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Chapter 4 

Application specific bit width for intermediate 
data nodes: method and results 

 
 

Chapter 3 discussed some of the HLS optimization directives available in existing tools. We also 

discussed the results achieved as a result of the usage of these directives on applications that we 

created using MATLAB HDL coder and Vivado HLS. The implementation results achieved were 

compared against the those achieved from hand-coded RTL-based design flows or which are 

already published in the literature. In this chapter, we propose a novel optimization method for 

HLS-based designs. We have named this novel methodology as Application-Specific Bit Width 

for Intermediate Data Nodes  i.e., ASBWIDN. We discuss this methodology in Section 4.1. The 

methodology is applied to multiple designs from different application areas like signal processing 

(bandpass filter, software defined radio), image processing (Sobel edge filter, Harris corner 

detector). The obtained results are discussed in subsequent sections (4.2, 4.3, etc.). A comparison 

of the implementation results for these applications against hand-coded RTL implementation 

results previously published in the literature is also presented. 

 
4.1 Introduction to ASBWIDN method 
 

Chapter 3 discussed the design and implementation methods for multiple applications using high-

level synthesis platforms like MATLAB HDL coder and Vivado HLS. With the increasing 

complexity of digital designs, there is a need for verification methods to catch corner case RTL 

functional errors in digital circuits or SoCs. Prior methods of verification consume long test 

runtime for the completion of various tests, making the verification methodology time-

consuming and expensive. Moreover, running a design on FPGA during the RTL verification 

phase may result in inefficient usage of the target hardware if the area utilized by the design or 

speed of operation is sub-optimal. This is not cost-effective as some of these platforms are much 

more expensive as compared to the cost of licensing simulation tools [4.1, 4.2, 4.3]. 

Hence, there is a need for a methodology such that an HLS designer may deploy to 

improve the area utilization, speed, and power dissipation of the actual implementation to be 

targeted. 
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There are primary ports that function as inputs or outputs for any design implementation 

in HLS or any hand-written RTL, depending on the functionality. Additionally, there exist 

internal signals employed to connect internal modules or store intermediate results. While coding 

in any HDL such as, but not limited to, Verilog or VHDL, the designers specify the width (size) 

of all input and output signals. This is based on information the signal(s) is expected to carry. 

Hence, the designer is pessimistic about the variables  choice as the widths are not known at the 

start of the project. 

This problem gets more complex when there are intermediate nodes involved specifically 

for designs where there is a high degree of data processing involved. In light of the above-

described points, there is a need for a methodology that helps to find out the optimum bit widths 

of input, output, and intermediate nodes. The objective aims for better area utilization, power 

reduction, and speed improvement for a given application. 

Herein, a novel HLS design method is proposed which: 

1) Calculates optimum bit widths of various inputs, outputs, and intermediate signal nodes of 

the design to be used in the HLS design process. 

2) Allows redesigning if simulation results do not adhere to mandatory threshold values. Such 

values are important because they establish when the design is effectively considered as 

verified, or when synthesis results are beyond the area and timing budgets. 

3) Is fully scalable and applicable for all HLS tools and platforms. 

4) Provides improvement in all three parameters: area, speed, and power (which are otherwise 

orthogonal) without any impact on the functionality of the design. 

 

4.2 Detailed description of the methodology 

 
In high-level programming languages like C/C++, dealing with real numbers, numbers with a 

fractional part like 6.5, 3.2, etc., is a common practice. However, we can represent floating-point 

numbers in fixed-point notation [4.4]. We represent 53 (decimal) as 110101 in binary. The key to 

representing fractional numbers such as 26.5 is the notion of the binary point. A binary point is 

similar to the decimal point in the decimal system. It serves as a divider between the integer and 

fractional part of the number. In a decimal system, the decimal point indicates the numeral 

position that the coefficient should multiply by 100 = 1. For example, in 26.5 (decimal 

arithmetic), 2 has a weight of 10, 6 has a weight of 1 and 5 has a weight of 1/10, i.e., 26.5 = 2 × 

10 + 6 × 1 + 5 × (1/10). The same idea of the decimal point can be implemented to the binary 

representation, thus making a binary point. 
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As an example, 11010.1 = 16 + 8 + 0 + 2 + 0 + 0.5 = 26.5. So, to represent 26.75, we 

need one extra bit on the fraction side, i.e. 11010.11 = 26.75. So, a node that has a minimum 

bits for the fraction part and 1 bit for the sign). 

and 1 may be represented using 1 bit for the 

integer and multiple bits for the fraction. Moreover, a number varying from 1 to 4 may be 

represented using only 3 bits with no bits used for the sign. Another example being if a signal 

takes the value between 0 and 23.5 (0.5 is the resolution on the decimal side), it needs 1 bit for 

the fraction part and 5 bits for the integer part, so, in total 6 bits. 

23.5d = 10111.1. 

Figure 4.1 illustrates a flow chart of the method deployed for performing synthesis as part 

of the verification of digital design by calculation of maxima and minima bit width(s). In this 

operation, an HLS model is designed with the highest permissible bit width for all the 

inputs/outputs (I/Os) and all the intermediate nodes. System-level simulation tests are performed 

on the digital design by applying multiple stimuli from the verification environment. In the same 

operation, the values of I/O and intermediate nodes are captured for all the tests run on digital 

design. During the verification process, every signal s bit width is calculated based on each I/O 

and the intermediate nodes  range of values. The simulation process is repeated with multiple 

tests that are part of the regression suite. Moreover, the database of signal values, with 

subsequent runs, is also appended. The optimal signal width is calculated based on the range of 

values for all signals and the design is resynthesized based on the same bit width for signals as 

calculated. The pseudo-code for the method is depicted in the Appendix. Further, the method is 

implemented as a stand-alone C based program which gets called at the start of HLS tool as soon 

as the model or design is run. 
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Figure 4.1. Algorithm for application-specific bit width for intermediate data nodes. 
 

The proposed methodology for high-level synthesis and verification of the digital designs 

is compatible with all HLS tools and may be applied to digital designs targeting any application. 

The method is quickly scalable for any inputs, outputs, and internal signals that the design could 

contain. As the modification is done in the RTL design itself using our methodology, it is 

independent of the target FPGA platform used. Hence, it is applicable for all synthesis tools and 

hardware platforms. 

