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Chapter 3 
Optimization techniques based on HLS 
directives 

 
 

Chapter 2 discussed multiple HLS optimization techniques available for the area, speed, and 

power optimization of designs. In this chapter, some of the applications that were created using 

MATLAB HDL coder and Vivado HLS are discussed. Some of the available directives from the 

tool vendors were used to optimize the designs and results compared against those available in 

the literature. Some of the commonly used directives are described in Appendix. The comparison 

is done against previously published results obtained by other researchers. This chapter discusses 

five such applications: QPSK modulator, DSP filter, MIPS processor core, AES encryption 

algorithm and you-only-look-once (YOLO) v2 deep learning algorithm. Section 3.1  Section 3.3 

discuss designs and optimizations based on MATLAB HDL coder directives (Band pass DSP 

filter, QPSK modulator, MIPS processor core). Section 3.4 and 3.5 discuss design and 

optimization using Vivado HLS (AES encryption algorithm and YOLO v2 algorithm). The tools 

are chosen for these design applications depending on the availability of library blocks and ease 

of coding. The metrics used to compare the design implementations are  maximum frequency of 

operation (function of largest critical path), area utilization (function of LUTs, Flip-flops and 

registers used for the implementation) and power utilization (sum of dynamic and static power 

dissipation). Dynamic power is a function of power consumed during design operation and 

depends on factors such as functional resources (logic blocks, PLLs, registers, etc.) and signal 

toggle rates. Static power is the power dissipated by the device even when there is no design 

running on the FPGA. It is a function of leakage current, sub threshold leakage, junction leakage 

etc. 

 

3.1  Bandpass digital signal processing filter design (HDL coder) 
 
Herein, design, implementation and optimization of a band-pass DSP filter is discussed using 

MATLAB HDL coder. 

 
 
 



26 
 

3.1.1 Introduction to DSP filters 
 
DSP filters are an integral part of multiple signal processing circuits used in communications, 

image processing, etc.; thus, achieving their optimal FPGA implementations are crucial in VLSI 

designs. The DSP filters help in mathematical manipulation of information signals such as 

images, audio etc. These filters are gaining importance in multiple application areas over 

conventional analog filters because digital signal processing is more immune to noise. Moreover, 

digital signals can be easily reproduced in large quantities with lesser storage cost for data. 

 

3.1.2 Design method and FPGA implementation results 
 

Using MATLAB and Simulink, a bandpass FIR filter was designed and simulated [3.1]. The 

following characteristics were chosen for the study: 

Sampling Frequency = 48 kHz; Lower stop band frequency (Fstop1) = 6 kHz; Lower pass 

frequency (Fpass1) = 9 kHz; Higher pass band frequency (Fpass2) = 12 kHz; Higher stop band 

frequency (Fstop2) = 15 kHz. 

Sampling frequency of 48 kHz is chosen to be sufficiently higher than Nyquist frequency 

of 30 kHz (2 × 15 kHz) to avoid aliasing. This sampling frequency of the filter gets mapped to 

the fastest design clock frequency achieved on the target FPGA device. 

The filter was designed using the filter designer app available with MATLAB and 

exported the same to Simulink. The filter coefficients were quantized for HDL implementation 

using fixed-point designer tool [3.2]. The design and simulation environment for the fixed-point 

HLS model is shown in Figure 3.1. Time taken for a single linear chirp is 33.66 micro seconds. 

MATLAB HDL coder and multiple HLS directives were used as explained in Chapter 2, to 

optimize the implementation [3.3]. Implementation results are shown in Tables 3.1 and 3.2. Table 

3.1 shows the implementation results for the bandpass filter RTL code targeted for Kintex 

7(XCK770T-FBG676) FPGA generated using the MATLAB and Simulink model. Table 3.2 

shows a similar table for hand-coded RTL for a filter with the same functional specifications. The 

functional simulation results as well as FPGA-in-the-loop simulation results suggest that 

functionality of the design remains the same when using HLS. But since a higher platform 

frequency is seen (without seeing any timing violations), the total wall clock time for filtering 

operation is reduced as compared to hand-coded RTL implementation. 
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 (A) 

 
(B) 

Figure 3.1. (A) Fixed-point bandpass filter design (B) Simulation in MATLAB and Simulink. 

 

Table 3.1 Kintex 7 FPGA implementation results for BP filter (HLS optimized) 

Resource Utilization Available Utilization (%) 

LUTs 2565 41000 6.256 

Flip-flops 1280 82000 1.560 

DSP 140 240 58.333 

IOs 106 300 35.333 

BUFG 1 32 3.125 

Critical Path: 23.711 ns, Operation Freq. = 40 MHz, Total On-chip Power = 0.379 W 

Table 3.2 Kintex 7 FPGA implementation results for BP filter (hand-coded RTL) 

Resource Utilization Available Utilization (%) 

LUTs 3268 41000 7.970 

Flip-flops 1167 82000 1.423 

DSP 151 240 62.916 

IOs 106 300 35.333 

BUFG 1 32 3.125 

Critical Path: 29.68 ns, Operation Freq. = 33 MHz, Total On-chip Power = 0.467 W 
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As is evident from Tables 3.1 and 3.2, owing to the usage of distributed pipelining and 

multiplier sharing HLS directives (as explained in Chapter 2), better frequency of operation was 

achieved for the design created using HLS [3.3]. Even though a better frequency of operation 

was achieved using directives, a notable observation is that due to distributed pipelining, the flip-

flop usage in the design created using HLS is slightly higher than the design created using hand-

coded RTL. Further, since the directives of multiplier sharing was used, number of multipliers 

used was reduced and hence the implementation used lesser power on the target FPGA. It may be 

noted that one has the option to optimize the hand-coded implementation as well but the goal 

here is to demonstrate superior or comparable implementation and simulation results with shorter 

design cycle time using HLS. 

 

3.2  QPSK modulator design and implementation (HDL coder) 
 

Herein, design, implementation and optimization of a QPSK modulator is discussed using 

MATLAB HDL coder. 

 

3.2.1 QPSK modulator introduction 
 
QPSK modulation is a class of Phase Shift Keying. In QPSK, by choosing one of four possible 

carrier phase shifts: 0, 90, 180, or 270 degrees, two bits are modulated at once. Using the same 

bandwidth, QPSK provides the signal to carry twice as much information than ordinary PSK 

[3.4]. The QPSK modulator employs a bit-splitter, two multipliers with a local oscillator, a 2-bit 

serial to parallel converter, and a summer circuit. 

