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Chapter 5 

Test application: RADAR signal processor 
for automotive applications 

 
 

Chapter 3 discussed some of the optimization directives available in existing HLS tools. The 

results achieved as a result of the usage of these directives on applications that were created using 

MATLAB HDL coder and Vivado HLS were also discussed. The implementation results were 

compared with those achieved from hand-coded RTL-based design flows. In Chapter 4, we 

proposed a novel optimization method for HLS-based designs named application-specific bit 

width for intermediate data nodes  We shared the results obtained as a consequence of applying 

this methodology to multiple designs. We also presented a comparison of the implementation 

results for these applications against hand-coded RTL implementation results available in the 

literature. In this chapter, the learnings obtained from both Chapters 3 and 4 have been applied to 

a new test application of RADAR signal processor. The FPGA target area and speed of operation 

was optimized for an automotive RADAR signal processor used in advanced driver assistance 

systems (ADAS) applications [5.1, 5.2, 5.3]. A combination of directives (discussed in Chapter 

3) and the novel optimization method (discussed in Chapter 4) were applied to achieve the 

desired results after a base implementation was created using HLS. In addition to the usage of 

HLS methodology for design, a verification framework was also developed to test the 

functionality of the design with stimulus applied and outputs sampled at a much higher 

abstraction level making it easier to model real-life traffic scenarios. These scenarios and stimuli 

helped in thorough and extensive verification of the design under test. 

 

5.1 Introduction to RADAR signal processor application 
 

Very large-scale integration is usually applied across several segments to design chips for 

household appliances, cameras, mobile phones, etc. Fast progress in technologies such as 

artificial intelligence and machine learning in the automotive segment has led to a growing 

number of hardware accelerators being integrated into modern ADAS SoCs [5.4]. In radar-based 

ADAS SoCs, baseband processing is required to detect the speed, distance and angle of elevation 

of the target (e.g., vehicle, pedestrian, and traffic sign). The target and the source frequently 

move at high speeds; hence, the computation rate must be sufficiently high to execute actions 
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(e.g., braking) in real-time. Software-based implementations of such systems or accelerators fall 

short of the desired performance, which has led to an increment in the demand for custom 

hardware implementations, e.g., on FPGAs. This is because they offer parallel architectures and 

hence high speeds [5.5]. 

Further, the growing complexity and configuration capabilities of such accelerators, as 

well as the requirement to deliver functionally verified chips to customers, has resulted in certain 

requirements as listed below: 

1) Detection of corner-case RTL defects very early in the design cycle. 

2) Support for embedded software development of hardware accelerators as concurrently as 

possible with the hardware development cycle. 

3) Running of a large number of design clocks in a shorter wall clock time during verification 

process. This is because these accelerators  results are accumulated over many design cycles 

and cannot be assessed in conventional software simulations. 

4) An environment modeling framework that can produce input data corresponding to a wide 

variety of situations. In this way, it is possible to interface with multiple radar sensors to 

compute the range, velocity, and azimuth angle for various objects in a vehicle environment. 

5) Permitting designers or architects to experiment with several implementation options for the 

accelerator. For example, if the architect chooses to implement a 128-point fast Fourier 

transform against a 256-point one and analyze the results, a new design should not be 

generated from scratch. 

Regrettably, the above-described challenges are hard to address in a conventional hand-

coded RTL-based design and simulation-based verification environment. Thus, HLS-based area 

and speed optimal implementations for these accelerators targeting FPGAs is the need of the 

hour. 

In this work, a novel design and verification framework for a RADAR processing SoC is 

introduced. The framework is supported by an HLS-based design scheme for the processor. 

Moreover, it supports the application of a real-world stimulus to register transfer-level design 

implementation running on FPGA. The RADAR processor executes range and doppler 

processing on the baseband signal, followed by beamforming. All of this is to calculate speed, 

distance, and azimuth angle for the target in real-time. Applying the framework, the design 

(RADAR signal processor) is readily modeled in environment scenarios requiring multiple 

vehicles, environment conditions, channel interference, obstacles, etc. The design is implemented 

on the Xilinx Kintex-7 FPGA and validated using the FPGA-in-the-loop feature of the MATLAB 

HDL Verifier [5.6]. The RTL synthesis results are optimized for the area, speed, and power using 
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HLS directives, and they were found to be superior than the hand-coded RTL synthesis results 

for the identical application. The functional simulation results are observed as equivalent to field 

testing results obtained by post-silicon application teams with similar input stimuli. 

