
Reconfigurable Architecture in Resistive Switching Crossbar

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

MANE PRAVIN SAKHARAM

Under the Supervision of

Dr. Ramesha C. K.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2016

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

CERTIFICATE

This is to certify that the thesis entitled Reconfigurable Architecture in Resistive Switching

Crossbar which is submitted by Mane Pravin Sakharam ID No 2009PHXF420G for award of

Ph.D. of the Institute embodies original work done by him under my supervision.

Signature of the Supervisor:

Name in capital block letters : DR. RAMESHA C. K.

Designation : ASSISTANT PROFESSOR

Department of Electrical & Electronics Engineering

Date :

i

Declaration

I, Mane Pravin Sakharam, hereby declare that this thesis entitled “Reconfigurable Architecture

in Resistive Switching Crossbar” submitted by me under the guidance and supervision of

Dr. Ramesha C. K. is a bonafide research work. I also declare that it has not been submitted

previously in part or in full to this University or any other University or Institution for award of

any degree.

Signature of the Student:

Name of the student : MANE PRAVIN SAKHARAM

Reg. No.: 2009PHXF420G

Date : 10.08.2016

ii

Abstract

Major reasons behind inferior performance of FPGA over ASIC in terms of delay, area and

power consumption are extensive use of SRAM and programmable interconnects. In order to

improve the performance gap between ASIC and FPGA so as to increase the share of FPGAs

in the market, new emerging devices are being investigated as a replacement for SRAM and

programmable interconnection switches. Memristor is one of the most attractive device which

can act as nonvolatile memory (by storing data in the form of resistance) and as logic (switching)

element. But it is passive device and CMOS circuits are required to implement functions using it.

Out of the available models, VTEAM model found to be more simple, accurate and flexible,

and hence used in the work carried out in this research. Stateful NOR, an universal logic

gate, can be implemented with memristors. Memristors are seldom used as standalone devices

and are fabricated in the form of crossbar over CMOS layer using nanoimprint lithography.

Implementation of stateful NOR gate on memristive crossbar requires write, evaluate (imply) and

read operations, but memristors can not be isolated from crossbar for these operations.

Memristive crossbar arrays are analyzed for write and evaluate (imply) operations in order to find

the effect of them on contents of memristors of crossbar that are not part of logic and limitations on

the size of crossbar to keep them unaltered. Sneak path problem is common in such crossbar and

analysis of read operation has confirmed that the size of crossbar has to be restricted in order to

read the state of memristor correctly. Specialized memristive architectures which logically restricts

the size of crossbar array are also investigated for use in implementation of NOR operation.

Crossbar array made up of Complementary Resistive Switches (CRSs) are free from sneak path

problem. Novel stateful NOR operation with CRSs using a single voltage source is proposed in this

work. The analysis of write, read and evaluate (NOR) operations on CRS crossbar to implement

stateful NOR gate is carried out in order to find the effect of such operations on CRS cells that are

not involved in operation. The integrity of such cells can be maintained in CRS crossbar by size

restriction on crossbar and self-resetting read scheme.

Memristive/CRS crossbar based 3-input pipelined reconfigurable logic block architecture has been

proposed in this work for implementation of logic functions. For logic function with more than

three inputs, the multiplexing of proposed 3-input logic blocks for its implementation is explained.

iii

iv

Automation algorithm for proposed 3-input logic block architecture and its multiplexing are also

presented.

CRS crossbar is the most natural choice for implementation of proposed architecture as it

is free from sneak path problem. The performance analysis of implementation of proposed

architecture on memristive and CRS crossbar is carried out with respect to delay, power and area,

and is compared with performance of LUT based CLB architecture used in many commercial

FPGAs. For array size of 128 × 128, memristive crossbar implementation has shown 1.45 times

improvement in delay for large data set, 2.68 times improvement in power while CRS crossbar

implementation has shown 1.28 times improvement in delay (for large data set), 2.04 times

improvement in power, over LUT based CLB architecture. For area, this improvement is from

1.8 times to 5.6 times in both type of crossbars.

Acknowledgment

I would like to express my sincere gratitude to my supervisor and mentor Dr. Ramesha C. K. for

the continuous support in conducting this research, for his patience and motivation. He had whole

heartedly helped me in this endeavor at all stages of this work. His guidance helped me in all the

time of research and writing of this thesis. From bottom of my heart, I extend my sincere thanks to

him for all his efforts and help at various levels without which this work not have been completed.

I am very grateful to members of my Doctoral Advisory Committee for thesis mentorship and

guidance, Prof K. R. Anupama and Dr. Narayan Manjarekar for sparing their valuable time in

reviewing my thesis and giving constructive suggestions to improve it. Their valuable suggestions

have helped in greatly enhancing the quality of the thesis.

I would extend my sincere thanks to Prof. M.K. Deshmukh, Professor and Head, Dept.of EEE for

his constant support and encouragement at various levels.

I thank Prof. Sauvik Bhattacharya Vice-Chancellor, BITS Pilani, Prof. Sasikumar Punnekkat,

Director, BITS Pilani-K. K. Birla Goa Campus, Prof. K. E. Raman, Former Director, BITS

Pilani-K. K. Birla Goa Campus, Prof. Ashoke Kumar Sarkar, Director, BITS Pilani - Pilani

Campus, Prof. G. Raghurama, Former Director, BITS Pilani - Pilani Campus, Prof. S. K. Verma,

Dean, ARD, BITS Pilani - Pilani Campus, Prof. Prasanta Kumar Das, Associate Dean, ARD,

Prof. Sunil Bhand, Dean, SRCD, Prof. D. M. Kulkarni, Dean, Administration, BITS, Pilani - K.

K. Birla Goa Campus, and Prof. S. D. Manjare for giving me an opportunity to carry out research

studies at the institute and also by providing necessary infrastructure and facilities to carry out my

work.

I would extend my sincere thanks to Prof. V.K. Deshpande, former-Head, Dept.of EEE for his

constant support at various levels.

I also extend my sincere thanks to Dr. Nitin Sharma, DRC Convener, for support and motivation.

I also thank Prof. Dipankar Pal, Dr. Amalin Prince, Dr. Gautam Bacher, Dr. Anita Agrawal,

Dr. Chandram, Mr. C. Balakrishna Moorthy, Mr.Meghanand Bhamare, Mr. Sarang Dhongdi, Mr.

Sankhar Reddy, Ms. Meetha Shenoy for their constant support, motivation and suggestions.

v

vi

I acknowledge with due gratitude to Mr. Nishil Talati, Ameya Riswadkar, Mr. Ramesh Raghu, Mr.

Sudeep Mishra, Mr. Ravish Deliwala, Mr. Vikas Khairnar, Mr. Abhishek Joshi for their constant

support and motivation.

I would extend my sincere thanks to Mr.Pusharaj Paradkar, Mr. Sameer Chodankar, Mr. Anil

Lamani and Mr.Shivaraj Rathod, lab technicians for their constant help during my research work

carried out in the lab.

I acknowledge all my colleagues for their continuous support, encouragement and motivation.

I would like to express my sincere gratitude to my loving parents Mr. Sakharam Mane and

Mrs. Ratnamala Mane, for always believing in me, for their continuous support, encouragement,

motivation and prayers.

I thank my wife Mrs. Swati for taking responsibilities of family on my behalf and giving

encouragement in carrying out work. I thank my beloved son, Pratyush Mane. Without their

support, I could not have made it here.

I thank my family members Mrs. Prabhavati Jagtap, Mrs. Suvarna Patil, Ms. Shrutika Shinde,

Mrs. Pooja Sawant, Mrs. Shradha Dalvi, Ms. Tirtha, Ms. Shreya and all other members for their

pertinence and patience during this research. They deserve special thanks for their continuous

encouragement and motivation.

I am thankful to all my friends and relatives who directly or indirectly helped me in completing

my thesis.

Above all, my gratitude towards the almighty that worshiped me with blessings and mercy.

Mane Pravin Sakharam

Contents

Certificate i

Declaration ii

Abstract iii

Acknowledgment v

Contents vii

List of Figures xi

List of Tables xiv

Abbreviations xv

Symbols xvii

1 Introduction 1
1.1 Introduction . 1
1.2 FPGA: Basic Architecture . 2
1.3 Advantages of FPGA Approach . 5
1.4 Challenges in FPGA Approach . 7
1.5 Objectives of Research Work . 8
1.6 Organization of Thesis . 9

2 Literature Survey 11
2.1 Introduction . 11
2.2 Literature Review . 12

vii

Contents viii

2.3 Summary . 20

3 Introduction to Memristor 22
3.1 Introduction . 22
3.2 Memristor Fundamentals . 22
3.3 Memristor Models and Window Functions . 26

3.3.1 TEAM Model . 29
3.3.2 Kvatinsky’s Window . 31

3.4 Memristor as Logic Element . 33
3.4.1 Implication logic . 34
3.4.2 Stateful NAND Logic using Memristors 36
3.4.3 Stateful NOR Logic using Memristors 37

3.5 Other Applications of Memristors . 38
3.6 Summary . 38

4 Logic Implementation on Memristive Crossbar Array 40
4.1 Introduction . 40
4.2 Passive Memristive Crossbar Array . 42
4.3 Sneak Path Problem . 42
4.4 Analysis of Operations on Memristive Crossbar 44

4.4.1 Write Operation . 45
4.4.1.1 Floating Write Scheme . 45
4.4.1.2 1/3 Write Scheme . 50

4.4.2 Read Operation . 52
4.4.3 Evaluate Operation (Stateful-NOR Operation) 53

4.5 Logic Implementation on Specialized Memristive Crossbar 65
4.6 Summary . 68

5 Logic Implementation on CRS Crossbar Array 70
5.1 Introduction . 70
5.2 CRS Fundamentals . 71
5.3 Stateful NOR Gate using CRSs . 73
5.4 Analysis of Operations on CRS Crossbar . 80

5.4.1 Write Operation . 81
5.4.1.1 Floating Write Scheme . 81
5.4.1.2 1/3 Write Scheme . 85
5.4.1.3 Configuration Row based 1/3 Write Scheme 87

5.4.2 Read Operation . 92
5.4.2.1 Conventional Read Scheme 93
5.4.2.2 Self-resetting Read Scheme 96

5.4.3 Stateful NOR Operation . 99
5.5 Summary . 105

6 Reconfigurable Architecture 108
6.1 Introduction . 108

Contents ix

6.2 Common Circuit Blocks in CMOS Layer . 109
6.2.1 Write Circuit . 109
6.2.2 Evaluate Circuit . 109
6.2.3 Read Circuit . 110
6.2.4 Priority Logic . 112

6.3 Reconfigurable Architecture using Stateful NOR 112
6.3.1 Architecture Description . 114
6.3.2 Automation Algorithm for 3-input Logic Block Architecture 117
6.3.3 Simulation of 3-input Function using Proposed Architecture 118

6.4 n-Input Function Implementation . 120
6.4.1 Automation Algorithm for Generalized Architecture for n-Input Function

Implementation . 125
6.5 Summary . 129

7 Performance Analysis 131
7.1 Introduction . 131
7.2 Timing Analysis . 131
7.3 Power Analysis . 138
7.4 Area Analysis . 140
7.5 Summary . 144

8 Summary and Future Scope of Work 146
8.1 Summary . 146
8.2 Scope for future work . 150

A Memristor Models and Window Functions 152
A.1 Memristor Models . 152

A.1.1 Linear Ion Drift Model . 152
A.1.2 Nonlinear Ion Drift Model . 154
A.1.3 Simmons Tunnel Barrier Model . 154
A.1.4 Boundary Condition Memristor (BCM) Model 156
A.1.5 Other Models . 157

A.2 Window Functions . 157
A.2.1 Joglekar’s Window . 158
A.2.2 Biolek’s Window . 159
A.2.3 Prodomakis’ Window . 160

B Imply Logic Analysis 161

C Specialized Memristive Crossbar Array 165
C.1 CMOL Architecture . 165
C.2 FPNI Architecture . 170

D CRS Logic Analysis 172

Contents x

E Materials and Properties 184

Bibliography 189

Publication Based on Present Work 207

Brief Biography of the Candidate 208

Brief Biography of the Supervisor 209

List of Figures

1.1 Generic Homogeneous FPGA. 3
1.2 Heterogeneous FPGA . 4
1.3 Conventional FPGA CLB Structure . 5
1.4 Programmable Interconnection Switch (Version 1). 6
1.5 Programmable Interconnection Switch (version 2). 7

2.1 Conceptual mrFPGA Architecture. 15
2.2 The Stacking CBs and SBs over LBs in mrFPGA Architecture. 16
2.3 The Tile of mrFPGA where CBs and SBs are Placed Over LB. 17
2.4 Nanocrossbar Concept. 17
2.5 Nanopin Structure in CMOL. 18
2.6 CMOL Fabric with CMOS Interface. 18
2.7 Lateral View of FPNI Fabric. 19
2.8 Top View of FPNI Fabric. 19

3.1 Memristor Definition. 23
3.2 Memristor Structure. 24
3.3 Idealized I-V Characteristics of Memristor. 26
3.4 I-V Characteristics of Memristor using TEAM Model. 32
3.5 Kvatinsky’s Window Function. 33
3.6 Imply Gate using Memristors. 34
3.7 Simulation of IMPLY Logic. 35
3.8 Stateful NAND Gate using Material Implication. 36

4.1 Memristive Crossbar. 42
4.2 Memristive Crossbar Sneak Path Problem. 43
4.3 Resistance Equivalent of Memristor. 45
4.4 The Floating Write Scheme for Memristiv Crossbar. 46
4.5 Resistive Equivalent Circuit for Floating Write Scheme in Memristiv crossbar. . 47
4.6 Floating Write Scheme:Voltage Variations - Writing LRS in Memristive Crossbar. 49
4.7 Floating Write Scheme:Voltage Variations - Writing HRS in Memristive Crossbar. 50
4.8 1/3 Write Scheme for Memristive Crossbar. 51
4.9 Power Consumption for Write Schemes in Memristive Crossbar. 52
4.10 Read Operation in Memristive Crossbar. 53
4.11 Resistive Equivalent Circuit for Read Scheme in Memristive Crossbar. 54
4.12 The Readout Voltage in Memristive Crossbar. 55

xi

List of Figures xii

4.13 Stateful NOR Operation on Memristive Crossbar. 56
4.14 Resistive Equivalent Circuit for Stateful NOR in Memristive Crossbar. 57
4.15 Stateful NOR:Voltage across Memristors on Selected Word & Bit Lines. 59
4.16 Stateful NOR: Voltage across Memristors on Unselected Word & Bit Lines. . . . 61
4.17 Stateful NOR: Voltage across Destination Memristor, Others in HRS. 62
4.18 Stateful NOR: Voltage across Destination Memristor, Others in LRS. 64
4.19 Power Consumption in Stateful NOR. 65
4.20 Equivalent Circuit for Stateful NOR Implemented on CMOL. 66
4.21 Stateful NOR Implementation on CMOL. 67

5.1 CRS from Memristors. 72
5.2 Memristor Switching from HRS to LRS. 73
5.3 Memristor Switching from LRS to HRS. 73
5.4 CRS Switching from HRS-LRS to LRS-HRS. 74
5.5 CRS Switching from LRS-HRS to HRS-LRS. 74
5.6 Ideal Hysteretic I-V Characteristic of CRS. 75
5.7 Simulated Hysteretic Characteristics of CRS using TEAM Model. 76
5.8 2-input NOR Gate using CRS. 77
5.9 Resistance Equivalent Symbol for CRS. 81
5.10 Floating Write Scheme for CRS Crossbar. 82
5.11 Resistive Equivalent Circuit for Floating Write Scheme in CRS Crossbar. 83
5.12 Floating Write Scheme:Voltage Variations - Writing LRS-HRS in CRS Crossbar. 85
5.13 Floating Write Scheme:Voltage Variations - Writing HRS-LRS in CRS Crossbar. 86
5.14 1/3 Write Scheme for CRS Crossbar. 87
5.15 Configuration Row Based 1/3 Write Scheme for CRS Crossbar. 88
5.16 Resistive Equivalent Circuit for Configuration Row 1/3 Write Scheme. 89
5.17 Configuration Row 1/3 Write Scheme:Voltage Variations - Writing LRS-HRS. . 92
5.18 Configuration Row 1/3 Write Scheme:Voltage Variations - Writing HRS-LRS. . 93
5.19 Power Consumption in Write Schemes for CRS Crossbar. 94
5.20 Conventional Read Scheme for CRS Crossbar. 95
5.21 Resistive Equivalent Circuit for Conventional Read Scheme in CRS Crossbar. . . 96
5.22 Sensed Voltage while Reading LRS-LRS and LRS-HRS States. 97
5.23 Generalized Structure of CRS Crossbar with Self-resetting Read Mechanism. . . 99
5.24 Self-resetting Read Scheme Circuit. 100
5.25 Timing Diagram for Self-reset Read Scheme. 101
5.26 Implementation of 3-input Stateful NOR Logic on CRS Crossbar. 102
5.27 Resistive Equivalent Circuit of 3-input Stateful NOR Logic on CRS Crossbar. . . 103
5.28 Stateful NOR on CRS:Voltage across CRSs Before Destination CRS Switching. . 104
5.29 Stateful NOR on CRS:Voltage across CRSs After Destination CRS Switching. . . 106
5.30 Power Consumption in Stateful NOR Operation on CRS Crossbar. 107

6.1 Write Circuit for 1/3 Write Scheme. 110
6.2 Evaluate Logic Circuit to Implement Stateful NOR. 110
6.3 Read Circuit to Detect State of Memristor or CRS. 111
6.4 Sense Amplifier Based Read Circuit. 112

List of Figures xiii

6.5 Priority Circuit. 113
6.6 NOR Logic Block Symbol. 113
6.7 Reconfigurable, Pipelined 3-input Logic Block Architecture. 115
6.8 Simulation Results for 1-bit Full Adder with Inputs=‘000’. 120
6.9 Simulation Results for 1-bit Full Adder with Inputs=‘001’. 121
6.10 Simulation Results for 1-bit Full Adder with Inputs=‘011’. 122
6.11 Simulation Results for 1-bit Full Adder with Inputs=‘111’. 123
6.12 Input Applied to 1-bit Pipelined Full Adder. 123
6.13 Output of 1-bit Pipelined Full Adder. 124
6.14 3-input Logic Block (LB3) Symbol . 124
6.15 Generalized Architecture using 3-input Logic Block(LB3). 125
6.16 Example Function Implementation Flow using Generalized Architecture. 127
6.17 Simulation Results of Logic Function Implemented on Generalized Architecture. 128

7.1 Example ReRAM Structure. 132
7.2 Turn-off Delay of Memristor. 134
7.3 Turn-on Delay of Memristor. 134
7.4 Timing Diagarm for Proposed Reconfigurable Architecture. 137
7.5 Delay Versus Data Set(n) for Different Reconfigurable Architectures. 139
7.6 Area Improvement Versus no. of Outputs for Proposed Architecture. 144

A.1 Joglekar’s Window Function. 158
A.2 Biolek’s Window Function. 159
A.3 Prodomakis’ Window Function for Different Values of j Parameter. 160
A.4 Prodomakis’ Window Function for Different Values of p Parameter. 160

C.1 Generic CMOL Architecture Top View. 168
C.2 Accessing Single Memristor in CMOL. 169
C.3 Structure of CMOL Cell. 169
C.4 Example Implementation of Wired-NOR Gate in CMOL. 170
C.5 The Equivalent Wired-NOR Gate in CMOL . 170
C.6 Example Implementation of NAND Function in FPNI Fabric. 171

List of Tables

2.1 Area Breakdown of Xilinx Virtex-4 Platform FPGAs. 13
2.2 mrFPGA Area Breakdown. 15

3.1 Memristor Models Comparison. 31
3.2 Values of Parameters Used for the Simulation Using VTEAM Model. 32
3.3 IMPLY Gate Truth Table. 34
3.4 Stateful NAND Logic Implementation Steps. 36
3.5 Stateful NOR Gate:Truth Table in Terms of Resistance. 37
3.6 Steps to Implement Stateful NOR Logic. 37

4.1 Notations Used in Analysis of Memristive Crossbar for Write Operation. 45
4.2 Notations Used in Analysis of Memristive Crossbar for Stateful NOR Operation. 55
4.3 Stateful NOR Execution Sequence in CMOL. 67
4.4 Contol Signals for Stateful NOR Execution Sequence in CMOL. 68

5.1 States of CRS. 75
5.2 Summary of Voltage in 2-input NOR Operation Using CRS. 78
5.3 State Transitions of Memristors Involved in CRS based 2-input NOR Gate. . . . 79
5.4 Truth Table for CRS Based 2-input NOR Logic. 80
5.5 Notations Used in the Analysis of Operations on CRS Crossbar. 82

6.1 Stepwise Implementation of 3-input Logic Function Using Proposed Architecture. 116
6.2 Truth Table of a Random Logic Function. 126

7.1 Delay in Different Operation on Memristive/CRS Crossbar. 136
7.2 Delay in Conventional FPGA. 136
7.3 Delay in Reconfigurable Architectures. 138
7.4 Power Consumption in Operations on Memristive/CRS Crossbar. 140
7.5 Power Consumption in Conventional FPGA. 140
7.6 Power Consumption in Reconfigurable Circuits. 141
7.7 Transistor Count for LUT Based CLB Used in Conventional FPGAs. 141
7.8 Transistor Count for Interconnection Switch Used in Conventional FPGAs. . . . 141
7.9 Device Count for Proposed Memristive/CRS Crossbar Based Architecture. 142

E.1 Materials Used in Anion Devices. 184
E.2 Materials Used in Cation Devices. 187
E.3 Switching Material Properties. 188

xiv

Abbreviations

VLSI Very Large Scale Integration

FPGA Field Programmable Gate Array

ASIC Application Specific Integrated Circuit

LUT Look Up Table

CLB Configurable Logic Block

SRAM Static Random Access Memory

ALU Arithmetic Logic Unit

CMOS Complementary Metal Oxide Semiconductor

LB Logic Block

CB Configuration Block

SB Switch Block

BLE Basic Logic Element

CPU Central Processing Unit

CRS Complementary Resistive Switch

LRS Low Resistance State

HRS High Resistance State

ReRAM Resistive Random Access Memory

NEM Nano Electro Mechanical

NVM Non Volatile Memory

MRAM Magnetic Random Access Memory

FeRAM Ferroelectric Random Access Memory

PCRAM Phase Change Random Access Memory

PCM Phase Change Memory

xv

Abbreviations xvi

MLC Multi-Level Cell

SLC Single-Level Cell

CMOL CMOS/ MOLecular

FPNI Field Programmable Nanowire Interconnect

FPSLA Field Programmable Stateful LogicArray

TEAM ThrEshold Adaptive Memristor

BEOL Back End Of Line

Symbols

R resistance Ω

C capacitance F

L inductor H

i, I current A

v,V voltage V

q charge C

φ flux V m

p,P power W

t time s

RHRS resistance of memristor in OFF state (High Resistance State) Ω

RLRS resistance of memristor in ON state (Low Resistance State) Ω

Vth1,M threshold voltage of memristor to switch from HRS to LRS V

Vth2,M threshold voltage of memristor to switch from LRS to HRS V

Vth1,C threshold voltage of CRS to switch from HRS-LRS to LRS-LRS state V

Vth2,C threshold voltage of CRS to switch from HRS-LRS to LRS-HRS state V

Vth3,C threshold voltage of CRS to switch from LRS-HRS to LRS-LRS state V

Vth4,C threshold voltage of CRS to switch from LRS-HRS to HRS-LRS state V

xvii

Chapter 1

Introduction

1.1 Introduction

Three approaches are available for design of applications in digital domain.

• ASIC based approach.

• General purpose microprocessor based approach.

• FPGA based approach.

In ASIC approach, the application is implemented using dedicated hardware. The optimization

is carried out with respect to one or more parameters like speed (delay), area (density), power

consumption, cost, noise margin etc. These circuits are generally the fastest, the densest and the

most power efficient for the specific application. However, such circuits are becoming increasingly

expensive with progress in technology (fabrication cost is increasing exponentially due mask

cost, quality of materials required in processing, environmental requirements in fabrication lab,

stringent requirements over the light sources used in photo-lithography). Leakage current is posing

a problem in continuing with Moore’s law. Also, the implementation of application on ASIC takes

longest time.

1

Chapter 1. Introduction 2

Microprocessors are prefabricated circuits, which are programmed by a series of instructions for

specific applications. These instructions are stored in memory while data may be present in

memory or provided by input devices. A control unit in the form of built-in finite state machine

reads instructions from memory and executes them sequentially in the specific order defined in

the program. All arithmetic and logical computations are performed in datapaths consisting

of an arithmetic logic unit (ALU), a floating-point unit, and a load-store unit. This approach

has advantages like flexibility and short application development time because of higher level

of abstraction used for application design. However performance and energy efficiency of such

system is severely affected by processor-memory bottlenecks and computing overhead.

FPGAs combine some of the best properties of microprocessors and ASICs. Like microprocessors,

they are prefabricated and programmable circuits and hence very cost-efficient. Similar to ASICs,

they can be customized for efficient datapaths i.e. they can be fine grain customized. Also

massively parallel operations can be efficiently implemented on FPGA.

1.2 FPGA: Basic Architecture

Figure 1.1 shows generic high-level architecture of an FPGA having uniform structure consisting

of logic blocks, interconnection network and input/output blocks. Logic blocks are used

to implement logic functions, may be in the form of sea-of-gates, look-up tables (LUT) or

programmable NAND and NOR planes. The LUT based logic block structures are commonly

used in most commercial FPGAs. If large size functions (many inputs and/or many outputs)

are to be implemented, then interconnections between logic blocks are necessary and is done by

programmable interconnects. The interconnection of data to input/output devices is done through

I/O blocks.

Multiplication is very common and frequent operation in many applications. When implemented

on generic FPGA, it occupies more area with more delay from input to output. Hence dedicated

hardwired multiplier blocks optimized for speed, area and power consumption are embedded

in the architecture of FPGA. Dedicated memory blocks are also the part of architecture of

most commercial FPGAs. Some FPGAs have processor cores in it hence hardware-software

co-design approach can be used to improve the overall system performance. Critical functions are

Chapter 1. Introduction 3

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Programmable

I/O Blocks

routing
switches

Routing

Figure 1.1. Generic homogeneous FPGA consisting of logic blocks, programmable interconnects
and I/O blocks [1].

implemented on logic blocks and multiplier blocks while other functions can be simultaneously

handled by embedded processors. Such heterogeneous high-level FPGA architecture is shown in

Figure 1.2.

The simplified architecture of CLB with 3-input LUT is given in Figure 1.3 along with surrounding

interconnection network. LUT is essentially a k×2n memory array, where k is size of each memory

location in bits and n is number of address lines. In Figure 1.3, k = 1 and n= 3. LUT can be viewed

as programmable logic gate, which can perform n-input k-output logic function by storing its truth

table. Input data to such gate is used as binary address to read the contents of addressed memrory

location and put it on output lines through multiplexer. The output of multiplexer is either made

available directly on any interconnection lines or through flip-flop for sequential operations with

the help of multiplexer. Tristate buffers are used to select the output lines to put results of logic

block.

Chapter 1. Introduction 4

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Multi−
plier

Multi−
plier

Multi−
plier

Multi−
plier

M
em

or
y

M
em

or
y

Programmable

I/O Blocks

routing
switches

Routing

M
em

or
y

Figure 1.2. Heterogeneous FPGA consists of embedded memory blocks, dedicated hardware
blocks (and processor blocks not shown here) along with logic blocks, programmable interconnects
and I/O blocks [1].

Figures 1.4 and 1.5 show programmable interconnection switch which can be used to electrically

connect any horizontal (vertical) line segment to adjacent horizontal and/or vertical line segment

in desired way through configuration bits [3]. Inputs to CLB may be fetched from any of the

four adjacent vertical or horizontal wires by configuring the input multiplexer. Similarly output

from CLB can be routed to any horizontal segment through tristate buffers programmed through

configuration bits. All of these configuration bits are implemented using SRAM cells. The

circuit required for programming these bits is not shown in figure for simplicity. Programming

FPGA for certain functionality i.e. loading configuration data and running computation on it after

configuration are two independent tasks. Generally loading of configuration information is done

using serial method for less area overhead.

Chapter 1. Introduction 5

4:1 Mux

Configuration Memory

(SRAM)
LUT

Buffers

Clock

Flip-flop

8:1 Mux
2:1 Mux

Programmable
Interconnection
Switch

Figure 1.3. Conventional FPGA CLB Structure consisting of LUTs, multiplexers, flip-flop,
configuration memory and programmable interconnects [2].