The proposed method can be performed without manual intervention. Moreover, it may 

be automated with the deployment of multiple applications to target the area, speed, or power 

optimization, depending on the application of the design. It also enables the redesign if 

simulation results do not adhere to threshold values mandatory for the design to be considered 

verified, or when synthesis results are beyond the area and timing budgets. 

We applied our proposed methodology to five different application designs. The results 

achieved using the same are described in the subsequent Sections 4.3 4.7. 
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4.3 Bandpass DSP filter design, implementation, and optimization 

 
In almost every digital signal processing system, signal filtering is an important aspect. The 

process of filtering, allows specific frequency components of a signal to pass through while 

attenuating the rest of the frequency components. Attenuated component is typically noise in a 

particular range of frequencies depending on whether it is a high pass, low pass, or bandpass 

filter. 

In this work, a bandpass DSP filter was designed using HLS and the implementation was 

optimized using the method proposed in Sections 4.1 and 4.2. The filter specifications are as 

mentioned below: 

Filter type: Bandpass FIR Equiripple filter [4.5] 

Order of filter: 40 

Sampling Frequency, Fs = 48000 Hz (48 kHz) 

Lower stop band frequency, Fstop1 = 6000 Hz (6 kHz) 

Lower pass band frequency, Fpass1 = 9000 Hz (9 kHz) 

Upper pass band frequency, Fpass2 = 12000 Hz (12 kHz) 

Upper stop band frequency, Fstop2 = 15000 Hz (15 kHz). 

An HLS model of the filter was created using fixed-point data types using MATLAB and 

Simulink and a system-level simulation was performed using a chirp signal as input. Figure 4.2 

shows the system-level model, and Figure 4.3 shows the magnitude response of the filter for both 

the pessimistic bit width as well as optimized bit width designs. Since the quantization error is 

minimal, the two magnitude response plots almost overlap with each other.  

 

 
 

 

Figure 4.2. Fixed-point bandpass filter design fed with chirp signal input. 
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Figure 4.3. Magnitude response of bandpass FIR filter. 

 

 

Table 4.1. Kintex 7 implementation results for bandpass FIR filter (Default bit width) 

Resource Utilization Available Utilization (%) 

LUTs 2565 41000 6.26 

Flip-flops 1280 82000 1.56 

DSP 140 240 58.33 

IO 106 300 35.33 

BUFG 1 32 3.13 

Critical Path: 23.711 ns, Operation Freq. = 40 MHz, Total on-chip Power = 0.379 W 

 

Table 4.2. Kintex 7 implementation results for bandpass FIR filter (using bit width optimization) 

Resource Utilization Available Utilization (%) 

LUTs 630 41000 1.54 

Flip-flops 640 82000 0.78 

DSP 39 240 16.25 

IOs 53 300 17.67 

BUFG 1 32 3.13 

Critical Path: 19.065 ns, Operation Freq. = 52 MHz, Total on-chip Power = 0.18 W 

 

MATLAB HDL coder was used to generate synthesizable Verilog RTL for the filter and 

the same was implemented on Xilinx Kintex 7(XC7K70T-FBG676) FPGA. 

Table 4.1 shows the implementation results for the same application (default bit width 



62 
 

which is pessimistic). We also optimized the application using application-specific bit widths for 

intermediate data nodes. Table 4.2 shows the implementation results post the optimization. As 

tables 4.1 and 4.2 show, there is almost a 50 percent reduction in FPGA resources and about 20 

percent improvement in frequency of operation using bit width optimization. Additionally, the 

power dissipation is also reduced by about 50 percent using the optimization method. 

 

4.4 Sobel edge filter design, implementation, and optimization 
 

Sobel edge filtering, also known as Sobel-Feldman filtering is a signal filtering algorithm 

commonly applied to image processing and computer vision applications. Essentially, this is a 

discrete differentiating operator used to approximate the gradient of image intensity in both 

dimensions. The output is an image enhancing the edges (region where gradient is large) in the 

input image. 

 

4.4.1 Introduction to Sobel edge detector application design 
 

In almost all modern image processing and computer vision systems, the extraction of a region of 

interest is fundamental requirement. For example, it is crucial in applications such as advanced 

driver assistance systems (ADAS) for pedestrian detection, traffic signal detection, blind-spot 

detection, and lane departure warning systems. It is also commonly used in video surveillance 

applications such as object tracking, scene reconstruction, and weather condition monitoring. An 

edge  or a line is one of such features in images. Multiple algorithms exist for detecting edges in 

images. Some of the commonly applied algorithms include the Roberts cross, Prewitt edge, and 

Sobel edge detection [4.6]. Because of their simple algorithmic approach based on approximate 

gradient calculation, Sobel edge filters are extensively used for data extraction and image 

segmentation in various application designs. Such filters are typically required to run at real-time 

speeds and hence are good candidates for FPGA prototyping. Most commonly, they run 

alongside other algorithms such as non-maxima suppression, matching using the sum of absolute 

differences, matrix computation, and triangulation because typically the output of the filter is 

used to make a decision or take an action like triggering the brake for a car, controlling the 

exposure for a camera shutter etc. For that reason, Sobel edge algorithm implementation is 

expected to be area and speed efficient for target FPGA devices. 
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4.4.2 Previous works for Sobel edge filter implementation 
 

An implementation of the Sobel edge filter on Spartan 3, Spartan 6, and Virtex 5 FPGA, was 

presented by Chaple et al. in 2014 [4.7]. However, it was not a real-time implementation. In 

2016, Israni et al. introduced a similar implementation in Verilog for license plate detection using 

the same algorithm in MATLAB [4.8]. In the same year, Amara et al. presented an HD video 

streaming architecture based on Sobel edge detection [4.9]. In 2018, a low-area implementation 

of the Sobel operator for full HD real-time video streaming was proposed by Eetha et al. [4.10]. 

Their design was implemented on a Xilinx Zynq (ZC 702) board. Such a board contains an ARM 

CORTEX A9 core and programmable FPGA on a single fabric. In 2015 Ismail et al. proposed an 

implementation of the Sobel edge algorithm on Virtex 6 FPGA using VHDL [4.11]. In 2013, 

Sanjay et al. proposed an implementation for Sobel edge filter which occupied almost 40 percent 

lesser resources while maintaining real time frame rates. They used pipelining to further optimize 

the performance for their proposed implementation [4.12]. 

