
Chapter 8: Android Web
Security Solution Framework
Using Cross-device Federated

Learning

L

wherein data from various sites/devices is transferred to a central server or

cloud. ML models are trained at the central server and then communicated back

to sites/devices for deployment. There are two major problems with this form

of machine learning. Firstly, the data needs to be communicated to the central

server, resulting in high communication costs. In this era of Big Data, it can

become a major bottleneck. Second, and most important is the fact that privacy

is compromised when data leaves your device, machine, or organization.

Federated learning (FL) has emerged as a very promising solution to both these

problems. In FL, the data never leaves your device or organization. Only, the

parameters of a trained local model are communicated to the federated learning

server from each device. To make the system more secure, model parameters

are encrypted using homomorphic encryption. Local models are aggregated at

the central server to get the global model. The learning happens in several

rounds till the aggregated global model achieves desired accuracy. In this

chapter, we explore how FL can help in mobile security without compromising

the privacy of users.

8.1 Background
The number of smartphones crossed the 3.5 billion mark recently, and

this figure is estimated to grow rapidly [198]. Smartphone, being the most

ubiquitous computing device universally, is one of the preferred security

targets. The mobile computing platform's security is currently an active

research area, with researchers using ML to detect new malwares and attack

vectors. However, these conventional ML approaches are centralized, which

require users to communicate data to a central server or cloud to enable analysis

Android Web Security Solution Framework Using Cross-device Federated Learning

131

and prediction of security threats. The main issue with a centralized approach

is that users are not comfortable sharing their data due to privacy concerns.

Moreover, communicating users' data from millions of devices to a central ML

server requires large bandwidth. Currently, privacy concerns preclude the use

of ML in mobile security. Till now, two approaches towards privacy-preserving

ML were used. First, encryption-based methods represented by 'Secure Multi

Party Computation (SMPC)' [199] and 'Homomorphic Encryption (HE)' [200].

Second, the perturbation method represented by 'Differential Privacy (DP)'

[201]. Both use protocols to handle data transmission and result computation

with data as ciphertext, thereby ensuring privacy. However, encryption and

handling of ciphertext have huge computational overheads [200]. DP uses the

mathematical theory of privacy through noise addition to data [202]. While it

has fewer computational overheads as compared to HE or SMPC, it affects the

model's prediction accuracy. Further, DP approach is different for various ML

techniques, and it gets overly complicated for deep learning (DL) [202]. While

still restricted by these shortcomings, only recently privacy-preserving ML has

been deployed at scale [203] [204].

This chapter proposes a FL [30] based mobile security solution which

overcomes privacy concerns. The proposed solution is cross-device, which is

characterized by a participation of a large number of mobile or IoT devices,

decentralized data, and a centralized server that orchestrates the training to build

a global machine learning model. Apart from addressing privacy concerns, the

proposed solution exploits the computing power of millions of participating

devices. The solution is thus scalable without requiring expensive computing

infrastructure.

A FL system is a single point failure system. If the FL server fails, the

whole system fails. Moreover, the scalability of the system is dependent on the

computational capability of the server. More powerful the server, the more

scalable it can be. We propose a Hierarchical Federated Learning (HFL) system

which makes FL fault tolerant and at the same time allows for increased

scalability [205]. There is another important advantage that HFL offers. It

allows us access to regional patterns at a desired level of spatial granularity.

Regional patterns cannot be accessed in a single server FL architecture. The

HFL based solution is presented in section 8.3.4.

Android Web Security Solution Framework Using Cross-device Federated Learning

132

Furthermore, considering cross-device FL's vulnerability to adversarial

attacks [206], wherein a rogue remote client may attempt to poison the learning

model to produce unexpected classification results, adversarial robustness has

also been incorporated in this proposed FL model in section 8.3.3.

