
121

Appendix

Common HLS Directives in Vivado HLS:

1) Array partitioning:
Partition an array into smaller elements (arrays or registers) to remove RAM bottlenecks
Useful for applications which are:
Having large RAM read write ports on a single big memory.
Very Large Arrays like 2D/3D arrays like stored images etc.

2) Loop Unroll:

The UNROLL pragma allows the loop to be fully or partially unrolled. Fully unrolling the loop
creates a copy of the loop body in the RTL for each loop iteration so the entire loop can be run
concurrently. Partially unrolling a loop lets you specify a factor N, to create N copies of the
loop body and reduce the loop iterations accordingly. To unroll a loop completely, the loop
bounds must be known at compile time. This is not required for partial unrolling.
Example :
for (int i = 0; i < 6; i++) {
pragma HLS unroll factor=2 a[i] = b[i] + c[i];
 }

3) Dependence:

Used to tell the HLS tool to take intelligent decision for pipelining. This is dependent on how a
variable is written and read in a loop. It should be used with caution as any false dependency
may cause functional issues!

4) Pipelining:
Used to insert retiming flip-flops to schedule a particular section of code in a single clock
cycle. This allows concurrent execution of operations.

for (int i = 0; i < 6; i++) {
pragma HLS PIPELINE II =1
a[i] =x +y;
b[i] = 7* a[i];
result = result + b[i];
 }

5) Loop merge:

Merge consecutive loops into a single loop to reduce overall latency, increase sharing, and
improve logic optimization.

Example:
Loop1:

122

for (i = 1; i <= 100 ; i++)
 X = 7;
B = B+1;
C = 7;
Merge with LOOP 2:
for (j = 1; j <= 100 ; j++)
T = 7;
Z = Z+1;

for (i = 1; i <= 100 ; i++)
 X = 7;
B = B+1;
C = 7;
T=7;
Z=Z+1;

6) Streaming:

Default array variables are implemented as RAM.
If data is consumed sequentially, use FIFOs instead of RAM. It should not be used for
streaming applications where input data length is unknown.
#pragma HLS stream variable=<variable> depth=<int> dim=<int> off

7) Protocol:

The PROTOCOL pragma specifies a region of the code to be a protocol region, in which no
clock operations are inserted by Vivado HLS unless explicitly specified in the code

Example:

#pragma HLS protocol makes sure that there is no overlap of statements inside or outside the
protocol region

8) Loop flattening:

Allows nested loops to be flattened into a single loop hierarchy with improved latency.
 Example:

#pragma HLS loop_flatten off

9) Array map:

Combines multiple smaller arrays into a single large array to help reduce block RAM
resources.

 Example:
 #pragma HLS array_map variable= instance= \ offset=

10) Data pack:
Packs the data fields of a structure into a single scalar with a wider word width.

123

 Example:
#pragma HLS data_pack variable= \ instance=

For other Vivado HLS directives, one can refer to Vivado HLS optimization guide [3.11]

Common HLS Directives in MATLAB HDL Coder :

1) Distributed pipelining: Distribute retiming flops at different places in the design in order to
reduce critical paths.

2) RAM mapping: Mapping large delays, persistent variables in MATLAB code, and pipeline

delays to RAM based on a threshold bit width.

3) Clock rate pipelining: Runs pipeline registers at a faster clock rate when you specify

an oversampling factor greater than one, thereby improving retiming.

4) Resource Sharing: Identifies multiple functionally equivalent resources and replaces them with

a single resource. Saves area with performance trade-offs.

5) Loop unrolling: Unrolls a loop by instantiating multiple instances of the loop body in the

generated code. Also supports partial unrolling.

6) Streaming: Splits a vector data path into multiple smaller vector data paths based on the

StreamingFactor that one specifies thereby reducing hardware resource consumption

For further MATLAB HDL coder directives, one can refer to HDL coder guide [4.11]

Simulink library blocks used as part of designs:

Vision HDL toolbox:

1) Conversion of frame to pixels for inputting to FPGA

2) Conversion of pixels to frame to sample output from FPGA

124

3) Standard library block for Sobel filtering in images

4) Standard library block for corner detection in images (Harris corner detector)

Signal Processing / DSP System toolbox/Phased array system toolbox:
1) FMCW waveform generator (Generates spectrum corresponding to a predefined target)

2) FFT computation for 2048 points:

3) RADAR transmitter with narrow band array

4) RADAR receiver with narrow band antenna array

5) Sources for waveform generation : RAMP/ pulse/ sinusoids and sweep

6) Sinks and scopes to plot time and frequency domain plots for different signals.