1.3 Advantages of FPGA Approach

The important features like programmability after fabrication in microprocessor and fine-grain

customization in ASICs are combined in FPGA. In applications where functionality can be divided

into small independent modules, concurrent executions can be implemented efficiently on FPGA

due to fine grain customization. In applications such as network processing, signal and image

processing, scientific computing, bioinformatics etc., this style is very useful. The execution

time can be greatly reduced as a result of parallel execution. Also, in applications like Boolean

Chapter 1. Introduction 6

Figure 1.4. Programmable interconnection switch (version 1) consisting of buffers and
programmable memory bits to control connectivity and direction of data within interconnects [3].

satisfiability (SAT) solvers, cryptography, and logic emulation, fine-grain customization at bit

level is very effective. Fine-grain customization at word level has shown 90 % decrease in power

dissipation in comparison to fixed-word-length implementation [4].

In applications where functions cannot be divided into independent modules, FPGAs can be

used for such applications using pipelining and throughput can be improved by overlapping the

execution. For example, in deeply pipelined implementations of finite impulse response filters,

Fourier transforms and discrete cosine transform, FPGAs are standard platform [4].

In applications where information to be processed is not known in advance (e. g. keys in

encryption algorithms, signatures by deep packet network inspectors etc.), FPGA implementation

may be even denser than ASICs. In FPGA, such information is used for reconfiguration

while ASICs makes use of dedicated general-purpose multipliers, decryption circuitry, or

pattern-matching engines and thus has hardware overhead [4].

Chapter 1. Introduction 7

Mux

Buffer

Configuration Memory
(SRAM)

Figure 1.5. Programmable interconnection switch (version 2) consisting of multiplexers, buffers
and configuration memory bits [3].

FPGAs have faster time-to-market as no layout, masks or other manufacturing steps are needed.

Its design cycle is simple as the software handles much of the routing, placement, and timing tasks.

The project cycle is more predictable because of elimination of potential re-spins, wafer capacities,

etc. Non-recurring expenses (NRE) are not involved in FPGA designs. Also, new bitstream can

be uploaded remotely due to field-programmability.

1.4 Challenges in FPGA Approach

The major challenges of FPGA approach is delay, power dissipation and area (density) overheads

associated with configurability. Configuration bits occupy large portion of the configurable fabric

and can be as high as 50 % [5] while majority of the remaining area is devoted to configurable

routing. The available area for logic implementation is very less (from 5 % to 15 % of the total

chip area) [5, 6]. Because of configurability, ASICs are two to three times denser than FPGAs, for

Chapter 1. Introduction 8

same function implementation [5]. The interconnect resources can not be reduced beyond certain

limit as it affects routability.

Also, loading configuration information in configuration memory is slow process as writing to

such memory is done sequentially to reduce area overhead of writing circuit. Also configuration

word length is much higher for FPGAs. In applications where same operations is to be carried out

on large set of data, FPGAs have been preferred as less reconfiguration is required. If frequent

reconfiguration is required, FPGA is not good choice for such applications.

In spite of disadvantages specified above, FPGAs are a more attractive option than ASICs

for certain applications is mainly because of post-fabrication programmability (so that new

functionality can be added or old function can be modified), less time-to-market for application

(typically much shorter (weeks) compared to that of ASICs (months)). Also, non-recurring cost is

not involved in application design.

The major reason behind the inferior performance of FPGA is programmable routing fabric and

extensive usage of SRAM cells in their architecture. Performance gap between ASIC and FPGA

needs to be improved in order to increase the share of FPGAs in the market. New emerging devices

are being investigated as a replacement for SRAM and programmable interconnection switches.

Memristor is one of the most attractive device which can act as nonvolatile memory (by storing

data in the form of resistance) and as logic (switching) element. But it is passive device and CMOS

circuits are required to implement functions using it. In the present work, memristive devices in

nanocrossbar are investigated for the development of reconfigurable architecture.

1.5 Objectives of Research Work

Several efforts have been made in the past to improve the performance of FPGA. These efforts can

be broadly classified in one or combinations of the following methods :

1. Optimizing the conventional CMOS based FPGA architecture with respect to one or more

parameters like area, delay, cost, power dissipation etc. by changing the number of inputs to

logic element, by changing the size of cluster, by changing the size of wire segments etc.

Chapter 1. Introduction 9

2. Using 3D integration technology in CMOS process to reduce the size of footprint and

making them denser.

3. Keeping the logic elements as it is in conventional SRAM based FPGAs and modifying the

programmable interconnects by replacing the switching elements (CMOS transistors) and/or

configuration memory (SRAM) by new emerging devices.

4. Modifying the design of logic elements by using emerging devices.

Objectives of the research work carried out in this thesis are listed below:

1. To study the memristor as logic element and as memory cell in order to use it in building

the reconfigurable architecture (reconfigurable architectures require logic elements as well

as configuration memory cells).

2. To analyze the implementation of universal logic gate using memristors on passive

memristive crossbar in order to investigate the limitation on the size of crossbar due to

sneak path problem commonly found in memristive crossbar. Also analysis will help in

determining the size of crossbar for maintaining the integrity of memristor cells not involved

in logic operation.

3. To develop universal logic gate using CRSs that can be implemented on CRS crossbar,

which are free from sneak path problem, and to investigate the effect of implementation of

developed universal gate on other CRSs that are not part of logic in CRS crossbar.

4. To develop reconfigurable architecture using universal logic gate as basic building block that

can be implemented on memristive/CRS crossbar, along with its automation algorithm.

5. To compare the performance of developed reconfigurable architecture with conventional

LUT based CLB commonly used in most FPGAs.

1.6 Organization of Thesis

The thesis is organized as follows :

Chapter 1. Introduction 10

• Chapter 1: This chapter explains the basic architecture of LUT based FPGA, advantages of

FPGA approach over ASIC in application design and the challenges in improving the FPGA

performance. Objectives of research work are also listed in the end.

• Chapter 2: As an overview of methods adopted in the past to improve the performance of

reconfigurable circuits (FPGAs), detailed literature review is presented in this chapter.

• Chapter 3: This chapter explains the working of memristor in general, its model and

window function used in this work, and use of memristor as logic element to built universal

gate (stateful NOR).

• Chapter 4: In order to implement stateful NOR gate on passive memristive crossbar, a

detailed analysis of all basic operations required to perform stateful NOR is carried out in

this chapter. The limitations on size of crossbar due to sneak path problem so as to perform

operations without error, and in order to maintain the integrity of memristors not involved

in operation are also investigated.

• Chapter 5: Passive CRS crossbar free from sneak path problem are analyzed for

implementation of stateful NOR gate on it in this chapter. Also limitations on size of

crossbar are investigated in order to maintain the integrity of CRS not involved in operation.

• Chapter 6: In this chapter, novel stateful NOR logic based pipelined reconfigurable

architecture is proposed which can be implemented on memristive/CRS crossbar. Also,

the automation algorithm for proposed architecture is presented.

• Chapter 7: In this chapter, performance analysis of proposed pipelined reconfigurable

architecture implemented on memristive/CRS crossbar is carried out and compared with

LUT based CLB used in conventional FPGA.

• Chapter 8: The outcomes of research work carried out are summerized in this chapter.

Also, further improvements that can be done in this research area are listed.

Chapter 2

Literature Survey

2.1 Introduction

There are mainly three types of commercial FPGAs [7]:

• Antifuse-based FPGAs : These are non-volatile FPGAs but are not reconfigurable i.e. they

can be programmed only once. Examples of antifuse-based FPGAs are Axcelerator family

of FPGA manufactured by Actel.

• Flash-based FPGAs : These are reconfigurable and also non-volatile but their integration

with CMOS process is very difficult. Also low logic density, inadequate performance, and

the lack of bit-level programmability prevent flash-based FPGAs to be widely used [8]. They

consume less power and more tolerant to radiation effects. Unauthorized bitstream copying

can be avoided using flash-based FPGAs. Examples of flash-based FPGAs are Igloo and

ProASIC3 family of FPGA manufactured by Actel.

• SRAM-based FPGAs : These are volatile FPGAs and can be reconfigured many times

during their lifetime. They can be fabricated using standard CMOS process and are currently

very popular. They suffer from long configuration-loading time and excessive leakage power

during stand-by. Xilinx Virtex and Spartan families, Altera Stratix and Cyclone are examples

of SRAM-based FPGAs.

11

Chapter 2. Literature Survey 12

2.2 Literature Review

Area, delay and power consumption of FPGAs are 21 times, 4 times and 12 times higher than those

of ASICs, respectively [9] and the main reason of it is programmable routing structure [5, 10–12]

which account for up to 90 % of the total area [5], up to 80 % of the total delay [10, 11] and up to 85

% of the total power consumption [12]. If FPGA routing structure is improved by replacing SRAM

(which is main cause of performance inferiority) with alternative memory having properties better

than SRAM, the performance gap between FPGA and ASIC can be reduced.

The efforts made in the past to improve the performance of FPGA in terms of delay, area, power

consumption and cost using different techniques are given below.

• Changing the size of LUT and cluster [11, 13–15] has shown limited improvement in

performance of FPGA.

• Three Dimensional (3D) integration in ICs can increase the performance in terms of

functionality, density and speed, and has emerged as promising means to handle the

interconnection related problems and thereby has improved the performance of FPGA

[16–19]. Because of smaller tile area of FPGA and shorter interconnect distance between

tiles, it provided 1.7 times performance gain. However, the use of monolithic stacking is

currently limited as high temperature required in the fabrication of transistors in an upper

layer may destroy the transistors and metal layers already fabricated in the lower layer

[20]. Also, 3D stacking will result in excessive increase in heat density and corresponding

degradation in performance if proper thermal solution is not provided [21].

• C. Chen et al. [22] replaced SRAM with NEM relays in programmable routing of FPGA.

NEM relay has zero leakage power and potentially low ON-resistance. Also its fabrication

is a low-temperature process and can be safely monolithically integrated above CMOS layer.

This 3D NEM based FPGA has provided 43.6% footprint area reduction, 37% leakage power

reduction and up to 28% critical path delay reduction compared to SRAM-based FPGA

with CMOS technology at 22 nm node [23]. Also, apart from experimentally verified zero

leakage, NVM on-resistance values were predicted to be smaller than that of the NMOS

pass transistors [24, 25]. However its mechanical switching delay is large (>1 ns) [24, 26].

Chapter 2. Literature Survey 13

This drawback can be avoided if NEM relays are used only in FPGA routing switches as

they do not change their states after configuration.

• Emerging technologies, especially non-volatile memory (NVM) technologies with zero

boot-up delay, real-time reconfigurability and superior energy efficiency, are being explored

as possible candidate for replacement of SRAM and it include MRAM, FeRAM, PCRAM

and ReRAM [27]. Generally they provide high logic density and moderate to high

performance compared with existing technologies. They also have the desirable property of

non-volatility and can be turned off during stand-by to save power. But their manufacturing

require usually new materials and separate processes, and thus complicate the fabrication of

FPGA. Y. Chen et al. [20] proposed 3D Non-Volatile FPGA ARchitecture (3D-NonFAR)

using Phase Change Memory (PCM) as universal replacement for SRAM in FPGA. PCM

is high performance, high density and highly scalable non-volatile memory with bit-level

programmability, the feature not available in flash memory [28, 29]. Multi-Level Cell

(MLC) type PCM, which has slightly slower write speed than Single-Level Cell (SLC) but

higher density (16 times to that of SRAM [30]) was used for configuration memory in LBs,

CBs and SBs as writing to these bits only happen at configuration time. SLCs were used in

embedded RAM blocks as read/write speed of them is critical for the performance of FPGA.

Area breakdown of Xilinx Virtex-4 FPGA is given in Table 2.1 and it can be seen that only

replacing SRAM with PCM can significantly improve the density (by around 14%) apart

from improvement due to 3D technology.

Table 2.1. Area breakdown of Xilinx Virtex-4 Platform FPGAs. In 3D-NonFAR, SRAM has been
replaced by nonvolatile, highly dense and bitwise programmable PCM [20].

Logic
Block (LB)

Routing
Resources (RR)

L
og

ic

M
em

or
y

Sw
itc

h
bo

xe
s

In
te

r-
co

nn
ec

ts

M
em

or
y

B
R

A
M

D
SP

Po
w

er
PC

C
lo

ck
+

I/
O

4.6% 8.1% 15.1% 9.9% 20.3% 14.9% 5.3% 10.6% 11.2/%

• Among the emerging NVM technologies, ReRAM is considered to be the most promising

and is made up of memristors. Memristor is scalable below 30 nm [31] and can be

programmed within 5 ns at 180 nm technology node [32]. Its fabrication is compatible

Chapter 2. Literature Survey 14

with CMOS and its size can be as small as F2 (F is the feature size) [33]. Because of

these features, efforts have been made to use memristors in system integration [34–37].

Fabrication of memristor do not require high temperature and thus will not destroy the

transistors and metal wires already fabricated below memristor layer and can be integrated

with back-end-of-line (BEOL) compatible fabrication [22, 33, 38–40]. Like PCM [20],

memristors have been used to replace SRAM in FPGA [36] and have shown 1.1 times

and 2 times overall performance improvement before and after 3D integration. Abid

et al. [41] proposed nMOS logic family using memristor which has provided 4 times

density improvement over CMOS logic with similar delay and power dissipation. 3D

CMOS/Nanomaterial hybrid FPGA was proposed by C. Dong et al. [21] where the

transistors of interconnects were seperated from those of logic blocks and redistributed them

into different dies. Nanowire crossbars and face-to-face 3D integration technology was used

to provide connections between these dies. With certain power overhead brought by the

large capacitance of crossbar array, this architecture has provided 2.6 times performance

gain compared to the conventional FPGA architecture [21].

• J. Cong and B. Xiao introduced new memristor based reconfiguration FPGA (mrFPGA)

[42]. The concept is shown in Figure 2.1. The programmable interconnects consisting of

CBs and SBs were made up of only memristors and metal wires, and were fabricated over

logic blocks in the same die as shown in Figure 2.2. The nonvolatile state of memristor

(high resistance state (HRS) or low resistance state (LRS)) will decide the connectivity and

is programmable. The detailed design of CBs and LBs in mrFPGA is shown in Figure

2.3. This structure is feasible for fabrication and CMOS compatible [39]. The total area of

mrFPGA will be approximately equal to total area of logic blocks and is only 10 % to 20 %

of the conventional FPGA area [5] as shown in the Table 2.2. This 2D architecture has shown

5.18 times area savings, 2.28 times speedup and 1.63 times power savings over conventional

FPGA. The improvement in speed is primarily because of reduction in interconnection

delay. The reduction in tile area by 5.5 times has reduced the length of wire segments

and programmable interconnects by 2.35 times, contributing to reduction of 5.5 times in

RC delays of wire segments. Replacement of transistors in the programmable interconnects

(multiplexers and SRAM) by nonvolatile memristor and less capacitance on routing path due

to capacitance shielding effect of memristor, average 40 % power savings has been achieved.

Chapter 2. Literature Survey 15

Further if several mrFPGA stacks are integrated together using 3D technology, at least 10

times density and 4.5 times speedup improvement is possible [19].

LB LB LB

LB LB LB

LB LB LB

CB CB

CB CB CB

CB CB

CB CB CB

CB CB

SB SB

SB SB

logic blocks

metal wires

memristors

metal wires

Figure 2.1. Conceptual presentation of mrFPGA architecture. Programmable interconnects (CBs
and SBs) were made up of only memristors and metal wires and are placed over the logic blocks
[42].

Table 2.2. Total area of mrFPGA is approximately equal to total area of logic block which is
around 10% to 20% of area of conventional FPGA (area in µm2) [42].

Logic Block Switch Block +
Connection Block Buffer Total

Conventional
FPGA (Virtex-6) 2082.6 11911 - 13993.6

mrFPGA
(unbuffered) 2082.6 - - 2082.6

mrFPGA
(buffered) 2082.6 - 464.86 2547.46

• Many architectures integrating nanowire crossbar and CMOS chip have been proposed

[43–46]. The major challenges in these architectures were splitting the functionality

between nanowire crossbar and CMOS, and making the interconnections between CMOS

and nano layers. In some architectures, demultiplexers were implemented in nanocrossbar

layer to control large number of nanowires using small number of pins [43, 47, 48].

Although the work has been carried out in this direction [49–52], they present architectural

challenges because simultaneously they have to configure selected nanowire junction and

Chapter 2. Literature Survey 16

CB

CB

C
B

C
BSB

LB

memristor

CB

CB

C
B

C
BSB

LB

memristor

CB

CB

C
B

C
BSB

LB

memristor

CB

CB

C
B

C
BSB

LB

memristor

CB

CB

C
B

C
BSB

LB

memristor

CB

CB

C
B

C
BSB

LB

memristor

CB

CB

C
B

C
BSB

LB

memristor

CB

CB

C
B

C
BSB

LB

memristor

CB

CB
C

B

C
BSB

LB

memristor

Figure 2.2. The programmable interconnects made up of CBs and SBs were placed over logic
blocks in the same die in mrFPGA Architecture [42].

move the data between CMOS and nanolayers. Also demultiplexers are difficult to

design without nonlinear devices. D. B. Strukov and K. K. Likharev proposed CMOL

hybrid reconfigurable architecture [46, 53] where demultiplexing, logic inversion and gain

functions were implemented in CMOS layer while signal routing and wired-OR logic were

implemented in nanocrossbar layer. It consists of lower CMOS layer and upper two layers of

parallel nanowires perpendicular to each other. Each crosspoint of nanowire has memristor

as shown in Figure 2.4. Tapered nanopins were used to connect CMOS with nanowires

as shown in Figure 2.5 where each connect exactly to one nanowire. This reconfigurable

architecture is uniform fabric as shown in Figure 2.6 of four-transistor CMOS cells at

semiconductor level and memristors layer above it. CMOL FPGA architecture provided

approximately double density in comparison to conventional CMOS FPGAs with similar

performance [53]. However, CMOL presents some operational and fabrication issues. The

nanopins with just few nanometers diameters are difficult to fabricate. The wired-OR logic

requires diode like nonlinear devices at nanowire junctions.

Chapter 2. Literature Survey 17

Connection Block

Logic Block

Memristor Layer

Switch Block

C
on

ne
ct

io
n

B
lo

ck

C
on

ne
ct

io
n

B
lo

ck

Connection Block

Connection Block
Logic Block

pinpin
Logic Block

Connection Block

Connection Block

C
on

ne
ct

io
n

B
lo

ck

C
on

ne
ct

io
n

B
lo

ck

Switch Block

Memristor Layer

Logic Block

Connection Block

Switch Block

M9
Memristor
M8
M7
M6
M5

Figure 2.3. The tile of mrFPGA where CBs and SBs were placed over LB. The detailed structure
of CB and SB is given. LB uses M1-M4 metal layers while interconnects use M5-M9 metal layers,
memristors fabricated between M8-M9 [42].

Memristor

Nanowires

Figure 2.4. The nanocrossbar with two sets of parallel nanowires perpendicular to each other and
memristor at every crosspoint

• FPNI [54] architecture is generalization of CMOL architecture. In it, all logic is

implemented in CMOS and routing interconnects only in nanowires. Memristors at

crosspoint were fabricated using nanoimprint technology [55]. The nanowire at CMOS

Chapter 2. Literature Survey 18

Pin Pin PinCMOS

nano Nanowires

Memristor

Figure 2.5. Tapered nanopins used in CMOL architecture to connect CMOS with nanowires. Each
pin connects exactly to one nanowire [46, 53].

Figure 2.6. CMOL structure where CMOS layer is uniform fabric of 4 cells and nanocrossbar
above it. Red and blue colored pins connect CMOS layer to nanowires [46, 53].

nanowire contact were broadened into pads such that the alignment of nanowire and CMOS

pin requires accuracy no more than CMOS. The pin structure in FPNI is shown in Figure

2.7 while the top view of FPNI fabric is shown in Figure 2.8. In this fabric also one pin

connects to only one nanowire. FPNI architecture is easy to fabricate, provide flexibility

in the selection of nanoscale devices and it is possible to use more conservative process

parameters. Its has shown 8 times to 25 times improvement in area, reduced power

consumption, slightly lower clock speeds when standard benchmark circuits were compiled

on it. Also in comparison to defect free chip, FPNI with 20% defective junctions and 20%

broken nanowires has an effective yield of 75% without significant degradation of speed

along critical path.

• K. Kim et. al [56] proposed stateful logic pipelined architecture using memristive switches.

Chapter 2. Literature Survey 19

pin
pad

pin
pad

nano

CMOS

Memristor

Figure 2.7. Crossbar on top of CMOS gates and buffers in FPNI. The pads are used to avoid
the tapering of CMOS pins as in CMOL. CMOS level accuracy is sufficient for fabrication of
nontapered pins [54].

Figure 2.8. The nanowires are flattened into pads so that CMOS pins can be used to connect
CMOS with nanowire without tapering. The resolution required will be of CMOS process in this
FPNI architecture [54].

The architecture was mapped to FPNI fabric to produce FPSLA. All logic functions

were implemented in nanocrossbar by configuring nonvolatile switches (memristors) while

CMOS control switches were used to isolate stateful logic units so that multiple logic

operations can be executed in parallel. Due to fan-out limitations of material implication,

a basic stateful logic operation, new basic AND operation has been proposed to duplicate

output. A large fan-in OR or NOR gates were implemented concurrently in nanocrossbar

Chapter 2. Literature Survey 20

to execute the given functionality. When implementing multilevel logic circuit, FPSLA can

achieve logic density similar to that of FPNI. If inherent latches in FPSLA pipeline were

taken into account, its density has been three times more. However the logic duplication

overhead is very large.

2.3 Summary

The literature survey is summerized below.

• To develop low cost applications rapidly, the performance of FPGAs needs to be improved

so that they can be preferred over ASICs.

• The main cause for performance gap between popular conventional SRAM-based FPGAs

and ASICs in terms of area, speed and power consumption is programmable interconnects

and extensive use of SRAM. The improvement in performance gap by changing the number

of inputs to LUT and/or by changing the size of cluster in clustered FPGAs is limited.

Also, with improvement in technology, handling leakage power is becoming difficult in

conventional CMOS process and hence sustaining the Moore’s law is becoming impossible

day by day. Even though footprint size can be improved by 3D integration, the problem of

leakage power remains the same in SRAM-based volatile FPGA in addition to handling of

power density in 3D technology.

• High performance embedded blocks like multipliers, transceivers, block memory, processor

cores etc. have been added to heterogeneous FPGAs to improve the performance of FPGA,

but balancing their percentage is very difficult and if not used in application, that area of

FPGA is wasted and can not be used in reconfiguration.

• Efforts have been made to improve the performance of FPGA by modifying programmable

routing structure. The SRAM is replaced by devices having better performance parameters.

NEM in place of SRAM in routing has shown improvement in terms of area and power

dissipation but switching delay limits its usage. With the invention of memristor as

nonvolatile switching device and its compatible fabrication with CMOS process, it has

been used as replacement of SRAM in programmable routing as in mrFPGA and FPNI

Chapter 2. Literature Survey 21

architecture. Although this technique has shown improvement in FPGA, the use of

memristor as logic element has not been explored in these architectures. The diode

like behavior requirement of memristors for wired-OR logic implementation on CMOL

architecture limits its use in reconfigurable architectures as such memristors are difficult

to fabricate.

• Apart from its use as nonvolatile switch in programmable interconnect, memristor is used as

logic element to implement universal NOR/NAND function. Any multilevel logic operation

can be implemented using these universal gates. But as material implication operation with

memristor can not fan-out (as output of logic operation is in the form of resistance state),

overhead of AND operation to duplicate result will add up wherever the output goes as input

to multiple pins as in FPSLA architecture. This limits the performance of architecture. But

this kind of logic implementation enables to think of in-memory calculations, a technique

against von-Neumann architecture.

At this time, any technique to implement logic functions only using nanocrossbar is not known.

In this work, attempt have been made to explore other architectural possibilities using hybrid

CMOS/Nanomaterial technology in order to improve the performance in terms of area, speed

and power consumption. The basic blocks should be repeatable and should be generated during

runtime in nanocrossbar with the help of CMOS layer to implement logic functions. At other

times, the nanocrossbar can be used as resistive RAM.

Memristor is used in the design of reconfigurable architecture. Next chapter explains fundamentals

of memristor, its model used in the simulation and its use as logic element.

Chapter 3

Introduction to Memristor

3.1 Introduction

Memristor is emerging as an alternative candidate for SRAM cell. Unlike SRAM, where

information is stored in the form of voltage, memristor stores data in the form of resistance. Also

it is possible to perform logical operations using memristors and hence there is possibility of

in-memory calculations.

This chapter is organized as follows: The memristor structure, its working and ideal hysteretic

characteristics are explained in the following section. In order to utilize memristors in design

of memory and logic circuits sufficiently accurate, computationally efficient model should be

available. Next section describes in detail the model used in simulation along with window

function necessary to incorporate observed nonlinarity at boundary in fabricated memristors. The

use of memristor as basic logic element is described at the end.

3.2 Memristor Fundamentals

There are three traditional fundamental passive circuit elements namely resistor (R), capacitor (C)

and inductor (L), and four basic circuit variables namely the current (i), voltage (v), charge (q)

and flux (φ). The relationship between any two circuit variables is either defined as fundamental

22

Chapter 3. Introduction to Memristor 23

passive circuit element (R = dv/di,C = dq/dv,L = dφ/di) or time dependent definition of circuit

variables (i = dq/dt,v = dφ/dt). Thus out of six one-to-one possible relationships between

above four circuit variables, five were well defined. For the sake of completeness, Leon Chua

in 1971 first postulated the existence of sixth relationship in terms of fourth passive basic circuit

element and named it memristor, contraction for memory resistor [57]. In this seminal paper,

he proved passivity, uniqueness, existence of memristor and electromagnetic interpretation of its

characteristics based on Maxwell’s equations. The memristance M of memristor is defined as

M =
dφ

dq
. (3.1)

The defining relationship diagram is given in Figure 3.1.

v(
t)
=

R
i(

t)
or

i(
t)
=

v(
t) R

φ
(t
)
=

M
q(

t)

M
em

ri
st

or
D

efi
na

tio
n

φ(t) =
Li(t)

q(
t)
=

Cv(t
) or

v(t
) =

q(
t)

C

i(t) q(t)

v(t) φ(t)
v(t) =

dφ(t)
dt

or φ(t) =
∫ t
−∞

v(τ)dτ

i(t) =
dq(t)

dt
or q(t) =

∫ t
−∞

i(τ)dτ

Figure 3.1. Out of six one-to-one relationships between four circuit variables viz. current (i),
voltage (v), charge (q) and flux (φ), five were well defined in terms of three passive elements
resistor (R), capacitor (C) and inductor (L), and time dependent circuit variables (i = dq/dt,v =
dφ/dt). The missing sixth relationship was postulated by Leon Chua in terms of memristor as
fourth passive element.

To establish the link between this theoretical definition and physical realization of memristor, it

took almost 40 years. Research group at HP lab successfully fabricated memristor and presented its

Chapter 3. Introduction to Memristor 24

physical model in 2008 [58]. This memristor has two-layer nanoscale structure, the bottom layer

consists of stoichiometric titanium dioxide (TiO2), which is an electrical insulator and the upper

layer also consists of TiO2 but doped with oxygen deficiencies and thus forming TiO2−x layer with

high conductance [59]. The conceptual diagram is given in Figure 3.2. The TiO2−TiO2−x layers

are sandwiched between two platinum plates.

Doped UndopedPort Port

D

w

Figure 3.2. Memristor consist of memristive material sandwiched between metal plates, for
example, TiO2 sandwiched between two platinum plates. One part of TiO2 is doped with oxygen
deficiencies to form TiO2−x and becomes good conductor while remaining part is TiO2 which is
insulator. The boundary between these regions move in either directions based on the polarity
of applied voltage. When whole area between metal plates is occupied by doped region, the
memristor will be in LRS state, otherwise it will be in HRS.

If strong enough electric field is applied across memristor, dopants can be shifted bidirectionally

by changing the direction of electric field [59]. The oxygen vacancies are electron donors, so

vacancies are positively charged. When a positive voltage is applied to metal plate on TiO2−x side,

it will repel the oxygen vacancies towards TiO2 side, increasing the width of TiO2−x region and

reducing width of TiO2 region. The application of negative voltage will have opposite effect.

The position of separating area between undoped and doped region decides the memristance

(resistance) of memristor. Apart from TiO2 [60–62] such memristive effect is observed in nickel

oxide [39, 63] and other materials [64–66]. The memristive effect becomes very dominant in

nanometer scale than in micrometer scale, hence thickness of layers between electrodes is in

nanometer range [58]. Due to nanometer thickness, most of the materials show only two distinct

values of resistance: RHRS or RLRS, where RHRS is resistance of memristor in High Resistance

State (OFF state resistance) and RLRS is resistance of memristor in Low Resistance State (ON

state resistance). The reported values of RLRS and RHRS in TiO2 material are of the order 102 Ω

Chapter 3. Introduction to Memristor 25

and 106 Ω, respectively [67]. All these materials show characteristic hysteresis curve in their I-V

plots due to change in resistance.