Google introduced and exploited FL for improving its mobile keyboard,

which transformed touch-typing [207]. This work exploits this technology for

proposing a decentralized mobile security solution. In the proposed solution,

each mobile device temporarily stores its web browsing data and uses it to

refine a skeleton Deep Neural Network (DNN), which is communicated to each

mobile device by the central server. The refined model is then communicated

back to the central server securely, where it is aggregated with models received

from other mobile devices to get a global model. The global model is then

shared with each mobile device for deployment and further incremental

learning. On each mobile device, the model is trained using a supervised

DNN model, wherein the supervised classification labels ('malicious' or

benign') for each webpage are computed using a security API. We may use an

Antivirus API (e.g., Virus Total API [208]) or Google Safe Browsing API [61]

for this labeling task. In this work, the Google Safe Browsing API [61] has been

used. The complete solution runs on a mobile platform as an app. In this

chapter, this is implemented and simulated on an Android platform. While this

concept has been demonstrated on the Android platform in this work, this

solution can be implemented on other platforms, like iOS or any cross-platform

device. The solution proposed in this chapter will help enhance mobile security

without compromising mobile users' privacy.

The experimental setup for this work simulated thousands of mobile

devices participating in this FL security model using a dataset of 1.2 million

webpages distributed randomly amongst them in an idd (independent and

identically distributed) manner. In addition to preserving users' privacy, the

performance of the FL model is comparable with that of the corresponding

centralized ML model.

The rest of the chapter is structured as follows: related work is discussed

in Section 8.2, Section 8.3 introduces the FL framework for Android web

security, Section 8.4 discusses and analyses results, and lastly, Section 8.5

Android Web Security Solution Framework Using Cross-device Federated Learning

133

concludes with a discussion on the utility of model proposed and scope for

future work.

8.2 Related Work and Research Gap
The work presented in the chapter brings together two areas of active

research, viz. mobile web security and FL. The related work in these two areas

is described in sub-sections 8.2.1 and 8.2.2.

In 2017, Google Inc. proposed an innovative technology through their

paper on decentralized deep learning [205]. They coined this new technique as

'Federated Learning (FL)'. Over the last two years, Google has used this new

technology to improve Android Keyboard suggestions, which revolutionized

mobile touch typing [207] [209]. In 2019, Bonawitz et al. discussed designs

for large-scale FL in their paper [203]. FL has also ushered in a new research

direction in the healthcare domain by allowing multi-institutional collaboration

without the need to share sensitive patients' data (Sheller et al. [210]). Li et al.

[32] have presented a privacy-preserving brain tumor segmentation using FL in

which multiple hospitals in the UK participated. Privacy-preserving data

analysis has been studied for more than five decades. It is only in the past

decade that solutions have been deployed at scale [204] [211]. Google has

extensively used FL in the Gboard mobile keyboard [31][212][213][214] and

Android messages [215]. While Google has pioneered cross-device FL, Apple

is also using it in iOS 13 [216] for applications like the QuickType keyboard

and the vocal classifier for Siri [217]. Snips has explored cross-device FL for

hot word detection [218].

Recently researchers have gained interest in a variant of FL, named

hierarchical FL (HFL), which facilitates further decentralization of the FL

model with multiple servers replacing a central server. Lumin et al. [205] and

Aidmar et al. [219] proposed such a HFL model and brought out the benefits of

this implementation vis-a-vis a FL model. The convergence of HFL based

solutions has been analyzed by Wang et al. [220]. We propose to use HFL to

get country wise patterns and also to provide a more fault tolerant FL solution.

Android Web Security Solution Framework Using Cross-device Federated Learning

134

Conventional centralized ML has been used in the literature to develop

mobile web security solutions. Singh et al. have used ML to identify threats

emanating from hybrid Android apps [221] (refer to Chapter 7 for details).

They achieved this by learning threat patterns from a repository of disassembled

Android apps. Similarly, Milosevic et al. [222] carried out a static analysis of

Android apps using machine learning with two approaches: one based on the

bag-of-words representation of source code and the second based on system

permissions. Also, Li et al. used an application permission-based SVM

classifier to detect malicious Android apps [223]. Ma et al. took a deeper

approach; they generated control flow graphs of Android apps and prepared

three datasets- API calls, API frequency, and API sequence, and used these

datasets for classification using an ensemble method [224]. It is pertinent to

note that all the work done till date has used a central repository of Android app

codes or user data, which is primarily restricted due to user data privacy

concerns [225]. As mentioned in Section 8.1, Secure Multi Party Computation

(SMPC) [199] and Homomorphic Encryption (HE) [200] based encryption

methods, and Differential Privacy (DP) [201] [202] based perturbations have

been tried to overcome the privacy concerns of conventional ML. However,

they suffer from computational overheads, complications, and loss of prediction

accuracy; thus, they have not been utilized in the field of mobile security.