 

4.4.3 Proposed implementation for Sobel edge filter using ASBWIDN 
 

As part of our contributions, we propose an implementation of the Sobel edge detection 

algorithm on Xilinx Kintex 7 device. Our implementation is better in terms of speed and area 

utilization on FPGA when compared to other implementations. This design was constructed 

using a novel HLS design method that constrains intermediate signal widths according to the 

application (input stimulus). For hand-coded RTL hardware implementations of image 

processing filters such as the Sobel, there are primary ports that function as inputs or outputs 

depending on the functionality. There are also internal registers and wires used for connecting 

internal modules or for storing intermediate results. While coding in any HDL, such as Verilog or 

VHDL, designers define the width (size) of all input and output signals based on data the 

signal(s) is/are required to carry. A designer is habitually pessimistic toward selecting variables 

as the widths are unknown at the beginning of the project. In the Sobel edge filter case, there are 

cascaded stages of multipliers and adders that act on incoming image pixels and stored gradient 

matrices in both the horizontal and vertical directions. In such cases, manual selection of data 

types for the primary ports and intermediate nodes leads to pessimistic synthesis and slower 

operation frequency, and poor area utilization on the target FPGAs. For the Sobel edge filter 

produced using HLS for this study, a MATLAB model was created with the highest permissible 

bit width for all input and output nodes, along with intermediate nodes of the design. For the 
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stimulus, a video stream was chosen, inputting back-to-back image frames with a resolution of 

1920 (width) × 1080 (height) × 3 (colors) with 8 bits representing each color. The frames were 

transformed to pixels using the Vision HDL toolbox in MATLAB. The generated pixels were fed 

into the design on a per clock cycle basis. The output pixels were transformed back to frames and 

written to an image file that can be visualized using any image viewer software. Figure 4.4 shows 

the method for executing the multiplication and addition on incoming image pixels using the 

Sobel operator. Figure 4.5 shows the pseudo-code for the method. In addition to proposed design, 

a parallel Simulink library block was added for the Sobel edge detector for visualizing the results 

in an overlaid manner. The Simulink standard library block received the same input images as the 

stimulus to compare the results against the proposed hardware implementation. 

 

 
Figure 4.4. Sobel operator applied on input image pixels. 
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Figure 4.5. Multiplication and additions using the Sobel operator. 

 

The same method as described in Section 4.2 for ASBWIDN was used for this design as 

well. The simulation was run over the entire set of input images. The absolute minima and 

maxima value for each of the inputs, outputs and intermediate nodes in the design was recorded. 

This minima and maxima database was appended with data from subsequent simulation runs 

until all the varied images were processed. Afterward, the widths for all the primary input, 

output, and internal signals were recalculated based on the range of values it covered. The HLS 

tool was then back-annotated with the signal widths to generate RTL with updated optimum  

constraints for all the data nodes. For example, if there is a 32-bit multiplier inferred in the design 

for 2-pixel multiplication (each pixel being 8 bit), this could be substituted by an 8-bit multiplier, 

which leads to lesser resources and shorter critical path. This points to a better compile 

frequency. The method was applied in this work for MATLAB HDL coder-based design for the 

Sobel edge filter. The method can be readily scaled for any number of inputs, outputs, and 

internal signals that a design could contain. In this study, calculating the minima and maxima for 

each node was completely automated and did not require any manual intervention. The final 

generated RTL, with constrained bit widths, was implemented on the target FPGA. 

 

4.4.4 Simulation, FPGA implementation results, and comparison 
 

The Verilog design produced using MATLAB HDL coder was implemented on Virtex 6 and 

Kintex 7 FPGA (Xilinx) [4.11]. It was checked for functionality using the FPGA-in-the-loop  

feature of MATLAB and HDL Verifier [4.12]. Figure 4.6 shows the input and output images for 

the FPGA implemented design. The results are equal to the golden MATLAB model results for 

the same input image. Moreover, the generated Verilog RTL code was also simulated utilizing a 

nonsynthesizable testbench using Vivado xSim software. Functional simulation results from the 

Vivado xSim simulator also matched the high-level simulation results with regards to the output 

pixel values. Figure 4.7 presents the RTL simulation results. Using the FPGA-in-the-loop feature 

of MATLAB HDL Verifier, it was also deduced that quantization error introduced (Due to the 
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fact that we used reduced bit widths instead of double precision data types) was less than 1 

percent. 

 

 
 

Figure 4.6. 1920 × 1080 image before and after Sobel edge filtering. 

 

 

Figure 4.7. Functional RTL simulation results for HDL implementation of Sobel edge filter. 
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The proposed Sobel edge detector design was built using optimum bit width data types, as 

described in Section 4.4.3, and simulated on xSim. The Verilog design was synthesized using 

Vivado 2019.1 targeting Xilinx Kintex 7(XC7K70T-FBG676). The implementation reports from 

the design are presented in Table 4.3. 
 

Table 4.3. Proposed Sobel edge detector implementation for Kintex7 

Resource Utilization Available Utilization (%) 

LUTs 335 41000 0.82 

LUT-RAMs 33 13400 0.25 

Flip-flops 309 82000 0.38 

DSP 1 135 0.74 

IOs 64 300 21.33 

BUFG 1 32 3.125 

Critical Path: 4.041 ns, Operation Freq. = 250 MHz, Total On-chip Power = 6.573 W 

 
The critical path is a function of maximum combinational logic delay in the design 

calculated by the synthesis tool. We also compared the synthesis results for the proposed 

implementation with the golden HDL coder implementation (library block) of the same design 

for the same target device [4.13]. The comparison of the results is compiled in Table 4.4. 

Additionally, our implementation was also compared with available published results from other 

authors. Table 4.5 shows a comparison of the speed of operation and percentage gain in area 

saving over other available implementations [4.14, 4.15].  
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Table 4.4. Comparison results with benchmark implementation for Sobel edge  

(Kintex 7) 

Resource Proposed design Benchmark design 

(Default bit widths) 

LUTs 335 707 

LUT-RAMs 33 74 

Flip-flops 309 502 

DSP 1 2 

IOs 64 182 

BUFG 1 1 

Total Power (W) 6.573 7.891 

Fmax (MHz) 

(Maximum 

frequency of operation) 

250 182 

 

Table 4.5. Comparison results with literature for Sobel edge  

Parameter Proposed design Ismail et al. 