Memristive property arises naturally in systems for which the electronic and dopant equations of

motion in a semiconductor are coupled in the presence of an applied electric field. Regardless of

materials or physical mechanisms utilized, all two-terminal nonvolatile memory devices based on

resistive switching effects (ReRAM), are essentially memristors [68]. The first intentional working

examples of these devices, along with a simplified physics-based working model (to explain the

working principle), were described in 2008 [58, 69].

Figure 3.3 shows idealized current-voltage characteristics of memristor having two distinctive

resistance states, the resistance with low-resistance state (RLRS) and with high-resistance state

(RHRS). A voltage pulse of sufficient width and amplitude higher than the threshold voltage Vth1,M

will switch the memristor to RLRS state, while pulse with amplitude smaller than threshold voltage

Vth2,M will switch it to RHRS state. In the notations used for threshold voltage, the letter M in

suffix indicate that it is for memristor. On the other hand, for the applied voltage with amplitude

between Vth1,M and Vth2,M, the device remains in its previous state with no change of resistive

state. Memristive materials show unipolar or bipolar behavior to switching [67]. Various materials

showing memristive property along with the electrodes used are given in Appendix E. For unipolar

memristors both Vth1,M and Vth2,M are positive with Vth2,M <Vth1,M, while for bipolar memristor

Vth1,M is positive and Vth2,M is negative. Memristor acts as nonvolatile memory with information

stored in the form of resistance.

Certain materials shown analog behavior i. e. they show gradual change in their resistance when

they operated with low voltages and display a controllable hysteresis in their I-V characteristic

[58, 67] e.g. tungsten oxide [70]. Other materials show discrete behavior, i.e. they show two state

resistance values (RHRS or RLRS) when overdriven by large voltages and/or current as explained

in ideal I-V characteristics. The resistance values at the two states are usually two orders of

magnitude apart [39], or even up to six orders of magnitude apart [40].

The magnitude of the nonlinear charge dependent component of memristance in a semiconductor

film is proportional to the inverse square of the thickness of the film (as in (A.7)), and thus

becomes very dominant at the nanometer scale [58]. Hence memristor phenomena is available

in nanometer-scale devices.

Chapter 3. Introduction to Memristor 26

I

V
Vth1,M

Vth2,M

‘1’ (closed)

‘0’ (open)

Figure 3.3. Ideal I-V characteristics of memristor showing hysteresis. When voltage across the
memristor in HRS state is increased (shown by red arrows), it will switch to LRS state as the
voltage across it crosses positive threshold voltageVth1,M. If it is in LRS, state will not change
upon increasing voltage across it. Similarly when voltage across the memristor in LRS state is
decreased (shown by green arrows), it will switch to HRS state as the voltage across it crosses
negative threshold voltageVth2,M. If it is in HRS, state will not change upon decreasing voltage
across it.

In Figure 3.2, variable w is width of doped region and D is total width of memristor. When w = 0

the memristor is in HRS state and when w = D, memristor will be in LRS state.

3.3 Memristor Models and Window Functions

A large amount of efforts have been spent in the research community to derive a suitable model of

memristor that is computationally efficient, accurate and captures the nonlinear dynamics of it. It

should also put insight into the physical phenomena associated with its working. The availability

of accurate, general and simple models is crucial for the investigation of the nonlinear dynamics

of memristor-based circuits [71, 72], to develop novel hybrid hardware architectures combining

memory storage and data processing in the same physical location and at the same time [73], and

to explain the memristive behavior of biological systems [74, 75]. Hewlett Packard (HP) Labs in

2008, proved the existence of non-volatile memristive behavior in nature, specifically in a Titanium

Chapter 3. Introduction to Memristor 27

dioxide-based nano-film and presented its first physical model [58]. Since then, the industries

are in search of novel materials and technologies for the manufacture of these nanodevices [76].

The memristor exhibits basic fingerprints [77, 78] : (1) under bipolar periodic signal excitation,

it shows pinched hysteresis in its I-V characteristics, (2) As the excitation frequency increases,

area under pinched hysteresis decreases monotonically, (3) When frequency of excitation tends to

infinity, pinched hysteresis loop shrinks to a single-valued function. Among these a current-voltage

pinched hysteretic loop under periodic excitation is important which is common in all kinds of

memory devices [79].

Every memristor model should have bound on region of operation. For example, the linear ion

drift model should work within bound [0, D]. Thus in order to bound the state variable in certain

range and to include the nonlinearity and asymmetry observed in practical memristors at bounds,

window function is used. The state variable derivative is multiplied by window function to limit

the working interval and to add nonlinearity and asymmetry.

This section describes the basic defining model and TEAM model of memristor along with

Kvatinsky’s window function used in the simulation. The additional models and window functions

found in literature are given in Appendix A.

The charge-flux relation uniquely defines memristor [68]. The charge q and its flux φ are related

by

φ = f (q), (3.2)

where the charge is defined as

q(t) =
∫ t

−∞

i(τ)dτ, (3.3)

and flux is defined as

φ(t) =
∫ t

−∞

v(τ)dτ. (3.4)

Taking the derivative on both sides of (3.2), we obtain

dφ

dt
=

d f (q)
dq

dq
dt

, (3.5)

which leads to

v(t) =
d f (q)

dq
i(t) =

dφ

dq
i(t) = M(q)i(t). (3.6)

Chapter 3. Introduction to Memristor 28

M(q) is a charge controlled memristance, defined as

M(q) =
d f (q)

dq

∣∣∣∣
q=qQ

=
dφ

dq

∣∣∣∣
q=qQ

. (3.7)

Since the memristance depends on the operating point q = qQ, and remains fixed when v(t) = 0

and i(t) = 0, the device can be used as nonvolatile memory. Thus, the resistance M(q) is called

the memristance, an acronym for memory resistance.

The most basic mathematical model of current-controlled memristor was given by Leon Chua [57]

as

v = R(w)i, (3.8)

and
dw
dt

= i. (3.9)

where w is the state variable of the device and R is a generalized resistance that depends upon

the internal state of the device. In this case state variable w is just the charge q. In 1976, Leon

Chua and Kang generalized the memristor concept to a much broader class of nonlinear dynamical

systems called memristive systems, described by the equations [80] as

v = R(w, i)i, (3.10)

and
dw
dt

= f (w, i). (3.11)

Current controlled memristors are represented by (3.10) and (3.11). Similarly voltage controlled

memristor is given by equations

i = G(w,v)v, (3.12)

and
dw
dt

= f (w,v), (3.13)

where G(w,v) is conductance of memristor known as memconductance.

From (3.9), w = q, i.e. the state variable (w) is simply charge (q). It is difficult to physically realize

this relationship and is the shortcoming of model proposed by Leon Chua.

Chapter 3. Introduction to Memristor 29

3.3.1 TEAM Model

ThrEshold Adaptive Memristor (TEAM) model [81] is generic and simple model which fits almost

all models mentioned in Appendix A with acceptable accuracy. For analytical simplification

and computational efficiency, following two assumptions were made in this model : (1) Below

threshold level, there is no change in the state variable. (2) The memristor current and internal state

drift derivative are related by polynomial function instead of exponential function. The nonzero

state derivative consist of multiplication of two degenerate functions : One is function of current

and the other is function of state itself.

There are two current voltage relationships in this model. In first relationship, memristance is

linearly related to state variable x and is given by [81]

v(t) =
[

RLRS +
RHRS−RLRS

xHRS− xLRS
(x− xLRS)

]
i(t) (3.14)

In second relationship, memristance is exponentially related to state variable x and is given by [81]

v(t) = RLRS exp
(

λ
x− xLRS

xHRS− xLRS

)
i(t) (3.15)

where eλ =
RHRS

RLRS
and RLRS and RHRS are expressed in Ω.

The state equation is given by [81]

dx(t)
dt

=



kHRS

(
i(t)
iHRS

−1
)αHRS

fHRS(x), if 0 < iHRS < i,

0, if iLRS < i < iHRS,

kLRS

(
i(t)
iLRS
−1
)αLRS

fLRS(x), if i < iLRS < 0.

(3.16)

where x is the state variable which denotes the length of tunnel barrier, kHRS, kLRS, αHRS and

αLRS are constants, iHRS, iLRS are current thresholds. The constant parameter kHRS is a positive

number, while constant parameter kLRS is a negative number. The functions fHRS(x) and fLRS(x),

dependent on state variable x, behave like window functions and constrains the state variable to

Chapter 3. Introduction to Memristor 30

the bounds of x ∈ [xLRS,xHRS]. These functions are given by [81]

fHRS(x) = exp
(
−exp

(
x− xHRS

wc

))
(3.17)

fLRS(x) = exp
(
−exp

(
xLRS− x

wc

))
(3.18)

where xHRS and xLRS are positive parameters with the same dimensions as space. RLRS and RHRS

are effective resistance at bounds xLRS and xHRS, respectively.

The TEAM model is accurate enough (0.2 % mean error) and computationally efficient as it

improves the simulation runtime by 47.5 % [81]. It satisfies the requirements of memristive

systems and convergence conditions.

The above TEAM model describe current controlled memristors. The TEAM model for voltage

controlled memristors (VTEAM) is given by following relations [82].

The linear relationship between state variable x and resistance is given by [82]

i(t) =
[

RLRS +
RHRS−RLRS

xHRS− xLRS
(x− xLRS)

]−1

v(t) (3.19)

The exponential relationship between state variable x and resistance is given by [82]

i(t) =
e
−

λ

xHRS− xLRS
(x−xLRS)

RLRS
v(t), (3.20)

where λ is the fitting parameter , and eλ = RHRS/RLRS.

The derivative of state variable is given by [82]

dx(t)
dt

=



kHRS

(
v(t)
vHRS

−1
)αHRS

fHRS(x), if 0 < vHRS < v,

0, if vLRS < v < vHRS,

kLRS

(
v(t)
vLRS

−1
)αLRS

fLRS(x), if v < vLRS < 0.

(3.21)

where kHRS, kLRS, αHRS and αLRS are constants, vHRS, vLRS are voltage thresholds. The constant

parameter kHRS is a positive number, while constant parameter kLRS is a negative number. The

Chapter 3. Introduction to Memristor 31

functions fHRS(x) and fLRS(x), dependent on state variable x, behave like window functions and

constrains the state variable to the bounds of x∈ [xLRS,xHRS]. The I-V characteristics of memristor

using TEAM model is shown in Figure 3.4.

Similar to TEAM model, VTEAM model is generic, simple and flexible. It can characterize

different voltage-controlled memristors. This model is accurate (below 1.5% in terms of the

relative root-mean-square error). It is computationally efficient as compared with existing

memristor models. It can be used to describe the experimental results describing different

memristive technologies. It can fit to most of the published models including BCM model

described above with sufficient accuracy [82]. The comparison of different models is given in

Table 3.1. VTEAM model is used in the simulation carried out in this work. The parameter values

for VTEAM model are given in Table 3.2.

Table 3.1. Comparison of different memristor models as given in [81]. The TEAM model
is suitable for simulation of memristor based systems as it simple, generic, convergent,
computationally efficient, provide sufficient accuracy and can fit to most of the available models
by choosing proper fitting parameters.

Model Linear ion
drift

Nonlinear ion
drift

Simmons tunneling
barrier TEAM

State
variable 0 6 w 6 D 0 6 x 6 1 aHRS 6 x 6 aLRS xLRS 6 x 6 xHRS

Control
mechanism Current Voltage Current Current/Voltage

I–V
relation Explicit Explicit Ambiguous Explicit

Memristance
relation Explicit Ambiguous Ambiguous Explicit

Generic No No No Yes

Accuracy Lowest
Low

accuracy Highest Sufficient

Threshold
exists No No Yes Yes

3.3.2 Kvatinsky’s Window

This window function is used in TEAM model to fit the behavior of Simmons tunnel barrier

model. Two window functions were defined, one for ON switching and other for OFF switching.

Chapter 3. Introduction to Memristor 32

Table 3.2. Values of parameters used for the simulation using VTEAM model.

Parameter Numerical Value Parameter Numerical Value
RLRS 100 Ω αLRS 3
RHRS 1 MΩ kHRS −0.8 pm/s
VHRS −0.7 V kLRS 0.8 pm/s
VLRS 0.7 V DMemristor 3 nm
αHRS 3 LCMOS 65 nm

ω0
2ω0
3ω0
4ω0
5ω0

Vo
lta

ge
(µ

V
)

-15

-10

-5

0

5

10

Current(nA)
-75 -50 -25 0 2 50 75

Figure 3.4. I-V characteristics of memristor for different excitation frequencies using TEAM
model. It shows pinched hysteresis and area under the lobe decreases with increase in frequency
of excitation signal.

This enables asymmetric switching as in Simmons tunnel barrier model. The window functions

are given as follows [81].

fHRS(x) = exp
(
−exp

(
x− xHRS

wc

))
(3.22)

fLRS(x) = exp
(
−exp

(
xLRS− x

wc

))
(3.23)

Chapter 3. Introduction to Memristor 33

where xHRS and xLRS are positive parameters with same dimensions as space. RLRS and RHRS are

effective resistance at bounds xLRS and xHRS, respectively.

dx/dt direction for i > 0
dx/dt direction for i < 0

f(
x)

0

0.2

0.4

0.6

0.8

1

x(m)
750p 1n 1.25n 1.5n 1.75n 2n 2.25n 2.5n

Figure 3.5. Plot for Kvatinsky’s window function given by (3.22) and (3.23). The values of
parameters used in this plot are wc = 0.107 nm, xLRS = 1.2 nm, xHRS = 1.8 nm. The parameter D
is assumed to be 3 nm.

3.4 Memristor as Logic Element

The International Technology Roadmap for Semiconductors (ITRS) 2009 report [83] have

challenged the computing research community to find new physical state variables (other than

charge or voltage), new devices, and new architectures that offer memory and logic functions

[84–86] beyond those available with standard transistors. This section describe memristor as logic

element to perform imply logic operation and how imply logic can be used to perform universal

logic operations like NOR and NAND.

Chapter 3. Introduction to Memristor 34

3.4.1 Implication logic

In 1910, Whitehead and Russell described four fundamental logic operations in their book

Principia Mathematica [87]. Out of these, three were chosen by Shannon for his work and called

them as Boolean logic operations. Fourth operation was called as ‘material implication’ (IMPLY)

by Russell. If p and q are two binary variables, then p IMPLY q is logically equivalent to p+ q.

p IMPLY q (iff p then q) is denoted as p→q. The corresponding truth table is given in Table 3.3.

Implication logic can be naturally implemented using memristors and resistor [88]. It becomes

‘stateful’ logic as memristor store logic values as well as perform logical operations in the form of

resistance as a state variable. Circuit diagram of IMPLY logic using memristor is given in Figure

3.6. The resistance RG is selected such that RLRS < RG < RHRS and VCOND < VSET. The detailed

analysis of IMPLY logic using memristors is given in Appendix B.

Table 3.3. IMPLY gate truth table. p and q are states of memristors P and Q, respectively. Logic
‘0’ is RHRS while logic ‘1’ is RLRS. The destination memristor Q toggles only if both inputs are
logic ‘0’Ȧlso only logic ‘0’ to logic ‘1’ transition is possible.

p q p→ q
0 0 1
0 1 1
1 0 0
1 1 1

VCOND VSET

RG

P Q

Figure 3.6. Imply gate using memristors. States of memristors P and Q are p and q, respectively.

In IMPLY logic implementation using memristors, the inputs and outputs are in the form of

resistance. Let p and q be the state of memristors P and Q, respectively. Logic ‘0’ refers to

Chapter 3. Introduction to Memristor 35

RHRS and logic ‘1’ refers to RLRS. The inputs are written to the memristors P and Q (Figure 3.6)

and the final output is stored in the memristor Q. To implement this operation, voltages VCOND

and VSET are applied simultaneously to memristors P and Q, respectively. The simulation results

of IMPLY gate are given in Figure 3.7. The IMPLY logic is destructive operation as can be seen

from simulation results (specifically last case when input=‘11’).

(a) Input=00

RP
RQ

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(ms)

0 0.005 0.01 0.015 0.02

(b) Input=01

RP
RQ

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(ms)

0 0.005 0.01 0.015 0.02

(c) Input=10

RP
RQ

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(ms)

0 0.005 0.01 0.015 0.02

(d) Input=11

RP
RQ

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(ms)

0 0.005 0.01 0.015 0.02

Figure 3.7. Simulation of IMPLY logic. Implication operation is carried out at t=0.01 ms (VSET
and VCOND is applied). The result is stored in Q memristor in the form of resistance. (a)
Input=‘00’(RP=1 MΩ, RQ=1 MΩ) before operation; output=‘1’(RQ=100 Ω) after operation. (b)
Input=‘01’(RP=1 MΩ, RQ=100 Ω) before operation; output=‘1’(RQ=100 Ω) after operation. (c)
Input=‘10’(RP=100 Ω, RQ=1 MΩ) before operation; output=‘0’(RQ=1 MΩ) after operation. (d)
Input=‘11’(RP=100 Ω, RQ=100 Ω) before operation; output=‘1’(RQ=100 Ω) after operation.

Chapter 3. Introduction to Memristor 36

IMPLY together with FALSE operation form computationally complete set of operations.

Universal NAND and NOR logic operations can be implemented using IMPLY and FALSE logic.

The output memristor (in this case, it is also one of the input memristors) toggles only if both the

inputs are logic ‘0’. Also, output toggles from only ‘0’ to ‘1’ and its ‘1’ to ‘0’ transition is not

possible. These observations are used to implement NAND and NOR gates using memristors.

3.4.2 Stateful NAND Logic using Memristors

NAND operation is executed in three sequential steps [88]. The circuit diagram for 2-input NAND

gate using memristors is shown in Figure 3.8, where P and Q are input memristors and S is output

memristor. The three sequential steps are given in Table 3.4 with the assumption that inputs are

already available in the memristors P and Q. In step 1, voltage VCLEAR (as in Table 3.3) is applied

to destination memristor S to implement FALSE operation (RS = RHRS or logically s = 0). In

step 2, voltages VCOND and VSET are applied simultaneously to memristors P and S, respectively

to implement s = p→ s which is logically equivalent to s = p+ s = p+ 0 = p. In the final step

3, voltages VCOND and VSET are applied simultaneously to memristors Q and S, respectively to

implement s = q→ s which is logically equivalent to s = q+ s = q+ p = pq. Thus final output in

memristor S will be NAND of logical content of memristors P and Q.

VP VQ VS

P Q S

C

RG

Figure 3.8. Stateful NAND gate using
material implication. P and Q are input
memristors ans S is output memristor.

Table 3.4. Steps to implement stateful
NAND logic. Step 1 is FALSE operation
(s=0). Step 2 performs s = p → s (i.e.
s = p+ s). Step 3 is s = q→ s (i.e. s =
q+ s = q+ p+ s = pq).

VP VQ VS
Step 1 VCLEAR
Step 2 VCOND VSET
Step 3 VCOND VSET

Chapter 3. Introduction to Memristor 37

3.4.3 Stateful NOR Logic using Memristors

NOR operation can be executed in two sequential steps. The circuit will be same as for NAND

gate (Figure 3.8) with the two steps as given in Table 3.6. In step 1, voltage VCLEAR is applied to

destination memristor S to implement FALSE operation (RS = RHRS or logically s = 0). In step 2,

voltages VCOND and VSET are applied simultaneously to memristors P and S. The effective voltage

at point C in Figure 3.8 in step 2 is given by

VC =VCOND
RHRS||RG

(RP||RQ)+(RHRS||RG)
+VSET

RP||RQ||RG

RHRS +(RP||RQ)
(3.24)

Table 3.5. Truth table of stateful NOR logic gate in terms of resistance of memristors involved.
The destination memristor S is initialized to RHRS in the first step for NOR execution.

RP RQ RS Resultant RS
Case 1 RHRS RHRS RHRS RLRS
Case 2 RHRS RLRS RHRS RHRS
Case 3 RLRS RHRS RHRS RHRS
Case 4 RLRS RLRS RHRS RHRS

Table 3.6. Steps to implement stateful NOR logic. Step 1 is FALSE operation (RS = RHRS or
logically s = 0). Step 2 performs material implication on equivalent resistance of RP||RQ and
RS = RHRS with memristor S as destination.

VP VQ VS
Step 1 VCLEAR
Step 2 VCOND VCOND VSET

For case 1 in Table 3.5, RP||RQ = RHRS/2 and with condition RG << RHRS, (3.24) becomes

VC =VCOND
RG

RHRS

2
+RG

+VSET
RG

RHRS +
RHRS

2

≈ 0 (3.25)

Hence the voltage drop across the memristor S is VSET −VC ≈ VSET which is more than the

threshold voltage to turn it LRS state.

For case 2 and 3 in Table 3.5, RP||RQ ≈ RLRS and with condition RLRS << RG, (3.24) becomes

VC =VCOND
RG

RLRS +RG
+VSET

RLRS

RHRS +RLRS
≈VCOND (3.26)

Chapter 3. Introduction to Memristor 38

The voltage drop across memristor S is approximately equal to VSET−VCOND which is less than

threshold voltage of memristor and hence memristor S will remain in HRS state.

For case 4 in Table 3.5, RP||RQ = RLRS/2. Hence (3.24) becomes

VC =VCOND
RG

RLRS

2
+RG

+VSET

RLRS

2

RHRS +
RLRS

2

≈VCOND (3.27)

Thus in this case also memristor S will remain in HRS state.

3.5 Other Applications of Memristors

Fabrication of very high density memories using semiconductor or insulator thin film have been

reported in the literature [89–93]. It has been shown in [94] that memristor-MOS technology

(MMOST) is capable of outperforming CMOS implementations in terms of power and size. The

scaling potential of Resistive Random Access Memory (ReRAM) and its capacity of storing

multiple bits of information per cell enables the exploitation of the technology in signal processing

[95], programmable circuits [96], and neuromorphic circuits [97–99]. As an example, ReRAM

has been studied as a leading candidate in nonvolatile memory applications [100, 101] as a

replacement for the flash memory technology due to attributes such as high density [91, 102], fast

operation [103, 104], low power [103], and CMOS compatibility [104]. Digital memory devices

have been achieved in various material systems [100, 102, 105, 106], some of which also show

multilevel switching [103, 104, 107, 108], allowing further increase of storage density. Recently,

memristors have also been studied in biologically inspired neuromorphic circuits [109–112].

Important synaptic learning rules such as spike-timing dependent plasticity (STDP) have already

been demonstrated [110–112].

3.6 Summary

The fundamental aspects of memristor are described in this chapter. Universally acceptable

and mature model of memristor is not available yet. To carry out simulation of memristor

Chapter 3. Introduction to Memristor 39

based systems, TEAM model is chosen as it is simple, generic, sufficiently accurate, convergent,

computationally efficient and can fit to almost all models available in the literature. The use of

memristor as logic element in imply operation and implementation of stateful NOR and NAND

gate by making use of imply logic is explained.

Memristors are seldom used as standalone devices. They are part of nanocrossbar arrays made up

of two sets of nanowires perpendicular to each other. At every crosspoint, there is a memristor. In

order to implement the stateful logic gates on such crossbar, write, read and evaluate operations

need to be performed. Memristors in crossbar are difficult to isolate. Next chapter gives the

complete analysis of implementation of these operations on memristive crossbar in order to find

out the effect on other memristors of crossbar that are not involved in a logic implementation.

Chapter 4

Logic Implementation on

Memristive Crossbar Array

4.1 Introduction

Memristors are passive circuit elements and cannot supply energy on their own in a circuit.

Therefore they need to be integrated with active circuit elements such as transistors in circuits

to implement any logic function. Hybrid circuits consisting of memristors and transistors can

deliver functionality with fewer components and thus save chip area and power consumption. The

crossbar array formed by two sets of parallel metal wires crossing over each other perpendicularly

with memristor at each crosspoint of metal wires is ideal platform for use in such hybrid

circuits. Because of their ultimate scaling potential and their ability to allow fusion of logic and

memory, crossbar array are promising candidates for development of applications with low energy

consumption [93, 113, 114].

Many nanoscale architectures with functions such as memory and logic system has been

implemented on crossbars [89, 115–121]. Crossbars are scalable down to the molecular size

[122, 123], regular in structure, can be reconfigured to tolerate defects in the circuit [124–126]

and can be fabricated inexpensively with nanoimprint lithography [89, 91, 127] because of

structural simplicity. Ultrahigh density memory and crossbar latches have been previously

40

Chapter 4. Logic Implementation on Memristive Crossbar Array 41

demonstrated [128]. J. Borghetti et al. [129] illustrated compound logic operation implementation

on memristor/transistor based hybrid structure where memristor crossbars were fabricated at

40 nm half-pitch using nanoimprint lithography. Memristor crossbars were used to perform logic

functions, as a routing fabric for interconnecting the transistors and for storing the information.

The result of logic operation carried out in crossbar can be routed back onto a target memristor

inside the array, and hence the self-programmed logic array design is possible. Thus the same

memristor in a crossbar circuit can be configured to act as logic, component for signal routing

and memory, and the circuit can even reconfigure itself. Memristor can be used in wired logic

and routing in a configured crossbar [115, 118, 119, 121, 125], reconfigurable architectures

[46, 54, 130], memristor based logic [131] and synaptic circuits [109, 132].

In order to implement stateful NOR gate on crossbar, three basic operations are required : (1)

Writing the inputs to memristors in crossbar (in the form of resistance states). (2) Performing the

logic evaluation (using material implication as basic step). (3) Reading the result of operation. The

memristors not involved in logic implementation can not be isolated. While performing write and

evaluate operations, the contents of memristors not involved in logic operation may get altered and

while reading the state of destination memristor in logic operation, the state may be interpreted

erroneously due to false paths arround destination memristor. This is called sneak path problem.

The objectives of this chapter are to analyze write, read and evaluate opetations to be performed

on memristive crossbar in order to implement stateful NOR gate on it, to find the way to maintain

the integrity of memristors not involved in logic implementation and to find the limitation on size

of crossbar in order to read the state of memristor without error.

This chapter is organized as follows. The general structure of passive memristive crossbar is

described in the first section followed by description of sneak path problem in it. Different

schemes for write operation found in literature, read and evaluate operations are described in

the next section and thorough analysis is carried out for these operations by equivalent resistive

network method to check the feasibility of implementing these operations on memristive crossbar.

Owing to the limitations on size of crossbar found through analysis, the implementation of stateful

NOR gate on specialized crossbar architecture is given at the end.

Chapter 4. Logic Implementation on Memristive Crossbar Array 42

4.2 Passive Memristive Crossbar Array

The passive memristive crossbar is made up of two sets parallel nanowires, one set being

perpendicular to other and each crosspoint of nanowires has memristor as shown in Figure 2.4.

It consists of n columns known as bit lines and m rows known as word lines as shown in Figure

4.1. Every word line is connected to every bit line through memristor. The memristor at any

crosspoint is accessed through its word line and bit line.

n bit lines

m
w

or
d

lin
es

C1 C2 C3 Cn

R2

R1

R3

Rm

Figure 4.1. Memristive crossbar of size m× n. The rows are considered as word lines while
columns are considered as bit lines.

4.3 Sneak Path Problem

The difficulty in accessing individual device in a crossbar and doing correct operation on it is

called sneak path problem. The memristors in one row have common top electrode and hence

are connected each other. Similarly memristors in one column are connected each other by the

common bottom electrode. The concept is illustrated in Figure 4.2. The memristor in HRS is

shown in red color and surrounded by memristors in LRSs. This is one of the situations. For

example, in order to read the state of memristor in red, voltage VREAD is applied to top electrode

of memristor shown in red color and current is measured through it (IM) but at bottom electrode.

Chapter 4. Logic Implementation on Memristive Crossbar Array 43

In this case false path for current is formed and current Isneak is added to IM to form Iread at bottom

electrode. Ideally, Iread should be equal to IM to identify the state (LRS or HRS) of selected

memristor correctly but in this case

Iread = IM + Isneak1 + Isneak2 + . . .+ Isneakn; (4.1)

where Isneak1, Isneak2,. . ., Isneakn are currents through different false paths around the target

memristor. The number of sneak paths depend on distribution of states of memristors around

target memristor, the worst being all surrounding memristors in LRS. The value of each sneak

current component depends on the physical length it has to travel from top electrode to bottom

electrode used in the measurement and number of LRS memristors in its path. The problem is in

identifying HRS of memristor as the resultant current Iread in (4.1) might be large enough to falsely

identify the state of selected memristor as LRS instead of HRS. This is an inherent disadvantage of

passive crossbar arrays. They significantly restrict size of a crossbar array (maximum numbers of

rows and columns) because the current and voltage drop over the addressed memristor is strongly

function of multiple parallel sneak paths [133, 134]. Also, as the overall resistance of crossbar is

function of number of LRS and HRS states of memristors, the power consumption increases as

number of memristors in LRS increases.

