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Abstract 
 

 

Nowadays, because of the higher hardware complexity and revolutionary evolution in 

microprocessor architectures, more and more embedded software components are being 

integrated into modern electronic systems. This means that architects, designers, and verification 

engineers need to deliver correct functional designs in shortest possible time.  

From the architecture and design points of view, high-level synthesis (HLS) flows are 

getting popular in recent times. By employing languages such as C, C++, MATLAB, and Python, 

HLS flows allow designers and architects to describe the design behavior at a much higher level 

of abstraction. They also share the connection to downstream tools for implementation. Studies 

have shown that HLS flows help to reduce the design cycle time. This is because they allow 

faster iterations between multiple implementation choices from a common functional 

specification and assure a continued verification throughout the design flow.  

Field programmable gate arrays (FPGAs) are additionally gaining popularity in VLSI 

design flows. They provide acceleration to the verification process owing to their faster speed of 

operation as compared to conventional hardware description language (HDL) simulation tools. 

Due to the same reason, FPGAs are also the platforms of choice for accelerated verification of 

hardware designs. FPGAs are also commonly used to run real-world customer application 

scenarios in a pre-silicon environment to have better confidence in functionality and 

performance. In fact, some of the design and firmware verification tests which involve interaction 

with real physical debuggers and peripherals cannot be run in a simulation environment and 

hence are required to be run on reconfigurable hardware like FPGAs. Hence, for any VLSI 

design application, area, speed and power-efficient implementations on FPGAs is the need of the 

hour. Conventional HDL synthesis and FPGA design flows have matured over the last few 

decades and allow multiple hooks and options or constraints for optimal hardware 

implementations, but these are not valid for HLS flows directly. In the recent past, even though 

multiple researchers and electronic design automation (EDA) tool vendors have invested heavily 

in optimization techniques for HLS-based design flows. However, such techniques are very 

design,  application  and tool  specific and not generic at all. This work proposes a 

methodology for the area, speed, and power optimization, which are independent of the used 



ii 
 

design application and HLS flow. The first objective of this work is to study about different HLS 

tools and use them to create different application designs. The second objective is to study the 

effect of HLS optimization directives offered by these tools on different designs. These directives 

help in the area, speed, and power optimization of the designs depending on how they are used. 

We demonstrated the use of these directives for multiple designs from different application areas 

like signal, image processing etc. The third objective of this thesis is to propose a novel HLS-

based design methodology known as application-specific bit width for intermediate data nodes  

The efficacy of the proposed design methodology is proved on designs from diverse application 

areas such as image processing, signal processing, and computing algorithms. This work provides 

a comparison of the results with benchmark implementations available in the literature. The 

methodology can be termed as generic as designs from vast application areas have been chosen 

for this thesis. The designs have been created using MATLAB HDL coder and Vivado HLS for 

these applications as part of this study because of their wide acceptance in the industry. 

The final objective of this work is to apply a combination of HLS directives along with 

the proposed novel HLS-based design methodology to design, verify and optimize a radio 

detection and ranging (RADAR) signal processor for automotive applications and compare the 

FPGA functional simulation results against a golden taped-out system-on-chip (SoC) model. 

  