Customer use-cases for the distance and velocity computations are performed in a pre-

silicon environment using range and Doppler processing on the Xilinx Kintex-7(XC 7K 480T) 

FPGA. The findings reveal that the proposed framework based on MATLAB HDL coder and 

HDL Verifier is better than other similar implementations from published literature in terms of 

speed and FPGA resources. This is due to the usage of applicable HLS directives (discussed in 

Chapter 3) and a new design method based on application-specific bit width for intermediate data 

nodes (presented in Chapter 4). 

 

5.2 Prior works for RADAR signal processor implementation 
 

Lin et al. employed a new target detection algorithm applying a pairing mechanism and spatial 

filter design for automotive radars [5.7]. The field measurement results of the frequency-

modulated continuous-wave (FMCW) radar baseband processing system designed in their study 

showed effective execution in a realistic application scenario of various target vehicles around 

the source. Fegar et al. introduced an experimental verification setup of a 77-GHz synthetic 

aperture radar (SAR) system for automotive applications [5.8]. They utilized a simplified signal 

processing algorithm derived by exploiting various approximations valid for conventional 

automotive measurement settings. Yue et al. introduced a precise measurement of distance and 

velocity in automotive radars based on the quadratic function method for signal processing [5.9]. 

Zeng et al. introduced a procedure-based validation method for SAR signal processing 

algorithms considering the external environment s confluences [5.10]. All of these designs are 

based on hand-coded HDL implementation and not using HLS. Moreover for all the above 

implementations, authors have chosen HDL simulation based approach to verify the design and 

prove the functionality. Moreover, in terms of functionality, all of these designs have been 

implemented on FPGA platforms without having an available comparison with real silicon 

results. 

 

5.3 RADAR signal processor and verification framework 
 

The principle of RADAR is based on determining the range, azimuth angle, and velocity of the 

target (vehicle) from the received echo of the electromagnetic radio waves transmitted by a 
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transmitter. RADARs are very common in ADAS systems as they can be used under all visibility 

conditions, unlike vision-based systems. Due to the recent advancements in RADAR signal 

processing techniques and millimeter-wave (mm-wave) semiconductor technology, automotive 

radars are commonly used in ADAS systems. Based on their range and the type of application 

they are applied in, automotive radars are grouped into long-range, short-range, and medium-

range radars. Their corresponding use-cases are compiled in Table 5.1 
 

Table 5.1. Radar characteristics based on range 

RADAR type Long range Short range Medium range 

Range (m) 30-250 1-10 10-30 

Azimuth Angle  80° 40° 

Elevation Angle 5° 10° 5° 

Applications Automotive cruise 

control 

Lane change 

assist, Rear 

collision warning, 

Cross traffic alert, 

Blind-spot 

detection 

Park assist, 

Obstacle detection 

 

Automotive radars are usually intended to obtain target information from reflected 

electromagnetic waves. This information usually consists of the range (the distance of the 

vehicle), velocity (relative speed of the vehicle to the source), and elevation (size and azimuth 

angle of the target) [5.11, 5.12, 5.13]. 

The transmitted and received signals for an FMCW radar are shown in Figure 5.1. As 

displayed in Figure 5.1, the bandwidth (BW) is a measure of the radar range resolution, i.e., a 

high-range resolution needs a transmission signal with higher bandwidth. Hence, to differentiate 

between two vehicles close to each other, the transmitted signal needs to have high bandwidth. 

The maximum range of the radar is directly proportional to the chirp time (Tchirp), which means 

that the higher the transmission frequency (lower chirp time), the lower the radar range. 
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Figure 5.1. RADAR signal transmission and received echo. 

 

This study aims to design and verify a baseband signal processor for an automotive radar 

with chirp time (Tchirp) = 7.33 µs, sample rate, sweep bandwidth = 150 MHz and overall radar 

bandwidth (center frequency) equal to 77 GHz. The baseband signal processor was implemented 

in MATLAB and Simulink (Mathworks Inc.) and the produced HDL code was optimized by 

applying multiple HLS optimization techniques, such as distributed pipelining and resource 

sharing. 