IM

Isneak

Iread

Figure 4.2. Sneak path problem in a memristive crossbar architecture. Only the addressed
element in the centre of the crossbar array is in the HRS (red), all surrounding elements are in
the LRS (green). This is one possible worst case pattern. When reading, the current flows through
the addressed memristor (IM), but also a significant current will flow through the neighbouring
elements Isneak. From the periphery it is not possible to distinguish between both currents and it
might lead to a wrong interpretation of the stored bit[135].

Chapter 4. Logic Implementation on Memristive Crossbar Array 44

Various methods have been tested to deal with sneak path problem. The use of rectifying

elements in series with memristor could solve the sneak path problem, but materials with

comparable scalability with memristor has not found yet [136–138]. Also some materials showing

nonlinear switching characteristics such as Pt/TiO2/Pt [139, 140] or BPDN-DT (bipyridyl-dinitro

oligophenylene-ethynylene dithiol) [141, 142] has been explored, but nonlinearity is not sufficient

for proper operation of large crossbar arrays. Other methods include restricting the size of crossbar

array and using crossbars with interrupted electrodes as in CMOL and FPNI architecture.

4.4 Analysis of Operations on Memristive Crossbar

In order to implement stateful NOR gate on memristive crossbar, following three oprations need to

be perormed in sequence. (1) Write inputs on which NOR logic is to be performed to memristors

in a crossbar in the form of resistance states. LRS is logic ‘1’ while HRS is logic ‘0’. (2) Execute

stateful NOR using material implication as basic operation. (3) Read the state of destination

memristor in order to know the result of stateful NOR operation on inputs. In this section, write

schemes found in literature, read operation and evaluate operation are described and analyzed.

Ideally write and evaluate operation should not alter the contents of memristors not taking part in

stateful NOR operation and read operation should be able to identify the correct state of memristor

for any array size and for any states of surrounding memristors. But this is not possible because

of sneak path problem and hence effect of these operations on other memristors needs to be

investigated through analysis. The challenge in analyzing the memristive crossbar lies in the fact

that the overall characteristics of crossbar is dependent on the data pattern stored in it.

The memristors may be in HRS or LRS. Their resistance will be shown by RHRS and RLRS,

respectively. The symbol of resistance equivalent for memristor with dot to represent the

orientation of memristor in memristive crossbar is shown in Figure 4.3. With this notation, if

positive voltage greater then Vth1,M is applied to side representing dot, memristor will change its

state from HRS to LRS.

Chapter 4. Logic Implementation on Memristive Crossbar Array 45

A

B

A

B

Figure 4.3. The symbol for resistance equivalent for memristor. The dot on one side of symbol
indicate the orientation of memristor in equivalent circuits of memristive crossbar.

4.4.1 Write Operation

In order to write LRS into selected memristor in a crossbar, voltage/s should be applied to its top

and bottom electrode such that effective voltage across memristor is greater than positive threshold

voltage Vth1,M. To write HRS, the effective voltage across it should be less than negative threshold

voltage Vth2,M. Different write schemes are described and analyzed below. The notations used in

the analysis of write operation on memristive crossbar are given in Table 4.1.

Table 4.1. Notations used in the analysis of memristive crossbar for write operation.

Notation Meaning Voltage notation
RSELECT Resistance of selected memristor. VSEL

RWORD
Resistance of each memristor on selected

word line except selected memristor. VWORD

RBIT
Resistance of each memristor on selected

bit line except selected memristor. VBIT

RNSWB
Resistance of each memristor on unselected

word lines and bit lines. VNSWB

4.4.1.1 Floating Write Scheme

In this scheme, word line of memristor to be written is driven with voltage VWRITE while its bit

line is grounded. Other word lines and bit lines are kept floating. The scheme and its resistive

equivalent circuit are shown in Figures 4.4 and 4.5, respectively. It can be seen from Figure 4.5

that the voltage across selected memristor is VWRITE. The circuit is complex and it is difficult

to find out voltage across each of the remaining memristors as it depends on the state of each

Chapter 4. Logic Implementation on Memristive Crossbar Array 46

memristor in the circuit. Each memristor can be in LRS or HRS before the application of VWRITE

voltage. If VWRITE=VW and RSEL=RHRS before the application of VWRITE, then it should switch

to LRS state i.e. RSEL=RLRS after application of write voltage. If RSEL=RLRS before application

of voltage, it should not change its state. Similarly if VWRITE=−VW and RSEL=RLRS before the

application of VWRITE, then it should switch to HRS i.e. RSEL=RHRS after application of write

voltage. If RSEL=RHRS before application of voltage, it should not change its state. All the

n bit lines

m
w

or
d

lin
es

VWRITE

Selected
memristor

Memristors on
selected bit line

Memristors on
selected word line

Figure 4.4. The floating write scheme for memristive crossbar. The selected word line is driven
by write voltage while selected bit line is grounded. Remaining word lines and bit lines are kept
floating.

remaining memristors should not change their states. If VWRITE=±VW, then after application of

VWRITE voltage

Vth2, M <VWORD <Vth1, M, (4.2)

Vth2, M <VBIT <Vth1, M, (4.3)

and

Vth2, M <VNSWB <Vth1, M, (4.4)

Chapter 4. Logic Implementation on Memristive Crossbar Array 47

(n−1)

Selected word line
VWRITE

Selected bit line

(m−1)

(m−1) (m−1) (m−1)

RWORD

RNSWB

RBIT

RSEL

Figure 4.5. The equivalent resistive circuit for floating write scheme in memristive crossbar. The
memristors with resistance RWORD and RBIT are prone to change their states from HRS to LRS
if voltage across them cross positive threshold voltage Vth1, M while memristors with resistance
RNSWB can switch from LRS to HRS if voltage across them cross negative threshold voltage Vth2, M
for VWRITE=VW. Similarly for VWRITE =−VW, memristors with resistance RWORD and RBIT can
switch from LRS to HRS (upon crossing negative threshold voltage Vth2, M) while memristors with
resistance RNSWB can switch from HRS to LRS (upon crossing positive threshold voltage Vth1, M).

so that memristors with resistance RWORD, RBIT and RNSWB will not change their states.

If RWORD=RLRS or RBIT=RLRS, application of VWRITE=VW will not change their states but

RNWB=RLRS can change its state because of its polarity. The maximum voltage drop across RBIT,

when it is in HRS, is given by

VBIT, max

∣∣∣∣
VWRITE=VW

=
(n−1)nR2

HRS

(n−1)nR2
HRS +(mn−m+2)RHRSRLRS +(m−2)R2

LRS
VW. (4.5)

The maximum voltage drop across RWORD, when it is in HRS, is given by

VWORD, max

∣∣∣∣
VWRITE=VW

=
(m−1)mR2

HRS

(m−1)mR2
HRS +(mn−n+2)RHRSRLRS +(n−2)R2

LRS
VW. (4.6)

If the memristor with resistance RNSWB is in HRS, any resultant voltage across it due to application

of VW, is not going to alter its state. The maximum voltage drop across RNSWB when it is in LRS,

is given by

VNSWB, max

∣∣∣∣
VWRITE=VW

=
A1R2

HRS +A2RHRSRLRS +A3R2
LRS

C1R2
HRS +C2RHRSRLRS +C3R2

LRS
VW (4.7)

Chapter 4. Logic Implementation on Memristive Crossbar Array 48

where,

A1 = 2m+2n−4,

A2 = (2m−4)n−4m+8,

A3 = (2−m)n+2m−4,

C1 = 6m+6n−12,

C2 = 2n2 +2m2 +(6m−16)n−16m+24,

C3 = (m−2)n2 +(m2−7m+10)n−2m2 +10m−12.

In Figure 4.6, (4.5), (4.6) and (4.7) are plotted as a function of array size (m×n) for m = n along

with threshold voltages Vth1, M and Vth2, M. It can be observed that the memristors in bit line

and word line gets affected while other memristors are not affected in writing LRS to selected

memristor. Thus this method has limited use in writing to memristive crossbar.

Similarly in order to write HRS in selected memristor, VWRITE=−VW. The maximum voltage

across bit line memristor, when it is in LRS, is given by

VBIT, max

∣∣∣∣
VWRITE=−VW

=− (n−1)RHRS

(n+1)RHRS +(m−2)RLRS
VW. (4.8)

The maximum voltage across word line memristor, when it is in LRS, is given by

VWORD, max

∣∣∣∣
VWRITE=−VW

=− (m−1)RHRS

(m+1)RHRS +(n−2)RLRS
VW. (4.9)

The maximum voltage across memristor other than on word line and bit line, when it is in HRS, is

given by

VNSWB, max

∣∣∣∣
VWRITE=−VW

=
A1R3

HRS +A2R2
HRSRLRS +A3R3

LRS

C1R3
HRS +C2R2

HRSRLRS +C3RHRSR2
LRS +C4R3

LRS
VW, (4.10)

where,

A1 =−2m−2n+8,

A2 = (4−2m)n+4m−12,

Chapter 4. Logic Implementation on Memristive Crossbar Array 49

VBIT, max
VWORD, max
|VNSWB, max|
Vth1,M
|Vth2,M|

Vo
lta

ge
(V

)

0

0.2

0.4

0.6

0.8

1

Array size (m×n)

0 20 40 60 80 100

Figure 4.6. The voltage variations across unselected memristors in memristive crossbar as function
of array size (m× n) with m = n for positive write voltage in floating write scheme to write LRS
to selected memristor. In this plot VW=1 V and Vth1,M=0.7 V, Vth2, M=−0.7 V. Bit line and word
line memristors are affected while other memristors are not disturbed.

A3 = (m−2)n−2m+4,

C1 = 2m+2n−8,

C2 = n2 +(4m−8)n+m2−8m+12,

C3 = (m−1)n2 +(m2−6m+6)n−m2 +6m,

C4 = mn−4.

In Figure 4.7, (4.8), (4.9) and (4.10) are plotted as a function of array size (m×n) for m = n along

with threshold voltages Vth1, M and Vth2, M. In order to write HRS, we apply VWRITE=−VW and it

can be observed from the Figure 4.7 that the write operation does not affect bit line and word line

memristors for approximate array size up to 8×8. But the major problem is with other memristors

Chapter 4. Logic Implementation on Memristive Crossbar Array 50

as they are affected even for small array size in an attempt to write HRS in selected memristor.

Again because of this drawback, floating write scheme has limited use.

VBIT, max
VWORD, max
VNSWB, max
−Vth1,M
Vth2,M

Vo
lta

ge
(V

)

−1

−0.8

−0.6

−0.4

−0.2

0

Array size (m×n)

0 20 40 60 80 100

Figure 4.7. The voltage variations across unselected memristors in memristive crossbar as function
of array size (m×n) with m = n for negative write voltage in floating write scheme to write HRS
to selected memristor. In this plot VWRITE=−VW=−1 V and Vth1, M=0.7 V, Vth2, M=−0.7 V. Bit
line and word line memristors are not affected up to array size 8× 8 for selected parameters but
other memristors are affected even for small size of array.

4.4.1.2 1/3 Write Scheme

In this scheme, the selected word line is driven by voltage VWRITE while selected bit line is

grounded. At the same time unselected word lines are driven by voltage VWRITE/3 and unselected

bit lines are driven by voltage 2VWRITE/3. Thus always the voltage across selected memristor will

be VWRITE while voltage across each unselected memristor will be |VWRITE/3|. This scheme is

shown in Figure 4.8. For writing LRS, VWRITE=VW and for writing HRS VWRITE=−VW. The

Chapter 4. Logic Implementation on Memristive Crossbar Array 51

voltage ±VW is selected such that VW >Vth1, M, −VW <Vth2, M, and Vth2, M < |±VW/3|<Vth1, M.

This method will not alter the states of memristors other than selected memristor, unlike the

floating write scheme, and hence widely used for writing LRS and HRS states in memristors.

n bit lines

m
w

or
d

lin
es

VWRITE

Selected
memristor

Memristors on
selected bit line

Memristors on
selected word line

VWRITE/3

VWRITE/3

VWRITE/3

2V
W

R
IT

E
/3

2V
W

R
IT

E
/3

2V
W

R
IT

E
/3

Figure 4.8. The 1/3 write scheme for memristive crossbar. The selected word line is driven by
write voltage VWRITE while selected bit line is grounded. Remaining word lines are driven with
voltage VWRITE/3 and bit lines are driven with voltage 2VWRITE/3. The effective voltage across
each unselected memristor will be |VWRITE/3|.

The power consumed in write operation for memristive crossbar is given by

Ptotal,mem = PSEL +PBIT +PWORD +PNSWB (4.11)

The power consumed in memristive crossbar is function of array size (m × n), the threshold

voltage of memristor (as it restricts the minimum value of voltage to be used in write operation)

and RHRS/RLRS values of memristor. The maximum power consumed in write operations as a

function of array size (m × n) for symmetric array and for different write schemes is shown in

Chapter 4. Logic Implementation on Memristive Crossbar Array 52

Figure 4.9. The 1/3 write method is widely used as it does not change the state of other memristors

as explained previously in the description of 1/3 write scheme.

Floating write scheme to write LRS
Floating write scheme to write HRS
Floating write scheme with all other in HRS
1/3 write scheme

Po
w

er
(W

)

0

0.2

0.4

0.6

0.8

Array size (m × n)
0 200 400 600 800 1000

Figure 4.9. Power consumption for different write schemes in memristive crossbar as function of
array size (m × n) for symmetric crossbar. The 1/3 write scheme is most widely used as it does
not change the state of unselected memristors.

4.4.2 Read Operation

To read the state of memristor, voltage VREAD=VR, where Vth2, M < VR < Vth1, M (in order to

maintain the stste of memristor to be read)is applied to its word line, while resulting voltage is

sensed across resistance RS connected to its bit line. The scheme is shown in Figure 4.10 and its

equivalent circuit is shown in Figure 4.11.

The problem with memristive crossbar is sneak path. Consider the worst case scenario where all

unselected memristors are in LRS. If memristor selected for read operation is in LRS then the

sensed voltage across RS for read voltage VREAD=VR is given by

VRS =
mnRS

mnRS +(m+n−1)RLRS
VR (4.12)

Chapter 4. Logic Implementation on Memristive Crossbar Array 53

n bit lines

m
w

or
d

lin
es

VREAD

Selected
memristor

Memristors on
selected bit line

Memristors on
selected word line

To sense
RS

Figure 4.10. The read voltage VREAD=VR, where Vth2, M <VR <Vth1, M is applied to word line of
memristor to be read while voltage is sensed across the resistance RS connected to its bit line. If
sensed voltage is large, the selected memristor is in LRS otherwise it is in HRS.

If memristor to be read is in HRS then

VRS =
(m−1)(n−1)RHRSRS +(m+n−1)RLRSRS

(m−1)(n−1)RHRSRS +(m+n−1)(RHRS +RS)RLRS
VR (4.13)

in Figure 4.12, (4.12) and (4.13) are plotted as a function of array size (m× n) with m = n. The

sensed voltage becomes indistinguishable for the read memristor in LRS or HRS as the array size

becomes larger (in this case around 10×10). Thus the sneak path problem limits the size of array

that can be read without error.

4.4.3 Evaluate Operation (Stateful-NOR Operation)

In this section, the effect of implementation of 3-input NOR function on memristors in memristive

crossbar is analyzed. The implementation of 3-input NOR function (without CMOS supporting

circuit) on memristive crossbar is shown in Figure 4.13 and its resistive equivalent is shown in

Chapter 4. Logic Implementation on Memristive Crossbar Array 54

(n−1)

Selected word line

Selected bit line

(m−1)

VREAD

(m−1) (m−1) (m−1)

RWORD

RNSWB

RBIT

RSEL

RS

To sense

Figure 4.11. The resistive equivalent circuit for read scheme in memristive crossbar. To read the
state of memristor, voltage VREAD is applied to its word line while the resulting voltage is sensed
across RS connected to its bit line. It is expected that when memristor is in LRS, the sensed voltage
is larger. If memristor to be read is in HRS state, the sensed voltage is smaller in value. But sensed
voltage also depends on the states of surrounding memristors, making it difficult to differentiate
between HRS and LRS state of memristor.

Figure 4.14. With the shown polarity (using dot notations defined earlier), the memristors other

than input and destination memristors namely RCONDWORD, RSETWORD and RBIT will change their

states if they are in HRS and voltage across them cross the threshold level Vth1, M while RNSWB

will change its state if it is in LRS and voltage across it (with polarity shown in figure) is less than

Vth2, M. The maximum voltage across every such memristor is given below to analyze possible

state change. The stateful NOR gate consists of three input memristors with resistance RSELINPUT,

one destination memristor with resistance RSELDEST and resistance RG. The notations used in the

analysis of 3-input NOR function implementation on memristive crossbar are described in Table

4.2. The maximum voltage across memristor other than input memristors in word lines where

input memristors are present, when it is in HRS, is given by

VWCOND, max =−
[A1R2

HRS +A2RHRS +A3]VCOND +[B1RHRS +B2]VSET

C1R2
HRS +C2RHRS +C3

, (4.14)

where,

A1 = (4−m),

Chapter 4. Logic Implementation on Memristive Crossbar Array 55

LRS
HRS

Se
ns

ed
vo

lta
ge

(V
)

0

0.1

0.2

0.3

0.4

0.5

Array size (m×n)

0 5 10 15 20 25 30

Figure 4.12. The voltage across sense resistor in memristive crossbar when memristor to be read
in LRS/HRS and other surrounding memristors are in LRS as function of array size (m× n) for
symmetric array. In memristive read operation shown in Figure 4.10, the voltage across sense
resistor RS becomes indistinguishable for memristor to be read in either LRS or HRS when all other
memristors are in LRS. This limitation due to sneak path problems restricts the size of memristive
crossbar array that can be read without error.

Table 4.2. Notations used in memristive crossbar array analysis in evaluate operation for 3-input
NOR implementation.

Notation Meaning Voltage notation
RSELINPUT Resistance of selected input memristors. VSELINPUT
RSELDEST Resistance of selected destination memristors. VSELDEST

RCONDWORD
Resistance of each memristor on selected input

word line except input memristors. VWCOND

RSETWORD
Resistance of each memristor on selected destination

word line except destination memristor. VWSET

RBIT
Resistance of each memristor on selected

bit line except input and destination memristor. VBIT

RNSWB
Resistance of each memristor on unselected

word lines and bit lines. VNSWB

A2 = (4−m)nRG−nRLRS,

A3 =−4nRGRLRS,

Chapter 4. Logic Implementation on Memristive Crossbar Array 56

VSET

VCOND

RG

Input memristors Destination memristor

Unselected bit line memristors Unselected COND word line memristors

Unselected SET word line memristors

n bit lines

m
w

or
d

lin
es

Figure 4.13. The implementation of evaluate operation for 3-input NOR logic on memristive
crossbar. VCOND is applied to three word lines of three input memristors while VSET is applied
to word line of destination memristor. The common bit line of all is connected to ground through
resistance RG.

Chapter 4. Logic Implementation on Memristive Crossbar Array 57

RG

Input memristors Destination memristor

Unselected bit line memristors Unselected COND word line memristors

Unselected SET word line memristors

VCOND
VSET

(n−1)

(m−4) (m−4) (m−4)

(m−4)

Figure 4.14. The equivalent resistive circuit (of circuit shown in Figure 4.13) for implementation
of evaluate operation for 3-input NOR logic on memristive crossbar. The orientation of memristors
in crossbar is shown with dot notation defined in Figure 4.3.

B1 = (m−4)nRG +nRLRS,

B2 = 4nRGRLRS,

C1 = m−4,

C2 = (4m−16)nRG +4nRLRS,

C3 = 16nRGRLRS.

The maximum voltage across memristor other than destination memristor in word lines where

destination memristor is present, when it is in HRS, is given by

VWSET, max =
[A4R2

HRS +A5RHRS +A6]VSET +[B3RHRS +B4]VCOND

C4R2
HRS +C5RHRS +C6

, (4.15)

Chapter 4. Logic Implementation on Memristive Crossbar Array 58

where,

A4 = (m−4),

A5 = (3m−12)nRG +3nRLRS,

A6 = 12nRGRLRS,

B3 = (12−3m)nRG−3nRLRS,

B4 =−12nRGRLRS,

C4 = m−4,

C5 = (4m−16)nRG +4nRLRS,

C6 = 16nRGRLRS.

The maximum voltage across memristor other than input and destination memristors in bit line

where input and destination memristors are present, when it is in HRS, is given by

VBIT, max =
[A1R3

HRS +A2R2
HRS]VSET +[B1R3

HRS +B2R2
HRS]VCOND

C1R3
HRS +C2R2

HRS +C3RHRS +C4
, (4.16)

where,

A1 = mn2−2mn+5,

A2 = (m−5)RLRS,

B1 = 3mn2−6mn+15,

B2 = (3m−15)RLRS,

C1 = 4mn2−8mn+20,

C2 = [4m2n2 +(20m−12m2)n+8m2−20m]RG +(m2n−2m2 +9m−20)RLRS,

C3 = (m2−5m)R2
LRS +[(8m2−20m)n−12m2 +40m]RGRLRS,

C4 = (4m2−20m)RGR2
LRS.

Chapter 4. Logic Implementation on Memristive Crossbar Array 59

in Figure 4.15, (4.14), (4.15) and (4.16) are plotted against array size (m× n) with m = n. For

3-input NOR, the minimum size of array (m× n) should be (4×4) for symmertic array. The

unselected memristors in word lines and bit lines are not disturbed if array size is more than

50×50 for selected parameters.

VBIT,max
VWCOND,max
VWSET, max
Vth1,M

Vo
lta

ge
(V

)

0

0.2

0.4

0.6

0.8

1

Array size (m×n)

0 20 40 60 80 100

Figure 4.15. The maximum voltage variations across unselected memristors on selected
word lines, bits lines, which are in HRS in memristive crossbar for 3-input NOR function
implementation as function of array size m× n with m = n. All unselected memristors on word
lines, bit lines are not disturbed if array size is more than 50×50.

The maximum voltage across unselected memristor not present on selected word lines and bit line,

when it is in LRS, is given by

VNSWB, max =
[A1R2

HRS +A2RHRS +A3]VSET +[B1R2
HRS +B2RHRS +B3]VCOND

C1R2
HRS +C2RHRS +C3

, (4.17)

where,

Chapter 4. Logic Implementation on Memristive Crossbar Array 60

A1 = (3n−6)(RG +RLRS),

A2 = [(3m−14)n−6m+28]RGRLRS +(n−2)R2
LRS,

A3 = [(m−5)n−2m+10]RGR2
LRS +R3

LRS,

B1 = (6−3n)(RG +RLRS),

B2 = [(14−3m)n+6m−28]RGRLRS +(2−n)R2
LRS,

B3 = [(5−m)n+2m−10]RGR2
LRS +3R3

LRS,

C1 = (2−n)(RG +RLRS),

C2 = [(6−m)n+2m−12]RGRLRS +(n−2)R2
LRS,

C3 = [(m−5)n−2m+6]RGR2
LRS +R3

LRS.

In Figure 4.16, (4.17) is plotted as a function of array size (m× n) with m = n. It is clear that

the voltage across all unselected memristors, that are not on selected word lines and bit lines, is

always less than Vth2, M and state change never occur for these memristors in the implementation

of 3-input NOR logic function on memristive crossbar.

Voltage across destination memristor (which is initialized to RHRS at the start of NOR

implementation), when all input memristors are in HRS state is given by,

Case-I : When all other memristors are in HRS

VDEST =
[3mnRG +4nRHRS +(m−4)RHRS]VSET−3mnRGVCOND

(4n+m−4)RHRS +4mnRG
. (4.18)

Case-II: When all other memristors are in LRS

VDEST =
[A1RHRS +A2]VSET +[B1RHRS +B2]VCOND

C1RHRS +C2
, (4.19)

where,

A1 = [(3m−12)n−3m+12]RG +(4n+m−4)RLRS,

Chapter 4. Logic Implementation on Memristive Crossbar Array 61

VNSWB,max
Vth2,M

Vo
lta

ge
(V

)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Array size (m×n)

0 20 40 60 80 100

Figure 4.16. The maximum voltage variations across unselected memristors not on selected
word lines and bit line in memristive crossbar as function of array size m× n with m = n for
implementation of 3-input NOR function. The unselected memristors not on selected word lines
and bit line are not disturbed for any array size in implementation of 3-input NOR function.

A2 = (12n+3m−12)RGRLRS,

B1 = [(12−3m)n+3m−12]RG,

B2 = (−12n−3m+12)RGRLRS,

C1 = (4m−16)(n−1)RG +(4n+m−4)RLRS,

C2 = (16n+4m−16)RGRLRS.

In Figure 4.17, (4.18) and (4.19) are plotted as a function of array size m×n with m = n. In this

case when all input memristors are in HRS (logic ‘0’), the expected voltage drop across destination

memristor should be more than Vth1, M so that destination memristor initialized to HRS before the

implementation of logic operation should toggle to LRS (logic ‘1’) for correct NOR function.

Chapter 4. Logic Implementation on Memristive Crossbar Array 62

There is no problem when all other memristors are in HRS, but if in worst case, when all other

memristors are in LRS then there is limit on the maximum size of array (in our case it is 10×10)

for correct implementation of 3-input NOR operation.

All other memristors in HRS
All other memristors in LRS
Vth1,M

Vo
lta

ge
(V

)

0.2

0.4

0.6

0.8

1

Array size (m×n)

0 20 40 60 80 100

Figure 4.17. The voltage variations across destination memristor in memristive crossbar as
function of array size m× n with m = n during implementation of NOR logic function when all
input memristors are in HRS. When all other memristors are in HRS, the voltage across destination
memristor is greater than Vth1, M and hence it switches to LRS state. When all other memristor
are in LRS, then the voltage across destination memristor is less than Vth1, M for array size greater
than 10×10 and will not switch to LRS even with all input memristors are in HRS. This is another
consequence of sneak path problem.

In other cases when one or more of the input memristors are in LRS, the effective voltage across

the destination memristor will always be less than threshold voltage Vth1, M. For example when

one input memristor is in LRS for 3-input NOR gate, the voltage across destination memristor will

be

Chapter 4. Logic Implementation on Memristive Crossbar Array 63

Case-I : When all other memristors are in HRS

VDEST =
[A1RHRS +A2]VSET +[B1RHRS +B2]VCOND

C1RHRS +C2
, (4.20)

where,

A1 = (12n+3m−12)RG +(4n+m−4)RLRS,

A2 = [(3m−12)n−3m+12]RGRLRS,

B1 = (−12n−3m+12)RG,

B2 = [(12−3m)n+3m−12]RGRLRS,

C1 = (12n+3m−12)RG +(4n+m−4)RLRS,

C2 = [(4m−12)n−3m+12]RGRLRS.

Case-II : When all other memristors are in LRS

VDEST =
[(4n+m−4)RLRS +3mnRG]RHRSVSET−3mnRGRHRSVCOND

([(4m−4)n−m+4]RG +[4n+m−4]RLRS)RHRS +(4n+m−4)RGRLRS
. (4.21)

In Figure 4.18, (4.20) and (4.21) are plotted as a function of array size m× n with m = n. Here

it can be seen that the voltage across the destination memristor is always less than Vth1, M for any

array size m×n with m = n and hence destination memristor will remain in HRS for if any or all

input memristor(s) is(are) in LRS. This is necessary for correct 3-input NOR operation.

The maximum power consumption for implementation of stateful NOR gate as a function of array

size (m × n) for symmetric array is shown in Figure 4.19. In addition to RHRS/RLRS values of

memristor, power consumption is also function of VSET and VCOND voltage values used in evaluate

operation which in turn depends on threshold voltage of memristor.

