List of Figures

Figure no.	Title	Page no.
1.1	The x, y, z coordinate system representing the ply orientation	9
1.2	Buckling of a plate under uniaxial compression	22
1.3	Load-deflection response of various structural elements	23
3.1	Fabrication process	40
3.2	Layup sequence of sandwich hybrid, alternate layer hybrid, and functionally graded hybrid specimens in thickness direction	46
3.3	Glass transition temperature of the resin evaluated using Differential Scanning Calorimetry (DSC)	48
3.4	SEM image showing interface in carbon/glass FH laminate	51
3.5	Tensile test results of 0° fiber aligned CFRP specimens	54
3.6	Tensile test results of 90° fiber aligned CFRP specimens	57
3.7	Normalized curves of tensile characteristics of CFRP	58
3.8	Tensile test results of 0° fiber aligned GFRP specimens	61
3.9	Tensile test results of 90° fiber aligned GFRP specimens	63
3.10	Variation in curing experimental (a) longitudinal strength and (b) Young's Modulus between CFRP and GFRP specimens	64
3.11	Normalized curves of tensile characteristics of GFRP	66
3.12	Energy absorbed by FRP specimens	68
3.13	Characteristics of 45° fiber aligned CFRP specimens	70

3.14	Characteristics of 45° fiber aligned GFRP specimens	71
3.15	Normalized curves of shear modulus of the specimens aligned 45° to the fiber direction	71
3.16	Failure modes of specimens under tension	73
3.17	Stress-strain graphs of plain FRP, sandwich hybrid (SH), and alternate hybrid (AH) tensile specimens	74
3.18	Stress-strain graphs of tensile functionally graded hybrid (FH) specimens	75
3.19	Total energy absorbed by the plain, sandwich hybrid, alternate hybrid and functionally graded hybrid specimens	77
3.20	Compressive test results of 0° fiber aligned CFRP specimens	79
3.21	Compressive test results of 90° fiber aligned CFRP specimens	81
3.22	Normalized curves of compressive characteristics of CFRP specimens	82
3.23	Compressive test results of 0° fiber aligned GFRP specimens	84
3.24	Compressive test results of 90° fiber aligned GFRP specimens	86
3.25	Normalized curves of compressive characteristics of GFRP specimens	87
3.26	Failure modes of non-hybrid specimens under compression	88
3.27	Stress-strain graphs of plain FRP, sandwich hybrid (SH), and alternate hybrid (AH) compressive specimens	90
3.28	Compressive stress-strain curves of functionally graded hybrid specimens	91
3.29	Flexure test results of 0° fiber aligned CFRP specimens	95
3.30	Normalized curves of flexural characteristics of CFRP specimens	96

3.31	Flexure test results of 0° fiber aligned GFRP specimens	98
3.32	Normalized curves of flexural characteristics of GFRP specimens	99
3.33	Specimens failed after three-point bending test	100
3.34	Load-displacement diagrams of plain FRP and sandwich hybrid flexural specimens	101
3.35	Load-displacement diagrams of flexural functionally graded hybrid specimens	102
3.36	Comparison of flexural properties	104
4.1	Layup sequences of carbon surfaced hybrid laminates	107
4.2	Experimental setup of the composite plate	109
4.3	Buckling analysis of composite laminates	110
4.4	Convergence plot of buckling load in carbon fiber reinforced composite plate aligned in (0/90) direction.	115
4.5	Experimental postbuckling response of plain and hybrid laminates of fiber aligned in (0/90) direction under uniaxial compression without cutouts	117
4.6	Comparison graphs between experimental (EXP) and numerical (ABQ) postbuckling strengths of laminates	119
4.7	Buckling mode shapes of the functionally graded hybrid plate analyzed using numerical simulation under uniaxial compression buckling load	120
4.8	Numerical buckling loads of non hybrid, functionally graded hybrid and sandwich hybrid plates in which fiber is aligned in (0/90), (-45/+45) and (-45/+45/0/90) directions without cutouts	121
4.9	Numerical postbuckling response of non-hybrid and hybrid plates without cutouts aligned in various fiber directions	123