The end-to-end radar model, which incorporates the baseband processor and a test 

environment for the processor, is presented in Figure 5.2. The model incorporates an FMCW 

RADAR, a transmission network, a free space channel, and a receiver network. As displayed in 

the same figure, the model can be quickly scaled for any number of targets, transmission channel, 

etc. Applying this model, the design was validated by modeling three separate targets (objects or 

vehicles to be detected by the RADAR) : a car, a truck, and a pedestrian. A transmitter with an 

absolute gain of 36 and an isotropic antenna with four elements was utilized for the transmission. 

Furthermore, a narrowband receiver that uses four isotropic antennas was implemented, 

accompanied by a receiver pre-amplifier with an absolute gain of 42. Furthermore, the baseband 

processing system receives the transmitted signal as input and uses a mixer to compute the beat 

 library sets and inbuilt functions for 

multiple objects make the verification environment highly intuitive and simple to model. For this 

implementation a 2048 point FFT was used along with phase shift beam former. The library 

objects used are available in phased array system toolbox of MATLAB. Details are mentioned in 

the Appendix.  
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Figure 5.2. End-to-end automotive RADAR system model. 

 

After completing the functional verification tests, MATLAB HDL workflow was 

employed to produce the Verilog implementation for the receiver system [5.14]. The produced 

Verilog code was implemented on Kintex-7 FPGA and checked for functionality on real 

-in-the-loop feature [5.6].The design and 

verification flow with HLS helped reduce the design cycle time and guaranteed a real-life 

stimulus to the design for verifying tests at a higher level of abstraction; this made it more 

exhaustive to cover design functionality. Moreover, we applied various HLS directives such as 

loop unrolling and resource sharing to optimize the target FPGA implementation results. FPGA-

in-the-loop provided superior verification results compared to previous works, and it quickened 

the verification tests. The FPGA implementation ran faster than the pure simulation in MATLAB 

and the Verilog HDL simulation that runs on tools such as xSim, ModelSim, or NCSim. 

One of the biggest benefits of using this design flow is its flexibility, wherein the designer 

can experiment with varied architectures for the processor in a common simulation environment 

before code generation. Once results, such as quantization error and synthesis reports, are within 

the required limits as per product requirement specifications, code generation is a push-button 

flow. 

 

5.4 Model simulation and verification results 

 
An end-to-end system model consists of the radar transmitter, antenna, communication channel, 
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and receiver (design under test). Such a system was simulated with two test targets at randomly 

determined distances and velocities: a car at a distance of 30 m and a truck at 50 m. The car 

moved towards the origin (transmitter radar) at a speed of 30 km/h, while the truck travelled 

away from the origin at a speed of 30 km/h. The FMCW spectrum of the transmitted radar 

signals is presented in Figure 5.3. As shown in the Figure, the signal s bandwidth is 150 MHz 

(±75 MHz). 

The range and doppler map, which are plotted based on the received echo signal, are 

presented in Figure 5.4. The distance (horizontal) and velocity (vertical) peaks at the points of 

interest can be clearly observed in the figure. Moreover, the precise distances calculated by the 

signal processing algorithm running on MATLAB are 30.12 (30 actual) and 50.44 (50 actual) m, 

and further, the correspondingly calculated velocities are 30.1 km/h (30 kmph actual) 

km/h ( 30 kmph actual) for the car and the truck, respectively. These values are very close to the 

actual theoretical values for both targets as per the modeling environment (within 1 percent 

error). The range, velocity, and angle measured by design under test against the actual values 

(based on target vehicles) for different verification scenarios are listed in Table 5.2. As can be 

seen from the Table 5.2, the error observed is less than 1 percent for all cases. 

 

 
Figure 5.3. FMCW transmission spectrum for automotive RADAR echo. 