In order to implement stateful NOR logic on memristive crossbar successfully, following strategy

can be adopted. For writting the inputs to memristors, 1/3 write scheme is more suitable as it does

not change the contents of memristors not selected for write operation. While performing material

implication to implement stateful NOR logic, if size of array is more than 50× 50, the logic can be

successfully implemented without affecting contents of memristors not taking part in logic. But if

Chapter 4. Logic Implementation on Memristive Crossbar Array 64

All other memristors are in HRS
All other memristors are in LRS

Vo
lta

ge
(V

)

0.175

0.2

0.225

0.25

0.275

0.3

0.325

Array size (m×n)

0 20 40 60 80 100

Figure 4.18. The voltage variations across destination memristor in memristive crossbar as
function of array size m× n with m = n during implementation of NOR logic function when any
or all input memristors are in LRS. When all other memristors are in HRS or LRS, the voltage
across destination memristor is less than Vth1, M and hence destination memristor will retain its
HRS state.

size of the array is more than 10× 10, it is difficult to read the state of destination memristor (result

of NOR operation) due to sneak path problem. To remove this restriction on size of crossbar while

reading the destination memristor, all other memristors in the word line of destination memristor

should be forced to HRS. Other alternative is to keep size of array below or equat to 10 × 10 and

allow NOR operation to change the states of word line and bit line memristors (other memristors

are not affected for any array size). Such small size array can only be used for computations

and not as a memory because its content gets destroyed. Also multiple NOR operations can be

implemented diagonally on large crossbar array, such that one NOR implementation is done in

area not on word lines and bit lines of the other, and word lines of one NOR operation become

bit lines for other NOR operation. In such case, the effective voltage across memristors not taking

Chapter 4. Logic Implementation on Memristive Crossbar Array 65

Po
w

er
(W

)

0

0.1

0.2

0.3

0.4

Array size (m × n)
0 200 400 600 800 1000

Figure 4.19. Power consumption for evaluate operation in memristive crossbar as function of array
size (m × n) for symmetric crossbar.

part in logic implementation get reduced because of opposite polarity of word line and bit line

voltages, evident from the analysis.

4.5 Logic Implementation on Specialized Memristive Crossbar

The analysis of implementation of stateful NOR logic on memristive crossbar has shown that the

size of crossbar has to be restricted, specifically to read the state of destination memristor (the

result of stateful NOR operation). One way is to use small size repeated regular array structures

in order to avoid the sneak path problem. In other method, the specialized architectures such as

CMOL [46] and FPNI [54] can be used where wire segments of small length are arranged such

that small segmented array structure is created in large architectural area. The details of these

specialized architecture are given in Appendix C .

Stateful NOR logic operation can be implemented on specialized crossbar such as CMOL as shown

in Figure 4.21. In this figure only nanowires used in the implementation of stateful NOR are shown

(NV is vertical nanowire with NVp as its access pin while NH1−NH4 are horizontal nanowires

Chapter 4. Logic Implementation on Memristive Crossbar Array 66

with NHp1−NHp4 as their access pins). The nanowire can be accessed through pass transistor

(as shown in Figure C.2 where gate of pass transistor is used to enable access and source/drain

for performing operations on nanowire) or transmission gate. The conceptual diagram is shown

in Figure 4.20 and its implementation on CMOL is shown in Figure 4.21. The switches are either

pass transistors or transmission gates.

In write mode, the inputs are written to input memristors (M1, M2, M3) and logic ‘0’ is written

to destination memristor (M4). This is done in two steps. In first step, all logic ‘0’ input values

are written and in second step all logic ‘1’ values are written. For example, if inputs to 3-input

NOR gates are ’010’ then logic ‘0’ is written to memristors M1, M3 and M4 in step 1 of write

mode and then logic ‘1’ is written to memristor M2 in second step. When effective voltage across

memristor is 2VW, logic ‘1’ (i.e. RLRS) is written to it (2VW > Vth1,M). When effective voltage

across memristor is −2VW, logic ‘0’ (i.e. RHRS) is written to it (−2VW < Vth2,M). If effective

voltage is ±VW across memristor, it will not change its state.

NHp1 NHp2 NHp3 NHp4

M1 M2 M3 M4

NVp

S1

S2

S3

S4

V1 V2 V3 V4

S5

S6

Crossbar

CMOS

CMOS

RGV5

Figure 4.20. Equivalent circuit for 3-input stateful NOR gate implemented on crossbar as shown in
Figure 4.21. Switches S1−S6 are implemented in CMOS layer using pass transistors/transmission
gates.

Chapter 4. Logic Implementation on Memristive Crossbar Array 67

NH1

NH2

NH3

NH4

NV

NVp

NHp4

NHp3

NHp2

NHp1

M1

M2

M3

M4

Figure 4.21. Example implementation of 3-input stateful NOR gate on crossbar. M1, M2, M3 are
input memristors while M4 is destination memristor.

Table 4.3. Execution sequence for 3-input stateful NOR gate implementation on crossbar as in
Figure 4.21. In write mode the inputs are written in memristors. Using full selection scheme
first input logic ‘0’ written to memristors and the destination memristor in step 1. In remaining
memristors logic ‘1’ is written in step 2. In step 3, material implication is carried out to perform
NOR. Step 4 reads the status of destination memristor as result of NOR operation to be used later.

Mode Step NVp NHp1 NHp2 NHp3 NHp4

Write 1 −VW

VW where data
is logic ‘0’ , others

not selected
VW

2 VW

−VW where data
is logic ‘1’ , others

not selected
Not selected

Evaluate 3
Connected
to ground

through RG

VCOND VCOND VCOND VSET

Read 4
Voltage

is sensed Not selected VR

In evaluate mode, the voltage VCOND is applied to one terminal of all input memristors M1, M2,

M3 (to terminals NHp1−NHp3) and simultaneously voltage VSET is applied to one terminal of

Chapter 4. Logic Implementation on Memristive Crossbar Array 68

Table 4.4. Steps for implementation of 3-input NOR gate in hybrid crossbar architecture with
equivalent circuit shown in Figure 4.20. In write mode, step 1 writes all logic ‘0’ inputs to input
memristors and logic ‘0’ to destination memristor. In this table inputs to NOR gate are taken as
’010’ as an example, hence logic ‘0’ is written to M1, M3 and M4. Step 2 writes all logic ‘1’ inputs
to input memristors. Here logic ‘1’ is written to M2 memristor. In evaluate mode, voltage VCOND
is applied to one terminal of all input memristors (M1, M2, M3), VSET to the destination memristor
(M4) and the common terminal of all is connected to ground through resistance RG to perform
material implication. In read mode, smaller read voltage VR is applied to destination memristor M4
and is sensed at other terminal of it to know the state (i.e. the result of NOR operation). All other
memristors are disconnected in this step. Switches S1−S6 open when ‘0’ and closed when ‘1’.

Mode Step V1 V2 V3 V4 V5 S1 S2 S3 S4 S5 S6

Write 1 VW −VW 1 0 1 1 1 0
2 −VW VW 0 1 0 0 1 0

Evaluate 3 VCOND VSET 1 1 1 1 1 1

Read 4 VR

To
sense
circuit

0 0 0 0 1 0

destination memristor M4 (to terminal NHp4). The other common terminal of all (terminal NVp)

is connected to ground through resistance RG. This mode performs general material implication

operation on memristors M1, M2, M3 and M4 with destination memristor initialized to logic ‘0’. In

this operation, the destination memristor M4 will toggle to logic ‘1’ only if all input memristors

M1, M2, M3 were in logic ‘0’ state before the operation. This is NOR logic operation.

In read mode, voltage VR is applied to one terminal NHp4 of memristor M4 and is sensed at other

terminal NVp of it to know its state (result) after NOR operation. The voltage VR is selected such

that |VR|< |Vth1, M| and |VR|< |Vth2, M| so that the state is not changed in read operation.

4.6 Summary

In order to implement stateful NOR logic on memristive crossbar, three basic steps need to be

performed on it, namely write, imply and read. Analysis of these operations is carried out in

this chapter to investigate the effect on other memristors in crossbar not taking part in logic

implementation. Also limitations on size of crossbar to perform stateful NOR operation and to

read the state of (destination) memristor correctly are investigated. These limitations are due to

sneak path problem common in memristive crossbars. The observations are listed below.

Chapter 4. Logic Implementation on Memristive Crossbar Array 69

• In floating write scheme, the content of word line and bit line memristors get affected while

writing LRS to selected memristor and other memristors are not affected. While writing

HRS to selected memristor, the content of bit line and word line memristors are not affected

for array size less than 8×8, but other memristors are affected even for small array size.

Hence this method is not suitable for writing to memristor.

• 1/3 write scheme is most suitable for writing the data to selected memristor as it does not

change the content of other memristors in crossbar. While reading the state of a memristor

in a crossbar, the states LRS and HRS become indistinguishable for array size more than

10×10 in worst case scenario where states of all surrounding memristors around it are LRS.

This is due to sneak path problem. This limit on size of crossbar can be relaxed by forcing

all other memristors in bit line of memristor to be read to HRS but this step will destroy their

contents.

• While performing material implication (imply) to implement stateful NOR function on

memristive crossbar, the contents of memristors that are on bit lines and word lines of

memristors involved in logic (but not part of logic) will not be disturbed if array size is more

than 50×50. Remaining memristors are not disturbed for any array size while performing

material implication. Although in worst case scenario when all other memristors are in LRS,

the array size should be limited to 10×10 due to sneak path problem to implement stateful

NOR logic correctly, this limit can be removed by forcing all bit line memristors to HRS

similar to read operation.

• If array is to be only used for logic implimentation and not as a memory, then small size

array can be used, and changes in the content of bit line and word line memristors can be

neglected.

• Stateful NOR function can be implemented on specialized architectures (CMOL or FPNI),

where interrupted electodes are used to generate small size arrays in large architectural area.

Sneak path problem is major reason behind the limitations on size of crossbar to implement stateful

NOR logic. Overall characteristic of memristive crossbar depends on data stored in it. In the next

chapter, CRS crossbar is analyzed for implementation of stateful NOR logic because it is free from

sneak path problem.

Chapter 5

Logic Implementation on CRS

Crossbar Array

5.1 Introduction

Even though passive crossbar array made up of memristors can be used as non-volatile Random

Access Memory (RAM) and in reconfigurable logic circuits [44, 118, 124, 128, 143], the problem

of selecting the designated memristor and doing operations on it puts limit on the size of crossbar

because of sneak path problem. The sneak path currents through neighboring LRS memristors

interfere with proposed operation on designated memristor. Also the effective resistance of

crossbar or its section is a function of data (states of memristors) stored in it making it difficult to

analyze.

In order to overcome the sneak path problem in a memristive crossbar, Complementary Resistive

Switch (CRS) was proposed by Linn et al. [135]. CRS consists of two antiserial memristors and

data is stored in the form of LRS-HRS or HRS-LRS. Thus independent of data, the effective

resistance of CRS is always high and there is significant reduction in energy consumption of

operations in CRS crossbar. Also local fusion of logic and memory, which is an alternative to

the conventional von Neumann computer architectures, will avoid the transfer of data in a chip

and hence there is further reduction in power consumption [93, 113, 114].

70

Chapter 5. Logic implementation on CRS crossbar array 71

Binary data is stored in the form of HRS-LRS and LRS-HRS making total resistance RHRS+RLRS

in both cases. Hence new method needs to be developed to implement stateful NOR using CRSs.

The effect of write and logic implementation operations on CRSs not taking part in logic on CRS

crossbar needs to be investigated. Also, the limitation on size of crossbar, if any, needs to be

determined while reading the state of CRS. The read mechanism for CRS in CRS crossbar will be

different form memristor in memristive crossbar because the effective resistance is same in both

HRS-LRS and LRS-HRS states of CRS.

This chapter is organized as follows. The switching mechanism in CRS and threshold voltage

notations used in the analysis of CRS crossbar are described in first section. Stateful NOR logic

gate using CRS is proposed in second section. Diffrent write and read schemes found in literature,

and implementation of proposed stateful NOR gate on CRS crossbar are described and analyzed

in third section.

5.2 CRS Fundamentals

The concept of Complementary Resistive Switches (CRS) was introduced by Linn et al. [135] in

order to solve the sneak path problem. It consists of two antiserially connected memristors A and

B as shown in Figure 5.1. Revisiting the bipolar memristor operation, if its initial state is HRS

and voltage across it is increased gradually, then it will change its state to LRS as voltage across

it crosses the threshold voltage Vth1,M. If it is in LRS state, then it will not change its state on

increasing voltage across it. This is shown in Figure 5.2. Similarly if voltage across memristor is

decreased gradually, it will switch to HRS from LRS as soon as voltage across it becomes less than

threshold voltage Vth2,M (Vth2,M is negative). If it is already in HRS then it will not change its state.

This is shown in Figure 5.3. For CRS, the HRS-HRS state is possible only during fabrication. To

understand the switching action of CRS, first consider Figure 5.4, where voltage across CRS is

increased gradually. If it is initially in HRS-LRS state, then almost all voltage will appear across

HRS memristor (memristor A). As the voltage across memristor A reaches its threshold voltage

Vth1,M, it will switch to LRS forming LRS-LRS state of CRS. The positive threshold voltage at

which CRS switches to LRS-LRS state from HRS-LRS state is shown as Vth1,C, where ‘C’ in suffix

shows that this threshold voltage is for CRS to distinguish it from memristor threshold voltage.

Chapter 5. Logic implementation on CRS crossbar array 72

Vth1,C is slightly higher than Vth1,M for larger ratio of RHRS/RLRS. At this point, the magnitude of

voltage across each memristor is approximately equal to Vth1,M/2. (Memristor A can not switch

back to HRS state). If voltage across CRS is further increased, voltage across each memristor will

increase equally until threshold value Vth2,M is reached across each memristor in CRS. At this point

memristor B will switch from LRS to HRS state and CRS will be in LRS-HRS state thereafter.

The positive threshold voltage at which HRS switches to LRS-HRS state from HRS-LRS state

is shown as Vth2,C. The magnitude of Vth2,C is approximately equal to |2Vth2,M|. If initial state

of CRS is LRS-HRS in this exercise, it will remain unchanged. Similarly if voltage across the

CRS in LRS-HRS state is reduced gradually as shown in Figure 5.5, then at sufficient negative

voltage it first switches to LRS-LRS state. This negative threshold voltage is shown as Vth3,C.

Further reduction in voltage causes it to attain HRS-LRS state once the voltage across memristor

A crosses threshold voltage Vth2,M. This negative threshold voltage at which CRS switches from

LRS-HRS state to HRS-LRS state is shown as Vth4,C. If initial state of CRS is HRS-LRS, then

reduction of voltage across it does not change its state. The all possible states of CRS has been

summarized in Table 5.1.

Linn et al. [135] considered state HRS-LRS of CRS as logic ‘0’ and state LRS-HRS as logic ‘1’.

Thus in crossbar array memory consisting of CRS, irrespective of the stored value at every CRS,

the resistance of it will be approximately equal to RHRS. One of the memristors will always be in

HRS state similar to CMOS process in transistors. The total resistance of crossbar is independent

of information stored. Also, steady state power dissipation will be quite low as in CMOS process.

A B

Figure 5.1. Two memristors A and B are connected antiserially to form Complementary Resistive
Switch (CRS).

The ideal I-V characteristics (hysteresis curve) for CRS is shown in Figure 5.6 while the simulated

I-V characteristic of CRS carried out under DC sweep using TEAM model of memristor is shown

in Figure 5.7 and is perfectly antisymmetric.

Chapter 5. Logic implementation on CRS crossbar array 73

V

I

Initial state

Final state

Vth1,M

or

Figure 5.2. When voltage across memristor in HRS state (shown in red color) is increased
gradually, it changes to LRS state (shown in green color) as voltage across it crosses positive
threshold voltage Vth1,M. If it is initially in LRS state, then applying positive voltage of any value
across it will not change its state.

V

I
Initial state

Final state

Vth2,M

or

Figure 5.3. When voltage across memristor in LRS state (shown in green color) is reduced
gradually, it changes to HRS state (shown in red color) as voltage across it crosses negative
threshold voltage Vth2,M. If it is initially in HRS state, then applying negative voltage of any value
across it will not change its state.

5.3 Stateful NOR Gate using CRSs

In CRS, binary information is stored in the form of LRS-HRS and HRS-LRS, and its resultant

resistance is independent of its value. In the case of memristor, the information is stored in the

Chapter 5. Logic implementation on CRS crossbar array 74

V

I

Initial state

Vth1,C

Final state

A

B

A

B

A

B

Vth2,C

A

B

A

B

A

B

Figure 5.4. When voltage across CRS in HRS-LRS state is increased gradually, it switches first to
LRS-LRS and then to LRS-HRS. If CRS is in LRS-HRS state initially, then any positive voltage
across it will not changes its state. The positive threshold voltage at which CRS switches from
HRS-LRS to LRS-LRS state is shown as Vth1,C and from HRS-LRS to LRS-HRS is shown as
Vth2,C, respectively.

V

I Initial state

Vth4,C

Final state

A

B

A

B

A

B

Vth3,C

A

B

A

B

A

B

Figure 5.5. When voltage across CRS in LRS-HRS state is decreased gradually, it switches first to
LRS-LRS and then to HRS-LRS. If CRS is in HRS-LRS state initially, then any negative voltage
across it will not changes its state. The negative threshold voltage at which CRS switches from
LRS-HRS to LRS-LRS state is shown as Vth3,C and from LRS-HRS to HRS-LRS is shown as
Vth4,C, respectively.

form of HRS and LRS having different values of resistance. Therefore imply logic involving

memristors can not be used as it is in CRS. Stateful NOR gate using CRS need to be developed.

Chapter 5. Logic implementation on CRS crossbar array 75

I

VVth1,C

Vth3,C

’0’ (open)

Vth2,C

Vth4,C

HRS-LRS

LRS-LRS

Logic ’1’
’0’ (open)

Logic ’0’

’0’ (open)

LRS-HRS

Figure 5.6. Ideal hysteretic I-V characteristic of CRS. If voltage across CRS is increased gradually,
it switches to LRS-LRS state from HRS-LRS state when voltage across it equal to threshold voltage
Vth1,C. When voltage across it becomes equal to Vth2,C, it switches to LRS-HRS state and remains
in LRS-HRS state thereafter. When voltage across CRS is decreased gradually, it switches to
LRS-LRS state from LRS-HRS state when voltage across it equal to threshold voltage Vth3,C.
When voltage across it becomes equal to Vth4,C, it switches to HRS-LRS state and remains in
HRS-LRS state thereafter. If voltage is less than Vth1,C or greater than Vth3,C, it retains its previous
state.

Table 5.1. Possible states of CRS. The total resistance is either RHRS or 2RLRS and helps in
handling sneak path problem.

CRS state Memristor A state Memristor B state Resistance of CRS
HRS-LRS HRS LRS RHRS + RLRS ≈ RHRS
LRS-HRS LRS HRS RHRS + RLRS ≈ RHRS

ON LRS LRS
RLRS + RLRS = 2RLRS
see figure 5.4 and 5.5

OFF HRS HRS
RHRS + RHRS = 2RHRS
only during fabrication

The proposed basic 2-input NOR gate with CRS is shown in Figure 5.8 whose structure is similar

to imply gate. Consider the voltage applied at CRS Q (which is one of the inputs and destination

CRS) is VQ = Vx and voltage applied at other input CRS P is VP = Vx−∆V for logic evaluation.

Also resistance RG is selected such that RLRS < RG < RHRS. In this case voltage at point C in

Figure 5.8 is given by

Chapter 5. Logic implementation on CRS crossbar array 76

C
ur

re
nt

(m
A

)

-0.04

-0.02

0

0.02

0.04

Voltage (V)
-10 -5 0 5 10

Figure 5.7. The I-V characteristics of CRS under DC sweep showing hysteresis. The simulation
is carried out using TEAM model and IV characteristic shows perfect antisymmetry in its shape.

VC =
(Vx−∆V)

(
RG||

(
RQM1 +RQM2

))(
RG||

(
RQM1 +RQM2

))
+(RPM1 +RPM2)

+
Vx (RG||(RPM1 +RPM2))

(RG||(RPM1 +RPM2))+
(
RQM1 +RQM2

) (5.1)

For each of the sixteen possible cases listed in Table 5.2, the effective voltage across each

memristor in CRS can be calculated using (5.1). For example, in Case 1 where RPM1 = RLRS,

RPM2 = RLRS, RQM1 = RLRS, RQM2 = RLRS, (5.1) becomes

VC =
(Vx−∆V)(RG||(RLRS +RLRS))

(RG||(RLRS +RLRS))+(RLRS +RLRS)
+

Vx (RG||(RLRS +RLRS))

(RG||(RLRS +RLRS))+(RLRS +RLRS)
, (5.2)

which can be approximated as,

VC ≈
(Vx−∆V)

2
+

Vx

2
≈Vx−

∆V
2
. (5.3)

Chapter 5. Logic implementation on CRS crossbar array 77

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 =

[
(Vx−∆V)−

(
Vx−

∆V
2

)]
RLRS

RLRS +RLRS
≈−∆V

4
. (5.4)

In a similar manner, voltage across memristor PM2 is

VPM2 ≈−
∆V
4
, (5.5)

voltage across QM1 is

VQM1 =

[
Vx−

(
Vx−

∆V
2

)]
RLRS

RLRS +RLRS
≈ ∆V

4
, (5.6)

and across QM2 is

VQM2 ≈
∆V
4
. (5.7)

The complete analysis of remaining cases of stateful NOR gate using CRS is given in Appendix

D and effective voltage across each memristor in CRS is summarized in Table 5.2.

VP VQ

PM1

PM2

QM1

QM2

+

VPM1

-

+

VPM2

-

+

VQM1

-

+

VQM2

-

RG

C

C
R

S
P

C
R

S
Q

Figure 5.8. 2-input NOR gate using CRS. CRS P and CRS Q are input CRS while CRS Q is
destination CRS as well. Voltage VQ=Vx is applied to destination CRS while voltage VP=Vx−∆V
is applied to other input CRS/s.

The input to the gate are either in the form of HRS-LRS or LRS-HRS states. We selected Vx

and ∆V such that Vx > Vth1,M, Vx > |Vth2,M|,
∆V
4

> Vth1,M,
∣∣∣∣∆V

4

∣∣∣∣ > |Vth2,M|, (Vx−∆V) < Vth1,M

and (Vx−∆V) < |Vth2,M|. One interesting observation is that even if ∆V = Vx i.e. upper terminal

of CRS P is at zero potential, the circuit will work. Hence only one voltage source is sufficient

Chapter 5. Logic implementation on CRS crossbar array 78

Table 5.2. Summary of voltage across each memristor in 2-input NOR operation using two CRS
as shown in Figure 5.8. Voltage Vx is applied to destination CRS (which is also one of the inputs)
while voltage Vx−∆V is applied to other input CRS.

Case No.
State of memristor Voltage across memristor

PM1 PM2 QM1 QM2 PM1 PM2 QM1 QM2

1 LRS LRS LRS LRS −∆V
4

−∆V
4

∆V
4

∆V
4

2 LRS HRS LRS LRS 0 −∆V 0 0

3 HRS LRS LRS LRS −∆V 0 0 0

4 HRS HRS LRS LRS −∆V
2

−∆V
2

0 0

5 LRS LRS LRS HRS 0 0 0 ∆V

6 LRS HRS LRS HRS 0 Vx−∆V 0 Vx

7 HRS LRS LRS HRS Vx−∆V 0 0 Vx

8 HRS HRS LRS HRS
Vx−∆V

2
Vx−∆V

2
0 Vx

9 LRS LRS HRS LRS 0 0 ∆V 0

10 LRS HRS HRS LRS 0 Vx−∆V Vx 0

11 HRS LRS HRS LRS Vx−∆V 0 Vx 0

12 HRS HRS HRS LRS
Vx−∆V

2
Vx−∆V

2
Vx 0

13 LRS LRS HRS HRS 0 0
∆V
2

∆V
2

14 LRS HRS HRS HRS 0 Vx−∆V
Vx

2
Vx

2

15 HRS LRS HRS HRS Vx−∆V 0
Vx

2
Vx

2

16 HRS HRS HRS HRS
Vx−∆V

2
Vx−∆V

2
Vx

2
Vx

2

to perform NOR operation on CRSs.All input state combinations of memristors in CRS and the

resultant states of memristors (by using Table 5.2) in CRS are listed in Table 5.3.

Chapter 5. Logic implementation on CRS crossbar array 79

Table 5.3. All possible state transitions of memristors involved in CRS based 2-input NOR gate
shown in Figure 5.8 and using Table 5.2. Voltage Vx is applied to destination CRS while input

CRS/s is(are) grounded. Vx >Vth1,M, Vx >Vth2,M,
∆V
4

>Vth1,M,
∣∣∣∣∆V

4

∣∣∣∣>Vth2,M, (Vx−∆V)<Vth1,M

and (Vx−∆V) < Vth2,M and ∆V=Vx (since the terminal of input CRS except destination CRS is
connected to ground).

Case
No.

State of memristor
before operation

State of memristor
after operation Remark

PM1 PM2 QM1 QM2 PM1 PM2 QM1 QM2

1 LRS LRS LRS LRS HRS LRS LRS HRS stable

2 LRS HRS LRS LRS LRS LRS LRS LRS
unstable

switch to case 1
3 HRS LRS LRS LRS HRS LRS LRS LRS stable
4 HRS HRS LRS LRS HRS LRS LRS LRS stable
5 LRS LRS LRS HRS LRS LRS LRS HRS stable
6 LRS HRS LRS HRS LRS HRS LRS HRS stable
7 HRS LRS LRS HRS HRS LRS LRS HRS stable
8 HRS HRS LRS HRS HRS HRS LRS HRS stable

9 LRS LRS HRS LRS LRS LRS LRS LRS
unstable

switch to case 1

10 LRS HRS HRS LRS LRS HRS LRS LRS
unstable

switch to case 2
11 HRS LRS HRS LRS HRS LRS LRS LRS stable

12 HRS HRS HRS LRS HRS HRS LRS LRS
unstable

switch to case 4
13 LRS LRS HRS HRS LRS LRS LRS HRS stable
14 LRS HRS HRS HRS LRS HRS LRS HRS stable
15 HRS LRS HRS HRS HRS LRS LRS HRS stable
16 HRS HRS HRS HRS HRS HRS LRS HRS stable

From Table 5.4, it can be seen that, when both the input CRS states are HRS-LRS (logic ’00’

input), the destination CRS is in state LRS-LRS. For all other input combinations of states of

input CRS, the destination CRS is in HRS-LRS (read in reverse direction). The LRS-LRS state

can be converted to LRS-HRS state, if required using feedback mechanism which makes use of

sense voltage across RS, forming voltage divider with CRS to be read during read mechanism.

The concept can be extended to N-input stateful NOR gate, by connecting one terminal of all input

CRSs except destination CRS to ground, one terminal of destination CRS to Vx and other common

Chapter 5. Logic implementation on CRS crossbar array 80

Table 5.4. Truth table for CRS based 2-input NOR logic. Only possible input combinations are
selected from Table 5.3 and stable resultant state of destination CRS is specified in the table. The
destination CRS is read in reverse direction i.e. by applying read voltage to bit line of destination
CRS instead of word line and the resultant voltage is sensed across resistance RS connected to
word line instead of bit line.

Sr. No. Input states of CRS Destination CRS after operation (result)
CRS P CRS Q CRS Q

1 HRS-LRS HRS-LRS LRS-LRS
2 HRS-LRS LRS-HRS LRS-HRS
3 LRS-HRS HRS-LRS LRS-HRS
4 LRS-HRS LRS-HRS LRS-HRS

terminal of all CRSs to ground through resistance RG. The major differences between memristor

based stateful NOR gate and CRS based stateful NOR gate are as follows. For N-input stateful

NOR using memristor requires N+1 memristors because destination memristor is different from

input memristors. Also destination memristor needs to be initialized to HRS before performing

NOR operation. CRS based N-input stateful NOR gate requires N CRSs because destination CRS

is one of the input CRSs and initialization step is not required for destination CRS. Memristor

based stateful NOR gate requires two voltage sources (VSET and VCOND) for its operation while

CRS based gate requires single voltage source (Vx) for its operation.

5.4 Analysis of Operations on CRS Crossbar

Structure of CRS crossbar is similar to memristive crossbar with memristors replaced by CRSs. In

order to implement stateful NOR gate on CRS crossbar, first the inputs on which NOR operation

has to be performed should be written to CRSs in the form of HRS-LRS and LRS-HRS. Then logic

operation explained in the previous section should be performed and finally the result of NOR

operation should be read. These operations are described and analyzed in this section in order to

find out their effect on CRSs not involved in logic implementation and, to find out limitation on

the size of CRS crossbar, if any, for correct logic implementation. The resistive equivalent symbol

for CRS is shown in Figure 5.9 and is used in the analysis. The dot in resistive equivalent symbol

shows the side of memristor A in CRS made up of memristors A and B.

Chapter 5. Logic implementation on CRS crossbar array 81

A

B

CRS Resistance Equivalent

Figure 5.9. CRS resistance equivalent symbol used in crossbar equivalent circuit. The dot in
equivalent resistance notation indicate the side of memristor A in CRS having memristors A and
B. The state of CRS has been specified as HRS-LRS or LRS-HRS or LRS-LRS, the first being the
state of memristor A and second is the state of memristor B.