From the literature, it is clear that there has been no work on mobile web

security which provides a privacy preserving solution. This makes a case to

leverage the advantages offered by FL in the field of mobile security.

To the best of our knowledge, this is the first attempt to solve the Android

web security problem using cross-device FL.

8.3 Federated Learning Framework for Android
Web Security

This section proposes a FL framework for Android web security and

describes its design and implementation.

Android Web Security Solution Framework Using Cross-device Federated Learning

135

8.3.1 Federated Learning (FL)

FL is a novel technology that is quite different from conventional

centralized ML [226]. It uses a decentralized ML approach, where users' data

on mobile devices is used to train ML models locally, and the update is shared

with a centralized server over the network [227]. So, while conventional ML

takes data to the model, FL takes the model to the data. This design overcomes

privacy concerns regarding the user data that were prevalent earlier, since now

merely the model is shared with the central server and that too in encrypted

form. An implementation of secure aggregation proposed by Bonawitz et al.

ensures that individual encrypted updates from phones are un-inspectable

globally [203].

Currently, there are two variants of federated learning viz., cross-device

and cross-silo. The major distinguishing factor between the two is the scale of

operations. In cross-device, we can have up to 1010 clients, whereas in cross-

silo we can have anywhere from 2 to 100 clients which are typically

organizations participating in a learning activity. Brain tumor segmentation

example of cross-silo federated learning wherein many hospitals participated

[32]. Apart from scale, the other major differences being client reliability and

availability. In cross-device, both reliability and availability are low, whereas

in cross-silo, both are high. Data partitioning is always example-partitioned

(horizontal), while it could either be example-partitioned (horizontal) or

feature-partitioned (vertical) in cross-silo. Mobile security fits the cross-device

FL variant. Subsequent sub-sections describe how this technique has been

adapted to improve Android web security.

8.3.2 Design and Implementation

A federated cross-device learning system has two loosely connected

components, viz., the clients (Android mobile platform) and the central server.

Numerous clients communicate with the central server over the Internet, as

depicted in Figure 8.1. Some of the clients are rejected based on their

connection, bandwidth, battery backup, etc. Rejected clients are told to come

back later. The central server sends an initial model to each of the clients. Each

Android Web Security Solution Framework Using Cross-device Federated Learning

136

client is an Android mobile platform, which carries out incremental learning

using the DNN model and computes a model update . This is shared

over the Internet with the central server. If there are total n clients in a FL setup,

only a small fraction c would be active any time (assuming these clients would

participate in learning when the mobile's computational resources are idle and

communicate model/update over a non-metered Wi-Fi connection to save

communication costs).

Figure 8.1: A Typical Federated Learning (FL) Round

After receiving the updates from 'c.n' clients (where ,

denotes the fraction of clients participating in an update round), the central

server performs aggregation to produce an aggregated global model. This

updated model is then, in turn, shared with the clients, and the process repeats.

For any ML problem based on DNN, the loss on a prediction (is
computed as,

where, is the estimated output, is the target output, and w depicts

model parameters of DNN (matrix containing both weights and biases. Please

FL
Server

Client

'n' clients

Client

Client

STEP 1: REGISTRATION STEP 2: SELECTION

Devices Register with FL Server

FL Server does a Selection

Rejected Devices are Told to Come Back
L t

(Model m)

Client

Client

FL
Server

Client

'n' clients

1

(Aggregated
Global

Model m+)

m

Client

Step 3: TRAINING Step 4: MODEL COMMUNICATION
& AGGREGATION

FL Server Sends Skeleton Model to Selected
Devices

On-device Training with Local Data & Model
Updates are Reported Back to FL Server

Updates of Some Devices May Not Reach FL
Server Due to Network/Device Failure

Model Aggregation Happens at FL Server

FL Server Ready for Next Round of Training

Client

m

m

2

n

Client

Client

Android Web Security Solution Framework Using Cross-device Federated Learning

137

note that here symbol 'w' denotes both parameters- weights, and biases.). With

data partitioned over clients, with as data index of client and

, the federated averaging involving all the clients in the FL network can be

given by equations (8.2) and (8.3).