 



96 
 

 

Figure 5.4. Range and Doppler map based on echo received from the target 

 

Table 5.2. Verification test results with modeling of multiple targets 

Test 

Target 

Range 

(Measured/Actual)(m) 

Velocity 

(Measured/Actual) 

(m/s) 

Angle 

(Measured/Actual) 

(Degrees) 

Pedestrian 

cross-

section 

10.67/10.65 1.13/1.10 24.2/24.2 

Car cross-

section 

18.96/18.96  3.7/3.8 

Truck 

cross-

section 

42.13/42.07 0.92/ 0.95  

 

5.5 HLS optimization results for RADAR signal processor 

 
Once the verification using system-level stimuli from the Simulink model was performed, 

Verilog RTL code was produced for the RADAR processor using HDL coder workflow [5.14]. 

The RTL code produced was optimized for the area and speed of operation using HLS directives 

of resource sharing and pipelining [5.15, 5.16]. The scheme of applying these directives is 

depicted in Figure 5.5. Additionally, we utilized application-specific bit widths as described in 

Chapter 4 to optimize the design. The RTL produced using the MATLAB HDL coder was 

implemented on Xilinx Kintex-7 (XC 7K 480T) FPGA and verified for functionality using 
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-in-the-loop methodology. The post-implementation reports 

from Xilinx Vivado targeting a Kintex-7 FPGA device are summarized in Table 5.3. Table 5.3 

also shows the implementation results for the processor when none of the optimization 

techniques were used i.e it corresponds to the baseline (non-optimal) implementation.  

 

Table 5.3. Synthesis reports targeting Xilinx Kintex-7 FPGA: RADAR processor 

Resource Proposed design Benchmark 

design 

(Default bit 

widths) 

Available 

Resources 

Slice registers 69543 114745 597200 

Slice LUTs 51780 88026 298600 

Occupied slices 12342 22215 74650 

RAMB36E1/FIFO36E1s 367 512 955 

Critical Path: 2.43 ns, Operation Freq = 412 MHz, Total On-chip Power = 0.378 W 

 

Table 5.3 clearly shows the results obtained from synthesizing the RADAR signal processor for 

the target FPGA. It also shows the results of proposed implementation are superior than the 

pessimistic bit width, default HLS model. The results demonstrated in Table 5.3 have been 

attained by using 3 optimization techniques: 

1) Resource sharing (HLS directive) : As presented in Figure 5.5, a sharing factor of 2 was 

implemented, which means that a single resource in the design would be shared between two 

data paths, resulting in lesser resource usage in the design [5.15]. 
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Figure 5.5. HLS directives of resource sharing and distributed pipelining. 

 
The rationale behind the choice of sharing factor of 2 was because of the fact that a single 

FFT block was shared by 2 paths in the design  one for range and one for doppler 

processing. 

2) Pipelining (HLS directive): As also presented in Figure 5.5, we enable distributed pipelining 

for the processor block, which means that all the slower data rate paths would be pipelined 

automatically, leading to better runtime throughput and performance [5.16]. Moreover, this 

directive enables the tool to re-distribute pipeline registers to different places on the same 

combinational path without affecting the functionality. This concept is illustrated in Figure 

2.2 

3) Application-specific bit widths for intermediate data notes: Rather than using inherited data 

types for internal nodes (which is by default a 32-bit integer in MATLAB), we choose the 

intelligent selection of datatypes based on the input stimulus. For example, if the input is the 

sine or the cosine of a number, its value can lie only between 1 and 1. Therefore, even with 

an accuracy of up to three decimal points, such as 0.835, we need only two bits for the integer 

part ( 1, 0, or 1) and up to 10 bits for the fraction part (0 to 1024). Hence, we can represent 

the complete value in 12 bits instead of 32 bits, heading to the design s optimized area usage 

on the target FPGA. This design is explained in much detail in Chapter 4. 
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5.6 Results comparison with literature 

 
When the HLS was performed, the design prototype on the target FPGA ran faster, and the 

synthesis results were optimal in terms of resource usage. These results are associated with the 

HLS directives, and the bit width optimization methodology applied, as explained in Section 5.5. 

Table 5.4 compares the resource utilization for the proposed implementation against a related 

implementation proposed by Sithara et al. with same specifications [5.11]. Even though Sithara et 

al. used a different wave generation technique (Step Frequency Continuous Wave), the baseband 

processor specifications are same. Table 5.4 clearly suggests that the proposed implementation 

uses lesser resources on Kintex 7 as compared to the implementation proposed by Sithara et al. 

 

Table 5.4. Synthesis reports for Kintex7: comparison with the literature 

Resource Proposed design Sithara et al. 