	4.10	Cutout shapes of the composite plates used in this study	124
	4.11	Buckling loads of functionally graded hybrid composite plates with and without cutouts stacked with fiber aligned in $(0/90)_{4s}$, $(-45/+45)_{4s}$, and $(-45/+45/0/90)_{2s}$ directions	126
	4.12	Initial crack propagation observed in functionally graded composite plates with and without cutouts with fiber aligned in (0/90) direction. The corresponding loads (in kN) are given in parenthesis	128
	4.13	Load vs. displacement curves of functionally graded hybrid plates with various shaped and sized cutouts stacked in $(0/90)_{4s}$ fiber direction	131
_	4.14	Initial crack propagation observed in functionally graded composite plates with and without cutouts with fiber aligned in (-45/+45) direction. The corresponding first ply failure loads (in kN) are given in paranthesis	133
_	4.15	Load vs. displacement curves of functionally graded hybrid plates with various shaped and sized cutouts stacked in (-45/+45) _{4s} fiber direction	135
_	4.16	Initial crack propagation observed in functionally graded composite plates with and without cutouts with fiber aligned in (-45/+45/0/90) direction. The corresponding first ply failure loads (in kN) are given in parenthesis	137
	4.17	Load vs. displacement responses of functionally graded hybrid plates with various shaped and sized cutouts stacked in $(-45/+45/0/90)_{2s}$ fiber direction	139
_	5.1	Details of flexural boundary conditions	145
_	5.2	Details of in-plane simply supported boundary conditions with in-plane boundary restraints	146
	5.3	Data validation of Kumar and Singh, 2010 with the numerical method (ABAQUS) used in this study	147

5.4	Load vs. displacement plots of functionally graded hybrid plates with respect to carbon and glass fiber reinforced polymer plates with fiber aligned	149
5.5	Buckling mode shapes of functionally graded hybrid plates analyzed using numerical simulation	153
5.6	Load vs. displacement plots of functionally graded hybrid composite plates with fiber aligned in (0/90), (+45/-45), and (+45/-45/0/90) directions	154
5.7	Failure modes of FH plates with and without cutouts positive in-plane shear	155
5.8	Failure modes of FH plates with and without cutouts under negative in-plane shear	156
5.9	Critical buckling loads of functionally graded hybrid (FH) composite plates with α -sized (small size) cutouts with respect to FH composite plates without cutout	157
5.10	Critical buckling loads of functionally graded hybrid (FH) composite plates with β -sized (medium size) cutouts with respect to FH composite plates without cutout	158
5.11	Critical buckling loads of functionally graded hybrid (FH) composite plates with χ -sized (big size) cutouts with respect to FH composite plates without cutout	159
5.12	Load vs. displacement plots of functionally graded hybrid plates with fiber aligned in (0/90) direction with different shaped and sized cutouts w.r.t. plate without cutout subjected to positive and negative in-plane shear load	162
5.13	Load vs. displacement plots of functionally graded hybrid plates with fiber aligned in (+45/-45) direction with different shaped and sized cutouts w.r.t. plate without cutout subjected to positive and negative in-plane shear load	164
5.14	Load vs. displacement plots of functionally graded hybrid plates with fiber aligned in (+45/-45/0/90) direction with different shaped and sized cutouts w.r.t. plate without cutout subjected to positive and negative in-plane shear load	167

5.15	Load vs. displacement plots of functionally graded hybrid plates subjected to both positive and negative shear loads with different shaped cutouts having α -sized cutout	168
5.16	Load vs. displacement plots of functionally graded hybrid plates subjected to both positive and negative shear loads with different shaped cutouts having β -sized cutout	170
5.17	Load vs. displacement plots of functionally graded hybrid plates subjected to both positive and negative shear loads with different shaped cutouts having χ -sized cutout	171
5.18	Validation of load-deflection response of quasi-isotropic laminate (+45/-45/0/90) _{2s} with various flexural boundary conditions using ABAQUS	173
5.19	Validation of load-deflection response of quasi-isotropic laminate (+45/-45/0/90) _{2s} with various in-plane boundary conditions using ABAQUS with Singh and Kumar (2013) under positive and negative in-plane shear loads	175
5.20	Critical buckling loads of functionally graded hybrid composite plates aligned in $(+45/-45/0/90)_{2s}$ direction with and without cutouts	179
5.21	First ply failure loads of functionally graded hybrid composite plates aligned in $(+45/-45/0/90)_{2s}$ direction with and without cutouts	180
5.22	Ultimate failure loads of functionally graded hybrid composite plates aligned in $(+45/-45/0/90)_{2s}$ direction with and without cutouts	181
5.23	Effect of direction of in-plane shear load of the plate aligned in $(+45/-45/0/90)_{2s}$ direction with different boundary conditions	183
5.24	Load deflection responses of functionally graded hybrid composite plates aligned in $(+45/-45/0/90)_{2s}$ direction with and without cutouts with all the edges simply supported (FBC1)	184
5.25	Load deflection responses of functionally graded hybrid composite plates aligned in $(+45/-45/0/90)_{2s}$ direction with and without cutouts with two edges simply supported and other two edges clamped (FBC2)	184