Equation (8.1) depicts the loss function, which is minimized to find

appropriate w (model parameters) as part of the learning process on each client

locally through equation (8.2). When all clients, after local learning, send their

appropriate parameters w to the central server, they are averaged using equation

(8.3).

The FL topology has the client and central server processes running

asynchronously. The client process is illustrated in Figure 8.2. The client

process on the Android mobile is implemented using an app, 'FL-based Web

Security app (FWS)', which has been developed for this work. When a client

accesses a webpage using the inbuilt Chrome browser (or the WebView

Component), the FWS apps stores the copy of the webpage locally in a

database. Each webpage in the dataset is pre-processed to remove stop words

and tags (however, the JavaScript code, if any, is retained). Since a supervised

learning approach has been adopted, there was a need to label the webpage as

either 'malicious' or benign'. This was done using the Google Safe Browsing

API [61]. Alternately, the labels can also be learned using a local Anti-virus

installed on the mobile. After a specific interval (e.g., a day or whenever the

phone is idle, whichever is later), the prepared dataset is used to train the last

updated global model received by the client. It is pertinent to note that the local

dataset is ephemeral and is deleted after each local training cycle is completed.

The model update produced by local training is shared, after encryption, by

the communication module to the central server. What is essential is that no

other information, apart from the model parameters w, is communicated. The

central server carries our federated averaging [30] using equation (8.3) and

produces an updated global model, which is again pushed to the clients in the

next round of learning. When a client gets the updated global model, it replaces

Android Web Security Solution Framework Using Cross-device Federated Learning

138

the last local model with the current global model. This cycle proceeds

continuously, and the model keeps getting evolved over time. FWS app has a

browser plugin, which uses the current model to predict whether the page being

visited by the browser is 'malicious' or 'benign.' Thus, the browser helps in

training the FL Android web security model, and in turn predicts webpage more

accurately. This design makes FL Android web security architecture uniquely

symbiotic and self-evolving.

Figure 8.2: Client Process

The DNN model used in the proposed framework is illustrated in Figure

8.3. The locally labeled webpages dataset is fed to the input layer, a stacked

Anti
Virus
App

Browser (Chrome, etc)
or WebView (in App Browser)

Google
Safe

Browsing
API

Browser's
Prediction Plugin

Storing &
Pre-processing of
Visited Webpages

Labeling of Webpages
Using Anti-Virus/ Google

Safe Browsing API

Communication
Module

Internet

FL based Web Security App (FWS)

Local Training of
Model

DNN
MODEL

Central Server
Website

Client
(Android Mobile)

'E' Epochs
'B' Batches

Android Web Security Solution Framework Using Cross-device Federated Learning

139

LSTM encoder that produces fixed 20-dimension output. The LSTM encoder

has been implemented in this model using 'Transfer Learning' (In Transfer

Learning [228], a pre-trained model is used as the starting point for a new

model). The building block of this LSTM encoder was an autoencoder that had

three layers in the encoder and three layers in the decoder. It was trained with

web text and JavaScript to produce a fixed 20 code vector output for any

variable length input. After training, the decoder was removed, leaving the

encoder alone. This pre-trained encoder was then used in our model (using the

concept of 'Transfer Learning' mentioned above) to encode the input. The

detailed implementation and design of the LSTM encoder can be accessed

online [229]. The output of this encoder is the input to the two-layer DNN. The

advantage of using the DNN model, which makes it easy to use in FL, is that it

can simply be represented by its parameters w (weights and biases).

Figure 8.3: DNN Model Used for FL Learning

INPUT
WEBPAGES

Pre-processing Stored
Webpages

32

16

y=1
(Benign)

y=0
(Malicious)

Output
Class Labels

Activation
RELU

Activation
RELU

Activation
Sigmoid

20

STACKED LSTM ENCODER
(FIXED 20 DIMENSION OUTPUT)

Android Web Security Solution Framework Using Cross-device Federated Learning

140

The trainable parameters in this model are shown in Table 8.1. These

parameters are trained locally, shared with the central server, aggregated using

Federated Averaging at the central server, and again shared back to the clients.

