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Chapter 2 

Literature review 
 
 

This chapter presents a literature review on HLS methods in VLSI design flows. The advantages 

and disadvantages of HLS flows are discussed. Subsequently, some of the optimization methods 

available in the literature for HLS flows are discussed which in turn surface the major research 

gaps and lay the foundation for the objectives of this thesis. Even though there are multiple HLS 

tools available in the community, Vivado HLS and MATLAB HDL coder have been considered 

for this study [2.1, 2.2]. These two platforms have been chosen because of their wide acceptance 

in research community and industry.  

 
2.1 High-level synthesis in VLSI design 
 
VLSI design starts with requirement specifications which get translated to functional 

specifications of the design. In some cases, requirements are a simple textually represented 

document about the features supported by the application, while in other cases, they are an 

executable high-level model, typically designed in C, C++, System C, or MATLAB. In this step 

of the design, the specification contains none or minimal hardware implementation details. Its 

primary goal is to verify and fine-tune the desired behavior. Once fully verified and reviewed, 

this model transforms into the actual hardware implementation. The first step in design implies 

the definition of optimal architecture that implements the expected functional model. The actual 

implementation involves converting these architectural decisions into RTL descriptions using 

hardware description languages such as Verilog, and VHDL. 

Due to the manual process involved, it is almost impossible to find out the best possible 

optimal implementation from the desired functional specifications [2.3]. Moreover, the manual 

process of translation into RTL is error-prone and hence requires considerable time from 

verification engineers to ensure that the implementation is aligned with the intended architecture 

specification. So, the overall process, specification towards implementation, takes the shape of an 

iterative cycle, leading to a larger design cycle time. Hence, HLS is needed to optimize the 

overall design cycle time. 

HLS is an automated design process that interprets an algorithmic description of the 

desired behavior. Then, it creates digital hardware which implements such behavior. The 
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synthesis starts with a problem s high-level specification, such that the behavior is usually 

decoupled from clock-level timing. The code is analyzed, architecturally constrained and 

scheduled to create an RTL description. In turn, such RTL description is frequently synthesized 

to the gate level using a logic synthesis tool. 

As described in Figure 2.1, the intermediate representation describes the design in the 

form of control and data flows within the design, e.g., which data path to be enabled and when. 

In the next stage, the operations get mapped to functional units, variables get mapped to signals 

or storage, while the data transfers get mapped to buses, wires, or multiplexers. According to the 

control and data flow graph, these functional units, buses, wires, etc. get time allocation on when 

they would be exercised. In the last stage, a structured HDL code is obtained. 

 

 
 

Figure 2.1. Steps involved in high-level synthesis. 
 

s main goal is to let hardware designers efficiently design and verify the hardware. 

HLS provides designers with an option to express the design at a higher level of abstraction, 

while the tool provides the corresponding RTL implementation in HDL. Another goal of HLS is 

to ensure continued verification of the design during the stages of the design process to reduce 

the functional verification time for the project. 

Even though HDL languages existed in the late 80s and early 90s, most commercial HLS 

tools were introduced in the market in the 21st century. Some examples include Vivado HLS 

(Xilinx), Stratus (Cadence), Catapult-C (Mentor), Symphony (Synopsys), HDL coder 

(MathWorks) and BlueSpec (BlueSpec Inc.) [2.1, 2.4, 2.5, 2.6, 2.2]. Open-source and academic 

community tools have also been developed in the same domain [2.7, 2.8]. 
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2.2 Advantages and limitations of HLS 
 
2.2.1 Advantages of HLS 

 

1. Faster design and verification: The engineers need not worry concerning implementation 

features like hierarchies, processes, clocks, or technology because the abstraction level is 

higher. Hence, it is easier to code. As the code is shorter and less complex precisely due to 

the higher abstraction level, it is easier to verify with better functional coverage. Further, 

HLS tools offer continued verification during multiple phases of design which makes it faster 

to achieve verification goals [2.9]. 

2. Effective design reuse: To address the challenge of the ever-increasing complexity of 

designs, the IP and code  reuse across projects is very important. RTL implementations are 

typically describing design behavior in terms of clock cycles, pipelines, glitch filtering, etc., 

which make it very specific to technology and hence difficult to reuse across projects [2.10]. 

Moreover, introducing small changes to an IP for creating a derivative gets complex. With 

HLS, one needs to change the abstract source without worrying about adverse effects on an 

architecture or technology dependent feature to break. Hence, this process is much more 

seamless. 