5.4.1 Write Operation

In order to write LRS-HRS state in CRS, voltage VW >Vth2,C should be applied across selected

CRS. To write HRS-LRS state to CRS, voltage −VW <Vth4,C should be applied across selected

CRS. In both cases, the magnitude of voltage across unselected CRSs should be less than Vth1,C

and greater than Vth3,C so that their contents are not destroyed. The different write schemes for

CRS crossbar are explained below.

5.4.1.1 Floating Write Scheme

In this method write voltage VWRITE is applied to the selected word/bit line while selected bit/word

line is grounded to ensure the selected CRS cell has enough voltage to perform the successful

write operation, while the remaining word lines and bit lines are kept floating [35, 135] similar to

floating write scheme for memristive crossbar explained in the previous chapter. This scheme for

CRS crossbar is shown in Figure 5.10 and its equivalent resistive circuit is shown in Figure 5.11.

The CRSs are categorized as shown in Table 5.5 for the analysis along with notations for voltage

across them. If the size of the crossbar array is m×n with m rows and n columns, then there will be

n−1 CRSWORD shown as Region-I, m−1 CRSBIT shown as Region-II, (m−1)(n−1) CRSNSWB

shown as Region-III and one CRSSEL as shown in Figure 5.10.

Let I1 be the current flowing through each CRSWORD during write operation as shown in Figure

5.11. Then as equivalent resistance of each CRS is approximately equal to RHRS,

Chapter 5. Logic implementation on CRS crossbar array 82

Table 5.5. Notations used in the analysis of operations on CRS crossbar.

CRS notation Description Voltage across CRS

CRSWORD
CRS on selected word line
except CRS selected for operation VWORD

CRSBIT
CRS on selected bit line
except CRS selected for operation VBIT

CRSNSWB
CRS not on selected word
and bit lines VNSWB

CRSSEL Selected CRS for operation VSEL

VWRITE

n bit lines

m
w

or
d

lin
es

Region-III

Region-I

Region-II

Selected CRS

Figure 5.10. In floating write scheme of CRS crossbar, the word line of CRS to be written is
driven by voltage VWRITE, its bit line is grounded while unselected word lines and bit lines are kept
floating [144].

VWRITE = I1RHRS +
I1

(m−1)
RHRS +

I1

(m−1)
(n−1)RHRS. (5.8)

Therefore,

I1 =
(m−1)VWRITE

(m+n−1)RHRS
. (5.9)

Chapter 5. Logic implementation on CRS crossbar array 83

(n−1)

(m−1)

(m−1) (m−1) (m−1)

VWRITE

VWORD VWORD VWORD

VBIT VBIT VBIT

Word line

Bit line

Region-I

Region-III

Region-II

Selected CRS

I1 I1 I1

Figure 5.11. Resistive equivalent circuit for floating write scheme for CRS crossbar array shown
in Figure 5.10. The size of array is m× n, where m and n indicate number of rows and columns,
respectively.

Voltage across unselected CRSs in Region-I will be

VWORD = I1RHRS =
(m−1)VWRITE

(m+n−1)
. (5.10)

Voltage across unselected CRSs in Region-II will be

VBIT =
I1

(m−1)
(n−1)RHRS =

(n−1)VWRITE

(m+n−1)
, (5.11)

and across unselected CRSs in Region-III will be

VNSWB =
I1

m−1
RHRS =

VWRITE

(m+n−1)
. (5.12)

Resulting voltage across unselected CRSs (CRSWORD, CRSBIT, CRSNSWB) due to application of

voltage VWRITE across selected CRS (CRSSEL), should satisfy the conditions

Vth3,C <VWORD <Vth1,C, (5.13)

Vth3,C <VBIT <Vth1,C, (5.14)

Chapter 5. Logic implementation on CRS crossbar array 84

and

Vth3,C <VNSWB <Vth1,C, (5.15)

in order to avoid the state change of unselected CRSs.

For writing LRS-HRS state to selected CRS, VWRITE=+VW such that VW >Vth2,C, should be

applied to its word line while its bit line should be grounded. Out of unselected CRSs, CRSWORD

and CRSBIT can change their state if they are in HRS-LRS and the resulting voltage across them

is greater than Vth1,C for applied write voltage VW. CRSNSWB can change its state if it is in

LRS-HRS and resulting voltage due to application of VW across it is less than Vth3,C (because of

its orientation in the resistive equivalent circuit shown in Figure 5.11). If CRSWORD and CRSBIT

are in LRS-HRS or CRSNSWB is in HRS-LRS state, application of VW will not change their states.

Using (5.10), (5.11) and (5.12) [144], the resulting voltage across each unselected CRS, due to

application of voltage VW across selected CRS, as function of array size m× n with m = n is

plotted in Figure 5.12. It can be seen that CRSNSWB will not change their state for any array size

as magnitude of maximum voltage across them is always less than |Vth3,C|. CRSWORD and CRSBIT

may change their states to LRS-LRS states if they are in HRS-LRS states as the resulting voltage

(due to application of voltage VW across selected CRS) across them may exceed Vth1,C. If they

are in LRS-HRS states, application of voltage VW across CRSSEL will not change their states. The

change of state to LRS-LRS can be recovered back using feedback mechanism explained later in

this chapter.

For writing HRS-LRS state to selected CRS, VWRITE=−VW such that −VW <Vth4,C should be

applied to its word line while its bit line should be grounded. Out of unselected CRSs, CRSWORD

and CRSBIT can change their states if they are in LRS-HRS and the resulting voltage across them

is less than Vth3,C for applied write voltage −VW across CRSSEL. CRSNSWB can change its state

if it is in HRS-LRS and the resulting voltage (because of application of −VW across CRSSEL)

across it is greater than Vth1,C. If CRSWORD and CRSBIT are in HRS-LRS states or CRSNSWB is in

LRS-HRS state, application of−VW will not change their states. The resulting voltage across each

unselected CRS as function of array size m×n with m = n is plotted in Figure 5.13 using (5.10),

(5.11) and (5.12) [144]. It can be seen that CRSNSWB will not change their state for any array

size as magnitude of maximum voltage across them is always less than |Vth1,C|. CRSWORD and

CRSBIT may change their states to LRS-LRS states if they are in LRS-HRS states as the resulting

Chapter 5. Logic implementation on CRS crossbar array 85

VWORD
VBIT
|VNSWB|
Vth1,C
|Vth3,C|

Vo
lta

ge
(V

)

0

0.25

0.5

0.75

1

1.25

1.5

Array size (m×n)

0 20 40 60 80 100

Figure 5.12. Voltage variations across unselected CRSs as function of array size (m× n) with
m = n for floating write scheme in order to write LRS-HRS in selected CRS. CRSNSWB will not
change their states for any array size as magnitude of maximum voltage across them is always less
than |Vth3,C|. CRSWORD and CRSBIT may change their states to LRS-LRS if they are in HRS-LRS
states as the resulting voltage (due to application of voltage VW across selected CRS) across them
may exceed Vth1,C. If they are in LRS-HRS states, application of voltage VW across CRSSEL will
not change their states. The change of state to LRS-LRS can be recovered back using feedback
mechanism. In this plot Vth1,C =0.7 V, Vth3,C=−0.7 V, VW=1.5 V because Vth2,C= 1.4 V.

voltage (due to application of voltage VW across selected CRS) across them may exceed Vth3,C.

If they are in HRS-LRS states, application of voltage VW across CRSSEL will not change their

states. Again, the change of state to LRS-LRS can be recovered back using feedback mechanism

explained later in this chapter. Floating write scheme consumes a small amount of power during

write operation [145].

5.4.1.2 1/3 Write Scheme

The floating write scheme explained in previous subsection may change the state of unselected

CRS cells (CRSWORD and CRSBIT) [35, 145], evident from Figures 5.12 and 5.13 because voltage

Chapter 5. Logic implementation on CRS crossbar array 86

VWORD
VBIT
−VNSWB
Vth3,C

Vo
lta

ge
(V

)

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

Array size (m×n)

0 20 40 60 80 100

Figure 5.13. Voltage variations across unselected CRSs as function of array size (m× n) with
m = n for floating write scheme in order to write HRS-LRS in selected CRS. CRSNSWB will not
change their states for any array size as magnitude of maximum voltage across them is always less
than |Vth1,C|. CRSWORD and CRSBIT may change their states to LRS-LRS if they are in LRS-HRS
states as the resulting voltage (due to application of voltage −VW across selected CRS) across
them may be less than Vth3,C. If they are in HRS-LRS states, application of voltage VW across
CRSSEL will not change their states. The change of state to LRS-LRS can be recovered back using
feedback mechanism. In this plot Vth1,C =0.7 V, Vth3,C=−0.7 V, −VW=−1.5 V because Vth4,C=
−1.4 V.

across them rises to ±VW/2 even for small array size and cross threshold values Vth1,C or Vth3,C

(Vth1,C is less than VW/2 or Vth3,C is greater then−VW/2). In 1/3 write scheme [35], write voltage

VWRITE is applied to the word line of CRS to be written while its bit line is grounded. At the

same time, voltage VWRITE/3 is applied to all unselected word lines and voltage 2VWRITE/3 to all

unselected bit lines as shown in Figure 5.14. The effective voltage across each unselected CRS

will be |VWRITE/3| while across selected CRS will be VWRITE . This 1/3 write scheme can avoid

the unselected CRSs state changes. However, voltages are applied to every word line and bit line,

which will not only consume more power [145], but also have a complex write scheme control

circuitry.

Chapter 5. Logic implementation on CRS crossbar array 87

VWRITE

n bit lines

m
w

or
d

lin
es

Selected CRS

VWRITE/3

VWRITE/3

2VWRITE/3 2VWRITE/3

Figure 5.14. In 1/3 write scheme of CRS crossbar, the word line of CRS to be written is driven
by voltage VWRITE, its bit line is grounded while unselected word lines are driven with voltage
VWRITE/3 and bit lines are are driven with voltage 2VWRITE/3. The effective voltage across each
unselected CRS will be |VWRITE/3| while across selected CRS will be VWRITE [144].

5.4.1.3 Configuration Row based 1/3 Write Scheme

Configuration row based 1/3 write scheme [144] is shown in Figure 5.15, in which one of the

rows of CRS is designated as configuration row. All configuration CRS cells are written with

state LRS-LRS (ON). Write voltage VWRITE is applied to word line of CRS to be written while

its bit line is grounded. The unselected word lines except configuration word line are driven with

VWRITE/3 and the configuration word line is driven with voltage 2VWRITE/3. As configuration

CRSs are in LRS-LRS during write operation, the configuration word line is effectively shorted

with bit lines and thus are driven with voltage 2VWRITE/3. This is similar to conventional 1/3

write scheme with only one 2VWRITE/3 voltage source instead of n−1 and hence has less power

consumption. Since all configuration CRS cells are in state LRS-LRS (low resistance state),

compared with other CRS cells which are in either LRS-HRS or HRS-LRS states, the magnitude

Chapter 5. Logic implementation on CRS crossbar array 88

of voltages across all configuration CRSs are less than Vth1,C or greater then Vth3,C. Therefore

configuration CRS cells can remain in LRS-LRS state. The extra cost is the configuration row

and large driver transistors to switch all configuration CRSs to LRS-LRS states (or extra time to

switch them sequentially to LRS-LRS states). The resistive equivalent circuit for this configuration

is shown in Figure 5.16. The principle of superposition is applied to find out the effective voltage

VWRITE

n bit lines

m
w

or
d

lin
es

Selected CRS

VWRITE/3

VWRITE/3

2VWRITE/3

Configuration row

Selected word line

Selected bit line

Figure 5.15. In configuration row based 1/3 write scheme of CRS crossbar, the selected word
line is driven by voltage VWRITE, selected bit line is grounded. Additional configuration row of
CRS is added. During write operation all CRS in configuration row will be in LRS-LRS state and
their word line is driven by 2VWRITE/3. Remaining unselected word lines are driven with voltage
VWRITE/3 [144].

across each CRS due to VWRITE, 2VWRITE/3 and VWRITE/3.

1. Effect of VWRITE

Chapter 5. Logic implementation on CRS crossbar array 89

(m−1)

Selected word line

Selected bit line

Selected CRS

(m−1) (m−1)

(n−1)

(m−1)

VWRITE

2VWRITE/3

CRS on configuration row CRS on selected word line

CRS on
unselected
Word lines
& bit lines

CRS on selected bit line

(m−1)
VWRITE/3{

Figure 5.16. Resistive equivalent circuit for configuration row based 1/3 write scheme for CRS
crossbar shown in Figure 5.23. The dot notation shown in figure 5.9 is used to draw equivalent
circuit.

Due to VWRITE, voltage across CRSSEL is

VSEL,1 =VWRITE, (5.16)

across CRSWORD is

VWORD,1 =
RHRS +(m−1)RLRS

RHRS +mRLRS
VWRITE, (5.17)

across CRSNSWB is

VNSWB,1 =−
RLRS

RHRS +mRLRS
VWRITE, (5.18)

across CRSBIT is

VBIT,1 = 0, (5.19)

and across CRSCONF is

VCONF,1 =−
RLRS

RHRS +mRLRS
VWRITE. (5.20)

2. Effect of 2VWRITE/3

Chapter 5. Logic implementation on CRS crossbar array 90

Due to 2VWRITE/3, voltage across CRSSEL is

VSEL,2 = 0, (5.21)

across CRSWORD is

VWORD,2 =−
2RHRS

3(RHRS +mRLRS)
VWRITE, (5.22)

across CRSNSWB is

VNSWB,2 =−
2RHRS

3(RHRS +mRLRS)
VWRITE, (5.23)

across CRSBIT is

VBIT,2 = 0, (5.24)

and across CRSCONF is

VCONF,2 =
2mRLRS

3(RHRS +mRLRS)
VWRITE. (5.25)

3. Effect of VWRITE/3

Similarly, due to VWRITE/3, these voltages are

VSEL,3 = 0, (5.26)

VWORD,3 =−
(m−1)RLRS

3(RHRS +mRLRS)
VWRITE, (5.27)

VNSWB,3 =
RHRS

3(RHRS +mRLRS)
VWRITE, (5.28)

VBIT,3 =
1
3

VWRITE, (5.29)

and

VCONF,3 =−
(m−1)RLRS

3(RHRS +mRLRS)
VWRITE, (5.30)

respectively.

The cumulative effect will be as follows. The overall voltage across CRSSEL is

VSEL =VWRITE, (5.31)

Chapter 5. Logic implementation on CRS crossbar array 91

across CRSWORD is

VWORD =
RHRS +2(m−1)RLRS

3(RHRS +mRLRS)
VWRITE, (5.32)

across CRSNSWB is

VNSWB =− RHRS +3RLRS

3(RHRS +mRLRS)
VWRITE, (5.33)

across CRSBIT is

VBIT =
1
3

VWRITE, (5.34)

and across CRSCONF is

VCONF =
(m−2)RLRS

3(RHRS +mRLRS)
VWRITE. (5.35)

Voltage variations across different CRS cells as function of array size m× n with m = n is

plotted using (5.31), (5.32), (5.33), (5.34) and (5.35) for writing LRS-HRS in selected CRS with

VWRITE =VW in Figure 5.17, and for writing HRS-LRS to selected CRS with VWRITE = −VW

in Figure 5.18. In writing LRS-HRS or HRS-LRS to selected CRS, voltages across CRSBIT,

CRSNSWB and CRSCONF are always less than Vth1,C or greater than Vth3,C and hence they retain

their states for any array size in configuration row based 1/3 write scheme. Only CRSWORD may

switch to LRS-LRS state (if it is in HRS-LRS state while writing LRS-HRS to selected CRS or

in LRS-HRS state while writing HRS-LRS state to selected CRS) for array size approximately

greater than 7000 × 7000. However, the original state of it can be retained back using feedback

mechanism explained later in this chapter.

The total power consumption for write operation in CRS crossbar is given by

Ptotal,CRS = PSEL +PBIT +PWORD +PNSWB (5.36)

with additional component of PCONF in case of configuration row based 1/3 write scheme. The

power consumption is function of array size (m × n) and is plotted for different write schemes

in Figure 5.19 for symmetric array. The power also depends on threshold voltages of CRS as it

directly dictates the minimum value of write voltage to be used. In CRS crossbar array however,

the power is independent of state of CRS as in logic ‘0’ or logic ‘1’ state, the effective resistance

is RHRS+RLRS. The power consumption in floating write scheme is comparatively less but it does

alter the states of other unselected CRS and hence not useful. 1/3 write scheme is widely used

Chapter 5. Logic implementation on CRS crossbar array 92

VWORD
VBIT
VCONF
|VNSWB|

VSEL
Vth1,C
Vth2,C

Vo
lta

ge
(V

)

0

0.25

0.5

0.75

1

1.25

1.5

Array size (m×n)

0 2000 4000 6000 8000 104

Figure 5.17. Voltage variations across different CRSs as function of array size (m×n) with m = n
for configuration row based 1/3 write scheme in order to write LRS-HRS to selected CRS. Any of
the unselected CRSs apart from CRSWORD will not change its state as magnitude of voltage across
each of such unselected CRS is less than Vth1,C. Configuration CRS will also remain in LRS-LRS
state as voltage across them is less than Vth1,C. CRSWORD can change its state to LRS-LRS if it is
in HRS-LRS for array size more than around 7000 × 7000, but its HRS-LRS state can be retained
back using feedback mechanism. In this plot Vth1,C =0.7 V, VW=1.5 V and Vth2,C= 1.4 V. Only
selected CRS has voltage greater than Vth2,C and hence LRS-HRS state will be written to it.

to write data in selected CRS/s even though the power consumption is more than floating write

scheme because it does not change the states of unselected CRSs. Configuration row based 1/3

write scheme has slightly improved power consumption over 1/3 write scheme at the cost of area

overhead for configuration row of CRSs.

5.4.2 Read Operation

This section describes the different read schemes used to read the state of selected CRS. The

state of CRS is either LRS-HRS or HRS-LRS and hence same resistance is presented by CRS

irrespective of its content.

Chapter 5. Logic implementation on CRS crossbar array 93

VWORD
VBIT
VCONF
−VNSWB

VSEL
Vth3,C
Vth4,C

Vo
lta

ge
(V

)

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

Array size (m×n)

0 2000 4000 6000 8000 104

Figure 5.18. Voltage variations across different CRSs as function of array size (m×n) with m = n
for configuration row based 1/3 write scheme in order to write HRS-LRS to selected CRS. Any of
the unselected CRSs apart from CRSWORD will not change its state as voltage across each of such
unselected CRS is greater than Vth3,C. Configuration CRS will also remain in LRS-LRS state as
voltage across them is greater than Vth3,C. CRSWORD can change its state to LRS-LRS if it is in
LRS-HRS for array size more than around 7000 × 7000, but its LRS-HRS state can be retained
back using feedback mechanism. In this plot Vth3,C =−0.7 V, −VW=−1.5 V and Vth4,C=− 1.4 V.
Only selected CRS has voltage less than Vth4,C and hence HRS-LRS state will be written to it.

5.4.2.1 Conventional Read Scheme

A conventional CRS read scheme takes three steps to read a value (resistance) stored in CRS

[35, 135, 146]. In the first step, set voltage VS is applied to the word line of CRS to be read and

its bit line is connected to ground through sense resistance RS. The resistance RS and CRS form

voltage divider. Value of voltage VS is selected such that Vth1,C <VCRS <Vth2,C, where VCRS is

voltage across CRS to be read. If the state of CRS is HRS-LRS before application of voltage VS,

then it will change to LRS-LRS after application of VS. If it is in LRS-HRS before, it will not

change its state. In second step, read voltage VR (with condition VR <Vth2,C and VR can be equal

to VS) is applied to word line of CRS to be read and its effect sensed across resistance RS connected

to bit line of CRS to be read. The resistance RS and CRS to be read form voltage divider. If sensed

Chapter 5. Logic implementation on CRS crossbar array 94

Floating write scheme
1/3 write scheme
Configuration row based 1/3 write scheme

Po
w

er
(W

)

0

0.05

0.1

0.15

0.2

0.25

Array size (m × n)
0 200 400 600 800 1000

Figure 5.19. Power consumption for write operation in CRS crossbar as function of array size (m
× n) for symmetric crossbar. The floating write scheme consumes less power but susceptible to
change the states of other unselected CRSs and hence rarely used. 1/3 write scheme is widely used
to write state in selected CRS and contents of unselected CRSs are not disturbed. Configuration
row based 1/3 write scheme is modified version of 1/3 write scheme with improvement in power
consumption at the cost of area overhead of configuration row of CRSs.

voltage is larger, then CRS was in HRS-LRS state (which has changed to LRS-LRS state in first

step). If sensed voltage is less, the state of CRS is LRS-HRS. The read scheme is destructive as it

destroys the content of it (if it was in HRS-LRS). Hence third step to write back its original content

is required. The sensed voltage across RS is used to write back the original state to CRS used in

read operation. The read scheme is shown in Figure 5.20.

In the second step, when the CRS to be read is in LRS-LRS, the voltage across sense resistor RS is

VRS =
A1RHRS +A2RLRS

2A1RHRSRLRS +2A1R2
LRS +A1RHRSRS +A2RLRSRS

RSVR, (5.37)

where,

A1 = n+m−1,

A2 = (2m−1)n−m+1.

Chapter 5. Logic implementation on CRS crossbar array 95

n bit lines

m
w

or
d

lin
es

CRS to read

W

To sense

RS

Figure 5.20. Conventional read scheme to read CRS from CRS crossbar array. In first step voltage
VS is applied to word line W of CRS to be read such that effective voltage across CRS (VCRS) to
be read is Vth1,C <VCRS <Vth2,C. If CRS to be read is in HRS-LRS then it will switch to LRS-LRS
in step 1 otherwise it will remain in LRS-HRS. In second step, read voltage VREAD =VR (with
condition VR <Vth2,C) is applied to word line W and resultant voltage is sensed across RS. If
sensed voltage is larger, the CRS was in HRS-LRS otherwise it is in LRS-HRS state. Third step is
used to write back the original content of CRS using sensed voltage as read operation is destructive
in nature.

If CRS to be read is in LRS-HRS state, then the voltage across sense resistor RS is

VRS =
mn

(n+m−1)RHRS +(n+m−1)RLRS +mnRS
RSVR. (5.38)

In Figure 5.22, (5.37) and (5.38) are plotted as a function of array size m×n for symmetric array

(m = n). Even for larger array size, it is possible to distinguish between LRS-LRS state and

LRS-HRS state of CRS to be read as all other CRSs surrounding it are either in LRS-HRS or

HRS-LRS states with equivalent resistance of each CRS is approximately equal to RHRS.

Chapter 5. Logic implementation on CRS crossbar array 96

(n−1)

Selected word line

Selected bit line

(m−1)

(m−1) (m−1) (m−1)

CRSWORD

CRSNSWB

CRSBIT

CRSSEL

RS

To sense

W

Figure 5.21. Resistive equivalent circuit for conventional read scheme to read CRS from CRS
crossbar array. After applying voltage VR to word line W in step 2, the sensed voltage across RS
should be able to distinguish between LRS-LRS and LRS-HRS state.

5.4.2.2 Self-resetting Read Scheme

The self-resetting read scheme [144] reads the state of CRS to be read like conventional read

scheme. The self-resetting circuit makes use of read out voltage to control the write back voltage.

The read out voltage will be low if CRS to be read is in LRS-HRS state or will be high if CRS is

in LRS-LRS state. Note that HRS-LRS state of CRS is converted to LRS-LRS state in first step of

conventional scheme. The read out voltage is delayed to control write back voltage.

The general self-resetting crossbar of CRS is shown in Figure 5.23. To address the CRS, row

and column decoders are used. The pulse generator will provide the reading/writing pulse of

appropriate magnitude during the read and write operations for selected CRS. The self-resetting

circuit is shown in Figure 5.24 which is only used during self-resetting read scheme.

To read the CRS state, positive voltage pulse of duration tREAD and of amplitude such that

Vth1,C <VCRS <Vth2,C is applied to word line of CRS while its bit line is connected to ground

through sense resistor RS as shown in Figure 5.24. CRS will switch to LRS-LRS state if it is in

HRS-LRS state because of VREAD. If it is in LRS-HRS state, it will not change its state. After

this possible state switching, if read out voltage (the sensed voltage across RS within the interval

tREAD) is high, the state of CRS is read as HRS-LRS (which is switched to LRS-LRS). If read out

Chapter 5. Logic implementation on CRS crossbar array 97

CRS in LRS-HRS state
CRS in LRS-LRS state

Vo
lta

ge
(V

)

0

0.2

0.4

0.6

0.8

Array size (m)

0 2500 5000 7500 10000 12500 15000

Figure 5.22. Voltage variations across sense resistance RS when CRS to be read is in LRS-LRS
or LRS-HRS (after step 1 of scheme) as function of array size (m×) with m = n for conventional
read scheme. The equivalent resistance of every other CRS is approximately equal to RHRS as they
are either in LRS-HRS or HRS-LRS state. Hence it is possible to differentiate between LRS-LRS
and LRS-HRS state even for larger array sizes.

voltage is small, the state of CRS is read as LRS-HRS. The timing diagram of the self-resetting

read scheme is shown in Figure 5.25. If the HRS-LRS to LRS-LRS switching delay of CRS

is td,HL-LL then the width of read out voltage pulse VSENSE is (tREAD−td,HL-LL). VCONTROL is

inverted and delayed VSENSE.

During the read operation the VREAD pulse is used to identify the state of the CRS to be read. The

same read pulse is delayed by td,READ (shown as VM3 in Figure 5.25) and is used to enable reset

circuit (consisting of M1, M2, M3 and inverter in Figure 5.24) for CRS after identification of its

state. Thus

td,READ > tREAD (5.39)

When the state of CRS to be read is HRS-LRS, the VREAD pulse switches it to LRS-LRS state. If

the switching time of CRS from HRS-LRS state to LRS-LRS state is td,HL-LL, then the duration of

Chapter 5. Logic implementation on CRS crossbar array 98

VSENSE pulse is

tSENSE = tREAD− td,HL-LL (5.40)

The amplitude of this VSENSE pulse is high while reading HRS-LRS state and is low while reading

LRS-HRS state. VCONTROL is inverted and delayed (by td,CONTROL) VSENSE pulse.

While reading HRS-LRS state, VSENSE pulse is high, VCONTROL pulse is low and hence transistor

M1 is ON, M2 is OFF, which will apply voltage VWRITE to lower end of CRS while upper

terminal is connected to ground (VREAD =0 during this interval). VWRITE is selected such that

VCRS <Vth4,C and hence HRS-LRS will be written back to read CRS. On the other hand, while

reading LRS-HRS state, VSENSE pulse is low, VCONTROL pulse is high and hence transistor M1 is

OFF, M2 is ON because of which the voltage across CRS after reading CRS in write back state

will be zero. Hence read CRS will retain its state.

For successful self-resetting read, with respect to rising edge of VREAD,

td,HL-LL + td,CONTROL > td,READ, (5.41)

and

tREAD− td,HL-LL > td,LL-HL (5.42)

where td,LL-HL is time required to write HRS-LRS state to CRS which is in LRS-LRS state.

The whole read operation can be covered in 2tREAD+∆t time where ∆t =td,READ−tREAD. ∆t can

be made very small but not equal to zero. The minimum time required to perform self-resetting

read operation will be 2(td,HL-LL+td,LL-HL)+∆t.

This scheme can be used to reinstate the contents of other CRSs (CRSs not part of operation) if

they are altered during write operation as explained previously or during stateful NOR operation.

For example, while writing LRS-HRS to selected CRS using floating write scheme, CRSWORD

and CRSBIT can change their state to LRS-LRS if they are in the state HRS-LRS. If they are in

LRS-HRS state, they will not change their state. To rewrite the original contents to them, if sensed

voltage across RS is relatively larger (CRS and RS form voltage divider and CRS is in LRS-LRS

state), it can be used to activate write circuit in order to write HRS-LRS state.

Chapter 5. Logic implementation on CRS crossbar array 99

m bit lines

m
w

or
d

lin
es

Column Decoder & Self Resetting Circuit

R
ow

D
ec

od
er

&
Pu

ls
e

G
en

er
at

or

Figure 5.23. Generalized structure of CRS crossbar array with self-resetting read mechanism.
Row and column decoder are used to select the CRS for operation. Pulse generator applies the
pulse for read operation while self-resetting read circuit writes back the original state of CRS after
read operation as read operation is destructive.

