  [134]. However, the model underperforms on precision and recall metrics.  

Keeping related work in mind, the work presented in this chapter attempts 

to overcome existing limitations and gaps. 

5.3 Deep Learning Framework for Detection of 
Malicious Webpages 

This section proposes a deep learning framework for malicious webpage 

classification and describes its design and implementation. 

5.3.1 Understanding Deep Learning 

Deep learning is a subfield of ML that has gained prominence in the last 

few years. It uses layered neurons to learn complex non-linear patterns in the 

data. It can be used in both supervised or unsupervised settings. Further it can 

handle both structured and unstructured data [135]. Deep Neural Networks 

(DNN) carry out hierarchical learning, with lower layers learning low-level 

features and higher layers progressively learning high-level features from them 
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[136]. According to the Universal Approximation Theorem, feed forward deep 

learning models can represent a nonlinear relationship in dataset better than 

shallow neural networks and other ML classification algorithms [137]. Typical 

deep learning techniques include DNN, Deep Belief Networks (DBN), 

Convolution Neural Networks (CNN), Auto Encoders (AE), Recurrent Neural 

Networks (RNN), etc.  

In this chapter we use DNN with structured data input to classify 

webpages as malicious or benign.  

5.3.2 Structured vs. Unstructured Data 

Before describing the features and dataset used in this chapter, it is 

imperative to understand the choice of structured data as input to the DNN 

model vis-à-vis unstructured data. In a ML context, unstructured data refers to 

unorganized data like images, video, and text that does not follow a predefined 

format and is thus more challenging to process. To prepare unstructured data 

for learning, there is a need to carry out various transformations, encoding, and 

processing that are computationally expensive and time-consuming [135]. 

Thus, applications where speed and resources come at a premium, structured 

data is preferred over unstructured data for learning. Since this work is focused 

on quick detection of malicious webpages over millions of records, structured 

data is a preferred choice for this model. Subsequently, in the result section, this 

choice would be vindicated by the fast training and testing time exhibited by 

our model.  

5.3.3 Dataset and Features 

Refer the 25 attributes listed in Table 4.1, which were analyzed for their 

suitability in Chapter 4. Few amongst these attributes were selected and refined 

further in section 3.1.3 for the final webpages dataset created for ML tasks in 

the current and subsequent chapters. The final selected features of the webpages 

dataset, which have been used for DNN classification in this chapter, are listed 

in Table 3.2. Features F1-11, less F10, as per Table 3.2 have been used for 

DNN classification in this chapter. For further details on the dataset refer to 

Chapter 3 (preliminary analysis and visualization) and Appendix A (pre-

processing code). 



Detection of Malicious Webpages Using Deep Learning: Structured Data

79

5.3.4 Deep Learning Model

The deep learning model's design for the detection of malicious webpages 

in this research is shown below in Figure 5.1. 

Figure 5.1: DNN Model for Malicious Webpage Classification

The dataset was preprocessed and fed to the Input Layer. The Input Layer 

carried out vectorization, as shown in Table 5.1. 

Table 5.1: Feature (Input) layer- DNN with Structured Data

# Features Name Transformation 
Carried Out

F1, F2, F8, 
F9

url_vect, url_len, 
js_len, js_obf_len

Normalized and fed as a 
numerical column.

F4, F5 geo_loc, tld Converted to Hashed 
Categorical Columns, with 

bucket size equal to the 
number of unique values in 

each.
F6, F7 who_is, https One Hot coded and fed as 

Categorical Column.
F11 label Converted into a single class 

label column with binary value 
0/1. 
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The vectorized and normalized values given above are condensed into a 

dense feature layer and fed to the next layer. The next layer is a hidden layer 

comprising 128 fully connected neurons. The output of this layer is fed to the 

third layer, which too is a hidden layer of 32 fully connected neurons. RELU 

(Rectified Linear Unit), which is one of the activation functions used in deep 

learning, was used for both the hidden layers. The choice of RELU for hidden 

layers was based on its faster convergence during training. The third layer feeds 

its output to a fully connected single neuron layer with a Sigmoid activation 

function. The sigmoid function is another popular activation function used for 

binary classification problems that gives a binary 0/1 output for each of the two 

class labels defined in the F11 feature. Between the third and output layer, a 

dropout layer was introduced with a dropout rate set at 10%. Dropout is a 

technique of randomly excluding few nodes from update cycles. 10% dropout 

from a layer of 32 nodes means that three nodes are dropped in each update 

cycle. The use of this technique gave a regularized model and overcame 

overfitting [140]. The summary of tunable parameters in the generated DNN 

model is given in Table 5.2.  