[4.14] 

Sanjay Singh et 

al. [4.15] 

Operation 

Speed (MHz) 

250 160 108 

Percentage area 

reduction over 

benchmark (%) 

 

50 

 

Not available 

 

40 

 

Area calculation in table 4.5 assumes Gate count = (LUT count × 4)+ Flip-flops Tables 

4.4 and 4.5 imply the suggested implementation utilizes 50% less area, is approximately 30% 

faster, and consumes 20% less power than the reference designs. The results can be further 

enhanced if we apply extra tool-specific optimization features such as pipelining and resource 

sharing. Such optimization options have already been outlined, in detail, in Chapter 3. 

Superimposing the functional simulation results of the implementation on top of golden 

benchmark results prove that optimization method has no impact on design functionality. 
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4.5 Harris corner detector design, implementation, and optimization 
 

Harris corner detector is a commonly used algorithm in image processing and computer vision 

applications to extract corners and infer features in an image. It was first proposed by Chris 

Harris and Mike Stephens in 1988. Compared to previous architectures, this algorithm takes the 

differential of the corner score with reference to direction. Since it was invented, it has been 

improved by multiple researchers and implemented for different application designs.  

 

4.5.1 Introduction to Harris corner detector application design 
 

A fundamental problem while processing images for applications like filtering is corner 

detection. Section 4.4 discussed Sobel edge detection algorithm. A corner is another important 

characteristic or feature in an image. It is defined as a point where two edges meet. 

Several algorithms exist to detect corners in images. The Moravec algorithm, the Susan 

algorithm, and the Harris corner detector are well-known examples of some commonly applied 

corner extraction methods [4.16, 4.17, 4.18]. 

The Harris corner detector is one of the most accurate corner detection algorithms. Its 

operation is remarkably straightforward. However, the algorithm is computationally intensive. 

Hence, it is an ideal candidate for optimized implementation on hardware like FPGAs. 

 

4.5.2 Previous works for Harris corner detector implementation 

 
Several authors have proposed novel studies on area and speed-efficient implementations of the 

Harris corner detector on FPGAs. Liu et al. recently introduced a method that can process 

RGB565 video in 640 × 480 resolution at a rate of 154 frames per second [4.19] . They 

implemented the design using a Xilinx ZedBoard. Xu et al. presented a slightly different 

algorithm by attaching a prefilter and using a simplified matrix rather than the original Gaussian 

kernel matrix [4.20]. In this way, the design complexity was reduced and headed to efficient 

hardware resource usage with Spartan 3 FPGA for robotics applications. By conducting the 

experiments using input images with a resolution of 256 × 256 at a processing time of 2.3 ms, 

Chao et al. tried to simplify the maximum suppression procedure with the Harris corner detector 

[4.21]. Their design, which was particularly developed for use with ZedBoard, reached a data 

rate of 144 frames per second in simulations. Lee et al. introduced a modified Harris corner 

detector for breast cancer detection from MRI and x-ray images [4.22]. They used an automated 
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adaptive radius suppression technique, decreasing corner clustering, consequently avoiding 

losing useful corners due to over-suppression. 

 

4.5.3 Proposed implementation for Harris corner detection algorithm using 

ASBWIDN 

 
A cascaded model of the Harris corner detector was generated in MATLAB. Input video frames 

had resolution 240 (width) × 320 (height) × 3 (colors) with eight bits representing each color, as 

presented in Figure 4.8. Because HDL implementation uses pixels instead of frames, the input 

frames were transformed to pixels and each pixel was sent as an input to the design per clock 

cycle. A Simulink library block was also concurrently employed for the Harris corner detector. 

The same input image was fed to the library block, and the results were consequently compared 

against the hardware implementation. 

 

 
Figure 4.8. Cascaded stages of Harris corner detector. 

 

 

Input video stream was chosen as set of RGB-888 images. During the simulation time of 

100 seconds (video stream s duration), the absolute minima and maxima for the inputs, outputs, 

and intermediate nodes in the design were registered. These included all design nets, intermediate 

variables for storage, pixels, multiplier constants etc. This minima and maxima database was 

appended on subsequent simulation runs until all varied video signal input frames were 

processed. Afterward, all the signals  width was recalculated based on the range of the values for 

each input, output, and intermediate nodes. The HLS tool was then constrained to produce the 
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RTL with the updated widths for all the data nodes, primary inputs and outputs. The optimized 

RTL was then implemented on the FPGA. As the output from FPGA is in pixels, it was 

converted back to a frame image using the MATLAB function. The output image was a corner-

marked image overlaid onto the input image. The entire model with HDL implementation, 

behavioral implementation, and the common image source is shown in Figure 4.9. As illustrated 

in Figure 4.9, delay elements were added to the behavioral and input image paths to balance the 

actual cycle s delay by accurate hardware implementation running on the FPGA. Figure 4.10 

shows the input image, the output image from the MATLAB model, and the HDL 

implementation output on the FPGA. The input image source, the MATLAB behavioral model, 

and the FPGA HDL model ran independently and processed different frames from the input 

video stream. 

 

 
Figure 4.9. HLS model for the Harris corner detection algorithm. 

 

 
Figure 4.10. Input and output images from MATLAB and FPGA models. 

 



72 
 

The optimum datatype and data widths chosen for the model in RTL were back-annotated 

to the HLS model. Figure 4.11 shows the back-annotated datatypes for an intermediate stage 

(gradient calculation) in the model. In the highlighted example, two 18-bit signed fixed-point 

numbers generated a 36-bit result. In the pessimistic data width model, all widths were 32-bit, 

which is obviously suboptimal. This method is efficiently scalable for inputs, outputs, and 

internal signals that the design could include. For this study s case, each node s minima and 

maxima calculation method was completely automated and did not need any manual 

intervention. Moreover, all phases of the algorithm pictured in Figure 4.8 are completely 

pipelined. This leads to a better design throughput at the cost of a slightly increased number of 

flip-flops. 

 

 
Figure 4.11. HLS model of Harris corner detector using application-specific bit widths. 