5.26	Load deflection responses of functionally graded hybrid composite plates aligned in $(+45/-45/0/90)_{2s}$ direction with and without cutouts with all edges clamped (FBC3)	185
5.27	Effect of flexural boundary conditions on postbuckling responses of functionally graded hybrid composite plates aligned in (+45/-45/0/90) _{2s} direction without cutouts	186
5.28	Effect of flexural boundary conditions on postbuckling responses of functionally graded hybrid composite plates aligned in $(+45/-45/0/90)_{2s}$ direction with circular shaped cutouts	186
5.29	Effect of flexural boundary conditions on postbuckling responses of functionally graded hybrid composite plates aligned in (+45/-45/0/90) _{2s} direction with diamond shaped cutouts	187
5.30	Effect of flexural boundary conditions on postbuckling responses of functionally graded hybrid composite plates aligned in $(+45/-45/0/90)_{2s}$ direction with elliptical cutouts aligned horizontally	187
5.31	Effect of flexural boundary conditions on postbuckling responses of functionally graded hybrid composite plates aligned in (+45/-45/0/90) _{2s} direction with elliptical cutouts aligned vertically	188
5.32	Effect of flexural boundary conditions on postbuckling responses of functionally graded hybrid composite plates aligned in (+45/-45/0/90) _{2s} direction with square shaped cutouts	188
5.33	Effect of in-plane boundary conditions on postbuckling responses of simply supported functionally graded hybrid composite plates aligned in (+45/-45/0/90) _{2s} direction	192
6.1	Functionally graded hybrid plates held in thickness direction	196
6.2	Validation of published data with ABAQUS of load-deflection responses of the laminate without cutout	198

6.3	Failure modes of FH plates with and without cutouts subjected to combined compression and positive in-plane shear loads	201
6.4	Failure modes of FH plates with and without cutouts subjected to combined compression and negative in-plane shear loads	202
6.5	Comparison of buckling load, first ply failure load, and Ultimate failure comparison for FH plates with $(0/90)_{4s}$ stacking sequence under independent action of in-plane shear loads, uniaxial compressive loads, and combined uniaxial compression and in-plane shear loads	205
6.6	Comparison of buckling load, first ply failure load, and Ultimate failure comparison for FH plates with (+45/-45) _{4s} stacking sequence under independent action of in-plane shear loads, uniaxial compressive loads, and combined uniaxial compression and in-plane shear loads	207
6.7	Comparison of buckling load, First ply failure load, and Ultimate failure load comparison for FH plates with $(+45/-45/0/90)_{2s}$ stacking sequence under independent action of in-plane shear loads, uniaxial compressive loads, and combined uniaxial compression and in-plane shear loads	208
6.8	Non-dimensional load-deflection responses of functionally graded hybrid plates aligned in (0/90) fiber direction with different sized cutouts	212
6.9	Non-dimensional load-deflection responses of functionally graded hybrid plates aligned in (+45/-45) fiber direction with different sized cutouts	214
6.10	Non-dimensional load-deflection responses of functionally graded hybrid plates aligned in quasi-isotropic (+45/-45/0/90) fiber direction with different sized cutouts	216
6.11	Effect of load ratios on postbuckling response of functionally graded hybrid (FH)	219