., 2nd bit, 4th bit, 6th bit, etc.) and odd bits (i.e., 1st bit, 

3rd bit, 5th 

multiplied with the same carrier to produce odd BPSK (called as PSKI) and even BPSK (called 

as PSKQ). The PSKQ signal is anyway phase shifted by 90° before the modulation. 

 

3.2.2 Design methodology and implementation results 
 
Figure 3.2 shows the block diagram depicting the QPSK modulation scheme. Figure 3.3 shows 

the design and verification framework developed in MATLAB. Figure 3.3 additionally presents 

the HDL code generated by applying MATLAB HDL coder. 
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Figure 3.2. QPSK modulator block diagram. 

 

 
                           (A) 

 
                           (B) 

Figure 3.3. (A) QPSK modulator design and verification using MATLAB and Simulink. (B) HDL 

code generated using HDL coder. 
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Table 3.3 shows the synthesis reports for Kintex 7(XCK770T-FBG676) FPGA for HDL 

code generated from optimized model using distributed pipelining directive [3.5]. Table 3.4 shows 

the synthesis reports for the same application using hand-coded RTL. Further, functional verification 

of the generated RTL design was performed using xSim simulation. A comparison was also done 

against the reference implementation in MATLAB using FPGA-in-the-loop feature of MATLAB 

HDL Verifier. 

 

Table 3.3. Kintex 7 FPGA implementation results for QPSK modulator (HLS optimized) 

Resource Utilization Available Utilization (%) 

LUTs 212 41000 0.517 

IOs 34 300 11.333 

Flip-flops 765 82000 0.933 

BUFG 1 32 3.125 

Critical Path: 2.97 ns, Operation Freq. = 330 MHz, Total On-chip Power = 0.263 W 

 

Table 3.4. Kintex 7 FPGA implementation results for QPSK modulator (hand-coded RTL) 

Resource Utilization Available Utilization (%) 

LUTs 328 41000 0.800 

IOs 34 300 11.333 

Flip-flops 740 82000 0.902 

BUFG 1 32 3.125 

Critical Path: 3.62 ns, Operation Freq. = 276 MHz, Total On-chip Power = 0.221 W 

As can be seen from Tables 3.3 and 3.4, the results obtained with HLS optimization are 

better than those obtained for hand-coded RTL implementation in terms of resource utilization as 

well as the operating frequency. Another point to note is that flip-flop utilization is slightly 

increased in HLS implementation owing to the usage of distributed pipelining. This is because it 

introduces flip-flops on combinational paths. A marginal increase in power dissipation is also 

attributed to the increase in the number of flip-flops. It may be noted that one has the option to 

optimize the hand-coded implementation as well but the goal here is to demonstrate superior or 

comparable implementation and simulation results with shorter design cycle time using HLS. 

So, to conclude, for this application of QPSK, the HLS directive of distributed 

pipelining  helps in the overall reduction of resource utilization (Flip-flops and LUTs together) 

as well as improvement in frequency of operation at the cost of a slight increase in power 

dissipation of the design. 
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3.3  MIPS processor core (HDL coder) 
 
Herein, design, implementation and optimization for a MIPS processor core is discussed using 

MATLAB HDL coder. 

 
3.3.1 Introduction to MIPS cores 

 
MIPS processors are based on the reduced instruction set computer architecture. This was 

developed by MIPS technologies and Imagination Technologies and has evolved from 32-bit to 

64-bit version over the last few years. These processors have been in use for years and remain in 

wide use today as well in varied applications such as automation, information processing, and 

communication. MIPS processors are often used in applications involving consumer audio 

devices, such as audio players, set-top boxes, DVD recorders and players, and digital displays, 

which are typically implemented with a multifunction system on-chip. 

 

3.3.2 Previous works for MIPS processor implementation 
 
Numerous research efforts have focused on MIPS architecture in the past. In 2019, Indira et al. 

implemented a 32-bit MIPS processor and targeted the same on a Xilinx Virtex 7 FPGA [3.6]. 

They also discussed possible pipeline hazards and the associated remedies. In 2017, Rashidah et 

al. proposed a simulator for the RISC-16 instruction set that was based on visual basic 

programming and five pipeline stages [3.7]. In 2016, Husainali et al. proposed a three-stage, 32-

bit pipelined processor that they designed in Verilog and implemented on a Xilinx Virtex 7 

FPGA using Xilinx ISE software [3.8]. In 2018, Mangalwedhe et al. proposed a low-power RISC 

processor that they designed in Verilog [3.9]. They used clock gating to decrease the dynamic 

power consumption. The design was then implemented on a Spartan 6 FPGA. In 2014, Rakesh et 

al. proposed a novel architecture for a 17-bit address RISC processor [3.10]. They implemented 

their Harvard architecture-based design on a Xilinx FPGA. In the present work, we use HLS to 

design a MIPS core and implement it on a Xilinx Virtex 7 FPGA target. Furthermore, we 

compare this implementation with previous implementations. In the proposed design, we use 

multiple HLS directives to decrease the area and boost the speed of implementation. The 

proposed FPGA s results are clearly better than those of previous implementations proposed in 

literature. 
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3.3.3 Proposed design and optimization using directives 
 
The processor model for the MIPS core was created using Simulink with MATLAB function 

blocks. Figures 3.4 shows the top level implementation. MIPS block includes the data path and 

controller as shown in Figures 3.5 and 3.6 respectively. An instruction parser operates within the 

data path and consisted of the opcode, source register, destination register, immediate operand, 

and jump address. The parser is directly linked to a sign-extend block and a jump calculator 

block. A 32-bit register file is also available which consists of one writing port and two reading 

ports. The ALU result consists of three inputs: ALU control, Scr A, and Scr B. This block 

performs four major operations on the input: addition, subtraction, AND and OR between the Scr 

operands A and B. The register file provides Scr A, and the Scr B output data are obtained from 

the sign-extended immediate value. The three-bit ALU control specifies the operation to perform 

on operands while the ALU generates a 32-bit result and a zero flag: this is to indicate if ALU 

result is equal to zero. The ALU Scr multiplexer is used to handle the R-type instructions, which 

write the ALU result in the register file. Therefore, we add this multiplexer to select between 

Read Data and ALU result and call the output as Result.  This multiplexer was controlled by the 

signal Mem to Reg,  which is zero for R-type instructions to choose result from the ALU 

Result, and unity for load word instruction (lw) to choose Read Data. For verification of the 

design implementation, a pre-compiled machine code was used as boot software without having 

the need to use a C compiler. 