 

4.5.4 Simulation, FPGA implementation results, and comparison 

 
As explained in Section 4.5.3, the generated Verilog RTL code was simulated with a 

nonsynthesizable testbench using Vivado xSim software. Figure 4.12 presents the functional 

simulation results from the Vivado xSim simulator. As illustrated in the figure, the reference 

pixel values are identical to the proposed method s pixel output. They were also identical to high-

level simulation results observed with MATLAB on the optimum bit width model. The 

quantization error which is introduced because of bit quantization from the double precision 

model was also measured. This was performed by applying the FPGA-in-the-loop  feature of 

the HDL Verifier from MathWorks [4.12]. The measured RMS value of the quantization error 

was less than 1%. The same Verilog design was synthesized using Vivado 2019.1 software 

targeting the Xilinx ZedBoard(xc7z020clg484). Table 4.6 presents the synthesis and 

implementation results for the proposed design as well as the reference design (using pessimistic 

bit widths). The total power reported by the Vivado synthesis tool was 0.315 W, covering 0.205 

W dynamic power and 0.110 W static power. As can be seen from Table 4.6, the resource 
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utilization is almost reduced by 50% as compared to reference design when the bit width 

optimization technique was applied. 

 

 
Figure 4.12. FPGA simulation results of Harris corner detection algorithm. 

 

Table 4.6. FPGA implementation reports for Harris corner detector (Zynq) 

Resource Proposed 

design 

 

Benchmark design 

(Default bit widths) 

 

Available 

Resources 

LUTs 5917 10947 53200 

LUT-RAMs 506 961 17400 

Flip-flops 10981 17570 106400 

BRAM 37 44 140 

DSP 21 36 220 

IOs 102 216 200 

BUFG 1 1 32 

Optimal design: Critical Path: 25.84 ns, Operation Freq. = 38.7 MHz, Total On-chip Power = 

0.315 W 

Benchmark design: Critical Path:41.6 ns, Operation Freq. = 24 MHz, Total On-chip Power = 

0.513 W 
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Table 4.7. Comparison of results with the literature for Harris corner detector (Zynq) 

Resource Proposed 

design 

Komorkiewicz 

et al. [4.23] 

Liu et al. 

[4.19] 

Chao 

et al. 

[4.21] 

Gate 

Count 

22815 51859 37447 28626 

LUTs    5917 20660 17555 9485 

LUT-

RAMs 

  506 NA 5443 4131 

Flip-flops  10981 10539 2337 9656 

BRAM    37 77 75 64 

DSP    21 59 55 110 

IOs  102 NA 48 NA 

BUFG   1 NA 7 NA 

Frame 

rate (fps) 

 168 120 154 98 

 

The proposed algorithm s synthesis results were also compared with other 

implementations published in the literature [4.19, 4.21, 4.23].  

The results of this comparison are compiled in Table 4.7. The implementation introduced 

in this study is better in terms of frame rate and the area used for the same target FPGA than the 

other implementations. Concerning area, even with the assumption that a LUT uses two ASIC 

gates, proposed implementation utilized almost 50% fewer resources than Komorkiewicz et al., 

30% fewer resources than Liu et al. and 20% fewer resources than Chao et al. [4.23, 4.19, 4.21]. 

Moreover, the proposed implementation has better performance regarding the frame rate than 

other implementations due to reduced design complexity. This is because critical paths are 

shorter and hence a better operational frequency is observed on the FPGA. Other researchers 

have not shared their data on power dissipation for designs. 
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4.6 Digital down converter for software defined radio applications: design, 

implementation, and optimization 

 
This section of the thesis discusses the results achieved by our novel HLS design methodology, 

ASBWIDN, applied to a digital down converter design for software defined radio (SDR) 

applications. 

 

4.6.1 Introduction to digital down converter design 
 

In the processing of digital signals, digital down converters (DDCs) transform digitized, band-

limited signals to lower frequency signals at a lower sampling rate to simplify subsequent 

filtering phases. DDCs with input signal bandwidths above 1 MHz are known as wideband 

DDCs, whereas those with less than 1 MHz bandwidth are known as narrowband DDCs. 

Wideband DDCs are commonly used in applications such as 4G and satellite communications. 

On the other hand, narrowband DDCs have applications in commercial broadcasting. DDCs are 

extensively used in modern communication systems, such as Software Defined Radio [4.24, 

4.25]. Due to high data rate requirements for modern communication systems, high-speed and 

area-efficient implementation of these systems on target FPGAs is the need of the hour. 

The DDC we chose for application down-converts an input signal of 200 MHz to an 

output signal of 2 MHz. This implementation was done on FPGA hardware (Xilinx Kintex-7) 

and checked against the design specifications using the FPGA-in-the-loop feature of HDL 

Verifier and MATLAB [4.12]. 

 

4.6.2 Previous works for Digital down converter implementation 
 

Numerous authors have proposed novel works on efficient DDC architectures for targeting low-

area and high-speed FPGA implementations. Most have been implemented in HDL languages 

such as Verilog or VHDL. Debarshi Datta recently introduced an implementation which down 

converts 70 MHz to 130 kHz using three filter stage filtering [4.26]. Their design used a 

coordinate rotation digital computer (CORDIC) processor as an oscillator, accompanied by a 

multistage decimation filter implemented on a Kintex-7 FPGA board. In 2017, Liu et al. 

introduced a reconfigurable DDC for down-converting input bandwidths from 3.6 GHz to an 

output range of 1 KS/s 225 MS/s [4.27]. They achieved optimum hardware resources with a 
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variable sample rate on a Xilinx Kintex-7 device. G Maiti et al. introduced a variable fractional 

rate DDC for satellite communication. Their implementation, which was experimented on 

Kintex-7, enables a user to dynamically change the carrier frequency and output sample rate at 

runtime [4.28]. Mingshao et al. introduced an optimization technique for DDCs on FPGAs for 

pulse radar receiver applications. They intended to optimize by using the intrinsic relationship for 

FIR filters by implementing it utilizing a distributed algorithm. They also introduced an IP core 

for executing a 32K point FFT required for RADAR applications [4.29] . Obradovic et al. 

discussed implementing DDC on a Xilinx Kintex-7 device for wideband direction-finding 

applications. They presented increasing the instantaneous bandwidth using four DDCs per 

channel of the direction finder. They applied Xilinx IP cores to integrate DDC chain elements, 

such as Numerically Controller Oscillator (NCO), Cascaded Integrator Comb, and Labview 

FPGA module, for data acquisition and synchronization between various channels [4.30]. 