6.12	Effect of load ratios on postbuckling response of functionally graded hybrid (FH) plates with fiber aligned in (+45/-45) direction under combined loads	220
6.13	Effect of load ratios on postbuckling response of functionally graded hybrid (FH) plates with fiber aligned in (+45/-45/0/90) direction under combined loads	221
6.14	Load interaction diagrams showing buckling load and first ply failure load for a square $(0/90)_{4s}$ functionally graded hybrid plate	221
6.15	Load interaction diagrams showing buckling load and first ply failure load for a square $(+45/-45)_{4s}$ functionally graded hybrid plate	222
6.16	Load interaction diagrams showing buckling load and first ply failure load for a square $(+45/-45/0/90)_{2s}$ functionally graded hybrid plate	222

List of Tables

Table no.	Title	Page no.
1.1	Properties of carbon/graphite fibers	3
1.2	Classification of carbon fibers as per Young's modulus	3
1.3	Properties of glass fibers	5
3.1	Mechanical properties of fibers and resin	39
3.2	Description of tensile test specimens	41
3.3	Description of compressive test specimens	42
3.4	Description of flexure test specimens	44
3.5	Description of laminates	45
3.6	Mechanical properties of the specimens such as tensile strength, Young's modulus, failure strain, and energy absorbed	76
3.7	Mechanical properties such as compressive strength, corresponding failure strain, flexural strength and corresponding flexural modulus	92
4.1	Material properties of the carbon and glass epoxy laminate	111
4.2	Nomenclature of the non-hybrid and hybrid composite plates without cutouts	111
4.3	Nomenclature of the functionally graded composite plates with cutouts	113
4.4	Comparison of buckling loads determined using experimental and numerical study without cutouts	120

4.5	Buckling and first ply failure loads of non-hybrid and hybrid laminates determined using ABAQUS without cutouts	125
4.6	Cutout specifications	126
4.7	Buckling and first ply failure loads of functionally graded hybrid plates with and without cutouts	129
5.1	Buckling loads of functionally graded hybrid plates with fiber aligned in $(0/90)_{4s}$, $(+45/-45)_{4s}$, and $(+45/-45/0/90)_{2s}$ directions with and without cutouts	150
5.2	First ply failure loads of functionally graded hybrid plates with fiber aligned in $(0/90)_{4s}$, $(-45/+45)_{4s}$, and $(-45/+45/0/90)_{2s}$ directions with and without cutouts	154
5.3	Details of validated results using ABAQUS with the published data (Kumar and Singh, 2013) of composite plate without cutout with flexural boundary conditions	176
5.4	Details of validated results using ABAQUS with the published data (Kumar and Singh, 2013) of composite plate with circular cutout with flexural boundary conditions	176
5.5	Details of validated results using ABAQUS with the published data (Singh and Kumar, 1998) of composite plate without cutout with in-plane boundary conditions	177
5.6	Buckling, first ply failure and ultimate failure loads of FH plates under positive and negative shear loads of stacking sequence (+45/-45/0/90) _{2s} with different flexural boundary conditions	189

	Buckling, first ply failure and ultimate failure loads of FH plates under	
5.7	positive and negative shear loads of stacking sequence $(+45/-45/0/90)_{2s}$ with different in-plane boundary conditions	190
	different in plane boundary conditions	
6.1	Nomenclature of the notations/specimen ID's	203
6.2	Description of cutout shapes and their sizes	204
6.3	Buckling and first ply failure loads of FH plates with stacking sequence $(0/90)_{4s}$	206
6.4	Buckling and first ply failure loads of FH plates with stacking sequence $(+45/-45)_{4s}$	207
6.5	Buckling and first ply failure loads of FH plates with stacking sequence $(+45/-45/0/90)_{2s}$	209
6.6	Buckling and first ply failure loads of FH plate without cutout with stacking sequence (0/90) _{4s} for various load ratios	223
6.7	Buckling and first ply failure loads of FH plate with diamond shaped cutout with stacking sequence $(0/90)_{4s}$ for various load ratios	224
6.8	Buckling and first ply failure loads of FH plate without cutout with stacking sequence (+45/-45) _{4s} for various load ratios	224
6.9	Buckling and first ply failure loads of FH plate with diamond shaped cutout with stacking sequence (+45/-45) _{4s} for various load ratios	225
6.10	Buckling and first ply failure loads of FH plate without cutout with stacking sequence (+45/-45/0/90) _{2s} for various load ratios	225
6.11	Buckling and first ply failure loads of FH plate with diamond shaped cutout with stacking sequence (+45/-45/0/90) _{2s} for various load ratios	225