Table 5.2: Layer-wise Tunable Parameters (DNN with Structured Data) 

Layer# Layer 
(Type) 

Output Shape Param# 

1 Input  Multiple - 
2 Dense 

(Hidden 1) 
128 184192 

(1438 x 128 Weights + 128 bias) 
3 Dense 

(Hidden 2) 
32 4128  

(128 x 32 Weights + 32 bias) 
- Dropout  - - 
4 Output 1 33 (32 Weights + 1 bias) 
 Total Params: 188,353 

Trainable Params: 188,353 
Non-trainable Params: 0 

 
This DNN model is a feed forward network that is trained using 'Gradient 

Descent'. Gradient Descent is an optimization algorithm that minimizes the 

cost/loss function by moving in the direction of steepest descent, thereby 

finding the minima of cost/loss function. 'Binary Cross Entropy' has been used 

as the loss function in this work. In this model, an extension of 'Gradient 

Descent' algorithm known as 'Adam Optimization' is used due to its better 
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performance. Adam is a variant of the Stochastic Gradient Descent algorithm 

which uses an adaptive learning rate. Its name is derived from Adaptive 

moment estimation [141]. The Gradient Descent algorithm works in two steps 

- the forward and backward pass. In the forward pass, it computes errors using 

current parameters. In backward pass, it computes gradients using partial 

derivatives and amends parameters accordingly [142]. 

At any neuron in layer in this DNN model, calculations can be shown 

as given in Fig.2. Where, if (i.e., the input layer), inputs are depicted by 

vector X= [x1, x2, .... , xn]; for , inputs to the neuron are the activation 

outputs from previous layer and are depicted by the vector 

.The vector of weights from layer   to Neuron 

in layer is depicted by and for the complete 

layer by,

Bias for Neuron in layer is depicted by and for complete 

layer by . Similarly, vectors W and b can be shown as 

matrices combining and for all layers.

Figure 5.2: A Single Computation Unit in DNN
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As seen in Figure 5.2, the Affine function  computes the weighted sum 

of all inputs coming to the neuron.  

At the input layer, this equation changes to, 

Equations (5.1) and (5.2) are shown with vectors as, 

Affine function feeds into the activation function, which for layer-2 and 

layer-3 ( ) is a RELU as represented by equation (5.3). Activation 

function for the output layer ( ) is a Sigmoid as represented by equation 

(5.4). 

As shown in Figure 5.2, many such neural units form a neural layer, and 

many such layers are stacked together to form the DNN. The output of the 

activation function in the final layer is the DNN output, . The training 

comprises actions to find those values of parameters W and b that lead to the 

correct predicted output . To achieve this, the 'Binary Cross Entropy' loss 

function E compares values of final output  and target output t as shown in 

equation (5.5). This completes the forward pass or the feed-forward in the 

DNN. 

After that, backward pass or backpropagation is carried out, wherein error 

contribution of each parameter and  in the network towards total loss E is 

computed through gradients. Using the chain rule of differentiation, the partial 

derivates are calculated successively backward from output to input. In this 

model, the error gradient for  in the last layer ( ) is given as, 
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Solving partial derivate using equation (5.5), 

Solving partial derivative using equation (5.4), 

 

Solving partial derivative using equation (5.1), 

 

Using equations (5.6) to (5.9), 

 

Similarly, using the chain rule to compute error gradient for  in the last 

layer, 

Computing partial derivative using equation (5.1), 

  

Using equations (5.7), (5.8), (5.11), and (5.12), 

  

Equations (5.10) and (5.13) give us error gradients concerning parameters 

in the last layer (Note: The final layer has only a single neuron with Sigmoid 

activation. Thus, k=1.). Computation of error gradients for lower layers' 

parameters requires recursive application of chain rule as part of the 

backpropagation algorithm. For the third layer ( ), the error gradient with 

respect to  is given below. 
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The first two partial derivatives have been computed in equation (5.7) and 

(5.8), the third is calculated using equation (5.1),  

 

Solving partial derivate of RELU activation of layer 3 using equation 

(5.3), 

 

Using equation (5.1), 

 

Using equations (5.7), (5.8), and (5.14) to (5.17), 

 

Similarly, error gradient with respect to  in the third layer is given by, 

 

Using equation (5.1), 

 

Using equations (5.7), (5.8), (5.14) to (5.16), (5.19), and (5.20), 

 

Moving further backward in the DNN, gradients with respect to 

parameters of layer-2 are computed recursively based on the derivates of layer-

3. Since layer 2 uses RELU activation like layer 3, equations can be built up 

similarly as shown above and thus are not discussed further. 

