LIST OF TABLES

S. No.	Title of the Tables	Page No.
1.1	Example of time of use, Jalgaon MIDC	11
1.2	Average hourly data of installed solar system	16
2.1	Stdev, GDP, CO ₂ , FC, TRADE and URBAN for different countries	38
2.2	Rooftop solar specifications	55
2.3	Cost-Benefit Analysis	56
2.4	Saving and payback calculation	57
3.1	Consumer average revenue per unit (INR/kWh) 2015-16	68
3.2	Cost of electricity generation through different sources of energy in	71
	India	
3.3	T&D and AT&C losses in India	72
3.4	Average cost of power and realization for distribution companies	74
	(Paise/kWh)	
3.5	Average cost of supply and average realization over the year	74
3.6	Percentage share of different sources in India's total annual	77
	generation (CEA, 2020)	
3.7	Pollutants and receptors considered for this study	78
3.8	External cost due to different activities in coal-based power	79
	generation	
3.9	CO ₂ emissions and associated cost for different sources	80
4.1	Pros and cons of the technology	97
4.2	Technical parameters	99
4.3	Size for 1 kWp system	100
4.4	Illustration of revenue generation	101
4.5	Electricity tariff (time of day) schedule	108
4.6	Daily average consumption profile	109
4.7	Details of battery storage system	109
5.1	BEE star rating standards for split type room air conditioner	116
5.2	BEE star rating standards for split type room air conditioner	117
5.3	Market share of different star rated ACs	117
5.4	Average annual consumption of different star rated ACs	119
5.5	Year wise Analysis of No. of ACs in million units in India	121

S. No.	Title of the Tables	Page No.
5.6	Estimation of future stock of ACs in India	122
5.7	Scenarios considered for calculating total saving	122
5.8	Future savings if more efficient ACs are promoted in different	122
	scenarios	
5.9	System and module requirement	125
5.10	Benchmark cost of rooftop solar PV system	126
5.11	Inverter model with capacity	127
5.12	Average values for Bihar	129
5.13	Average values for Chhattisgarh	130
5.14	Average values for Gujrat	130
5.15	Average values for Jharkhand	130
5.16	Average values for Karnataka	131
5.17	Average values for Maharashtra	131
5.18	Average values for Orissa	131
5.19	Average values for Rajasthan	132
5.20	Average values for Tamil Nadu	132
5.21	Average values for Uttar Pradesh	132
5.22	Cost of the electricity generated	134
5.23	The table highlights the capacity/numbers to be installed as a part of	138
	3 components of PM Kusum scheme, across various state	
5.24	Predicted distribution of pump 3HP, 5HP, and 7.5HP pumps as a part	139
	of PM Kusum scheme component C across various state, based on the	
	past implementation data of a state specific solar pump scheme by	
	Department of Horticulture, Rajasthan	
5.25	Selling prices being charged by the seller for the solar pumps (various	140
	categories)	
5.26	Calculated expenditure of government and farmers (combined) in	141
	various States about PM Kusum Scheme component C.	
5.27	State—wise contribution of energy saved (x10 Giga Joules)	142
5.28	State-wise contribution in energy saved (in MWh) due to	142
	implementation of PM Kusum scheme component C	

S. No.	Title of the Tables	Page No.
5.29	The average usage in hours per day of widely used residential	143
	appliances	
5.30	Appliance wise average consumption per month actual and after	144
	energy conservation. And energy saved per month	
5.31	Appliance wise average consumption per month in summer & winter	145
	season in MJ	
6.1	Costs per unit of electricity	151
6.2	Total energy and emission saving potential from efficient room ACs	153
6.3	Appliance wise average consumption per month actual and after	155
	energy conservation	

LIST OF FIGURES

S. No	Title of the Figures	Page No.
1.1	Time of use	10
1.2	Example of time use, Jalgaon MIDC	11
1.3	Example of time of use Variation	12
1.4	Block diagram of rooftop photovoltaic (PV) system	14
1.5	Thesis structure diagram	23
2.1	Scheme of load shape objectives	26
2.2	Valley filling technique	27
2.3	Load shifting method	27
2.4	Peak clipping method	27
2.5	Energy conservation method	28
2.6	Load building method	28
2.7	Variation of GDP, CO ₂ , EC, TRADE and URBAN for different	39
	countries	
2.8	Graph comparing the difference in CO2 emissions of different	41
	boundaries	
2.9	Variation of RE, CO ₂ , Y and OP over time in 6 countries	42
2.10	Trends of (a) Agricultural energy consumption (b) Total population	59
	(c) Total arable land (d) Agricultural value added (e) GDP share of	
	agriculture for the period 1990-2017	
2.11	Graphical representation of normalized predicted and actual AEC	60
	value by (a) MLR (b) BSVR (c) BGPR models	
2.12	Perspective on the usage of Ag Ele, Agr Go, Ag gas and Ag Oil over	61
	the years	
3.1	State support to power sector as share of gross fiscal deficit for 2012-	73
	13	
3.2	State-wise performance of DISCOMs in India	75
4.1	Cash flow diagrams for benefit – cost analysis	93
4.2	Stages of the project approach	98
4.3	Rooftop solar pictures	100
4.4	Illustration of revenue generation	102
4.5	System infrastructure	107