5.4.3 Stateful NOR Operation

The implementation of 3-input NOR gate on CRS crossbar is shown in Figure 5.26 and its resistive

equivalent circuit is shown in Figure 5.27. If the magnitude of voltage across CRS other than input

and destination CRSS is less than Vth1,C then it will not change its state. If this magnitude is

greater than Vth1,C but less than Vth2,C, the state may change to LRS-LRS but the original state

can be restored back by read and feedback write mechanism. The content will be destroyed and

can not be restored if magnitude of voltage across CRS is greater than Vth2,C. In the 3-input

NOR operation, the voltages across each unselected CRS due to application of Vx before possible

Chapter 5. Logic implementation on CRS crossbar array 100

RS

Se
le

ct
ed

bi
tl

in
e

M3

M1

M2

VREAD

VREAD
VM3

VWRITE

VCONTROL

Selected word line

VSENSE

To sensor

Figure 5.24. Self-resetting circuit for self-resetting read scheme. Reading the state of CRS using
conventional three step mechanism destroy the content of CRS (if it is in HRS-LRS state). The
self-reset circuit is activated using delayed read pulse. The sensed voltage across RS is inverted,
delayed and used as control signal to write back the initial state of CRS [144].

change of state of destination CRS to LRS-LRS state are given below. We will use notation RH to

represent resistance of CRS in either HRS-LRS or LRS-HRS state where RH=RHRS+RLRS and RL

for CRS in LRS-LRS state where RL=2RLRS. The voltage across unselected CRSs in word lines

where input CRSs are present (not destination CRS) is

VWORD,INPUT =− nRH +mnRG

(3n+m−3)RH +3mnRG
Vx. (5.43)

The voltage across unselected CRS in word line where destination CRS is present, is given by

VWORD,DEST =
(2n+m−3)RH +2mnRG

(3n+m−3)RH +3mnRG.
Vx (5.44)

Voltage across unselected CRS in selected bit line is given by

VBIT =
(n−1)RH

(3n+m−3)RH +3mnRG
Vx. (5.45)

Chapter 5. Logic implementation on CRS crossbar array 101

VREAD

VCONTROL

VM3

HRS-LRS state read

tREAD

td,HL-LL
State read as HRS-LRS

td,READ

td,CONTROL

LRS-HRS state read
State read as LRS-HRS

VCONTROL

VSENSE

VSENSE

Figure 5.25. Timing diagram for self-resetting read scheme shown in Figure 5.24. The VREAD
pulse is delayed and used to activate self reset circuit. The sense voltage pulse VSENSE is inverted
and delayed (VCONTROL) and is used to write back the initial state to CRS.

Voltage across CRS not on selected word lines and bit line is given by

VNSWB =− RH

(3n+m−3)RH +3mnRG
Vx. (5.46)

In Figure 5.28, (5.43), (5.44), (5.45) and (5.46) are plotted as a function of array size m× n for

symmetric array (i. e. m = n). The dot side of resistance notation of CRS is considered as

positive terminal in their voltage equations. CRSs on unselected bit lines, unselected word lines

(CRSNSWB) and unselected CRSs on selected bit line (CRSBIT) are not affected as magnitude

of voltage across them is less than Vth1,C or |Vth3,C|. Unselected CRSs on selected input word

lines (CRSWORD,INPUT) (not on destination word line) will not change their states if they are in

HRS-LRS states. But if they are in LRS-HRS states, they will switch to LRS-LRS states as voltage

across them is less than Vth3,C but greater than Vth4,C. Once they are in LRS-LRS states, the sensed

Chapter 5. Logic implementation on CRS crossbar array 102

Vx

RG

Input CRS Destination & input CRS

Unselected bit line CRS Unselected DEST word line CRS

Unselected INPUT word line CRS

n bit lines

m
w

or
d

lin
es

Figure 5.26. Implementation of 3-input NOR logic on CRS crossbar. The word line of destination
CRS (which is also one of the inputs) is connected to voltage Vx while word lines of other input
CRS are connected to ground. The common bit line of all input CRS is connected to ground
through resistance RG.

Chapter 5. Logic implementation on CRS crossbar array 103

RG

Input CRS Destination & input CRS

Unselected bit line CRS Unselected DEST word line CRS

Unselected INPUT word line CRS

Vx

(n−1)

(m−3) (m−3) (m−3)

(m−3)

Figure 5.27. Resistive equivalent circuit for implementation of 3-input NOR logic on CRS
crossbar shown in Figure 5.26. The dot notation defined in Figure 5.5 are used in equivalent circuit.
The magnitude resultant voltages because of Vx across CRS other than input and destination CRS
should be less than Vth1,C or at least less than Vth2,C so that either their contents are not destroyed
or can be restored back.

voltage across sense resistor RS in read procedure can be used to restore (or write) LRS-HRS

state in those CRSs. Contents of unselected CRSs in destination word line (CRSWORD,DEST)are

destroyed if they are in HRS-LRS states as voltage across them is greater than Vth2,C.

If all the inputs are in HRS-LRS, the destination CRS will switch to LRS-LRS state. The voltage

across each unselected CRS after this switching is given below. The voltage across unselected

CRS in word lines where input CRS are present (not destination CRS) is

VWORD,INPUT =− [nRL +(n+m−3)RG]RH +[(m−1)n−m+3]RGRL

[(3n+m−3)RL +(3n+m−3)RG]RH +[(3m−3)n−m+3]RGRL
Vx (5.47)

Chapter 5. Logic implementation on CRS crossbar array 104

|VWORD,INPUT|
VWORD,DEST
VBIT

|VNSWB|
Vth1,C
Vth2,C

Vo
lta

ge
(V

)

0

0.5

1

1.5

2

2.5

3

Array size (m×n)

0 200 400 600 800 1000

Figure 5.28. Voltage variations across unselected CRSs before destination CRS switching as
function of array size (m× n) with m = n for implementation of 3-input NOR logic on CRS
crossbar. Content of unselected CRSs on selected bit line (CRSBIT), unselected bit lines and
unselected word lines (CRSNSWB) do not change as voltage across them is always less than
Vth1,C or |Vth3,C|. Contents of unselected CRSs on selected input word line (CRSWORD,INPUT) (not
destination word line) will change to LRS-LRS if they are in LRS-HRS as voltage across them is
less than Vth3,C but greater than Vth4,C but they can be restored back to LRS-HRS by using feedback
write mechanism where read voltage is used as feedback signal. The content of unselected CRS in
destination word line (CRSWORD,DEST) will be destroyed if they are in HRS-LRS as voltage across
them is greater than Vth2,C.

The voltage across unselected CRS in word line where destination CRS is present, is given by

VWORD,DEST =
[(2n+m−3)RL +2nRG]RH +(2m−2)nRGRL

[(3n+m−3)RL +(3n+m−3)RG]RH +[(3m−3)n−m+3]RGRL
Vx (5.48)

Voltage across unselected CRS in selected bit line is given by

VBIT =
[(n−1)RL +(2−2n)RG]RH +(2n−2)RGRL

[(3n+m−3)RL +(3n+m−3)RG]RH +[(3m−3)n−m+3]RGRL
Vx (5.49)

Chapter 5. Logic implementation on CRS crossbar array 105

Voltage across CRS not on selected word lines and bit line is given by

VNSWB =− (RL−2RG)RH +2RGRL

[(3n+m−3)RL +(3n+m−3)RG]RH +[(3m−3)n−m+3]RGRL
Vx (5.50)

In order to check the effect of destination CRS switching to LRS-LRS in case where all inputs

are HRS-LRS, the magnitude of effective voltages across each unselected CRS given by (5.47),

(5.48), (5.49) and (5.50) are plotted as a function of array size m× n for symmetric array (i. e.

m = n) in Figure 5.29. In this case also the contents of unselected CRSs in destination word line

are destroyed. Other CRSs either don’t change their states or they can be restored back.

The power consumption in evaluate (NOR) operation on CRS crossbar as function of array size

(m× n) is shown in Figure 5.30 for symmetric array. The power consumption just before and after

execution is shown in this figure.

5.5 Summary

Implementation of stateful NOR gate on CRS crossbar is described and analysed in this chapter.

The observations are summerized below.

• In order to implement stateful NOR gate on CRS crossbar, 1/3 write scheme is better choice

for writting inputs to CRSs as it does not alter the contents of other CRSs.

• While performing stateful NOR operation,

– The contents of CRSs that are neither on word lines nor on bit lines of CRSs taking

part in logic implementation are unaffected as voltage across them is almost negligible.

– The contents of CRSs on bit and word lines of input CRSs (excluding destination

CRS) taking part in logic can alter to LRS-LRS if they are in HRS-LRS and array size

is less than 7000×7000 but they can be restored back by using mechanism used in

self-resetting read scheme. The contents of these CRSs will not be destroyed at all if

they are in LRS-HRS state or array size is more than 7000×7000.

– The contents of CRSs on word line of destination CRS (excluding it) are destroyed

if they are in HRS-LRS state and they can not be recovered back. In order to avoid

Chapter 5. Logic implementation on CRS crossbar array 106

|VWORD,INPUT|
VWORD,DEST
|VBIT|

|VNSWB|
Vth1,C
Vth2,C

Vo
lta

ge
(V

)

−0.5

0

0.5

1

1.5

2

2.5

3

Array size (m×n)

0 2000 4000 6000 8000 104

Figure 5.29. Voltage variations across unselected CRSs after possible destination CRS switching
to LRS-LRS as function of array size (m× n) with m = n for implementation of 3-input NOR
logic on CRS crossbar. Contents of CRSs on unselected bit lines and unselected word lines
(CRSNSWB) do not change as voltage across them is greater than Vth3,C. Also contents of unselected
CRSs on selected bit line (CRSBIT) will not change if array size is approximately more than
7000× 7000. Contents of unselected CRSs on selected input word lines (CRSWORD,INPUT) (not
destination word line) for any array size or on selected bit line (CRSBIT) for array size less than
approximately 7000×7000 will switch to LRS-LRS if they are HRS-LRS as magnitude of voltage
across them is greater than Vth1,C and less than Vth2,C, but they can be restored back to HRS-LRS
by using feedback write mechanism where read voltage is used as feedback signal. The content
of unselected CRS in destination word line (CRSWORD,DEST) will be destroyed if they are in
HRS-LRS as voltage across them is greater than Vth2,C.

this, all such HRS-LRS states in these CRSs can be converted to LRS-LRS state by

applying voltage greater than Vth1,C and less than Vth2,C to its word line and grounding

bit line, before performing stateful NOR operation. Once stateful NOR operation is

over, their contents can be restored back by using self-resetting read scheme. Other

option is to keep some word lines as dedicated destination word lines so that even if

their contents are changed, it will have any impact on system.

• The state of CRS can be read correctly even for larger array size as CRS crossbar array is

free from sneak path problem. Self-resetting read scheme is better choice for read operation.

Chapter 5. Logic implementation on CRS crossbar array 107

Before possible state change of destination CRS
After destination CRS switch to LRS-LRS state

Po
w

er
(W

)

0

0.002

0.004

0.006

0.008

Array size (m × n)
0 200 400 600 800 1000

Figure 5.30. Power consumption for evaluate operation in CRS crossbar as function of array
size (m × n) for symmetric crossbar. The power consumption after possible LRS-LRS switching
of destination CRS while performing stateful-NOR on CRS crossbar is slightly higher than just
before destination CRS switching.

In this scheme, read voltage VR is applied to word line of CRS to be read such that Vth1,C <

VR <Vth2,C and its bit line is connected to ground through resistance RS forming voltage

divider with CRS to be read. If CRS to be read is in HRS-LRS state, it will be switched

to LRS-LRS state because of VR and hence sensed voltage across RS is larger. If CRS to

be read is in LRS-HRS state, its state remains unchanged and sensed voltage across RS is

relatively smaller. The delayed sensed voltage is used as control signal to write back the

original contents to CRS that were present before performing read operation.

In next chapter, reconfigurable pipelined architecture using stateful NOR gate as basic building

block is proposed that can be implemented on memristive/CRS crossbar. The automation

algorithm for proposed architecture and supporting CMOS circuits are also given.

Chapter 6

Reconfigurable Architecture

6.1 Introduction

The implementation of stateful NOR logic operation with memristors (on passive memristive

crossbar or on specialized crossbars like CMOL and FPNI) is explained in Chapter 4 and on CRS

CRS crossbar array is explained in Chapter 5. NOR is universal operation and hence any other

logic function can be implemented with the help of NOR logic gate. Also the NOR operation with

memristors/CRSs is stateful i.e. the result of NOR is stored in the form of resistance state (HRS

or LRS in memristor, HRS-LRS or LRS-HRS in CRS) in destination memristor or CRS. Hence

combinational as well as sequential operations can be carried out with stateful NOR gate.

In this chapter, generalized reconfigurable logic architecture is proposed using stateful NOR as

basic building block. Common CMOS circuit blocks required in the architecture are explained.

Automation algorithm for implementation of 3-input logic function, where truth table of logic

function to be implemented as input and netlist as output for function implementation, is described.

If the logic function has more than 3 inputs, then multiplexer based implementation of such logic

function using proposed 3-input architecture and its automation algorithm are also explained.

108

Chapter 6. Reconfigurable Architecture 109

6.2 Common Circuit Blocks in CMOS Layer

To implement the architecture on memristive crossbar or on CMOL/FPNI structure or on CRS

crossbar, various common circuit blocks are required in CMOS layer as memristor and therefore

CRS is passive element. Such circuits are explained in this section.

6.2.1 Write Circuit

The circuit shown in Figure 6.1 can be used to write LRS/ HRS state in memristor or

HRS-LRS/LRS-HRS state in CRS using 1/3 write scheme. LRS/LRS-HRS is considered as logic

‘1’ while HRS/HRS-LRS as logic ‘0’ in memristive/CRS logic. WRC is write control signal to

enable write operation. Terminal ST1 is connected to word line (bit line) of memristor/CRS to

be written while ST2 is connected to bit line (word line) of it. The terminal UT1 is connected

to unselected word lines (bit lines) and UT2 is connected to unselected bit lines (word lines).

When data to be written is logic ‘1’ (logic ‘0’), voltage VW will be at ST1, ST2 is connected to

ground, voltage at UT1 will be VW/3 and voltage at UT2 will be 2VW/3. When data to be written

is logic ‘0’ (logic ‘1’), the voltages at these terminals will be negative with same magnitude.

The value of voltage VW is selected such that VW >Vth1,M for memristor and VW >Vth2,C for

CRS, VW/3<Vth1,M for memristor and VW/3<Vth1,C for CRS, −VW <Vth2,M for memristor and

−VW <Vth4,C for CRS, −VW/3>Vth2,M for memristor and −VW/3>Vth3,C.

6.2.2 Evaluate Circuit

To implement stateful NOR on memristive crossbar or CRS crossbar, evalute logic circuit is shown

in Figure 6.2, where EV is evaluate control signal to enable operation. For memristor based stateful

NOR, voltage VSET is applied to terminal P while voltage VCOND is applied to terminal Q. For CRS

based stateful NOR, voltage Vx is applied to terminal P while terminal Q is connected to ground.

Terminal TD is connected to word line of destination memristor or CRS, terminal TI is connected

to word lines of input memristors or CRSs. Terminal TC connects common bit line of destination

and input memristors or CRSs to ground through resistance RG.

Chapter 6. Reconfigurable Architecture 110

VW −VW

D
at

a
W

R
C

D
at

a
W

R
C

−VW/3VW/3

2VW/3 −2VW/3

ST1

ST2

UT1

UT2

Figure 6.1. Write circuit to write state in selected memristor or CRS using 1/3 write scheme. WRC
is write control signal to enable write operation. Based on logic value of data (logic ‘1’ or logic ‘0’
), appropriate voltage (VW or−VW) is applied to one terminal of memristor or CRS selected while
its other terminal is connected to ground. Unselected word lines are driven with voltage VW/3 or
−VW/3 while unselected bit lines are driven with voltage 2VW/3 or −2VW/3. Proper value of VW
is chosen for memristive and CRS crossbar write operation.

TDTI

TC

EV

PQ

RG

Figure 6.2. Evaluate logic circuit to implement stateful NOR in memristive crossbar or in CRS
crossbar. EV is evaluate control signal to enable operation. Terminal P is connected to voltage
VSET and terminal Q is connected to voltage VCOND for memristor based stateful NOR. Terminal
P is connected to voltage Vx while terminal Q is grounded for CRS based stateful NOR.

6.2.3 Read Circuit

The read circuit is used to detect state of destination memristor or CRS after evaluation and is

shown in Figure 6.3. The voltage VR is such that it does not alter the state of memristor during

read operation in memristive crossbar while in CRS crossbar, voltage VR will be such that if CRS

Chapter 6. Reconfigurable Architecture 111

to be read is in HRS-LRS state, it will switch to LRS-LRS state. If CRS is in LRS-HRS state, it

will not change its state. Resistance RS form voltage divider with memristor or CRS, and voltage

drop across it will be greater than threshold voltage of nMOS when destination memristor is in

LRS or CRS is in LRS-LRS state. This will produce VRESULT = logic ‘1’. When destination

memristor is in HRS or CRS is in LRS-HRS, the nMOS will be off and in turn will produce

VRESULT = logic ‘0’. The read control signal RDC=logic ‘1’ will enable this read circuit. For CRS

crossbar additional write back step is required to retain back the contents of CRS. Sense amplifier

can also be used to read the state by sensing the voltage across RS. The read circuit using sense

amplifier and precharge circuit is shown in Figure 6.4 [147]. It consists of precharge circuit, where

EQ signal is used to force equal charge across capacitor C1 and C2 in the initialization phase. The

sampling signals φ1 and φ2 are used to convert charge to voltage across C1 and C2. The difference

between charge on C1 and C2 will vary based on the voltage across RS which in turn depends

on state of memristor/CRS to be read. The voltage V1 and V2 is applied to sense amplifier and

sensing is enabled by applying NS and PS signals sequentially.

T1

T2

RDC

RS

VRESULT

R1

VR

Figure 6.3. Read Circuit to detect state of memristor or CRS after evaluate phase. When read
control signal RD=‘1’, voltage VR is applied across voltage divider circuit consisting of destination
memristor or CRS and resistance RS. When memristor is at logic ‘1’ (LRS) or CRS is in LRS-LRS
state, voltage drop across RS is above threshold of nMOS which turns on to give VRESULT =logic
‘1’. Otherwise it is logic ‘0’.

Chapter 6. Reconfigurable Architecture 112

VREAD

φ1

φ2

EQ C1

C2

RS

RMem/RCRS

Precharge circuit Sense amplifier

V1

V2

Mna Mnb

Mpa Mpb

V1

V2

PS

NS

Figure 6.4. Sense amplifier used in reading the state of memristor/CRS. It consists of precharge
circuit, where EQ signal is used to force equal charge across capacitor C1 and C2 in the
initialization phase. The sampling signals φ1 and φ2 are used to convert charge to voltage across
C1 and C2. The difference between charge on C1 and C2 will vary based on the voltage across RS
which in turn depends on state of memristor/CRS to be read. The voltage V1 and V2 is applied to
sense amplifier and sensing is enabled by applying NS and PS signals sequentially [147].

6.2.4 Priority Logic

The priority logic circuit is shown in Figure 6.5 having I1− I8 inputs and O1− O8 outputs with I1

having highest priority and I8 having lowest priority. If, out of all inputs to priority logic, some

or all are at logic ‘1’, then out of it, only highest priority input is kept at logic ‘1’ at output and

other outputs are forced to logic ‘0’ using priority logic circuit. The exact use of this with respect

to architecture will be explained in description of architecture.

6.3 Reconfigurable Architecture using Stateful NOR

Stateful NOR gate implemented in memristive/CRS crossbar and the CMOS circuit blocks

explained in previous section are used in the proposed architecture. The basic NOR block is

given in Figure 6.6 which will be used to describe the architecture. It consists of ‘N’ input stateful

NOR gate implemented on crossbar, ‘N’ bits of data, control signals (WRC, EV and RDC) and

one timing control signal LH used in write operation as it is not possible to write logic ‘0’ and ‘1’

simultaneously in memristors or CRSs. When LH=logic ‘0’, logic ‘0’ is written to memristors or

CRS in addition to destination memristor (not required in CRS) in step 1 of write mode and then to

Chapter 6. Reconfigurable Architecture 113

I1 I2 I3 I4 I5 I6 I7 I8

O1 O2 O3 O4 O5 O6 O7 O8

Figure 6.5. Priority Circuit with I1− I8 as inputs and O1−O8 as outputs (I1-highest priority,
I8-lowest priority). When some or all inputs are at logic ‘1’ then the one with highest priority is
passed as it is to output while others are forced to logic ‘0’ at output.

write logic ‘1’ to memristors or CRSs in step 2 of write mode, LH=logic ‘1’. The voltages ±VW,

VSET, VCOND for memristive NOR or Vx for CRS based NOR and VR are not shown explicitly in

this symbol and are applied through CMOS layer as described below.

NOR N

Data
LH

WRC
EV

RDC DO

N bit

Figure 6.6. NOR logic block symbol with ‘N’ data inputs. WRC, EV and RDC are write, evaluate
and read control signals, respectively to enable these modes. LH is to write logic ‘0’ in step 1 with
LH=‘0’ and logic ‘1’ in step 2 with LH=‘1’ of write mode. DO is the output of read operation
which is result of NOR logic.

In write mode, WRC=‘1’. In step 1 of write mode LH=‘0’ is combined with data bits to access

those memristors or CRSs for which data is ‘0’ along with destination memristor for memristive

NOR. Using write circuit given in Figure 6.1, voltage VW is applied to one terminal of all such

memristors or CRS and common terminals of all are connected to ground so that effective voltage

across them is VW and logic ‘0’ is written to them. In step 2 of write mode LH=‘1’ is combined

with data bits to access those memristors or CRSs for which data is ‘1’. Voltage−VW is applied to

one terminal of all such memristors or CRSs and common terminal of all are connected to ground

so that effective voltage across them is −VW and logic ‘1’ is written to them.

Chapter 6. Reconfigurable Architecture 114

In evaluation mode, EV=‘1’. One terminal of all input memristors is connected to voltage VCOND,

one terminal of destination memristor is connected to voltage VSET and common terminal of all

memristors of NOR gate is connected to ground through resistance RG for memristive NOR. For

CRS based NOR, terminal of destination memristor is connected to voltage Vx, one terminal of

all input CRS is connected to ground while common terminal of all CRS is connected to ground

through resistance RG. Evaluation circuit shown in Figure 6.2 is used for this operation.. The

result of stateful NOR logic is stored in destination memristor or CRS.

In read mode, RDC=‘1’ and only destination memristor or CRS is accessed. Voltage VR is applied

to one terminal of memristor or CRS while other terminal of it is connected to ground through RS

to form voltage divider. If destination memristor is in HRS state or CRS is in LRS-HRS, voltage

drop across RS is small. If destination memristor is in LRS or CRS is in LRS-LRS state, voltage

drop across RS is larger. Thus drop across RS can be used to identify state of destination memristor

or CRS (i.e. the result of NOR operation).

6.3.1 Architecture Description

The proposed architecture can be used to implement any 3-input logic function. The block diagram

representation of architecture is shown in figure 6.7. The first level consists of one 3-input NOR

block, three 2-input NOR blocks and three 1-input NOR blocks (essentially an inverter). If A, B

and C are the inputs to logic function, then inputs (A, B, C) are applied to 3-input NOR block,

inputs (A, B), (B, C) and (A, C) are applied to each of the three 2-input NOR blocks while inputs

(A), (B), (C) are applied to each of three 1-input NOR blocks. In addition to this the output(s)

corresponding to all inputs at logic ‘1’ is/are written to destination memristor(s) or CRS(s).

Following the write and evaluate operation explained previously on all NOR blocks simultaneously

in level 1, the destination memristors or CRS in those logic block will toggle to logic state ‘1’

(i. e. LRS state for memristor or LRS-LRS state for CRS) for which all inputs are logic ‘0’.

The remaining NOR blocks’ destination memristors or CRSs will remain in logic state ‘0’. All

destination memristors or CRSs are read simultaneously in level 1 and read voltage is applied to

priority logic.

Chapter 6. Reconfigurable Architecture 115

NOR3 NOR2NOR2 NOR2 NOR1 NOR1 NOR1

A
B
C

WRC

EV

LH

RDC

LH

To write circuit of destination memristors

Priority Logic
I1 I2 I3 I4 I5 I6 I7

O1O2O3O4O5O6O7

NOR3 NOR2 NOR2

LEN

EN

LEVEL1

LEVEL2

LEVEL3

Figure 6.7. Recofigurable, pipelined 3-input logic block (LB3) architecture using stateful NOR
operation.

The priority logic is used to identify the minterm. As an example, for a function with three inputs

A, B, C, suppose inputs are ABC=‘000’. All destination memristors or CRSs will toggle in level

1 of architecture. The priority logic will keep the read voltage of destination memristor or CRS

of only first three input NOR block (NOR block with inputs A, B, C) to level ‘1’ and will force

the read voltage of other destination memristor or CRS to logic ‘0’. If inputs are ABC=‘010’,

then the destination memristor or CRS of NOR block with inputs A and C, of NOR block with

input A and of NOR block with input C will toggle. The priority logic will keep the read voltage

of destination memristor or CRS of NOR block with inputs A and C to logic ‘1’ force the read

voltage of destination memristors or CRSs of NOR block with A input and of NOR block with C

input to logic ‘0’.

Those input combinations creating logic ‘0’ output are grouped from the outputs of priority logic

Chapter 6. Reconfigurable Architecture 116

Table 6.1. The stepwise implementation of 3-input logic function using proposed architecture.
The ‘EN’ should be logic ‘1’ to enable the 3-input logic block. The write circuits for destination
memristors or CRSs should be enabled only during step 8. ‘x’ represent don’t care condition.

Step No. LEN WRC LH EV RDC Input
1 1 1 0 0 0 C, B, A
2 1 1 1 0 0 C, B, A
3 1 0 x 1 0 x
4 1 0 x 0 1 x
5 0 1 0 0 1 Priority logic outputs
6 0 1 1 0 1 Priority logic outputs
7 0 0 x 1 0 x
8 0 0 x 0 1 x

and written to NOR block in level 2 and remaining outputs are written to other NOR block

and then sequence of evaluate and read operation is repeated. The output corresponding to

NOR bock whose destination memristor or CRS does not toggle in second level (in evaluation

operation) is written to destination memristor or CRS. The steps involved in 3-input logic function

implementation using proposed architecture are summarized in Table 6.1. Note that EN is

enable control signal to activate LB3 block (Figure 6.14). There are two different levels of

implementation, LEVEL1 and LEVEL2. LEN signal is the enable (disable) signal for LEVEL1

(LEVEL2).

One key consideration here is that the minterm where all the inputs are logic high can not be

identified using the above scheme. Due to this reason, default value(s) (depending upon the

number of inputs) are written to the destination memristor(s) or CRS (Table ??). The default

value(s) are the output(s) of the logic function to be implemented, when all the inputs are high.

The architecture can be modified in order to avoid the writing the result(s) corresponding to all

inputs high to destination memristors or CRSs, by permanently connecting the 8th input of priority

circuit to logic ‘1’ and grouping the outputs in usual manner. This will remove the initialization

step required for destination memristors or CRSs.

Irrespective of 3-input logic function, LEVEL1 contains the fixed logic and does not change with

the function to be implemented. The LEVEL2 is programmable, which is dependent on the

function to be implemented. The port mapping algorithm to implement 3-input logic function

is explained in the Subsection 6.3.2.

Chapter 6. Reconfigurable Architecture 117

6.3.2 Automation Algorithm for 3-input Logic Block Architecture

The automation algorithm for implementation of any y input and z output logic function is given in

Algorithm 1. This algorithm gives the connection pattern between various blocks (port mapping)

to implement the given logic function according to the proposed architecture.

In this algorithm, notation ABC1x.I/Onm is used to denote NOR logic blocks in LEVEL1, where

ABC is name of block or gate, x denotes the number of inputs to the block, I/O represents either

input (I) or output (O) pin, n represents pin number and m represents the serial number of the

NOR block. In LEVEL3, notation ABC3x.I/On is used to denote NOR logic blocks, where ABC

is name of block or gate, x denotes the number of inputs to the block, I/O represents either input

(I) or output (O) pin and n represents pin number. Moreover, in LEVEL3, notation ABC3.I/On

is used to denote NOT blocks, where ABC is name of block or gate, 3 is the level number, I/O

represents either input (I) or output (O) pin and n represents pin number.

Inputs: Array I(n,m): where, n:1 to 2y, y is the number of inputs, m:1 to z, z is the number of

outputs and I(n,m) are the minterms; NOR blocks; priority block.

Outputs: Number of NOR blocks with number of inputs at each level, ‘netlist’- like connection

pattern.