This backpropagation, as described above, is carried out for all input 

samples. After that, the loss function E is minimized over all n input samples 

of X, using gradient descent. 'Adam' algorithm was used with a mini-batch size 
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of 2048 random samples. Adam algorithm uses the partial derivates computed 

during the backpropagation to determine the global minima of the loss function 

 with respect to W and b. This ultimately leads to a successive tweaking of W 

and b to minimize the loss function for all X inputs. This process can be denoted 

mathematically by equation (5.22). 

 

W and b are tweaked, and their new values are computed in each mini-

batch using equations (5.23) and (5.24). Here in the equations,  is the learning 

rate, and it signifies the step size during descent. For this model,  was 

found to be optimum. 

 

5.3.5 Handling Class Imbalance 

It is pertinent to note that the number of malicious webpages on the 

Internet is just a very small percentage compared to benign webpages. This 

disproportion is also visible in the dataset that was prepared for this research 

(refer to Figure 3.2 in Chapter 3). Out of the 1.2 million samples in the training 

dataset, 97.73% were positive (benign), and only 2.27% were negative 

(malicious). The class imbalance creates a bias towards the majority class, 

thereby resulting in an inaccurate trained model [143]. Thus, there was a need 

to address this imbalance. 

Techniques that are generally used for handling class imbalance are 

discussed below: 

 Over Sampling: The dataset is oversampled to create additional 

samples of the minority-class  [144]. ADASYN and SMOTE are some 

oversampling algorithms that are suitable for this task (Note: 

ADASYN (Adaptive Synthetic) and SMOTE (Synthetic Minority 

Oversampling Technique) are algorithms for generating synthetic 

samples of minority class based on existing minority observations.). 
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 Under Sampling: The majority-class samples are reduced to bring 

down imbalance  [144]. However, this technique can lead to a drastic 

reduction of samples and is thus prone to error.  

 Modifying the Weights of Loss Function: The loss function too can 

be modified to handle the imbalance by giving higher weight to the 

minority class vis-a-vis the majority class [145]. These weights are 

different from parameter  of DNN model discussed in the previous 

subsection. These are weightages given to classes in the loss function 

and are denoted by . 

Modification of weights in the loss function was used as it gave better 

results than the other two techniques. The modified weights for the binary cross 

entropy loss function used in this model were computed using the formula 

below. 

 

where, 

wt0 - Weight of Negative Class 

wt1 - Weight of Positive Class 

total - Total Number of Samples 

neg- Number of Negative Samples 

pos - Number of Positive Samples 

These weights were fed to the 'Binary Cross Entropy' loss function during 

the model's training. 

Apart from the techniques discussed, two more tricks were used to handle 

this imbalanced data. Firstly, data was handled in a large batch size of 2048 

samples, which ensured that the minority-class was adequately represented in 

each batch. Secondly, correct initial bias was given to the model at the start of 

training to ensure faster convergence. The correct bias was derived using 

equation (5.27) given below  [146]. 
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5.3.6 Implementation 

The DNN model proposed in the last two subsections was implemented 

using TensorFlow and Keras libraries. TensorFlow is an open-source ML 

platform in Python that was released by Google [147]. Keras [148] is a deep 

learning library in Python that can run on top of TensorFlow. Few 

functionalities that were not part of the standard library were coded in Python 

using NumPy library. NumPy is a Python library that provides functions for 

vector calculus. For generating results and analysis graphs, TensorBoard and 

Seaborn libraries are used. TensorBoard library provides storage, retrieval, 

visualization of machine learning results produced using TensorFlow. Seaborn 

is a Python data visualization library based on Matplotlib. The code is written 

to run on CPUs. However, with minor modification, the code can run on GPUs 

and thereby further improve its time performance. The code is published online 

on Kaggle [149] to support further research.  

5.4 Results and Analysis 
The model proposed in the previous section was trained with 1.0 million 

samples. For validation, a separate dataset of 0.2 million samples and for testing 

a different test dataset of 0.35 million samples were used. 

5.4.1 Training and Validation Results 

The DNN model was trained over 40 Epochs with Early Stopping (with 

patience set to 20). The accuracy in each epoch during training and validation 

is plotted below in Figure 5.3. The dark red line represents training accuracy, 

while the light red line depicts validation accuracy. While the training was set 

to 40 epochs, it is seen that it was stopped at 25 by the early stopping algorithm 

when the accuracy stabilized.  
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Figure 5.3: Training and Validation Accuracy

Similarly, the binary cross entropy loss during the validation and training 

is shown below in Figure 5.4.