3. Efficient investment for research and development resources: The engineering resources 

spend fewer cycles on RTL coding and verification. Then, more time can be used on 

architectural exploration, algorithm development, system-level power, and area estimation 

when using HLS [2.11]. 

4. Supportive electronic design automation ecosystem and natural evolution: The 

movement to higher abstraction levels is a natural evolution for the EDA ecosystem. From 

the past few decades, the abstraction has increased from layouts to transistors, transistors to 

gates, gates to RTL. Hence, it is natural for the industry, in general, to move to an even 

higher level of abstraction [2.12]. The evolution of tools from open-source domains as well as 

companies like Cadence, Synopsys, and Mentor has aided thousands of successful tape-outs 

using HLS flows in the past few years. 

 

2.2.2 Limitations of HLS 
 

1. Not a substitute for RTL designer: Using HLS, one can describe the behavior at a higher 

abstraction level but having a deep knowledge about RTL implementation helps to tune the 

generated code for a targeted application. Hence, the designer still has to invest time to come 

up with an optimal high-level language model as per the desired RTL. 
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2. No/Limited control over generated RTL: HLS flows are very much dependent on EDA 

tools and algorithms to convert behavioral code into RTL. This means one has very limited 

control over the quality of code generated. As an example, if a user wants to implement a 

design using a specific combination of gates using a Boolean equation, he can do so using 

hand-coded RTL but there is no way to instruct the HLS compiler to perform the same. 

3. No standard high-level language: When it comes to RTL, the two hardware description 

languages used in the design flow are VHDL and Verilog. But when migrating to HLS, 

different tools use varying behavioral description languages like C/C++, Python, or 

MATLAB. This nonstandardization makes it difficult for the community to adapt the flows 

due to the associated learning curve to understand a new platform. 

4. Absence of generic optimization methods: Depending on the target application, it may be 

required to optimize the implementation for area, speed, or power. For example, in a 

smartphone application, there may be a need to optimize for power but for a server 

application there may be a requirement to optimize for faster frequency and performance. 

When using HLS flows, the optimization methods are very specific to the tool and 

application and not at all generic which makes it difficult to use them on different designs and 

wide variety of FPGAs available in commercial space. 

 

2.3 Concepts of HLS optimization 
 

Depending on the application of the VLSI design, one or more of the area, speed, and power 

optimization may be essential to achieve, e.g., in a computing application chip for a spacecraft 

trajectory, accuracy is critical while for a mobile phone computing environment, the reduction of 

power dissipation may be the most important target. Similarly, for a processing IC used in high-

speed server design, the area might not be as important as the speed of operation. As the area, 

speed, and power in VLSI designs are orthogonal, there exist many methodologies which 

improve one or two of them at the cost of other(s) [2.13]. 

 

2.3.1 Speed improvement techniques 
 

There are multiple speed improvement techniques used in synthesis. Some of these are explained 

below: 

1. Retiming: In maintaining the same design functionality, the synthesis tool may choose to 

optimally distribute registers throughout the circuit to ease the critical path delay for 

achieving a better compile frequency. For example, in Figure 2.2, assuming a delay of N1 for 

multiplier and N2 for the adder, assuming N1>N2, the critical path is N1 units in Case 2 
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against N1+N2 units in Case 1 due to retiming. 

 

 
 

Figure 2.2. Retiming in designs using registers. 

 

2. Module flattening: A hierarchical design (single or multiple modules instantiated within a 

module) is superior regarding readability and ease of debugging for verification purposes. 

However, from the performance improvement perspective, optimizations that could have 

taken place at module boundaries can happen in flattened designs leading to better retiming 

and hence lesser critical path. 

3. Redundant/dead-logic elimination/logic reordering/constant folding: Removal of logic to 

reduce logic blocks functionally giving the same output can help in reducing the gate delay 

and hence achieve faster designs. For example, let us consider a high level code as seen in 

Figure 2.3. The else section of the code is never executed and hence is redundant or dead 

code leading to logic simplification to C = B-A. This leads to inference of a single subtractor 

in hardware contrary to 3. 
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Figure 2.3. Dead code elimination in HLS. 

 

In another example, we have to compute X = A+B+C+D. As shown in Figure 2.4, Case 1 

would be faster than Case 2 though both the implementations are functionally equivalent. This is 

due to logic reordering. Another example is an inference of a 1-bit carry look-ahead adder in 

place of conventional 1-bit adders to reduce the total delay in the computation, which a synthesis 

tool may do under some specified constraints. 

 

 

 
 

Figure 2.4. Logic reordering and effect on latency. 