The latest work in this field by Debarshi et al. applied a CORDIC-based implementation 

for a local oscillator, which uses a smaller LUT count, thereby saving area resources [4.26]. 

 

4.6.3 Proposed implementation 
 

A block diagram of the designed DDC is shown in Figure 4.13. It comprises of a bandpass filter 

that passes the intermediate frequency signal. The analog input signal is then digitized at a 

particular sampling rate. A numerically controlled oscillator, which is tuned to the input signal, 

produces a local signal which is multiplied by the analog to digital converter s output. In our 

design implementation, the NCO produces a multichannel, complex sinusoidal signal, with an 

independent phase and frequency in each channel. The signal amplitude is the unity generated 

using a LUTs with 16385 data points and a spurious-free dynamic range of 108 decibel (dB). 

Lastly, an internal dither of 15 bits was added to randomize the quantization error. 

 
Figure 4.13. Block diagram of a digital down converter. 
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Multiplication by the NCO output utilizes the fact that the product of two sinusoidal 

waves (i.e., the input sinusoid and the NCO output) generates two signals, as shown using the 

following simple example: 

. (Equation 4.1) 

Hence, the product of two sinusoidal signals comprises two components, one at the sum 

of the two frequencies and one at the difference of the two frequencies. The sum frequency 

component, i.e., the high-frequency component, is attenuated by a low pass filter in the DDC. 

Consequently, only the difference frequency component is important in the design s next phase. 

In Eq. (4.1), cos[(f1 2)t] is the low frequency component and cos[(f1 + f2)t] is the high-

frequency component. 

The same method outlined in Section 4.2 was applied for designing the DDC. As part of 

the DDC design method, which was produced using HLS herein, a MATLAB model was 

constructed for the DDC using the highest permitted bit width for all input, output, and 

intermediate nodes in the design, i.e., double-precision. The input signal was a chirp centered at 

200 MHz. The absolute minima and maxima values for each of the inputs, outputs and 

intermediate nodes in the design were recorded during the simulation over the entire input 

frequency range. The output signal was a chirp centered at 0 with a 30 dB bandwidth of 2 MHz, 

as displayed in Figures 4.14 and 4.15 (time and frequency domain response of the DDC, 

respectively). The design model, which applies double-precision or floating-point data types (as 

previously explained) for all nodes of the design, is portrayed in Figure 4.16. The minima and 

maxima database was annexed on subsequent simulation runs until all the varied chirp signal 

inputs were processed. Afterward, width for all the signals was computed based on the range of 

values for each input, output, and intermediate nodes. The HLS tool was then constrained to 

produce the RTL with the updated signal width constraints for all the intermediate signals, inputs, 

and outputs. 
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Figure 4.14. Time domain response for the digital down converter. 

 

 
Figure 4.15. Frequency domain response for digital down converter. 
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Figure 4.16. Digital down converter using floating-point data types. 

 

more bits are needed to express the fractional part than the integer part. Therefore, double-

precision could be substituted with a signed representation, with one bit for the integer part, one 

bit for the sign part, and four or five bits for the fraction depending on the needed accuracy. The 

optimum  bit width model using fixed-point data types is depicted in Figure 4.17. 

 

 
Figure 4.17. Fixed-point (optimal bit width) implementation of digital down converter. 

 

4.6.4 Results and comparison with the literature 
 

For the functional simulation of the DDC (design under test), an input signal was chosen having 

a unity magnitude, bi-directional sinusoidal chirp centered at 200 MHz with a bandwidth of 20 

MHz. 

The code produced from the HLS model with stimulus-aware bit widths was implemented 

on the Xilinx XC7K70T-FBG676 target device with a speed grade of 3 using Vivado 2019.1 

software. Verilog non-synthesizable testbench was also produced from the same model, and 
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simulation was run on Vivado xSim. The functional simulation results acquired from the Vivado 

xSim simulator were found to be equal to the high-level simulation results acquired using 

MATLAB on an optimum bit width model. 

Figure 4.18 shows the RTL simulation results. Additional to the output signal s spectrum, 

the quantization error was also measured. Such error was included due to the selection of reduced 

optimal  signal widths. Next, it was compared against the golden double-precision model 

running in MATLAB. This was achieved using FPGA-in-the-loop feature of HDL Verifier from 

MathWorks [4.12]. The measured Root Mean Square value of the quantization error was less 

than 1%. The superimposed output results of the DDC running on MATLAB and the same 

design running on the FPGA, are presented in Figure 4.19. As displayed in the figure, the two 

output plots (yellow and blue) almost overlap, showing a minimal quantization error. 

 

 
Figure 4.18. RTL Simulation results for digital down converter. 

 
Figure 4.19. Frequency domain response for DDC running on FPGA superimposed on 

MATLAB model output. 
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Table 4.8 shows the implementation results for the same design targeting Xilinx Kintex 7 

FPGA device. We also compared results against a reference design that was generated without 

using optimization methodology but using the HLS method. The reference design corresponds to 

double-precision (pessimistic bit width is chosen for the design as presented in Figure 4.16). As 

Table 4.8 shows, resource utilization, power dissipation as well as runtime frequency is superior 

for the optimized bit width implementation as compared to the reference implementation (with 

pessimistic bit widths) 

 

Table 4.8. Kintex 7 implementation results for the digital down converter 

Resource NCO Filter 

(six-stage CDC) 

Total 

utilization 

(Optimized) 

Total 

utilization 

(Benchmark) 

LUTs 261 1567 1828 38122 

Flip-flops 70 2183 2253 4373 

DSP 2 147 149 240 

IO 12 56 68 106 

BUFG 0 1 1 1 

Optimized implementation: Critical Path: 2 ns, Operation Freq. = 498 MHz, Total On-chip Power 

= 0.325 W 

Reference implementation: Critical Path: 2.19 ns, Operation Freq. = 456 MHz, Total On-chip 

Power = 0.601 W 

 

Table 4.9. Comparison of results with literature for digital down converter (Kintex 7) 

Resource Proposed 

design 

Full 

Precision 

Debarshi et 

al. [4.26] 

Liu et al. 