Figure 5.4: Training and Validation Loss

It can be seen from Figures 5.3 and 5.4 that the training accuracy had 

lagged behind validation accuracy, and validation loss has lagged behind 

training loss. This behavior is attributable to the 10% dropout that was 

implemented during training for regularization (10% dropout will randomly 

switch off neurons in layer 3, thereby reducing training performance). 

Since dropout is not used during validation and testing, training performance 

always lags validation and test performance in such regularized models.
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In the previous section, we had discussed the initial bias used in this 

model as per equation (5.27). The modified initial bias resulted in faster 

convergence, as can be seen in Figure 5.5. The graph shows that the loss 

dropped rapidly within few epochs with the use of initial bias.

Figure 5.5: Impact of Initial Bias

5.4.2 Evaluation on Test Dataset

The test dataset's evaluation gave results as shown in Table 5.3. The total

number of samples in the test dataset were 0.564 million.

Table 5.3: Evaluation on Test Dataset (DNN with Structured Data)

Metrics Value
Accuracy 0.9981

Recall (TPR, Sensitivity) 0.9970

Specificity (TNR, Selectivity) 0.9990

Precision (PPV) 0.9586
NPV 0.9999

F1 Score 0.9774
*Note: Positive class represents the 'Malicious label'.

The meaning of metrics used in Table 5.3 has already been given in 

Table 4.4. Confusion Matrix that gives us the distribution of True Positives 

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) is 

given below in Figure 5.6. The confusion matrix clearly highlights negligible 

FN and FP during the test dataset evaluation.
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Figure 5.6: Confusion Matrix

AUC-ROC metric denotes the area under the Receiver Operating 

Characteristic curve. This metric gives the probability of ranking a random 

positive sample vis-a-vis a random negative sample. The AUC graph is given 

below in Figure 5.7. The high AUC value (0.9967) shows that the DNN model 

is capable of distinguishing classes with negligible errors. 

Figure 5.7: AUC-ROC Graph

5.4.3 Execution Time and Computational Resource

Time and computational resources used are essential factors in gauging 

any machine learning solution. Training time for 1 million records over 40 

Epochs was 175.96 mins, which is impressive keeping in mind the high training 

time requirements of deep learning. This is the time taken on a 2.5Ghz Intel i5 

CPU, without using any GPU, parallelization, or distributed computing. If these 

techniques are used, training time will come down further. What is essential is

that the testing time per sample is less compared to other ML models 

[130][133]. The test time per sample is 14 . If we consider the time for 

preprocessing each sample (for example, preparing one sample from each 

TP = 12764 FN= 38
TPR = 0.997 FNR= 0.003

FP = 551 TN = 550646
FPR = 0.001 TNR = 0.999
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webpage being visited by a browser), we get a total time of 264 . Total time 

will vary based on the size of the webpage. Further, network delay has not been 

factored in this calculation. Such fast response in testing makes this trained 

DNN model suitable for deployment on Internet Browsers or other platforms 

for real-time maliciousness check. 

5.4.4 Analysis 

Analysis of training and validation results clearly show that the model 

was well trained without overfitting. The trained model gave a high accuracy 

of 99.81%, which surpasses the results of other machine learning models used 

until now to detect malicious webpages. The negligible False Negatives and 

False Positives, high Precision and Recall values substantiate the model's 

capability to produce accurate decisions with minimal false alarms. 

5.5 Conclusions 
This work provides a functional interdisciplinary approach to use deep 

learning in the field of web security. While other ML techniques have been used 

to detect malicious webpages, the use of deep learning in this field has been 

largely unexplored. It was seen that deep learning performs better than earlier 

ML models in the detection of malicious webpages. The deep learning model 

has outperformed previous models not only in accuracy, precision, and recall, 

but also in test response time. The performance of this model makes it suitable 

for real-time web security solutions on the Internet.  

With respect to scope for further work, this DNN model may be deployed 

on a browser like Google Chrome or Mozilla Firefox using a plugin to provide 

real-time detection of malicious webpages while browsing. Also, the use of 

'Tensorflow.js' [150] can be explored for training and running this model 

directly on the web browser. Lastly, we used structured data for deep learning. 

It would be interesting to know how the accuracy and response time changes 

with the use of unstructured data as input to the deep learning model, for 

example, feeding the web content directly to the DNN. We explore this in the 

next chapter. 

 