 

4. Synchronizing flops for Input/Outputs: Typically, any design would have general-purpose 

IOs which are modeled as in  and out  signals in the Verilog language. Synthesis tools can 

incorrectly infer unexpectedly long combinational paths due to pessimism involved in 

calculating path length through these IOs. When we specify constraints to infer retiming flops 

on input paths explicitly, the tool is bound to view them as either input or output paths, and 

hence the critical path length is shortened leading to better performance numbers. 

5. Multicycle path specifications: In many cases, it may be possible for the designer to constrain 

a path as a multicycle path. Thus, leading the tool to choose the next critical path in the list 
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for performance bottleneck calculations, e.g., a tool by being timing pessimistic may report 

such a path as critical whose outputs are not to be sampled in a single clock cycle or the path 

is clocked at much smaller frequency. Such paths are typical candidates for marking as 

multicycle paths and hence if constrained intelligently, may lead to better performance 

numbers [2.14]. 

6. False path specifications: In some cases, a tool may pessimistically consider some paths for 

timing calculations that are never to be exercised as functional [2.14]. Such false  paths, if 

constrained, could result in much better synthesis frequencies. An example of a false path 

from Flop A to Flop B is presented in Figure 2.5. As can be seen in Figure 2.5, synthesis tool 

may pick highlighted path (passing through both combinational logics) as a single critical 

path but in actual functional operation, both of these logic blocks will never be active at same 

time as both multiplexers have common select line. 
 

 
 

Figure 2.5. False timing path between two flip-flops. 
 

7. Reducing clock tree complexity: In many designs, specially where clocks are multiplexed or 

pass through a complex combinational logic, it may not be easy for a synthesis tool to judge 

., the synthesis tool may infer a standard 

data  net as a clock net and hence may incorrectly consider it while doing clock tree 

synthesis. This may lead to false clock trees and may throttle the design performance. If the 

tool is constrained to infer the known data nets as no clock nets, this may help in reducing 

clock tree complexity leading to better design performance. 

8. Breaking combinational loops: There may be unintentional combinational loops in the design 

which the synthesis tools may not be able to break. For example, in such a case, this may lead 

to an inference of unexpectedly long combinational paths. Most synthesis tools allow users to 

critical path thus improving design frequency. 
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2.3.2 Area optimization techniques 
 
There are multiple areas of improvement for techniques used in FPGA synthesis. Some of these 

are explained below: 

1. Redundant or dead-logic optimization: This strategy aims at remodeling the design and 

maintaining the same functionality such that a lesser number of logical units are used. As 

seen in Figure 2.3, final hardware implementation consumes a lesser area footprint than what 

would have been without any dead logic optimization. 

2. Intelligent logic selection for constant operations: This methodology aims at the selection of 

logical units to implement the same functional behavior with a lesser number of units, e.g., if 

there is a variable register that gets multiplied by a constant (whose value is never changing, 

say, for example, 2), the same multiplication can be inferred by constant left shift instead of 

inferring a register to store the constant and along with a hardware multiplier. 

3. Sharing of hardware resources: At times, it is possible to forgo performance for better area 

usage by sharing hardware resources like adders or multipliers using multiple logic paths 

[2.15]. An example is the sharing of memory ports for read and write by different masters 

accessing the memory in a time-multiplexed manner. Another example is shown in Figure 

2.4. On one hand, in Case 2, as addition happens sequentially, then a single adder could be 

shared with the result being stored in different registers. On the other hand, in Case 1, as two 

additions are happening in parallel, there is no scope of sharing. 

4. Data flow-based transformations: Most HLS compilers do data flow-based transformations 

[2.16]. Some examples are as below: 

a. Constant propagation (e.g., A + B × (x x) can be reduced to A) 

b. Replacing a = x3 by a = x × x × x 

c. Code motion: Moving a nondependent computation outside the loop. 

As shown below, Case 2 is optimal than Case 1 as sin(x) does not contribute to the critical 

path as it is deemed as a constant inside the loop. 

 
Case 1                            Case 2 
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2.3.3 Power reduction techniques 
 
There are multiple power reduction techniques used in FPGA synthesis. Some of these are 

explained below: 

1. Clock gating: Slowing down or switching off the clocks for portions of the design which are 

not required to be active during a particular operation being done by another part of the 

design is called clock gating [2.17]. For example, a multiplier may not be utilized during a 

branch instruction of a CPU. Hence, input registers to the multiplier can be retained at their 

previous values to save switching activity power. An example of a latch-based clock gating 

buffer is shown in Figure 2.6 (A). 