 
Figure 3.4. Top-Level Implementation of MIPS processor system with memory. 
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Figure 3.5. MIPS data path model. 

 

 
Figure 3.6. MIPS processor controller. 

 

After the base implementation was created, MATLAB HDL coder was used to convert 

the MIPS core model to synthesizable Verilog code and subsequently run it through FPGA 

synthesis using Xilinx Vivado. As a second step, the following HLS directives were applied to 

optimize the results of the MATLAB HDL coder: 

i. Hardware Pipeline. The HLS directive enables the concurrent execution of operations for 

memory read and write. This is done by decreasing the initiation interval for a loop or a 

function (memory read and write in this case) implemented in hardware. While using this 

directive, a tradeoff in area and speed must be considered. Since the proposed 
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implementation uses loops for reads and writes to memory, a pipeline directive with an 

initiation interval of two was used for all hardware loops [3.11]. 

ii. Loop unroll allows the loop iterations to run in parallel by generating various copies of the 

same loop body in the generated RTL [3.11]. The directive supports either partial or full 

unrolling of loops with minor trade-off on resource consumption. Unroll factor of two is used in 

the implementation. Further, loop unroll applied on memory read and write loops helped in 

reducing the pessimism for input and output paths by pipelining the IO pads. Further, it also 

helps to replicate the single loop into two separate read and write paths from memory, leading to 

better performance with slight area penalty. 

 

3.3.4 Simulation, FPGA implementation results and comparison 
 

After generating the RTL code, we performed an RTL simulation for the design using a 

nonsynthesizable Verilog test bench using xSim software. Additionally, FPGA-in-the- loop 

simulation was also performed. The Verilog memory model in the testbench was preloaded with 

pre-compiled memory contents generated by the compiler (boot firmware). The simulation 

results were identical to the simulation results obtained using a high-level simulation in Simulink. 

Table 3.5 shows the FPGA implementation results for Virtex 7(XC7V585T-3) FPGA and Table 

3.6 shows a comparison with other works in the literature.  

 

Table 3.5. Virtex 7 FPGA resource utilization for proposed MIPS implementation 

Resource Utilization Available Utilization (%) 

Slice Reg 43 91050 0.05 

Slice LUTs 178 582720 0.03 

Flip-flops 41 728400 0.005 

Bonded IOBs 47 850 5.53 

BUFG 1 32 3.125 

Critical Path: 2.47 ns, Operation Freq. = 404.1 MHz, Total On-chip Power = 0.021 W 
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Table 3.6. Comparison of FPGA implementation results of MIPS for Virtex 7 

Resource Proposed design Indira et al. 

[3.6] 

Rakesh et al. 

[3.10] 

Slice registers 43 81 56 

Slice LUTs 178 321 203 

Flip-flops 41 81 43 

Bonded IOBs 47 71 51 

BUFG 1 2 1 

Power (W) 0.021 0.023 1.318 

Maximum Frequency 

(MHz) 

404.100 420.028 100.000 

 

As can be seen from Tables 3.5 and 3.6, even though the proposed implementation 

operates at almost the same operating frequency as that of Indira et al. [3.6], the resource usage is 

40%-50% less. It also important to note that even with almost same flip-flop count, the 

implementation is about 4x faster than the one proposed by Rakesh et al. [3.10]. This is because 

of reduced timing calculation through IOs and replication of separate input and output paths 

owing to unrolling of memory write and read loops. Further, both Indira et al. and Rakesh et al. 

have used hand coded RTL along with pipelining optimize their respective implementations. To 

conclude, the results of FPGA synthesis clearly indicate that the proposed implementation is 

superior to previous implementations, despite having the same design specifications. 

 

3.4  Encryption and cryptography algorithms: AES (Vivado HLS) 
 

Herein, design, implementation and optimization of a common cryptographic algorithm, AES 

using Vivado HLS is discussed.  

 

3.4.1 Introduction to AES algorithm 
 

Nowadays, the consumer industry extensively utilizes communication technology to connect 

devices without wires, i.e., wireless communication [3.12]. Further mobile commerce 

applications and wireless information services are needed because number of mobile users have 

grown significantly worldwide [3.13]. In the last two decades, cellular networks  transformation 

from 2G to 3G and 4G to 5G was considerable [3.14]. Compared with preceding technologies, 

5G has much better reliability and higher bandwidth support [3.15]. Still, higher connectivity has 
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various shortcomings, like more possibilities of data theft. For example, consider the web s 

online transactions where multiple devices are connected. These transactions are more 

susceptible to financial scams than cash payments at merchants: in the second case, just two 

parties are included. 

Cryptography is one method for ensuring that messages are encrypted and the messages  

reception is performed only by the intended receiver. One of such algorithms for the key 

encoding process is the AES [3.16]. The AES algorithm is regularly used for encryption in 

several applications, which include IEEE standards like 802.11i, 802.15.4 and ZigBee [3.17, 

3.18, 3.19]. 

In the context of cryptographic algorithms, a chip block is a method to protect the 

symbolic importance of the message to be transmitted. A block cipher is a computable and 

deterministic function that produces n-bit ciphertext employing k-bit keys and n-bit plaintext 

blocks. Because it is deterministic, the same output ciphertext would be produced every time the 

input text and keys being used are the same. AES receives a 128-bit input for each block and a 

key size: 128, 192, 256 bits. Consequently, it produces a ciphertext after a finite number of 

encryption rounds (Nr), which is the function s key size. A key size of 128 bits with 10 rounds of 

block size is the most common. The ciphertext is the output scrambled version of the input 

plaintext. AES encryption rounds (iterations) are conducted in a finite field, specifically a Galois 

Field (GF) of 28 [3.20]. In a GF, mathematical operations, such as addition and subtraction, can 

be executed smoothly as data is presented in vectors. AES is an iterative algorithm acting on a 

square matrix of symmetric size, denominated as a state. The state arranges the message s finite 

number of bytes into columns. Each column consists of a fixed number of bytes. Once a message 

is set up, five functions are called on the message, and they act on the state: byte substitution, 

shift rows, mix columns, add round key, and key scheduling described later in the section. 