[4.27] 

Vuk et al. 

[4.30] 

Gate 

Count 

5909 80617 12968 28090 209610 

LUTs 1828 38122 5543 7269 37066 

Flip-flops 2253 4373 1882 13552 135478 

DSP 149 240 230 83 1034 

Fmax 

(MHz) 

498 456 495 455 NA 

Power 

(W) 

0.325 0.601 1.022 1.466 NA 
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The total power reported by the Vivado synthesis tool is 0.325 W, containing a dynamic 

component of 0.243 W, and static component of 0.082 W. 

The synthesis results for the proposed implementation (design corresponding to Figure 

4.17) were compared against other implementations available in the literature [4.26, 4.27, 4.30]. 

The results of the comparison are summarized in Table 4.9. In all four cases, the same target 

hardware and synthesis tool are used. 

As is evident from Table 4.9, Figure 4.18 and Figure 4.19, the proposed implementation has 

almost the same throughput and functionality as those described by other researchers. The 

presented implementation outperforms in terms of area and power usage. Regarding area, even if 

we consider a LUT applying two ASIC gates, the proposed implementation uses almost 55% 

fewer resources (5909 = 45% of 12968) and 68% less power than the one proposed by Debarshi 

et al. (0.325 = 32% of 1.022). Nevertheless, this implementation requires a slightly higher flip-

flop count than the one proposed by Debarshi et al. The higher flip-flop count is attributed to the 

use of a ROM Table rather than CORDIC for storing the sine samples for NCO, where each 

sample is 16 bit wide, unlike those used by Debarshi et al., where a CORDIC implementation 

translated in an improvement in terms of flip-flop count [4.26]. To summarize, given the use of 

smaller bit widths, the proposed implementation is faster and demands fewer resources as well as 

less power. Furthermore, Table 4.9 clearly shows that the proposed implementation results are 

superior than those reported by Liu et al. and Vuk et al. [4.27, 4.30]. 

 

4.7 Advanced encryption standard for automotive applications  design, 

implementation, and optimization 
 

In Section 3.4, we presented the significance of optimal implementations of encryption 

algorithms like the advanced encryption standard (AES) on FPGAs for telecom applications. We 

also presented the optimization results achieved for the same using multiple HLS directives. In 

this section, we use the same design for automotive applications to prove the efficacy of the 

novel design methodology for HLS tools as described in Section 4.2. For this application, Vivado 

HLS is used as the design platform. 

 

 

 

 



83 
 

4.7.1 Introduction to AES 
 

Following the introduction of electronics in the automotive industry in the 1970s, there has been 

a constant increment in the complexity of microcontrollers used in vehicles. For instance, with 

the introduction of vehicular ad-hoc networks at the beginning of the 21st century, automobiles 

became equipped with various advanced wireless communication technologies, such as vehicle-

to-vehicle, vehicle-to-infrastructure, and vehicle-to-cloud communications [4.31]. 

Such communication standards support modern automotive microcontrollers in 

applications like bluetooth connectivity, telematics, audio-visual controls, object detection, and 

pedestrian detection. This enables the industry paradigm shift towards connected  smart cars. 

Because of such car connectivity, numerous microcontrollers in modern vehicles are also being 

applied to simplify financial transactions at gas stations, parking lots, toll booths, etc. However, 

high connectivity has several drawbacks, including increased chances of data theft and personal 

information hacking. In automotive applications, illegal access to private data could also lead to 

safety infringements, thus putting lives and materials at risk [4.32]. Designers of automotive 

microcontrollers require to predict security attacks and restrict unauthorized access to electronic 

systems and data. In this vein, the automotive industry has developed interoperable standards for 

vehicular data security. One way of securing data is cryptography, i.e., encrypting messages 

before transmission so that only the designated receiver can decrypt important messages. 

The AES, also known as Rijndael, is one such electronic data encryption standard. It was 

established, in 2001, by the United States department of c

Standards Technology [4.33]. Consider the encryption of an inter-vehicle communication 

message or the authentication of a user application to be placed in shared memory space, then 

AES is a very commonly used algorithm in autonomous vehicles. Nevertheless, software based 

implementations of this algorithm fall short of the required speed and performance. For example, 

on a 1.2 GHz Intel processor, a throughput of 400 Mbit/s (or 50 MByte/s) is possible. The fastest 

known implementation on a 64-bit Athlon CPU provides a theoretical throughput of more than 

1.6 Gbit/s [4.34]. Hardware-based implementations are faster, more energy efficient, and 

considerably more secure. 

 

4.7.2 Previous works for AES algorithm implementation 
 

Various authors have presented optimal hardware AES algorithms  implementations on FPGAs. 

In 2015, Soltani and Sharifian introduced an ultra-high throughput and fully pipelined AES 
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implementation in the counter (CTR) mode of operation [4.35]. Using multiple optimization 

techniques, such as loop unrolling and pipelining, they implemented the design on a Virtex-6 

(XC6VLX240T-FF784-3) Xilinx FPGA. In 2018, Zhang et al. introduced a fully unrolled three-

stage inner and outer double-pipelined architecture to enhance data throughput [4.36]. Their 

implementation was targeted on the Virtex-6 platform, and it achieved a throughput of 60.29 

Gbps. In the same year, Smekal et al. presented a comparative study of two algorithms: AES and 

TwoFish [4.37]. They implemented the AES algorithm on both Virtex7 and Ultrascale+ FPGAs 

from Xilinx. They achieved a throughput of 49.38 and 49.66 Gbps, respectively. In 2019, 

Noorbasha et al. introduced a slightly modified version of the AES algorithm using a triple key. 

They implemented this version on Spartan 3E FPGA kit [4.38]. Their version offered increased 

security, even though lesser throughput was obtained. In 2019, Chen et al. presented the AES 

implementation using deep pipelining, obtaining a data rate of 31.3 Gbps for big data 

applications [4.39]. 