 

2. Power gating: Shutting down the power of a part of the design when it is not in use is known 

as power gating [2.18]. The part of the design which is shut-off is known as the power 

domain and it is typically isolated from the rest of the design using isolation cells so that it 

does not corrupt the other logic. A typical isolation cell is shown in Figure 2.6 (B). 

 
(A) 

 
(B) 

Figure 2.6. (A) Latch based clock gating (B). Isolation cell. 

 

3. Path balancing: In conventional combinational logic circuits, spurious transitions account for 

10% to 40% of switching activity power. As a result, the delays of the paths that converge at 

each gate should be made roughly equal to reduce the same. This is typically accomplished 

by adding unit delay buffers to inputs of the gates on faster paths. 

Apart from the above, there are various other techniques like state encoding for minimum 
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toggle, sequential implementations and precomputations. In that last technique, the output value 

computation can be done one clock cycle in advance to reduce internal switching activity in the 

succeeding clock cycle. 

 

2.4 Prior works in the area of HLS optimization 
 

Today researchers in the area of HLS have come up with multiple methods which help to 

optimize multiple application designs. We classify the research in HLS optimization into two 

categories. 

 

2.4.1 Proving the efficacy of HLS in VLSI design and optimization methods 
 

Liang et al. demonstrated that performance of HLS based designs can be up to 40 times higher 

than the performance of traditional RTL design for the same algorithm [2.19]. In this study, a 

high-definition stereo matching application is selected as a benchmark to illustrate the 

performance gap between the two different design procedures. Ziegler et al. proposed a method 

of compiler analyses that could guide to map sequential C programs into an FPGA s pipelined 

implementation [2.20]. Meanwhile, Liu et al. introduced a novel customized optimization based 

on index set splitting to decrease pipelined loops  initiation overhead to reduce total latency 

[2.21]. Cong et al. have demonstrated how the quality of generated RTL design depends on 

source-level and intermediate-level optimizations [2.22]. They have implemented 56 different 

optimization techniques and show that some of them have a significant impact on the hardware 

quality. Huang et al. have studied the effects of various compiler optimization techniques on 

circuits generated using HLS [2.23]. According to the study of Huang et al., there are two 

important factors: the optimization methods and the order to enhance the generated circuits  

performance. Six different optimization methods were implemented on benchmarks in this work, 

and a performance improvement of approximately 30% was achieved. Recently, there have been 

multiple works carried out which demonstrate the use of optimization methods like multicycle 

paths, false paths, etc. higher up in abstraction level for HLS designs. 

 

2.4.2 Creating optimized VLSI application using HLS methods 
 

Josh Monson et al. have published optimization techniques for HLS implementation of a Sobel 

edge filter design using Xilinx tools [2.24]. In their research, they discuss the fact how HLS tools 

bridge the gap between software programmers and hardware implementation platforms like 
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FPGAs. Further, they have demonstrated the use of directives and code restructuring steps such 

as loop unrolling, using FIFO-based input-outputs, and optimizing memory ports, which cause 

the variation of performance from 10.9 frames per second to 388 frames per second. 

Similarly, Jason Cong et al. have published research that demonstrates high-performance 

designs on FPGAs using a fusion of two HLS platforms: AutoESL and Xilinx HLS [2.22]. 

Further, they have proved the methodology on a sphere decoder design by showing an 11% to 

31% reduction in FPGA resource utilization using techniques such as dead code elimination, 

strength reduction, arithmetic simplification, function in-lining, and memory reuse. 

V. P. Korakoppa et al., have proposed an adaptive threshold method for area-efficient 

implementation of moving object and face detection algorithms [2.25]. Umesharaddy et al. have 

proposed optimization techniques while implementing QPSK MODEM on FPGA using Vedic 

multipliers and carry look-ahead adders [2.26]. 

We have used Vivado HLS and MATLAB HDL coder as part of this study. So, the next 

two sections summarize the HLS optimization directives offered by these platforms. 

 

2.5 HLS optimization directives in MATLAB HDL coder 
 

The HDL coder is the HLS flow offered by MathWorks and it is part of the MATLAB and 

Simulink ecosystem [2.27]. MATLAB is script-based while Simulink is a block-based platform 

used for system design and verification. This tool enables the user to produce an HDL description 

from a system-level model hence offering multiple advantages. Simulink models are relatively 

more accessible than HDL languages to engineers who are not proficient in hardware design. 