The AES algorithm allows multiple modes of operation. Such modes differ in the way the 

input text is arranged into blocks and how they are transformed. There are four major modes: 

counter (CTR), cipher block chaining (CBC), electronic codebook (ECB), and cipher feedback. 

ECB is the simplest of the AES modes. In the ECB mode, the encryption and decryption occur 

independently of the other blocks. The implementation is more straightforward in ECB mode, but 

one disadvantage is the patterns  replication which is avoided in CTR mode using a counter value 

and initialization vector (IV). In CBC mode, there is no correlation between input and output, 

making it slightly more complicated, but at the same time more secure. A pseudo-random IV 

application accomplishes this as an input message to plaintext and the input variable s derivation 

as output from the previous block, hence the name chaining. Below is the detailed description of 
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functions in the encryption process. 

 

3.4.1.1 Byte substitution function 

In the AES algorithm, the byte substitution function involves substituting the inputs with new 

bytes using a pre-defined matrix (called substitution box or S-box) [3.21]. Figure 3.7 (B) shows 

the AES S-box. For byte substitution to happen, first hexadecimal character is used as row, 

second character is treated as column and intersection point becomes new byte. As an example, if 

input is 0x11, it becomes 0x82 (Entry in Row1, Column 1), Input of 0x12 becomes 0xC9 (Row 

1, Column 2). 

Another way to explain the same behavior is using an affine transform in GF (28). It is 

described in Figure 3.7 (A) and 3.7 (C). Taking the same example of input 0x11 (00010001). It 

corresponds to polynomial x4 +1. Multiplicative inverse of this is g(x) x7 + x5 + x4 + x2 such that 

f(x) × g(x) is 1. Hence g(x) = 0xB4 10110100. When we substitute g(x) as 00101101(LSB to 

MSB) in Figure 3.7 (A), we get output 01000001(LSB to MSB) which is 0x82. This is the same 

result we get from S-box in Figure 3.7 (B). Figure 3.7 (C) shows the pseudo-code for the same 

algorithm. 

    

 
(A) 

 

                            (B) 
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                         (C) 

Figure 3.7. (A) Affine transform for byte-substitution. 

(B) S-box representing each element  

(C) Psuedo-code for byte substitution 

 

3.4.1.2 Shift rows function 

A linear operation shifts each state matrix  row by a finite number. The I row is unchanged; the II 

row is circularly left shift by one byte, the III row is changed circularly with a two-byte left shift, 

and the IV row is circularly shifted to the left with 3 bytes. This method provides diffusion. The 

shift rows function, operating on the cipher, is displayed in Figure 3.8. 

 

 
Figure 3.8. Shift rows function on block cipher. 

 

3.4.1.3 Mix column function 

The Mix columns function provides, in a similar fashion to the shift rows function in 

AES, diffusion to the data by mixing the inputs. This operation is executed by splitting the matrix 

through columns instead of rows. Matrix multiplication is computed according to the GF 28. 

Figure 3.9 shows how there are an independent multiplication of each column. 
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Figure 3.9. Mix column function on block cipher. 

 

3.4.1.4 Add round key 

During this stage, the state matrix is bit-by-bit XOR (or addition in GF) by the 16-byte 

round key (128 bits). This feature is invoked 11 times (10 rounds and one additional before the 

first round). Consequently, 11 × 16 = 176 bytes of the key are required. The 16-byte key is 

proceeded to expand to 176 bytes in this stage. 
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Figure 3.10. Functional stages of AES. 
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3.4.1.5 Key scheduling 

This round determines the keys utilized in the algorithm from the starting input key (16 bytes). A 

different key is generated from the previous fundamental exploitation for each key addition: an 

XOR of some bits with the last key value. Thus, while working on words N to M, the value used 

in the XOR is the previous word of the previous round key, i.e., N-1 to M-1. Figure 3.10 presents 

the AES algorithm s included functions and steps. 

 
3.4.2 Previous works for AES algorithm implementation 
 

In the recent past, various optimal FPGA hardware implementations of the AES algorithms have 

been introduced. In 2015, Soltani and Sharifian proposed an ultra-high throughput 

implementation of a fully pipelined AES algorithm. Their implementation is based on the counter 

(CTR) mode of the operation and targeted for the Virtex-6 Xilinx FPGA [3.22]. In 2018, Zhang 

et al. introduced another AES architecture offering increased throughput because of an inner and 

outer pipelined architecture [3.23]. Their implementation showed a throughput of above 60 Gbps 

on Xilinx Virtex-6 FPGA. In 2018, Smekal et al. presented a comparison of two distinct 

encryption algorithms. They targeted design implementations on the FPGAs Virtex-7 and 

Ultrascale+ and obtained a maximum throughput of about 50 Gbps on both targets [3.24]. In 

2019, a custom AES encryption algorithm was implemented on the Spartan 3 E FPGA kit. This 

was done by Noorbasha et al. Their implementation produced better data security at the expense 

of slightly decreased throughput [3.25]. In 2019, Chen et al. presented an encryption algorithm 

for pipelining in big data applications that reached above 30 Gbps [3.26]. 

 

3.4.3 Proposed implementation and optimization using directives 
 

For our design implementation, we chose the CTR mode of operation. A 16-byte 

initialization vector was created with an unchanged nonce with an incrementing counter value 

with each block encryption completion. Because of CTR mode s parallel nature, it is commonly 

used in wireless network application designs with streaming data and ciphers. Figure 3.11 

portrays the AES algorithm s CTR mode of operation. 
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Figure 3.11. CTR mode of operation for AES Algorithm.

The C++ model for the AES algorithm in CTR mode was created using 10 rounds and a 

block length of 128 bits. Simulation of the algorithm was performed with a C++ testbench using

Vivado HLS. The input signal was chosen to be an input text string or a stream of characters, i.e.,

plaintext. The implementation ran on the Vivado HLS high level simulator, and the output was a 

ciphertext corresponding to plaintext at any given instant in time. Figure 3.12 shows the 

algorithm s design using floating type data types for design nodes.