[5.11] 

Slice registers (%) 11.65 14 

Slice LUTs (%) 17.34 19 

Occupied slices (%) 16.53 25 

RAMB36E1/FIFO36E1s 

Utilization (%) 

38.43 50 

DSP48E1s Utilization (%) 16.46 30 

 

A similar implementation from Suleymanov et al. was targeted for Virtex 6 FPGA [5.12]. To 

have a direct and fair comparison with their implementation, the generated RTL from the 

optimized high level model was also implemented on Virtex 6 device (XC6VLX240T). Table 5.5 

shows the comparison results. 

 

Table 5.5. Synthesis reports for Virtex6: comparison with the literature 

Resource Proposed design Suleymanov 

[5.12] 

Logic slices 7438 (19.8%) 12158 (32.3%) 

LUTs 16324 (6.8%) 30184 (12.5%) 

BRAM 36 kBit 56 (13.5%) 70 (16.8%) 

DSP48 E1 42 (5.4%) 57 (7.4%) 
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As is clearly evident from the table 5.5, the proposed implementation is better than that presented by 

Suleymanov et al. as well. In the literature, some functional results for RADAR signal processor are 

also presented. These results essentially represent the error in calculation for range, velocity and 

elevation angle for the target. Such results are available in literature from an implementation 

proposed by Lin et al. [5.7] and Luthra et al.[5.17]. Table 5.6 shows a complete comparison of the 

errors in the calculations of the range, velocity, and angle of the target object for our proposed 

implementation against those presented by Lin et al. and Luthra et al. [5.17].  

 

Table 5.6. Calculation errors: comparison with the literature 

Parameter Proposed 

design 

Lin et al. 

[5.7] 

Luthra et al. 

[5.17] 

Range error 

(Test1 10.65 m) (m) 

0.02 0.03 0.34 

Range error 

(Test2 18.96 m) (m) 

0.00 0.05 0.38 

Range error 

(Test3 42.07 m) (m) 

0.06 0.1 0.37 

Velocity error 

(Test 1 1.10 m/s) (m/s) 

0.03 0.05 2.69 

Velocity error 

(Test 2 0.07 m/s) (m/s) 

  NA 

Velocity error 

(Test 3 0.95 m/s) (m/s) 

  NA 

Angle Error 

(Test 1 24.2°) (Degrees) 

0 0.1 NA 

Angle error 

(Test 2 3.8°) (Degrees) 

0.1 0 NA 

Angle error 

 (Degrees) 

0.1 0.4 NA 

 

Tables 5.5 and 5.6 suggest that our proposed implementation is more optimal as compared to 

other implementations in literature and also has better functional accuracy. 
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5.7 Concluding remarks 
 

We started this chapter with an introduction to RADAR processors. Their principle of operation, 

classifications and some of the prior works in the same area were also presented. A RADAR 

signal processor for automotive ADAS applications was chosen as a test application to apply the 

learnings from chapter 3 and 4. 

An HLS-assisted design and verification framework for automotive RADAR processors 

was presented. The HLS directives (distributed pipelining and resource sharing) were used to 

optimize the generated RTL, and consequently, the FPGA implementation. 

Additionally, we utilized application-specific bit widths for the intermediate nodes, a 

novel methodology developed for the HLS as described in chapter 4 to optimize the 

implementation further. The design was validated using an environment modeled in Simulink 

using FPGA-in-the-loop feature of MATLAB. The results show that the proposed 

implementation calculates the distance, speed, and angle of the targets relative to the RADAR 

position, more accurately than other implementations presented in previous research. Moreover, 

the results are identical to those achieved by post-silicon application teams in the field testing for 

the same design. 

Synthesis and implementation reports for both Virtex-6 and Kintex-7 FPGAs clearly 

imply that the proposed implementation is better in terms of resource usage for the same FPGA 

target as described in other studies. The total time to implement the FPGA design is also 

considerably shorter in the proposed implementation, as it is based on HLS and does not use a 

conventional hand-coding approach for RTL. Moreover, the framework yields flexibility for the 

designer to iterate between multiple implementation options for the same architectural 

specifications for no additional cost or effort, which is a typical advantage of HLS flow. 

  