Additionally, it is easy to reuse a script or a block in the same or different design, a typical 

advantage offered by HLS tools. Models are composed of fundamental blocks provided in the 

standard library as well as blocks from a collection of library elements also known as toolboxes 

provided by MathWorks. 

When generating HDL code from a high-level model, a variety of configuration options 

are available to the user. Either Verilog or VHDL code may be generated, and it is possible to set 

optimization flags to optimize LUTs, flip-flops (area), clock speed, etc. It is also possible for 

users to have control over the generated code, such as the name of ports, synchronous or 

asynchronous reset etc. Individual blocks from the HDL coder library often also have such 

options and allow the user to sacrifice numerical integrity for additional speed. The tool will 

attempt to intelligently pipeline such that all signal wires have matched delays and the throughput 

will be maximized (subject to user-specified priorities). Some of the commonly used options 

offered by HDL coder are listed below: 
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1) Distributed pipelining and delay balancing: This introduces retiming flip-flops on long 

combinational paths in the model. This is a scheme used to break long critical combinational 

paths and hence improve the target frequency. This concept is illustrated in Figure 2.2. In 

addition to this, to compensate for the delay introduced on one path, there are additional flops 

introduced on parallel signal paths to keep functionality intact. 

2) Multicycle path specifications: From the model, one can generate a register to register path 

information file or enable-based constraints. When this option is enabled in the HDL coder, it 

offers an option to the designer to specify a constraint about treating a flop to flop path as a 

multicycle path and ease out the timing calculation. 

3) Resource sharing: This option identifies blocks in the design that have multiple inputs and 

replaces them with single blocks. In that way, two or more paths share a common block and 

consequently, the speed gets slower but the target area gets optimized. One can use a sharing 

factor to define the number of functionally equivalent resources being mapped into a single 

shared resource. 

4) Random access memory (RAM) mapping: This option maps the pipeline registers in the 

generated HDL code to RAM blocks. This helps to save area. This is helpful only if the RAM 

size is greater than the RAM mapping threshold. 

5) Loop unrolling: It creates copies of a single loop to improve performance with area tradeoff. 

In addition to this, the tool offers multiple options to customize the generated RTL code 

which the designer can exercise. Some of these include: implementing synchronous or 

asynchronous reset, rising or falling edge choice, scalarizing vectors, minimizing intermediate 

signals (tradeoff between debuggability and target area), encoding scheme for enumeration data 

types, etc. The details of the same are available under the optimization guide for MATLAB and 

Simulink HDL coder [2.28]. 

 
 

2.6  HLS optimization directives in Vivado HLS 
 

Vivado HLS is a platform from Xilinx Inc. that translates C, C++, or System C code into 

synthesizable RTL. Vivado HLS performs the code translation in three basic steps as mentioned 

below: 

A) Scheduling: Determining which operations take place in which clock cycle. In case of a 

longer clock period or faster FPGA, more operations might complete in a single clock cycle, 

otherwise, the HLS schedules the operation over multiple clock cycles. 

B) Binding: Identification of hardware resources that implement a scheduled operation. This uses 

the information from the target FPGA device. 
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C) Control logic extraction: It performs the extraction of control logic to construct a finite state 

machine and implement, in the RTL design, the sequence of operations. When using Vivado 

HLS, top-level C function arguments are implemented as IO ports of the design and internal 

functions are implemented as separate modules which get instantiated on the top-level parent 

module to create the hierarchical design. 

Even though Vivado HLS offers multiple directives to optimize the generated RTL for 

the area, speed, and power optimization, some of the commonly used directives are discussed 

below: 

1. Loop unrolling 

By default, loops in C language are rolled. This means every operation in a loop is implemented 

utilizing the same hardware resources for its iterations. The tool provides utility to partially or 

fully unroll for  loops using UNROLL  directive [2.29]. As shown in Figure 2.7, for a single 

for  loop, there may be rolled, partially unrolled, and fully unrolled implementations. 