Figure 3.12. Algorithm model for the advanced encryption standard.

Once the baseline model was created, Vivado HLS was used to generate synthesizable

Verilog RTL. It was then implemented on the target FPGA. Moreover, to optimize the operation 

results (throughput), HLS directives offered by tool were used [3.11]. The pipeline, unroll, and 

inline-off directives that we used are explained below.

KEY

X[i], Plain 
Text

Y[i], Cipher Text

Block Cipher Encryption (Full AES as in Figure 3.10)

Initial Vector, Counter Value(incrementing)

+
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i. The pipeline permits the operations concurrent execution by decreasing the initiation 

interval for a loop or a function. Therefore, while using this directive, a tradeoff exists 

between timing and area. This AES implementation is optimized by applying a pipeline with 

an initiation interval of two for all design loops. 

ii. Loop unroll enables the loop iterations to run in parallel by generating multiple single-loop 

body copies in RTL design. This pragma assists in improving the throughput by making the 

loops either fully or partially unrolled. For our AES application, the partially unroll directive 

was used to enhance the performance with minimal resource usage. The unroll factor applied 

on the code is two. 

iii. After a function is inlined, it can no longer be interpreted as a separate entity in the hierarchy. 

Inline functions are merged into the calling function. These functions, consequently, cannot 

be shared, increasing the area utilized by the target FPGA. The inline-off directive was used 

in our application to restrict the functions from inline on their own. This helps alleviate the 

effect of an area increase produced by the loop unrolling and pipelining. Table 3.7 

summarizes the different HLS directives applied on distinct functions or loops in the design. 

 

Table 3.7. Functions in AES implementation and applied HLS directives 

Function Pipeline Unroll Inline (Off) 

Sub Bytes YES YES YES 

Shift Rows YES YES YES 

Mix Column YES YES YES 

Add Round Key YES YES YES 

AES Encrypt (Top) YES NO NO 

L Rounds (Inner Loop) YES NO YES 

 

This proposed design and optimization method is suitable for other HLS tools and other 

applications apart from AES having similar bottlenecks. Moreover, as the produced RTL code is 

optimal, the method is also applicable to all FPGA targets. Depending on the types of directives 

available in the tool and the bottlenecks identified for the application, one can optimize the 

synthesis results. In the next section, the effect of these HLS directives on optimization for FPGA 

synthesis is presented for AES. 
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3.4.4 Simulation, FPGA implementation results, and comparison 
 

Simulation results 

Since AES is a published standard, this study confirmed that the functional verification results 

achieved by using a C++ testbench matches with the standard. We confirmed the same by 

comparing the output from MATLAB against the output (ciphertext) from the design s HLS 

model for the same input text. Figure 3.13 displays the encryption results for the plaintext 

HELLO WORLD THIS IS A SECRET TEXT.  The algorithm requires the input two times (16 

bytes per text), with a completed counter to two (after the increment) as there are 32 characters in 

the input file. 

 
Figure 3.13. HLS model simulation results of AES. 

 

As depicted in Figure 3.13, and considering the implementation with the applied 

directives, the base implementation s simulation results were identical. This demonstrates 

functional equivalence between HLS and design implementation on the target FPGA. Moreover, 

the RTL functional simulation results obtained from xSim (an HDL simulator integrated with 

Xilinx Vivado) were also equal to the same plaintext s theoretical AES output. This was 

confirmed by the HLS simulation using a C++ testbench. Additionally, FPGA-in-the-loop 

verification confirmed the same results. 
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FPGA synthesis 

From a guided Vivado HLS framework, the Verilog RTL code was created. The same code was 

implemented on the Kintex 7 FPGA from Xilinx (XC7K70T-FBG676 -3). Vivado HLS software 

version 2019.1 was used. The generated RTL source code was also implemented on Virtex 6 

device using iSE 14.7 software from Xilinx. This was done to facilitate a direct comparison with 

some of the available literature results for same target boards. Even though our results are 

presented for Virtex 6 and Kintex 7 FPGA, the directives help RTL level optimization. This 

indicates that the optimizations are technology-independent and consequently appropriate for 

other different FPGA targets. 

Tables 3.8 and 3.9 show the corresponding FPGA implementation reports from both the 

baseline design as well as one created using HLS directives, respectively. 

 

Table 3.8. Base implementation results of AES on Kintex 7 

Resource Utilization Available Utilization (%) 

LUTs 572 41000 1.395 

LUT-RAMs 8 13400 0.060 

Flip-flops 446 82000 0.543 

BRAM 4 135 2.962 

IOs 264 300 88.000 

BUFG 1 32 3.125 

Throughput = 28 Gbps, Operation Freq. = 218.8 MHz, Total On-chip Power = 0.114 W 

 

Energy dissipation, E = P × T, where P is power and T is time required for one round of AES for 

128 bit input. Since throughput is 28 Gbps, we see T = (1/28) × 128 ns.  

Hence, energy dissipation, E = (1/28) × 128 × 0.114 = 0.52 nJ (Nano Joules) 
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Table 3.9. HLS directives optimized implementation of AES on Kintex 7  

Resource Utilization Available Utilization (%) 

LUTs 749 41000 1.827 

LUT-RAMs 9 13400 0.070 

Flip-flops 866 82000 1.056 

BRAM 4 135 2.962 

IO 264 300 88.000 

BUFG 1 32 3.125 

Throughput = 54.2 Gbps, Operation Freq. = 425 MHz, Total On-chip Power = 0.124 W 

 

Energy dissipation, E = Px T, where P is power and T is time required for one round of AES for 128 

bit input. Since throughput is 54.2 Gbps, we see T = (1/54.2) × 128 ns. 

Hence, energy dissipation, E = (1/54.2) × 128 × 0.114 = 0.293 nJ (Nano Joules) 

As is evident from Tables 3.8 and 3.9, there is an improvement in 

of pipeline and loop unroll directives. This is due to the fact that critical paths in the design are 

reduced due to retiming and logic replication. However, due to additional retiming flip-flops and 

loop unrolling (which leads to logic replication), an increased resource usage is also observed. 

Nevertheless, the throughput increase of almost 2x is attributed to faster synthesis frequency and the 

pipelining of several loops and functions, as described in Section 3.4.3. 