Table 8.1: Layer Wise Tunable Parameters

Layer

Layer
(Type)

Output
Shape

Parameter (w) #

1 Input
Embedding

Layer

20 Sized
Vector

-

2 Dense
(Hidden 1)

32 46048
(1438 x 32 Weights + 32 bias)

3 Dense
(Hidden 2)

16 528
(32 x 16 Weights + 16 bias)

4 Output 1 17 (16 Weights + 1 bias)

Total Trainable Parameters: 46,593

Each client's data is split into 'B' batches and trained over 'E' Epochs. The

training is done to reduce the loss function given in equation (8.1). Since

this is a binary classification problem, the Binary Cross Entropy loss, as given

in equation (8.4), was used.

The local training is carried out using Stochastic Gradient Descent (SGD)

with learning rate . The local model generated after training with SGD is

thereafter shared with the central server for aggregating the model using

federated averaging [205] described by equation (8.3). To further enhance

security and privacy, secure aggregation (a class of SMPC) proposed by

Bonawitz et al. [230], and differential privacy (DP) as presented by Abadi et al.

[231] was implemented (these two were implemented as different solutions).

Secure aggregation used homomorphic encryption to encrypt individual

, which were aggregated at the Central Server in an encrypted form

to produce the updated model. The DP solution used a 'Differentially Private

Distributed Stochastic Gradient Descent' algorithm to compute the results at

Central Server after introducing a small noise in s prepared by the

clients.

Android Web Security Solution Framework Using Cross-device Federated Learning

141

The pseudo-code of the FL algorithm is given in Table 8.2. The algorithm

has been implemented in Python and has been hosted online [232].

Table 8.2: FL Algorithm for Android Web Security

Process Algorithm Description
Server
Process

(Running
on Central

Server)

 #Federated Averaging
Initialize parameters #The initial global model [step 1]
for each communication round t=0..1...t' do

 # c=0.3 used in this experiment
 for each active client k m in background do
 #[step 2]
 #Client Update (received from each K clients
 #[step 3]
 #New computed global model after averaging client updates

Client
Process

(Running
on a

client k)

 #Local Dataset Generation
While Browser Process active do
 Website Visted

for local epoch from 1.. to E do
 for batch do

return (locally updated w) to server
 #Prediction Plugin for Mobile Browser
While Browser Process active do
 Webpage visited
 #Prediction generated using currently updated
 local model

8.3.3 Adversarial Robustness of FL Model

It is essential for FL models to be robust against poisoning attacks, as

rogue clients can send poisoned updates to the central server and thereby

poison the aggregated output. Researchers have used many approaches to detect

poisoning, viz., activation clustering [233], spectral signature [234], etc.

However, these techniques are better suited to centralized ML and do not

perform well in a FL environment. Cao et al. proposed the ensemble federated

learning technique specifically for federated environment [235]. But being

computationally intensive, it unsuitable for a large federated architecture like

the one proposed in this chapter. Thus, a novel method of detecting poisoning

in FL models was proposed. The variance of the model is computed from the

Android Web Security Solution Framework Using Cross-device Federated Learning

142

last updated model held with the central server in every update cycle. The

variance is computed using trainable parameters of the DNN model as listed in

Table 8.1. If the variance of a model is above the threshold , then that model

sent by the client is dropped before the update process. The appropriate

threshold is computed separately by training few models with poisoned data

and a few with clean data and thereafter checking their variance. This technique

has been implemented using the Adversarial Robustness Toolbox (ART) library

[236], and the code for this implementation is shared online on Git Hub [237].

8.3.4 Hierarchical Federated Learning (HFL) Model

Privacy, scalability, and reliability of a FL topology can be enhanced

further by adopting a hierarchical topology with servers for aggregation at each

level [205]. Privacy in HFL is enhanced further as each level (an organization,

region, or country) can have its own server for aggregation [219]. For e.g., each

hospital, office, region, or country can have its own aggregation server.

Multiple servers also provide redundancy to the federated topology because if

any server fails, the learning process still continues with the rest of the servers

in the network. Also, with HFL, regional patterns can be identified by analyzing

the model aggregated by each regional server. Further, HFL enhances

scalability of the solution.