 

C Function input to HLS 
 
void top (...) 
{ 
... 
for_mult: for (i=3;i>0;i--) 
{ a[i] = b[i] * c[i]; } 
... 
 } 
Without unrolling (Time = 4 Clock cycles): 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              (A) 

 
 
 
 
 
 
 
 

Read b[3] Read b[2] Read b[1] Read b[0] 

Read c[3] Read c[2] Read c[1] Read c[0] 

* * * * 

Write a[3] Write a[2] Write a[1] Write a[0] 
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(B) 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Full unrolling (Time = 1 clock cycle): 

Read b[3] 

Read c[3] 

Read b[2] 

Read  

Read b[1] 

Read c[1] 

Read b[0] 

Read c[0] 

Partial unrolling (Time = 2 Clock Cycles): 

Read b[3] 

Read c[3] 

Read b[2] 

Read c[2] 

* 

* 

Write a[3] 

Write a[2] 

Read b[1] 

Read c[1] 

Read b[0] 

Read c[0] 

* 

* 

Write a[1] 

Write a[0] 
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                            (C) 

Figure 2.7. (A) Without (B) Partial (C) Full unrolling optimization 

 

In the case of a rolled loop, the iterations take four clock cycles while in the case of 

partial unrolling (factor of 2), the time is reduced to two clock cycles. When the loop is fully 

unrolled, the whole scheduling happens in a single clock cycle but at the cost of increased 

capacity, as multiple hardware elements need to operate in parallel. This example scenario 

assumes that a[i], b[i], and c[i] are mapped to block RAMs. 

2. Pipelining 

Tasks, functions, and loops inside a C code can be pipelined. This results in a greater level of 

concurrency and the highest level of performance. Therefore, the initiation interval is reduced by 

enabling, inside a loop or function, the operations  concurrent execution. If a function or a loop 

contains further loops, they are automatically unrolled when trying to pipeline parent functions 

[2.29]. 

3. Streaming 

If one uses a DATAFLOW  directive and the compiler cannot resolve whether the design tasks 

are streaming data, then the memory channel is implemented by default using block RAMs. One 

of the directives which save the target FPGA area under such a scenario is known as 

* 

* 

* 

* 

Write a[3] 
Input Bit 

Write a[2] 

Write a[1] 
Stream

Write a[0] 
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Streaming.  This enables arrays to be implemented as FIFOs using registers for which the 

designer can specify a depth [2.29]. Such a directive is not suitable for scenarios where input data 

size is not known. 

 

2.7 Gaps in existing research 
 

Multiple authors have proposed hand-coded RTL implementations of different application 

designs in the literature like digital signal processing filters, Down converters, Image processing 

filters like Sobel edge or Harris Corner Detector, CPU cores and cryptography algorithms like 

AES [2.30, 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39]. Even though HLS is the preferred 

design approach, as listed in Chapter 1, none or very few of these applications have been targeted 

using HLS flows in the literature. So, an attempt is made to demonstrate the usage of HLS tools 

 in this work. This aligns with the first objective of this work. 

There have been some works in the literature aimed at proposing optimization methods 

for FPGA synthesis tools. In sections 2.5 and 2.6, we have discussed multiple optimization 

directives offered by Vivado HLS and MATLAB HDL Coder. As an example, a streaming 

directive may be applied in a C++ code using pragmas [2.29]. The choice of directives to be used 

based on the kind of design, given area, speed and power budgets is an important design decision 

which is not readily addressed by past studies in HLS. This aligns with the second objective of 

this work. 

As it is evident, these directives are very specific to the tool and design being used. For 

example, directives for one HLS tool may not directly apply to other tools. Similarly a directive 

which helps optimize one type of application may not help another. Hence, there is a definite 

need for tool and application independent HLS optimization technique which is missing in the 

literature. This work presents a generic methodology for optimizing designs which applies to 

multiple HLS tools and applications. This aligns with the third objective of the work.  

Most of the studies done in the literature have presented FPGA implementation of designs 

using HLS flows. To attempt the usage of HLS tools for ASIC flows in future, design community 

needs to have a confidence that there is no adverse effect of HLS optimization techniques on 

design functionality. Since most researchers have not compared the functional results of their 

implementations against ASIC results, this is a definite research gap. An attempt is made through 

this work by comparing the synthesis results and functionality with an already taped-out SoC 

model. This aligns with final objective of the work. 
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2.8 Concluding remarks 
 

This chapter aimed at studying large number of optimized designs presented in the literature by 

multiple researchers in multiple application areas. HLS flows have multiple advantages as well as 

some limitations. Even though they are not a substitute for hand-coded RTL based, they are 

getting popular in VLSI design flows. 

order to optimize the application being designed for area, speed and power. This can be done by 

making intelligent use of HLS directives presented in this chapter and Appendix. We studied 

some of the commonly used directives in Vivado HLS and MATLAB HDL coder which are the 

two core tools used as part of this thesis. 

Many researchers have also presented HLS implementations for designs catering to 

benchmark applications. Multiple clear research gaps identified in past studies forms a basis for 

identifying the objectives of this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