 

Results comparison with literature 

Our implementation was compared with other proposed implementations available in the literature 

[3.22, 3.23, 3.26]. Table 3.10 shows comparison of results for Virtex-6 (V6) and Kintex-7 (K7) 

FPGA devices. Soltani et.al [3.22] used memory and non-memory based approaches along with loop 

unrolling and pipelining in their implementation. Zhang et.al [3.23] in their implementation 

combined multiple steps of round units, used a dual port ROM structure and used 3 stage pipelining 

to optimize the design. Chen et.al [3.26] used deep pipelining and full expansion technology in their 

implementation for optimization. 
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Table 3.10. Comparison of AES synthesis results with the literature 

FPGA metrics Proposed design Soltani et.al 

[3.22] 

 

Zhang et.al 

[3.23] 

 

Chen et.al 

[3.26] 

 

Max Freq (V6) 

(MHz) 

542.102 508.102 471.000 Not 

available 

Throughput (V6) 

(Gbps) 

276.50 260.14 60.30 Not 

available 

Max Freq (K7) 

(MHz) 

425.0 Not available Not 

available 

244.4 MHz 

Throughput (K7) 

(Gbps) 

54.2 Not available Not 

available 

31.2 

 

As is clear from Table 3.10 and the simulation results discussed above, the proposed 

implementation has better throughput than other implementations available in the literature with 

identical functionality. The throughput for the proposed design is roughly 8% higher than that of 

Soltani et al., 17% higher than the design proposed by Zhang et al., and 70% higher than Chen et 

al. [3.22, 3.23, 3.26]. Moreover, the improvement obtained is technology-independent, i.e., it 

applies to all FPGA targets. We have tested and obtained the results for two widely used Xilinx 

FPGAs - Virtex 6 and Kintex 7. From the previous analysis, it is concluded that our design 

implementation has a higher throughput than the ones presented by other researchers, with a 

small tradeoff in resource usage. Further, we could not provide comparison of energy utilization 

with literature as same was not reported by other researchers. We also validated that usage of 

these performance directives is benign for design functionality. 

 

3.5  YOLO v2 deep learning algorithm (Vivado HLS) 
 
Herein, design, implementation and optimization for a YOLO v2 algorithm which is based on 

convolutional neural network using Vivado HLS is discussed. 

 
3.5.1 Introduction to YOLO v2 algorithm 

 

Artificial intelligence and machine learning techniques have gained increasing popularity in 

recent years and almost all fields of engineering and technology, including computer vision. The 

models based on convolutional neural networks (CNNs) intended for object detection have been 
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constantly evolving. The object detection task is challenging in terms of accuracy and speed. 

Accordingly, several perspective algorithms for object detection have been developed based on 

deep learning, including single-shot multibox detection (SSD), region-based CNN (R-CNN) and 

YOLO [3.27, 3.28, 3.29]. The YOLO CNN model that was slightly larger than previous 

implementations but almost three times faster was introduced by Redmon and his research team 

in 2016 [3.30]. A speed of 45 frames per second was achieved with certain accuracy, enabling 

video detection [3.31]. An improved version of YOLO, namely YOLO v2, could maintain high 

recognition accuracy at a high speed and provided a large improvement in real-time image 

processing [3.32]. Comparing the YOLO algorithm with the R-CNN algorithm, which requires 

multiple CNN operations, it can be noted that the accuracy of the latter is better, but the former is 

faster [3.33]. Therefore, YOLO provides one of the best tradeoffs between accuracy and speed in 

object detection. YOLO is based on a single neural network used to predict the bounding boxes 

of objects and the class confidence in a single evaluation. A GPU is commonly employed to 

implement deep learning techniques. However, it becomes ineffective for optimization tasks, 

such as selecting the data width and managing data access in peripheral memory. Therefore, 

extensive research is conducted to design deep learning accelerators, which can be deployed on 

FPGAs to tackle this challenge. Additionally, FPGAs provide parallel architectures, thus 

enabling execution on high data rates. FPGAs have a flexible design and short development 

cycles, and therefore, they have been extensively applied to high-efficiency deep learning tasks. 

 

3.5.2 Previous works for YOLO v2 implementation 
 

Several implementations of YOLO rely on floating-point representation; however, they are 

associated with large computational costs [3.33, 3.34, 3.35]. FPGAs support only fixed-point 

implementations, and therefore, they can be applied to address this problem. 

The research introduced by Nguyen et al. reported that a floating-point representation was 

unnecessarily redundant [3.36]. Several studies clearly demonstrated that CNNs could be 

quantized to a lower number of bits and trained without the significant loss of accuracy [3.37, 

3.38, 3.39]. Quantization facilitated designing a low-power and fast CNN accelerator based on an 

FPGA. Such FPGA could store the complete quantized CNN model in its on-chip block RAM 

comprising tens to hundreds of MB. Therefore, FPGA is merged with low-bit CNN quantization 

to create a low-power accelerator for deep neural networks, providing a throughput of the order 

of tera operations per second. Various FPGA implementations were realized using CNNs based 

on Vivado HLS [3.33, 3.35, 3.40, 3.41, 3.42]. Zhang et al. deployed a single processing element 

based on a theoretical roofline model applied to design an accelerator for the implementation of 
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each CNN layer [3.33]. However, to realize a small network of five levels, the accelerator 

consumed a significant area on the target FPGA chip. All of this while operating at a low 

throughput of 61 giga operations per second. 

Alwani et al. [3.35] and Xiao et al. [3.42] proposed a fused-convolutional layer in CNNs 

for downgrading the number of off-chip accesses by optimizing intermediate data between 

adjacent layers in a group. However, a significantly greater number of block RAMs were 

required in these designs. 

A CNN accelerator developed by Sun et al. [3.40] was applied to optimize the data path, 

applying a loop unrolling directive and providing improved performance for each layer. The 

authors employed Vivado HLS in the separate design of each layer of the proposed CNN 

accelerator. However, a double buffer was required to store entire intermediate feature maps 

produced by each layer. Therefore, this design did not scale appropriately when the CNN became 

deeper due to large buffers needed. Li et al. proposed a design that was associated with a similar 

limitation, in spite of proving good performance in the Alex Net network [3.43]. Shen et al. also 

employed Vivado HLS for their implementation, and their design achieved a similar optimization 

as the approach proposed by Zhang et al. [3.41, 3.33]. However, in their implementation, the 

available resources were partitioned in a way that allowed scaling down the size of multiple 

convolutional layer processors (CLP) into a smaller size, rather than using a single large CLP. 