Like FL, where the central server carries out Federated Averaging

(FAVG), in HFL, it happens with each server. Servers lowest in the hierarchy

carry out FAVG over the client models, whereas servers higher in the order

of the hierarchy aggregate the averaged models using Hierarchical Federated

Averaging (HierFAVG) [205]. The global model converges over multiple

communication rounds [220]. The topology of HFL used for mobile security

has three tiers, as shown in Figure 8.4. The lowest tier represents the clients

(Android mobiles). The second tier represents each country's server, and the

third tier represents the global aggregator, which receives averaged models

from each country's server.

Android Web Security Solution Framework Using Cross-device Federated Learning

143

Figure 8.4: Hierarchical Federated Learning (HFL) Topology

The HFL algorithm is given in Table 8.3. The code for this HFL

algorithm based experiment is hosted online on Github to facilitate

reproducibility and further research [238].

Table 8.3: Hierarchical FL (HFL) Algorithm for Android Web Security

Process Algorithm Description
Global
Server
Process

(Running
on the
Global
Server)

 #Hierarchical Federated Averaging
Initialize parameters #The initial global model [step 1]
for each communication round t=0..1...t' do
 for each active server k r in background do
 #[step 2]

 #Update (received from each regional server
 #[step 3]

 #New global model computed after averaging updates from
 regional servers

Regional
Server
Process

(Running
on each

Country's
Server)

 #Federated Averaging
Initialize parameters based on model received from global
server #The initial regional model [step 1]
for each communication round t=0..1...t' do
 #[step 2]
 # c=0.3 used in this experiment
 for each active client k m in background do
 #[step 3]

 #Client Update (received from each K clients
 #[step 4]
 #New computed regional model after averaging client updates

Client
Process

(Running
on a

 #Local Dataset Generation
While Browser Process active do
 Website Visted

Client Client Client.......
'n'

clients

Regional
Server

Client Client Client.......
'n'

clients

Regional
Server

Client Client Client.......
'n'

clients

Regional
Server

.......
'r'

Regional
Servers

Global
Server

HierFAVGLevel 3:
Global

Level 2:
Country

Level 1:
Mobiles

Android Web Security Solution Framework Using Cross-device Federated Learning

144

Process Algorithm Description
client k)

for local epoch from 1.. to E do
 for batch do

return (locally updated w) to the regional server
 #Prediction Plugin for Mobile Browser
While Browser Process active do
 Webpage Visited
 #Prediction generated using currently updated
 local model

8.4 Experimental Setup and Results

8.4.1 Dataset

Cross-device FL solutions typically involve millions of clients and are

very difficult to test and validate over a live setup. Thus, this work has used

simulation to test and validate the proposed solution. Since simulation requires

a ready large dataset, the 'Malicious and Benign Webpages dataset' published

by Singh et al. [163] [139] (refer to Chapters 3) has been used. The dataset

contains 1.5 million webpages (web content including JavaScript), labeled as

'malicious'/'benign.' It is pertinent to note that any web security problem,

whether on a hybrid app running in a mobile or on a browser running in a

desktop, ultimately boils down to analyzing webpages. Thus, we have chosen

the webpages dataset for this FL based web security task.

 For simulation, 80% of records (1.2 million samples) were selected as

training data and split over n shards, representing federated dataset for n clients.

The split was random to ensure independent and identically distributed (iid)

variation in data [239]. To produce non-iid data (for comparison experiments

with iid data), the data was first sorted into its two classes and then distributed

amongst the clients ensuring uneven distribution of classes. It is essential to

mention that any data taken for the web security task will be skewed since the

number of malicious webpages on the Internet are just a tiny percentage

compared to benign webpages. The solution to this has already been discussed

in Chapter 6 in section 6.3.3.3. We thus use modified class weights given in

Equations 6.28 and 6.29 to overcome skewedness. Also, to improve

convergence, we use initial bias for our setup as given in Equation 6.30.

Android Web Security Solution Framework Using Cross-device Federated Learning

145

8.4.2 Experimental Setup

The DNN model presented in Section 8.3 was implemented using

TensorFlow, an open-source ML platform in Python released by Google [147],

and Keras [148], a deep learning library in Python that can run on top of

TensorFlow libraries. FL algorithm and simulation were implemented using

TensorFlow Federated (TFF) [240]. Algorithms that were not part of the

standard library were coded in Python using NumPy. For generating results and

analysis graphs, TensorBoard (a library that provides storage, retrieval, and

visualization of machine learning results produced using TensorFlow), and

Seaborn (a Python data visualization library) were used. The code is written

to run on CPUs. However, with minor modifications, it can run on mobile

GPUs, thereby further improving its efficiency. The Google Colab platform

was used for the experimentation. The code and the generated results are hosted

online on Google Colab [232] and Git Hub [241]. Various metrics, viz.,

accuracy, precision, recall, F-score, etc., were evaluated as part of the

simulation and are discussed in the next sub-section.