S. No	Title of the Figures	Page No.
4.6	Power consumption profile without battery storage	112
4.7	Power consumption profile with battery storage	113
5.1	Latest retail prices of split type air conditioners	118
5.2	Room air conditioner stock in urban and rural households	120
5.3	System description of rooftop solar PV system with battery	124
5.4	Software report to gauge rooftop solar generation potential	128
5.5	Software report: graph to gauge rooftop solar generation potential	129
6.1	Power consumption profile without battery storage	148
6.2	Power consumption profile with battery storage	149
6.3	Optimum cost efficiency levels for DSM option	152

NOMENCLATURE

 m^2 A/Ap/Aa Aperture Area W/m^2 Ir Irradiance I Current A Length L m P Power W Time Sec t T temperature °C V Voltage V D diameter m W width of PV cell m **Subscripts**

maxmaximumminminimummodModule

Greek letters

η Efficiency

LIST OF ABBREVIATIONS

AT&C Aggregate technical and commercial

BEE Bureau of Energy Efficiency

BIPV Building Integrated Photovoltaic

BM Build Margin

BoS Balance of System

CASE Commission of alternate source of energy

CSP Concentrated Solar Power

Capex Capital expenses

CPV Concentrated Photovoltaic

COE Cost of Electricity

COP Conference of the Parties

CCE Cost of Conserved Energy
CUF Capacity utilization factor

CO₂ Carbon dioxide

CREED Centre for Renewable Energy and Environment Development

CDM Clean Development Mechanism

CdTe Cadmium Telluride

CER Certified emission reductions

CIGS Copper Indium Gallium Diselenide

CIM Common Information Models

CIS Copper Indium Selenide

CM Combined margin

DOLS Dynamic ordinary least square

DSM Demand Side Management

DC Direct Current

DAC Doctoral Advisory Committee

Discon Distribution Company

DISCOM Distribution Company

ENFUSE Energy and Fuels Users Association of India

EFEZ Environment-Friendly Economic Zones

EC Energy consumption

EGS Enhanced Geothermal Systems

EJ Exajoules

EPA Environmental Protection Agency
FMOLS Full-modified ordinary least square

FSAET Futuristic and Sustainable Aspects in Engineering and Technology

GPR Gaussian process regression

GDP Gross Domestic Product
GEF Grid Emission Factors

GHG Greenhouse gas emissions

ICAP Institute of Chartered Accountants

IEA International Energy Agency

ICT Information and Communication Technology
INDC Intended nationally determined contributions
IPCC Intergovernmental Panel on Climate Change

ISEER Indian Seasonal Energy Efficiency Ratio

JNNSM Jawaharlal Nehru National Solar Mission

JI Joint Implementation

MLR Multiple linear regression

MEPS Minimum Energy Performance Standards

MNRE Ministry of Renewable Energy
MAUT Multi-Attribute Utility Theory

LDC Less-developed countries

LED Light Emitting Diode

Nox Nitrogen oxides

NIST National Institute of Standards and Technology

NAPCC National Action Plan of Climate Change

Opex Operational expenditures

OP Oil prices

OECD Organization for Economic Cooperation and Development

O&M Operation, and Maintenance

OM Operating margin

PPA Power Purchase Agreement

PPP Purchasing power parity

PDDs Project Design Documents

PV Photovoltaic

PW Peta watts

QoS Quality of service

RAC Refrigeration, and air conditioning

Recs Renewable energy certificates

RE Renewable energy

RES Renewable Energy Resources

RoI Return on Investment

Sox Sulfur oxides

SERC State Electricity Regulatory commission

SVR Support vector regression

SDG Sustainable Development Goal

TSP Total suspended particulate

TERI The Energy and Resources Institute

TR Tonnes of Refrigeration

ToD 'Time of Day'

ToU Time of Use

UNFCCC United Nations Convention on Climate Change

WEC World Energy Council