Ma et al. presented a proposal in which a RTL compiler was used to generate, for a given 

network, an RTL code for each layer [3.44]. This aimed to solve the problem of the excessively 

high memory bandwidth requirement. Every convolutional layer read the inputs and wrote 

outputs to a dynamic RAM (DRAM) in this configuration. Each layer was launched 

consecutively, meaning that the following layer began only when the current layer finished its 

execution. This processing scheme and repeated access to the external DRAM drastically reduced 

the processing speed. Wnograd et al. proposed a custom minimal filtering algorithm that differed 

from conventional convolution [3.45]. This algorithm was further utilized by Aydonat et al. and 

Lu et al. to improve the speed of convolutional computations [3.46, 3.47]. However, these 

designs still required a large number of DSPs and LUTs although applying the Winograd 

algorithm allowed reducing the number of required multipliers. They also reported that the 

performance of their design decreased as the network deepened due to the need to transfer data 

back and forth between the accelerator and external memory. This limitation was mitigated by 

Umuroglu et al. and Liang et al. by reducing the number of expensive external memory accesses 

[3.48, 3.49]. They realized a low-cost pop-count computation that replaced the multiplier-

accumulator (MAC) operation and utilized an OR gate to implement the comparator in the max-
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pooling layer. 

Other several FPGA implementations were proposed to realize the YOLO algorithm too. 

One such implementation, presented by Preußer, comprised twelve hidden layers to enable 

programmable logic in Zynq Ultra scale+ FPGA [3.50]. This was an extended version of the 

design proposed by Umuroglu et al. [3.48]. Finally, a lightweight YOLO v2 combined with a 

binary network with support vector machine regression was proposed by Arcos-Garcia et al. 

[3.51]. 

 
3.5.3 Proposed HLS implementation and optimization using HLS directives 
 
In this work, we aim to develop a lower area, high throughput implementation of the YOLO v2 

algorithm. The model used in the YOLO v2 network was implemented using the Vivado HLS 

software. Then, it was simulated to test functionality using high-level simulation in HLS (C++ 

testbench simulation). The synthesizable RTL code was generated using the same platform, and 

RTL simulation was performed using a nonsynthesizable hand-coded Verilog testbench. The 

synthesis and simulation results are discussed in more detail in the next section. The vanilla  or 

base implementation was optimized using the below-mentioned HLS directives. 

 

i. Pipelining and loop optimization directives 
The pipeline directive enables the concurrent execution of operations in a function or a loop 

[3.11]. Such a directive allows reducing the size of an initiation interval. A pipelined function or 

loop can process new inputs after every N clock cycles. Here N denotes an initiation interval of a 

loop or a function, and its value is set to one for the pipeline pragma, which can be changed 

manually. Fig. 3.14 (a) illustrates the pipelining process of a loop that realizes the operation of a 

loop to work concurrently. In this figure, three different operations are executed during three 

clock cycles for a single loop. Therefore, it requires eight clock cycles to complete the execution 

of three loops. In Fig 3.14 (b), Initiation interval is set to three, and therefore, it requires five 

clock cycles to finish three loop operations and to obtain the final output. 
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(A) without pipelining             (B) with loop pipelining 

Figure 3.14. Effect of the pipelining directive on loops. 

 

ii. Loop Unrolling 
Loop unrolling is performed to launch multiple independent operations that can be run in 

parallel, rather than establishing an individual group of operations being executed serially [3.11]. 

The unroll pragma converts loops by generating multiple copies of a loop operation in the RTL 

design. This process permits running all or some loops in parallel. If a loop is rolled (default 

behavior), then the synthesis tool generates the logic for one iteration of the loop, and the RTL 

design implements this logic for each iteration of a loop in sequence. The unroll pragma can be 

used to unroll loops to increase the design s data access throughput. This pragma supports a full 

or partial unroll. Full unrolling implies creating a copy of the loop body in the RTL for each loop 

iteration. Therefore, a complete loop can be run in parallel. If the partial unrolling of a loop is 

performed with a factor of N, then N copies of the loop body are created, thereby reducing the 

number of loop iterations accordingly. 

iii. Latency 
Latency is defined as the duration expressed in terms of clock cycles required to produce an 

output for a given input. The latency pragma can be defined as function latency and loop latency 

[3.11]. The former is the total number of clock cycles required to compute all output values in a 

function and return the result. Loop latency is the total number of clock cycles required to 

execute all iterations in a loop. In Xilinx Vivado HLS, the latency pragma can be used to specify 

the maximum or minimum latency, or both of them, for the completion of functions, loops, and 

regions. When the latency pragma is used, the tool attempts to minimize latency in the design by 

completing a task within a specified number of clock cycles. 

Latency is defined as the duration expressed in terms of clock cycles required to produce 

an output for a given input. The latency pragma can be defined as function latency and loop 

latency [3.11]. The former is the total number of clock cycles required to compute all output 

values in a function and return the result. Loop latency is the total number of clock cycles 
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required to execute all iterations in a loop. In Xilinx Vivado HLS, the latency pragma can be 

used to specify the maximum or minimum latency, or both of them, for the completion of 

functions, loops, and regions. When the latency pragma is used, the tool attempts to minimize 

latency in the design by completing a task within a specified number of clock cycles. 

In the implemented code, different functions, such as in_to_buff, wt_to_buff, convolute, 

and max_pool were used. Accordingly, many loops were used in these functions. While running 

HLS simulation and using different directives, the reduction in the amount of computation and 

utilized memory resources was observed. 

The synthesis results were analyzed post the usage of HLS directives. As a consequence, 

in the results, it was observed that timing slack was equal to 0, and the use of resources, 

including block RAMs (BRAMs), look-up tables (LUTs) and DSPs, was less compared with 

those required to implement the baseline implementation (without using directives). 

We examined the computation process of loops in the program, and for purposes of 

performance optimization, HLS directives were applied: loop pipelining, loop merging, loop 

unrolling, interfacing, loop flattening, latency, and expression balancing. 