Psuedo-code for pplication specific bit width for intermediate
algorithm:

//Simulation Run:

Csim_design (-create all -depth , $file
// Run the simulation with probe of all nets, saving values in $file (*.vcd)
my $vcd = parse_vcd ($file);
// Parsing the name of Value change dump, VCD file and storing into a variable.
my @signals = list_sigs ($vcd);

125

// All signal names and values returned from VCD file and stored into a variable
int val_nodes = [clock_cycle -1 : 0] [length (signals)]
// length(signals) Returns the number of nodes in design, stored in a variable
// val_nodes creates an empty array with length of number of clock cycles during the simulation
runtime
int nodes[] = { signals };
 // Initializing the nodes array with all signals read from VCD file
foreach (int *v, nodes) {
 minv = minimum (val_nodes[v])
//Minimum value of a node as a floating point number
 maxv = maximum (val_nodes[v])
//Maximum value of a node as a floating point number
diffv = maxv minv
// difference of maximum and minimum in floating point
 diffvfix = fixdt (maxv minv)
// Difference of maximum and minimum values in simulation run which is a floating point
// number is type casted to a fixed point data type
 fixedv[1] = type_cast (integer(diffv))
// Type cast returns with bit width required to store the floating point value of //exponent (integer)
fixedv[0] = type_cast (frac(diffv))
// Type cast returns with bit width required to store the floating point value of //mantissa(fraction)
optdimv[v] = { fixedv[1], fixedv[0]}
// Integer and fractional parts are concatenated to a single array
}
//Synthesis Run:
Csynth_design -constraints constraint_file.tcl
// constraint_file.tcl is a high level synthesis constraint file which contains:
foreach (int *y, nodes) {
width_y = fixdt (optdimv[y])
// Constraining the synthesis tool to treat fixed point number with specific bits for integer and fraction

126

List of publications

International Journals

1. Sikka Prateek, Abhijit R Asati, Chandra Shekhar, Real-time FPGA Implementation of a
High-Speed and Area-Optimized Harris Corner Detection Algorithm.
Elsevier Microprocessors and Microsystems. (2020) SCI Indexed, Impact Factor 1.161

2. Sikka Prateek, Abhijit R Asati, Chandra Shekhar, Power and Area Optimized High-Level

Synthesis Implementation of a Digital Down Converter for Software-Defined Radio
Applications. Springer Circuits, Systems and Signal Processing (CSSP). 2020 SCI
Indexed, Impact Factor 1.681

3. Sikka Prateek, Abhijit R Asati, Chandra Shekhar, Speed optimal FPGA implementation of

Encryption Algorithms for Telecom Applications. Elsevier Microprocessors and
Microsystems. (2020) - SCI Indexed, Impact Factor 1.161

4. Sikka, Prateek, Abhijit R Asati, Chandra Shekhar, High-Level Synthesis Assisted Design

and Verification Framework for Automotive Radar Processors Elsevier Microprocessors
and Microsystems. (2020) SCI Indexed, Impact Factor 1.161

5. Sikka Prateek, Abhijit R Asati, Chandra Shekhar, High-throughput field-programmable

gate array implementation of the advanced encryption standard algorithm for automotive
security applications Springer Journal of Ambient Intelligence and Humanized
Computing, 29 July, 2020. SCI Indexed, Impact Factor 4.594

6. Sikka Prateek, Abhijit R. Asati, Chandra Shekhar, High-

artificial intelligence and machine
learning applications. Computational Intelligence Wiley Online Library (2020). SCI
Indexed, Impact Factor 1.196

7. Sikka, Prateek, Abhijit R Asati, Chandra Shekhar, Area, speed and power optimized

implementation of a band-pass FIR filter using high- Springer Wireless
Personal Communications. (2021) SCI Indexed, Impact Factor 1.061

Patent Application

1. Sikka Prateek, Abhijit Asati, Chandra Shekhar, -Level Synthesis in
Integrated Circuit Design using application specific bit widths. India Patent Application
No. 201911028124.

127

International Conference (Presented Papers)

1. Sikka Prateek, Abhijit Asati, Chandra Shekhar, Area-optimal FPGA implementation of
the YOLO v2 algorithm using High-Level Synthesis. 2020 IEEE UPCON 26 Nov.,
MNNIT Allahabad.

2. Sikka Prateek, Abhijit Asati, Chandra Shekhar, Low Area, High Throughput Field
Programmable Gate Array Implementation of Microprocessor without Interlocked Pipeline
Stages. 2020 Springer 3rd International Conference on VLSI, Communication and Signal
Processing. 9-11 Oct, MNNIT Allahabad.

3. Sikka Prateek, Abhijit Asati, Chandra Shekhar High Speed and Area Efficient Sobel Edge
Detector on FPGA using application specific bit widths for intermediate nodes. iCASIC,
27-28 Feb, VIT, Vellore.

International Conference (Invited Tutorials)

1.
2019 Springer 2nd International Conference on VLSI, Communication and Signal
Processing, 2019. MNNIT Allahabad.

2.
Synthesis. 2020 Springer 3rd International Conference on VLSI, Communication and
Signal Processing., 2020. MNNIT Allahabad.

3. Invited Tutorial: Sikka Prateek, Abhijit Asati, Chandra Shekhar. Novel methods for Area,

Speed and Power optimization using HLS for FPGA prototyping. IEEE UPCON, 2020
MNNIT Allahabad