 

4.7.3 Proposed implementation using ASBWIDN 
 

As part of the design method for the AES algorithm implemented in this work, a Vivado HLS 

model was built for the AES algorithm. This model had the highest permissible bit width for all 

input, output, and intermediate nodes, i.e., double-precision arithmetic. The input signal was 

random streaming data (corresponding to the text to be encrypted), i.e., plain text. The absolute 

minima and maxima for each of the inputs, outputs and intermediate nodes of the design were 

recorded during the simulation over the entire input plaintext range. The output signal at any 

given point was a ciphertext corresponding to the plain text. Figure 4.20 shows the pseudo-code, 

which uses double-precision or floating-point data types (as explained before) for all nodes of the 

design. As seen in the algorithm, each of these blocks had a length of 16 bytes (128 bits), and 10 

rounds were executed. The minima and maxima database was appended following subsequent 

simulation runs until all the input message bytes were encrypted according to the design. 
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Figure 4.20. Psuedo-code for AES algorithm using floating-point data types. 

 

Subsequently, all the signal widths were recalculated based on the range of values for 

each input, output and intermediate nodes. The HLS tool was then constrained to produce the 

RTL with the updated signal widths for all nodes. For example, assume none of the input values 

exceed 12 bits for a multiplier in the byte substitution layer. Therefore, a 12-bit implementation 

(optimized) could have a lesser delay than a 32-bit multiplier, which is inferred if the datatype is 

an integer by default (pessimistic) keeping the functionality intact. Hence, the system can 

accomplish higher throughput and data rate on the target FPGA. 

 

4.7.4 Results and comparison with literature 
 

The functional simulation results achieved from the Vivado HLS model matched with the AES 

algorithm s theoretical results with the same set of stimuli obtained using MATLAB simulation. 

Figure 4.21 displays the AES encryption results for the plain text HELLO WORLD 

THIS IS A SECRET TEXT.  The figure also shows the counter value incrementing, which is a 

typical characteristic of the CTR mode. In this case, because there are 32 characters in the string, 

including the spaces, the algorithm runs twice (16 bytes = 128 bits), processing 16 characters in 

each run. Hence, the final counter value is two. The simulation results acquired from the 

optimum bit width model and double-precision model (double-precision data type was used for 

all the intermediate nodes) were identical. This proves that when the proposed method is used for 

RTL generation and downstream synthesis, the functionality remains intact. The HDL code 

produced from the optimized HLS model with stimulus-aware bit widths was implemented on 
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the Xilinx Kintex 7 (XC7K70T-FBG676 target device with a speed grade of three) using Vivado 

2019.1 software. The code then was checked for functionality using the xSim simulator and a 

hand-written nonsynthesizable Verilog testbench. Because some of the available implementations 

in the literature were on Xilinx Virtex 6 target boards, the same HDL design was also 

implemented on Virtex 6 device (XC6VLX240T) using iSE 14.7 software for a direct and fair 

comparison. 

 

 
Figure 4.21. HLS simulation results for the AES encryption algorithm. 

 

Table 4.10 shows the synthesis results for the proposed design along with the synthesis 

results for the design with pessimistic (non-optimized) bit widths. It is clear from the table that 

the proposed implementation is superior than the reference design. Table 4.11 shows a 

comparison against other implementations available in the literature. 
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Table 4.10. Proposed AES implementation on Kintex 7 FPGA 

Resource Proposed design Benchmark design 

(Default 

bit widths) 

Available 

Resources 

LUTs 577 632 41000 

LUT-RAMs 8 12 13400 

Flip-flops 449 514 82000 

BRAM 4 6 135 

IO 265 284 300 

BUFG 1 1 32 

Optimized: Throughput = 38.05 Gbps, Operation Freq. = 298 MHz, Power = 0.114 W 

Benchmark: Throughput = 32.4 Gbps, Operation Freq = 253 MHz, Power = 0.234 W 

 

Further, calculated energy dissipation, E = P × T, where P is power dissipation and T is 

time required for one cycle of AES for 128bits. Since throughput is 38.05 Gbps, T = (1/38.05) × 

128 ns. Hence, energy dissipation, E = (1/38.05) × 128 × 0.114 = 0.383 nJ (Nano Joules) for the 

optimized implementation. 

 

Table 4.11. AES algorithm implementation result comparison with the literature 

FPGA 

results 

Proposed 

design 

Soltani et al. 

[4.35] 

Zhang et 

al. [4.36] 

 

Chen et al. 

[4.39] 

Virtex 6 

(MHz) 

562.108 508.104 470.998 N/A 

Virtex6 

Throughout 

(Gbps) 

287.8 260.15 60.29 N/A 

Kintex 7 

(MHz) 

297.3 N/A N/A 244.5 

Kintex7 

Throughput 

(Gbps) 

38.05 N/A N/A 31.30 
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As is clearly evident from Table 4.11, the proposed implementation has achieved a better 

throughput when compared to others available in the literature. The accomplished throughput is 

approximately 10% better than that of Soltani et al., 20% better than that of Zhang et al. and 20% 

better than that of Chen et al. [4.35, 4.36, 4.39]. The energy dissipation is not reported by other 

researchers and hence a direct comparison was not done. Another point to note is that the 

proposed design is proven to be superior via optimized RTL generation and is independent of the 

FPGA technology target. 

 

4.8 Concluding remarks 

 

In this chapter, we proposed a novel High level synthesis design optimization methodology 

which is tool, application and FPGA platform independent. The automated method removes bit 

width pessimism for inputs, outputs, and intermediate nodes in the design and helps in generating 

optimal, technology independent RTL code. It helps to optimize the final FPGA implementation 

by constraining the downstream synthesis tool. As the optimization happens at RTL level (higher 

abstraction), it is applicable to all FPGA targets. We have also used the optimization method on 

two tools - MATLAB HDL coder and Vivado HLS. The novel HLS methodology was used to 

optimize 5 different unique designs from different real-life application areas. We also presented 

comparison of the optimized results with other benchmark implementations done by other 

researchers for the same applications. To prove the efficacy of the optimization method, 

comparison of the results for same applications without using the optimization methodology 

(pessimistic bit widths) is also presented. For all the design applications, RTL simulation using 

xSim as well as FPGA- in-the-loop simulation confirmed that optimizations achieved were 

benign for design functionality. 

As the spectrum of applications is large and proposed results are superior than presented 

in literature for each of the application designs, we can claim with a high confidence that the 

methodology would give superior results with other application designs as well. In the next 

chapter, the results obtained by applying this method on another application design used in 

autonomous driving systems is presented. 

  