8.4.3 Results and Analysis

From the webpages dataset, (1.2 million) samples were taken for

training. These were split between clients, with an average samples per

client; the split was random to ensure iid behavior. The number of active clients
for aggregation at the central server was taken as 30%, i.e., . Different
values of (Number of Clients), (Number of training Epochs on each client
using the local DNN model), (Batch size for training) were taken for federated
training. After each communication round, the model aggregation was carried
out at the central server, and the updated model was shared with the clients for
the next round. For determining the test accuracy, a test dataset of size 0.363
million was used, and test accuracy was determined after each communication
round. The results are plotted in Figure 8.5. As can be seen from the figure,
the best accuracy was achieved for the set of hyperparameters (E=20, B=5,
n=1000). This result could have been improved further by increasing E, the
number of epochs on each client. However, this tendency was avoided because
it was felt that any greater value would extract more computational time from

Android Web Security Solution Framework Using Cross-device Federated Learning

146

the client. Nonetheless, increasing E can be considered when adequate client
resources are available.

Figure 8.5: Test Accuracy vs. Communication rounds
(with various values of E, B, & n)

FL model's performance has been compared with a similar conventional
ML model trained with the same dataset (trained with complete d=1.2 million
records using the same DNN model running on a centralized server). The results
of this comparison are plotted in Figure 8.6. As expected, the convergence of
conventional centralized ML solution is faster.

Figure 8.6: Conventional Centralized ML vs. FL

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Epochs for ML/ Communication Rounds for FL

FL with E=20,B=5,n=1000 ML over Complete d=1.2million

Android Web Security Solution Framework Using Cross-device Federated Learning

147

The class imbalance issue, highlighted in the previous section, was

handled using initial bias as per equation (8.6) and class weights as per equation

(8.5). Also, earlier in this chapter, the importance of iid vis-à-vis non-iid data

was discussed. The variation due to initial bias, class weight, and iid-data is

illustrated by Figure 8.7, which plots test accuracy for all scenarios.

Figure 8.7: Impact of Initial Bias, Class Wt & iid-data
(E=20, B=5, n=1000 for all scenarios)

The results for the best combination of FL training hyper-parameters
(E=20, B=5, n=1000) are summarized in Table 8.4. The table also shows a
comparison of these metrics' vis- à-vis a corresponding Centralized ML model.
The meaning of metrics used in Table 8.4 has already been given in Table 4.4.

Table 8.4: Evaluation of Test Dataset

Metric FL Centralized
ML*

Accuracy 0.9972 (99.72%) 0.9974(99.74%)
Recall

(TPR, Sensitivity)
0.997 0.947

Precision (PPV) 0.771 0.800
F-Measure 0.869 0.868

The positive class is 'Malicious'.
The total test samples were 0.36 million- malicious (3240), benign (356760).
*Note: Metrics of centralized ML shown in this table are less than those in
Table 6.2, as the DNN model used here is different. The DNN model chosen
here is such that it is akin to the light FL model running on the mobile.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Communication Rounds

iid, with class wts & Initial Bias
non-iid, with class wts & initial bias
iid, w/o class wts & initial bias
non-iid, w/o class wts & initial bias

Android Web Security Solution Framework Using Cross-device Federated Learning

148

From the comparison presented in Table 8.4, it can be seen that the

performance of FL is comparable to that of the centralized ML for Android web

security. Centralized ML model marginally performs better. However, the F1-

score is marginally better for FL. This marginal gap too can be covered up by

the FL model if the number of epochs on clients are increased (For e.g., at

E=100, accuracy touches 99.76%, though it comes at the cost of additional load

on clients).

Confusion Matrix is given in Figure 8.8 for both FL and centralized ML

models. It emerges from the results that the FL model outperforms the

conventional ML model in correctly classifying the 'malicious' class, i.e.,

malicious webpages (TPR of FL model is much higher than ML model). This

suits our Android security requirements well, as higher TPR will ensure that no

malicious webpage is ever wrongly classified as benign.