Due to manual transformations applied during the code restructuring step, the 

opportunities for loop merging and loop flattening were limited. When used, the obtained results 

demonstrated negative slack, and the resource usage reported was much greater than the available 

ones. This problem was solved by performing loop pipelining. In some instances, an inner loop s 

execution required multiple reads and/or writes from/to distinct addresses in the same BRAM. 

Therefore, in such loops, the initiation interval was prolonged to reflect the latency of multiple 

BRAM reads and writes. 

In some instances, if an inner loop had a small loop bound, and the loop content 

performed the execution or search operations (rather than memory writes), complete unrolling 

and pipelining was applied. For example, both the loop unrolling and the pipelining allow 

multiple loop iterations to be executed in parallel, leading to the increased resource usage (for 

example, in terms of registers or functional units). However, various optimization ways have 

improved the performance and the use of resources in several ways. In the proposed YOLO v2 

implementation, the best results were observed after applying the pipelining, unrolling, and 

latency directives. Specifically, loop pipelining and loop unroll were applied to the inner loop of 

the top function, namely, YOLO v2. 
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3.5.4 Simulation, FPGA Implementation Results, and Comparison 
 

Simulation results 

Using the Vivado HLS model, the obtained functional simulation results were identical to the 

YOLO algorithm s theoretical results. The test objects were correctly classified as fork, knife, 

spoon, bowl, etc. in accordance with the test and training images. In addition to the HLS 

simulation, the RTL (Generated from Vivado HLS) simulation was performed using the xSim 

simulator and the results were identical. The RTL implementation achieved a throughput of 40 

frames per second. Additionally, to have a comparison with golden implementation, an FPGA-in-

the-loop simulation was also performed using MATLAB and results were found to be identical. 

 

FPGA synthesis 

After the successful functional verification of the proposed design (HLS model), we generated a 

synthesizable RTL and implemented it on a target FPGA device, namely, Xilinx Zynq 

xc7z020clg484-1. Various directives were applied to the code aiming to optimize it, including 

pipeline, loop unrolling, function in-lining, etc. The FPGA synthesis results obtained after the 

application of multiple directives, one at a time, are summarized in Table 3.11. The table 

indicates that the combined use of directives (pipeline, unroll, and latency) provides the best 

implementation results (the last row in Table 3.11).  

 

Table 3.11. Implementation results on Zynq for YOLO v2 using HLS directives. 

Directive used Frequency 

(MHz) 

BRAM DSP Flip-

flops 

LUTs Slack 

(ns) 

Without Directives 176 182 151 27606 420241 5.4 

(Not 

met) 

Pipeline 220 182 164 27647 40180 0 

Pipeline 

+ Loop Unroll 

220 182 38 15943 19297 0 

Latency 

(min = 20, 

max = 200) 

220 182 30 14655 18601 0 

LUT: Look-up table; RAM: random access memory; BRAM: block RAM, IO: input/output.  

Total On-chip Power = 0.461 W 
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Energy dissipation, E = P × T, where P is power dissipation and T is time required to process one 

input frame. Since frame rate is 40fps, therefore T = 1/40 = 0.025 s. 

Hence, energy dissipation, E = 0.461 × 0.025 = 11.5 mJ (Milli Joules) per cipher. 

 

Results of comparison with the literature 

Our implementation was compared with other proposed implementations available in the 

literature [3.52, 3.53]. Table 3.12 shows the comparison with other implementations available in 

the literature targeted for Xilinx Zynq Ultrascale+ and Virtex 7 FPGAs. Nakahara et.al [3.52] 

have used binarized CNN with pipeline based architecture for their design. Full parallelization of 

all CNN layers in the design was also implemented by Nguyen et.al [3.53] in their design.  

 

Table 3.12. Comparison of the YOLO v2 Implementation results 

Metric 
Proposed 

design 

Proposed 

design 

Nakahara 

et.al [3.52] 

Nguyen et.al 

[3.53] Tiny 

Nguyen et.al 

[3.53] Sim 

FPGA Zynq Virtex-7 Zynq Virtex-7 Virtex-7 

Frequency 

(MHz) 

 

220 

 

176 

 

300 

 

200 

 

200 

BRAM 182 234 1706 1026 1144 

DSPS 30 68 377 168 272 

Flip-flops 14655 9200 135000 86000 155000 

LUTs 18061 9120 370000 60000 115000 

 

As can be seen from Table 3.12, the resource usage for the proposed implementation 

decreased by an order of magnitude when compared with other implementations proposed in the 

literature. Functionally, we achieved a mean average precision of 0.48 at intersection of union of 

0.5. The generated RTL implementation was able to achieve a frame rate of 40 frames per second 

and took a total energy of 11.5 milli Joules per frame. The same is not reported by other 

researchers for a direct comparison. It is clear from the above results that our implementation is 

superior without any effect or change in functionality. 
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3.6  Concluding remarks 

 
In this chapter, we studied that different HLS tools offer multiple directives which one can use to 

optimize a particular application for area, speed, or power on a target FPGA. Continuing from the 

prior works in the same domain, we have explored multiple tools and applications and 

understood the effect of HLS directives on those applications. Five different designs which find 

place in multiple applications were used and optimized using HLS directives. As an example, 

loop unroll directive (which unrolls a loop to create multiple copies in hardware) can help 

achieve better performance at cost of slight increase in area. But this will be effective if the 

application is architected with help of loops in high level language. Similarly, resource sharing 

HLS directive will be effective if a common resource (like a multiplier) is shared between two or 

more data paths in the design. Three unique application designs were created using MATLAB 

HDL coder and two unique designs were created using Vivado HLS as part of this work and 

synthesis results were optimized after using applicable directives. All these designs were 

thoroughly verified using xSim RTL simulation along with FPGA-in-the- loop simulation feature 

of MATLAB HDL Verifier. The verification results proved that HLS optimization directives did 

not have any effect on the design functionality. Finally, the optimized designs were implemented 

on target FPGAs. A comparison of synthesis results for all these five optimized application 

designs with other implementations published in literature was also presented. It was noted that 

directives helped to achieve better synthesis characteristics of area, speed and power depending 

on the usage and application. However, the outcome of this exercise is that none of the directives 

are generic but application and tool specific. 

  