Figure 8.8: Confusion Matrix FL vs. ML

Section 8.3.4 had described the HFL variation that was tried as part of

this experiment. The HFL experiment simulation was carried out with a three-

level structure. The first level of aggregation was carried out at the country

level, i.e., models from clients within the same country was aggregated using

Federated Averaging (FAVG). Thereafter, at the global level, models received

from country servers were averaged using HierFAVG. Figure 8.9 shows the

accuracy of the HFL model as compared with the FL model (refer to Figure

8.5).

Android Web Security Solution Framework Using Cross-device Federated Learning

149

Figure 8.9: HFL vs. FL Accuracy Plot

A comparison of the confusion matrix of HFL vs. FL is given in Figure

8.10. A minor underperformance in HFL is seen vis-a-vis FL, which is

attributed to the slow convergence and presence of non-iid data in the first stage

of aggregation using FAVG (at regional servers).

Figure 8.10: Confusion Matrix FL vs. HFL

It emerges from the results that the FL model performs as good as the

conventional centralized ML model for the Android web security problem

addressed. While the FL model's convergence is not as efficient as centralized

ML, it is not of much consequence in our distributed security architecture as

there is no time-criticality. It is also evident that while the FL model fared well

in F1-score and TPR, it fell just short in other metrics. These minor differences

in metrics can be bridged by further hyper-parameter tuning (e.g., changing E,

B, n, etc.). However, it is pertinent to note that these minor shortcomings are

far outweighed by the advantages that FL offers to the Android security model,

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

Communication Rounds

FL(E=20,B=5,n=1000) HFL(E=20,B=5,n=1000)

Android Web Security Solution Framework Using Cross-device Federated Learning

150

viz., privacy preservation, decentralized incremental learning, increased data

availability for training, reduction of server load, and utilization of

computational resources of the client. Further, we see from Figures 8.9 and

8.10, FL slightly outperforms the HFL model. However, HFL provides

additional benefits like fault tolerance, increased scalability and enhanced

privacy. The choice between the two can be done based on the requirements.

8.5 Deployability of Solutions Proposed
Solutions in part III of the thesis were proposed keeping in mind the

requirements in web security on mobile platforms. These solutions have been

designed and developed for academic research. However, these can be

deployed in live commercial settings or integrated into existing security

solutions with minor improvements and upscaling.

Hybrid Apps Solutions: Both 'WebView Tool' and 'WebView Monitor'

apps are deployable. 'WebView Monitor' can be deployed commercially as a

security app after further refinement. Furthermore, the functionality of

'WebView Monitor' can be integrated into existing mobile antivirus apps with

minor adaptations. The trained ML model for predicting hybrid apps

maliciousness/vulnerability can be readily used by firms/organizations to test

new android apps hosted on various online stores like the Google Play store.

FL based Web Security Solution: The FL based cross-device web security

solution proposed in this chapter is fully deployable. With suitable

improvements, like integration of the FWS app (refer to Figure 8.2) with

mobile browser and Android WebView, upscaling the central server

application, it can be deployed in live settings. Likewise, the proposed

hierarchical FL (HFL) solution is fully deployable after suitable improvements.

8.6 Conclusion and Future Work
This work has provided a privacy-preserving solution for Android web

security using cross-device FL. Using a simulated environment, it has been

shown that FL based Android security model is as good as the conventional ML

Android Web Security Solution Framework Using Cross-device Federated Learning

151

models in terms of standard metrics used for comparing the performance of

classification models while dealing with class imbalance problems.

Regarding future scope, while this work has used a supervised local

learning technique, unsupervised learning may be explored as part of further

research as it would reduce the dependence on any third-party app for data

labeling. In the future, we plan to extend the work to iOS devices and thereby

provide a seamless solution that will work for devices using any of the two

popular platforms (Android & iOS). Further, the plan to build an Android

security suite using FL may be explored, which will provide a comprehensive

security solution for mobile devices. It will be capable of providing security

from not just malicious web pages but also from viruses and intrusions. The

possibility of developing a privacy-preserving browser security plugin may also

be worthwhile to explore.