The overview of this algorithm is given below:

1. Write the default values into the destination memristors or CRSs.

2. Connect all the inputs, in the combinations of ‘a’, to ‘a’- input NOR blocks. The ‘a’- input

implication-based NOR blocks produce minterms with ‘a’ number of complemented inputs.

3. All the a input NOR blocks are grouped together to produce nCa outputs and these outputs

are connected to consecutive inputs of the priority block in opposition to fetching minterms

consecutively. This prioritizes the a-input stateful NOR blocks over a− 1, a− 2, ...- input

implication-based NOR blocks.

4. Count the number of minterms that produce a different output than the output produced by

the minterm with all standard inputs (i.e. all inputs are logic high).

Chapter 6. Reconfigurable Architecture 118

5. Call NOR blocks with the above calculated count of inputs, each NOR block associated

with an output of the function to be implemented, and connect the inputs to the outputs of

the priority block corresponding to the minterms that produce a different output than the

output produced by the minterm with all standard inputs.

6. The outputs of all the NOR blocks are inverted.

7. The outputs of the inverters go to the write signals of the write blocks (to enable/disable the

write block) of the corresponding destination memristors or CRS, where the outputs of the

function are stored. Here, the data signal to the write blocks is the negation of the default

value (the destination memristor or CRS will toggle only if the output(s) of a particular

input combination is(are) different than the default value(s), which is the optimal way of

implementing any function).

6.3.3 Simulation of 3-input Function using Proposed Architecture

1-bit full adder using the stateful NOR based architecture is implemented and simulated using

current threshold based TEAM Model and Kvatinsky Window [81]. The values of the various

parameters used in the TEAM model are listed in Table 3.2. The proposed design has been

simulated in Cadence Analog Design Environment (ADE) with Spectre simulator. The results are

shown in Figures 6.8, 6.9, 6.10 and 6.11. To illustrate the pipelined nature of architecture, 1-bit

pipelined full adder is also implemented and simulated using proposed architecture. The inputs

and outputs for 1-bit pipelined full adder are given in Figures 6.12 and 6.13, respectively. The

adder design given in [148, 149] use basic logic equations for sum and carry output and number of

basic steps vary from function to function. However, the number of basic steps remain the same

for any function in the proposed architecture.

For stateful NOR logic circuit implemented using memristors or CRSs to work correctly, the value

of resistance RG should be scaled down as the number of inputs n increases. All input memristors

or CRSs are in parallel with each other while calculating effective voltage across them, and hence

effective resistance decreases with number of inputs. In order to retain same voltage required for

NOR operation, RG should be also scaled down. For fixed value of RG, the maximum number of

inputs for successful NOR operation is given by

Chapter 6. Reconfigurable Architecture 119

Algorithm 1: Stateful NOR based 3-input Logic Block design
Input: Array I(n,m) where n:1 to 2y, y is the number of inputs; m:1 to z, z is the number of

outputs and I(n,m) are the minterm; NOR blocks; PIORITY block
Output: Number of NOR blocks with number of inputs at each level,‘netlist’-like connection

pattern
1 memristor(k)← I(2y,k) . writing default values into the destination memristors or CRS
2 NOR1a.I(x)(1 to yCa)← I(combinations o f a f rom y inputs) . a:1 to y, x:1 to a
3 PRIORITY 2((2y)−1).I(u)← NOR1(m).O(x)(1 to nCm) . u:1 to ((2n)−1) . All the m input

NOR blocks are grouped together and these nCa outputs are connected to consecutive inputs of
the PRIORITY block in opposition to fetching minterms consecutively

4 for i← 1 to z do
5 for j← 1 to 2y−1 do
6 if I(j, i)! = I(2y, i) then
7 Increment number o f inputs to ith LEVEL3 NOR block

8 for i← 1 to z do
9 for j← 1 to 2y−1 do

10 if I(j, i)! = I(2y, i) then
11 NOR3(number o f inputs to ith LEVEL3 NOR block).I(pin count)

← PRIORITY 2(2y−1).O j
12 Increment pin count

13 for i← 1 to z do
14 NOT 3.Ii← NOR3(number o f inputs to ith LEV EL3 NOR block).Oi

15 for i← 1 to z do
16 memristor(i)← NOT 3.Ii

17 return connection pattern

1. NOR1a.I(x)(1 to yCm)← I(combinations o f a f rom y inputs) . connection pattern
between inputs and NOR inputs

2. PRIORITY 2(2y−1).Id← NOR1a.Obs . connection pattern between outputs of NOR
blocks at LEVEL1 and PRIORITY block inputs

3. NOR3 f .I(w)(k)← PRIORITY 2(2y−1).Id . connection pattern between outputs of
PRIORITY at LEVEL2 and NOR block inputs

n≤ RLRS
VCONDRG

VSET− ILRSRHRS
−RG

(6.1)

Let us assume that the fan-in on the NOR block is n. Thus, the similar structure, as shown in

the Figure 6.7 can be extended for n-input function. LEVEL1 consists of NOR blocks of each

combination possible out of n-inputs. The total number of NOR blocks in LEVEL1 will be equal

Chapter 6. Reconfigurable Architecture 120

Input=000

Carry
Sum

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.01 0.02 0.03 0.04

Figure 6.8. Simulation results for 1-bit full adder with inputs=‘000’; outputs:Sum=‘0’(1 MΩ),
Carry=‘0’(1 MΩ).

to 2n− 1 (n ≤ fan-in of NOR gate). They are used to identify the input minterm (output is logic

high only if all the inputs are logic low). Even though it looks huge for large input logic function,

but it greatly reduces the further functionality of the circuit once the input minterm has been

identified.

Here 3-input logic block has been designed because of constrain on fan-in (otherwise, RG specified

in Figure 4.20 has to be scaled accordingly). Logic function having more than 3-inputs can be

realized by integrating 3-input blocks as is done in conventional FPGA.

6.4 n-Input Function Implementation

The disadvantage of the above architecture is that the fan-in is restricted according to the fan-in of

NOR block (given by (6.1)). The 3-input logic blocks [LB3] can be multiplexed to convert it into

a generalized architecture. The LB3 symbol is shown in Figure 6.14 and generalized architecture

in Figure 6.15. Here, many such (LB3) blocks are used and the output is produced according to

Chapter 6. Reconfigurable Architecture 121

Input=001

Carry
Sum

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.01 0.02 0.03 0.04

Figure 6.9. Simulation results for 1-bit full adder with inputs=‘001’; outputs:Sum=‘1’(100 Ω),
Carry=‘0’(1 MΩ).

the inputs. Out of n-inputs lower three are connected to three inputs of each 3-input logic block

(LB3) and remaining n− 3 are decoded to use as selection line for one of many LB3s based on

inputs. The automation algorithm for this is explained in the Section 6.4.1.

Even though the functions with large number of inputs seem to use huge number of memristors or

CRS in this architecture, the block active at a time will be only single logic block (LB3) and rest

of the area can be utilized for other functions. This greatly reduces the device count. Also note

that the architecture is pipelined. Hence, the actual throughput of circuit is quite high. Also, the

number of outputs will not impact the size of circuit to be configured in this architecture, which is

against the conventional FPGA as single LUT can provide only single output in its basic form.

Consider an example of the logic function shown in Table 6.2, with an input combination having

I4=1, I3=0, I2=0, and I1=1. Since the fan-in (n given by (6.1)) is 3 for proposed architecture,

multiplexing of logic blocks is required as in Figure 6.15 for 4-input function. The working of

the circuit for selected logic function is explained in Figure 6.16. It shows NOR M2, which is

the minterm of interest out of all input combinations given in Table 6.2. I4 is used for selection

of LB3 block. The input data I3, I2, and I1 is written on the input memristors or CRS of each

Chapter 6. Reconfigurable Architecture 122

Input=011

Carry
Sum

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.01 0.02 0.03 0.04

Figure 6.10. Simulation results for 1-bit full adder with inputs=‘011’; outputs:Sum=‘0’(1 MΩ),
Carry=‘1’(100 Ω).

LB3 evaluation memristors or CRSs are cleared. Default values are written to the destination

memristors or CRS (O1, O2, and O3). Then the appropriate voltages are applied to the input

memristors or CRS and evaluate memristors or CRS in the evaluate phase. The output of each

NOR block will be available in the read phase. In this case, the outputs D1-D7 (Figure 6.16) will

be: D1=0, D2=1, D3=0, D4=0, D5=1, D6=1, D7=0.

Here, the minterm is 001 and three of the NOR gates are giving high output. To identify the

minterm, we would expect only one of the outputs to be high. To remove the insignificant bits of

data (D5 and D6), priority circuit is used. Output of each NOR gate is the input to this circuit. The

highest priority is given to D1 and least to D7. For the above example, only D2 remains high and

thus the minterm 001 has been identified.

Since the default data is written on the destination memristors or CRSs, it is expected to toggle

them, if and only if the input minterm gives other output than the default data and are called

decision minterms. Among the output minterms generated at LEVEL1, only decision minterms

are given as an inputs to the NOR blocks in LEVEL2. If a particular NOR output is low, then it is

concluded that the input minterm is the decision minterm. This can be inverted and given to the

Chapter 6. Reconfigurable Architecture 123

Input=111

Carry
Sum

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.01 0.02 0.03 0.04

Figure 6.11. Simulation results for 1-bit full adder with inputs=‘111’; outputs:Sum=‘1’(100 Ω),
Carry=‘1’(100 Ω).

t4t3

t2t1

Inputs

A
(v

ol
ts

)

0
1
2
3

0 0.2 0.4 0.6 0.8

t4t3t2

t1B
(v

ol
ts

)

0
1
2
3

0 0.2 0.4 0.6 0.8

t4

t3

t2t1C
(v

ol
ts

)

0
1
2
3

time(µs)
0 0.2 0.4 0.6 0.8

Figure 6.12. Input applied to 1-bit pipelined full adder implemented with proposed 3-input logic
block architecture.

Chapter 6. Reconfigurable Architecture 124

t4t3

t2t1

Outputs
C

ar
ry

(Ω
)

0

1M

500k

0 0.2 0.4 0.6 0.8

t3t2

t4t1

Su
m

(Ω
)

0

500k

1M

time(µs)
0 0.2 0.4 0.6 0.8

Figure 6.13. Output of 1-bit pipelined full adder for different inputs Output(t1)
(Sum=‘0’,Carry=‘0’) for inputs ABC=‘000’, Output(t2) (Sum=‘1’,Carry=‘0’) for
inputs ABC=‘010’, Output(t3) (Sum=‘1’,Carry=‘1’) for inputs ABC=‘111’, Output(t4)
(Sum=‘0’,Carry=‘1’) for inputs ABC=‘110’.

LB3

EN A B C

LH

LEN

WRC

EV

RDC

Dout

Figure 6.14. 3-input Logic Block (LB3) symbol for architecture shown in Figure 6.7.

enable signal to the write block of the destination memristor or CRS, which will toggle the state

from the default value.

Chapter 6. Reconfigurable Architecture 125

LB3LB3LB3LB3

Write Block Write Block Write Block Write Block

Decoder

Mux

LH

WRC
EV

RDC

LEN
I1

I2

I3

I4

I5

In−3

EN En1
En2

En3

En2(n−3)

EN
I4

I5

In−3

Destination device block

Figure 6.15. Generalized architecture to implement n-input logic function constructed from
proposed reconfigurable 3-input logic block architecture using multiplexers.

6.4.1 Automation Algorithm for Generalized Architecture for n-Input

Function Implementation

The automation algorithm for generating a netlist-like pattern for a y input and z output function

has been described in Algorithm 2. In this algorithm the nomenclature used for the decoder is

DECODER(I/O)p, where I/O indicates whether it is an input or an output pin and p represents

the pin number. A similar representation is used for the multiplexer used at the end of the

architecture-MUXt(I/O/sel)s, where t is the type of signal being multiplexed. If t=1, the write

signal is being multiplexed and if t=2, the default data (result corresponding to all ‘1’ logic) is

being multiplexed. Further, I/O/sel denotes whether the pin is an input, an output pin or a select

pin and s represents the serial number of the multiplexer.

Logic blocks are represented as logic BLOCKs(en/wr/default value)(w) where s is the serial

Chapter 6. Reconfigurable Architecture 126

Table 6.2. Truth table of a random logic function.

Inputs Outputs
I4 I3 I2 I1 O1 O2 O3

0 0 0 0 1 0 0
0 0 0 1 1 0 1
0 0 1 0 0 1 0
0 0 1 1 1 0 1
0 1 0 0 0 0 0
0 1 0 1 0 1 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 0 1 1
1 0 0 1 0 0 1
1 0 1 0 1 1 1
1 0 1 1 0 1 1
1 1 0 0 1 1 0
1 1 0 1 0 0 0
1 1 1 0 0 0 1
1 1 1 1 0 1 1

number of the logic block, en/wr/default value is the type of signal transmitted on that category

of pins and w is the serial number of that pin among the particular cateory of pins that transmit

the same type of signal. The representation used for the destination write block is Destination

Write Block(wr/default value/O)(w) where wr/default value/O is the type of signal transmitted

on that wire and w is the serial number of that pin among the particular cateory of pins that

transmit the same type of signal. The destination memristors or CRSs are denoted by destination

memristors(m) or CRS(m) where m denotes the serial number of the output of the entire function

that the architecture resolves. Moreover, when generating the netlist between destination write

block and the destination memristors or CRS, a nomenclature ABC(HIGH,LOW) has been used

where ABC is the standard representation and HIGH,LOW represents the two terminals of the

memristor or CRS.

Inputs: Array I(n,m): where, n:1 to 2y, y is the number of inputs, m:1 to z, z is the number of

outputs and I(n,m) are the minterms; decoder; multiplexers; logic block; destination write block;

destination memristors or CRS.

Outputs: ‘netlist’- like connection pattern.

Chapter 6. Reconfigurable Architecture 127

I1I2I3

NOR M2

LEVEL1

Write

I4=1

Evaluate

VSET VCOND

D2

RGRG

NOR M2

Priority
Logic

0 1 0 0 1 1 0
D1 D2 D3 D4 D5 D6 D7

Priority Block

0 1 0 0 0 0 0
m0 m1 m2 m3 m4 m5 m6

minterms

NOR M2

NOR M3

NOR M2

m2

m4

m1

m5

m6

m4

m5

D11

D12

D13

O1O2O3

Output block

O1O2O3

Output block

Final

Phase

When D1k

kth output

toggles

Figure 6.16. Flow of the functionality of architecture to implement function shown in Table 6.2
for inputs ‘1001’.

Chapter 6. Reconfigurable Architecture 128

O1
O2
O3

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.025 0.05 0.075 0.1 0.125 0.15

(a) Input=0000

O1
O2
O3

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.025 0.05 0.075 0.1 0.125 0.15

(b) Input=0010

O1
O2
O3

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.025 0.05 0.075 0.1 0.125 0.15

(c) Input=0100

O1
O2
O3

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.025 0.05 0.075 0.1 0.125 0.15

(d) Input=0111

O1
O2
O3

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.025 0.05 0.075 0.1 0.125 0.15

(e) Input=1001

O1
O2
O3

R
es

is
ta

nc
e(

Ω
)

0

250k

500k

750k

1M

time(µs)
0 0.025 0.05 0.075 0.1 0.125 0.15

(f) Input=1010

Figure 6.17. The simulation results for random logic function given in Table 6.2 implemented on
n-input generalized architecture.

Chapter 6. Reconfigurable Architecture 129

Algorithm 2: Automation Algorithm for n-input logic function using 3-input Logic Block
architecture
Input: Array I(n,m) where n:1 to 2y, y is the number of inputs; m:1 to z, z is the number of

outputs and I(n,m) are the minterms; x-input,z-output logic BLOCK; y− x input decoder
Output: ’netlist’-like connection pattern

1 for n← 1 to y− x do
2 DecoderI(i)← Input(x+ i)

3 for j← 1 to 2y−x do
4 logicBLOCK(j)(en)← DecoderO(j)

5 logic BLOCK(1 to 2y−x)(data(1 to x))←Input(1 to x)
6 Mux1(1 to z)I(1 to 2y−x)←logic BLOCK(1 to 2y−x)(Wr(1 to z))
7 Mux1(1 to z)(En)(1 to 2y−x)←DecoderO(1 to 2y−x)
8 Mux2(1 to z)I(1 to 2y−x)←logic BLOCK(1 to 2y−x)(De f aultvalue(1 to z))
9 Mux2(1 to z)(En)(1 to 2y−x)← DecoderO(1 to 2y−x)

10 Destination Write BLOCK(Wr(1 to z))←Mux1(1 to z)O(1 to 2y−x)
11 Destination Write BLOCK(De f aultvalue(1 to z))
←Mux2(1 to z)O(1 to 2y−x)

12 Destination memristor(m) or Destination CRS(m)(HIGH,LOW)← Destination Write
BLOCKO(m)(HIGH,LOW)

13 return connection pattern;

1. DecoderI(i)(1 to y− x)← Input(x to y) . connection pattern between inputs and Decoder
inputs;

2. logic BLOCK(1 to 2y−x)(en)← DecoderO(i)(1 to 2y−x) . connection pattern between
outputs of Decoder and logic block inputs;

3. logic BLOCK(1 to 2y−x)(data)← Input(1 to x) . connection pattern between input lines
and logic BLOCK inputs;

4. Destination memristor(1 to z)(HIGH,LOW)←
logic BLOCK(1 to 2y−x)O(1 to z)(HIGH,LOW) . connection pattern between outputs of
logic BLOCKS and destination memristors or CRS;

6.5 Summary

As memristor is passive circuit element (and hence CRS as it is made up of antiserial memristors),

supporting CMOS circuits are required to implement any operation on memristive or CRS

crossbar. All such common blocks are discussed in the initial section. Using the stateful NOR

as basic operation in memristive crossbar (Chapter 4) or in CRS crossbar (Chapter 5), pipelined

reconfigurable architecture for implementing 3-input logic function is developed. Automation

algorithm for this architecture, with truth table as input and netlisting of different blocks used in

Chapter 6. Reconfigurable Architecture 130

the architecture as output, is presented. The architecture and automation algorithm for any n-input

function, using 3-input stateful NOR logic block, are described. Simulation results of 1-bit full

adder, 1-bit pipelined full adder and 4-input random function are also presented.

Next chapter evaluates the performance of proposed reconfigurable pipelined architecture in terms

of time (delay), power dissipation (energy) and area, and compares with LUT based CLB used in

most commercial FPGAs.

Chapter 7

Performance Analysis

7.1 Introduction

In this chapter, performance analysis of the proposed 3-input 1-output reconfigurable architecture

implemented in memristive as well as CRS crossbar is carried out in terms of delay (timing),

energy (power) and area, and compared with existing LUT based 3-input CLB architectures used

in conventional FPGA.

The memristive crossbar array (Chapter 4) and CRS crossbar array (Chapter 5) are generally part

of ReRAM. The general organization of memristive/CRS based memory (ReRAM) is shown in

Figure 7.1 [150]. It consists memory banks, each bank being subdivided into mats. Mats are again

divided into subarrays which are basic elements of memory. In the analysis, the subarray size is

restricted to 128 × 128. For analysis purpose, memristor is modeled as state resistance in parallel

with capacitor of value 0.12 pF while CRS is modeled as state resistance in parallel with capacitor

of value 0.24 pF [76].

7.2 Timing Analysis

The switching time of memristor from LRS to HRS and from HRS to LRS is important in timing

analysis. The switching time for memristor is given as 120 ps [151]. The switching delays based

131

Chapter 7. Performance Analysis 132

Mat

Bank

Cell array

Precharger

R
ow

de
co

de
r

W
or

dl
in

e
dr

iv
er

Column multiplexer

Sense amplifier

Bitline driver

Predecoder

Sub-
array

Figure 7.1. The generic ReRAM structure consists of banks made up of small sections called
mats. Mats are further divided into subarrays which is the smallest unit of memory. The supporting
circuit components such as multiplexers, drivers, sense amplifiers and prechargers are designed in
CMOS layer while memory elements are in crossbar array situated above CMOS layer.

on the physical properties of material and process involved in working of a memristor are given

by L. Zhang et al. [152] and are given below. Turn-on time (HRS to LRS) is given by

ton =
C0

2

2γtβV λ
, (7.1)

where ton = time for RHRS to RLRS transition

and turn-off time (LRS to HRS) is given by

toff =

[(
1− nc

ni

)
D+2C0

](
1− nc

ni

)
D

2γtβλV
, (7.2)

where toff = time for RLRS to RHRS transition,

V = voltage across memristor.

Chapter 7. Performance Analysis 133

The parameter C0 used in (7.1) and (7.2) is given by

C0 =

(
λ

2

)
+

(
nc

ni

)(
D− λ

2

)
, (7.3)

where λ = transition/conduction/insulation region length,

nc, nt, ni = conduction, transition and insulation region concentrations, respectively,

D = thickness of insulating material (TiO2) in memristor,

γt = electron generating coefficient in the transition region.

The rate of generation of electrons in transition region is given by

dnt

dt
= γt (nc−ni(t))Et(t) (7.4)

where Et(t) is the electric field in the transition region.

The parameter β used in (7.1) and (7.2) is given by

β =
1
4

(
nc

ni
−1
)3

+
2
3

(
nc

ni
−1
)2

+
1
2

(
nc

ni
−1
)
. (7.5)

The parameter β has no physical significance.

The voltage across memristor in the write cycle is fixed. However, the voltage in the evaluate cycle

varies with the number of inputs to the block as given below:

V =VSET−VCOND

 RG

RG +

(
RHRS

n− k
||RLRS

k

)
 , (7.6)

where k is the number of memristors in LRS state and n= the number of inputs satisfying (6.1).

For maximum value of V=Vmax, k = 0. Therefore the minimum switching times for memristor are

given by

tonmin =
C0

2

2γtβVmaxλ
, (7.7)

Chapter 7. Performance Analysis 134

and

toffmin =

[(
1− nc

ni

)
D+2C0

](
1− nc

ni

)
D

2γtβλVmax
(7.8)

Using (7.7) and (7.8) with physical parameters given in [152] calculated the turn-on delay is 200

ps and turn-off delay is 60 ps even for intrinsic concentration of TiO2 as 1014 (the standard value

of ni for TiO2 is 1 m−3 whereas in [152], it is given as function of electric field with condition ni

� nc, nc being equal to 8.75 × 1022 m−3). The graphs for turn-on and turn-off time versus ni are

given in Figures 7.2 and 7.3, respectively using above equations. In [151] the reported value of

memristor switching is 120 ps which is close to average value calculated here. The set and reset

time for tantalum oxide based memristors are 105 and 120 ps, respectively [76, 153].

TURNOFF characteristics

de
la

y
(×

10
−

11
s)

0

2

4

6

8

ni (×1013 m−3)
0 2 4 6 8 10

Figure 7.2. Turn-off delay as function of intrinsic concentration of TiO2.

TURNON characteristics

de
la

y
(×

10
−

10
s)

0

0.5

1

1.5

2

2.5

ni (×1013 m−3)
0 2 4 6 8 10

Figure 7.3. Turn-on delay as function of intrinsic concentration of TiO2.

The timing diagram for the proposed architecture is shown in Figure 7.4. The architecture consists

of 3 levels, the first and third is built from stateful NOR gates while second level is made up

Chapter 7. Performance Analysis 135

of priority logic. We know that logic ‘0’ and logic ‘1’ can not be written simultaneously in

memristive/CRS crossbar. Hence when WRC (write control signal) is active, data bits at logic

‘0’ are written to memristors/CRSs by forcing LH control signal at logic ‘0’ and then data bits at

logic ‘1’ are written to other memristors/CRSs by forcing LH control signal at logic ‘1’. In the

timing diagram, the complete processing of one set of data are shown with same background color.

The input data to each level is shown as ‘DataIn N’ , where N is level number. Control signals

are shown as ‘WRC N’ (write control signal), ‘EV N’ (evaluate control signal), ‘RDC N’ (read

control signal) and ‘LH N’ (low/high write control). The data read from first level is used as write

data for third level after passing it through priority logic. The time taken by a single set of data for

execution of an operation is given by

ttotal = twrite LEVEL1 + teval LEVEL1 + tread LEVEL1 + teval LEVEL3 + tread LEVEL3, (7.9)

with the condition that

tread LEVEL1 > tpriority block + twrite, (7.10)

and

tread LEVEL3 > twrite (7.11)

where,

twrite = twrite CMOS circuit + tmemristors/CRSs switching logic‘0’ + tmemristors/CRSs switching logic‘1’, (7.12)

teval = teval CMOS circuit + tMemristor/CRS switching = tmemristive/CRS stateful NOR, (7.13)

tread = tread CMOS circuit. (7.14)

The time delay of write CMOS circuit, evaluation CMOS circuit and read CMOS circuit

described in previous chapter are shown as twrite CMOS circuit, teval CMOS circuit and tread CMOS circuit

and measured with respect to activation of control signals WRC, EV and RDC, respectively. The

read data of first level is written into third level of proposed reconfigurable architecture after

passing it through priority logic (second level) and hence read control signal of first level ‘RDC1’

should be kept active until write operation of third level is complete. The read control signal

of third level RDC3 should be kept active until final result of operation is written to destination

Chapter 7. Performance Analysis 136

memristor(s)/CRS(s).

Further, when it is required to apply the same configured function on n sets of data, the time taken

need not be n× ttotal. Since the operation can be pipelined, the next data can be manipulated in the

(k−1)th step when the previous data is being processed in kth step. Thus, the total timing for the

operation would be:

tpipelined = ttotal +(n−1)× tLEVEL1, (7.15)

where tLEVEL1 = twrite + teval + tread. The overlapping of execution can be further extended

by separating destination memristor/CRS from NOR block (and adding another destination

memristor/CRS in place of it) after evaluate operation, so that read operation of NOR result and

writing of new data for next NOR operation can be done simultaneously. This will reduce the

execution time but at the cost of complex CMOS circuit.

The delay for various operations performed in memristive and CRS crossbar is given in the Table

7.1. The results are obtained using methods used in [150] for array size of 128 × 128.

Table 7.1. Delay in implementation of write, read and evaluate operation implemented in resistive
crossbar (memristive and CRS crossbar) of size 128 × 128.

Sr. No. Operation Delay (ns)
Memristive crossbar CRS crossbar

1 Write 3.12 3.68
2 Read 0.95 1.31
3 Evaluate 3.73 4.02

The delay in various components of LUT based 3-input CLB is given in Table 7.2 using 65 nm

CMOS technology.

Table 7.2. Delay in various components of LUT based 3-input CLB using CMOS 65 nm
technology

Sr. No. Unit Delay (ns)
1 MUX 2:1 0.29
2 MUX 4:1 0.43
3 MUX 8:1 0.60
4 SRAM 3.25
5 DFF 2.68
6 BUF 0.40

Chapter 7. Performance Analysis 137

Data1 Data2 Data3

Dout12 Dout22

Dout13

DataIn1

WRC1

LH1

EV1

RDC1

DataIn3

WRC3

LH3

EV3

RDC3

DataDest

WRCDest

LHDest

twrite

tL tH

teval

tread

DataX3

Figure 7.4. Timing diagram for proposed pipelined architecture. The complete processing of one
set of data are shown with same background color. Data input to each level is shown by ‘DataIn
N’, while control signals are shown as ‘WRC N’ (write control signal), ‘EV N’ (evaluate contol
signal), ‘RDC N’ (read control signal) and ’LH N’ (low/high write control), where N is level
number. When LH is logic low, all data bits at logic ‘0’ will be written to memristors/CRSs while
when LH is logic high, all data bits at logic ‘1’ will be written to memristors/CRSs simultaneously.
The final result to be written to destination memristor(s)/CRS(s) along with WRC and LH control
signal are also shown (with N=Dest). Level 2 is not shown in timing diagram as it consists of only
priority logic and its delay is considered as part of read logic.

Overall delay in the implementation of 3-input logic function on conventional LUT based FPGA

and with proposed architecture on memristive and CRS crossbar is given in Table 7.3. For

implementation on LUT based FPGA, the routing delay is also taken into account.

It can be seen from Table 7.3 that LUT based 3-input CLB used in conventional FPGA is better

Chapter 7. Performance Analysis 138

Table 7.3. The delay in LUT based 3-input CLB, proposed 3-input architecture implemented in
memristive and CRS crossbar. In LUT based CLB implementation, routing delay is taken into
account.

Delay in LUT based
3-input CLB used in

FPGA (ns)

Delay in proposed 3-input
1-output reconfigurable

architecture implemented
in memristive crossbar (ns)

Delay in proposed 3-input
1-output reconfigurable

architecture implemented
in CRS crossbar (ns)

14.5 16.82 19.08

for delay than the proposed architecture implemented both in memristive and CRS crossbar. But

as the length of data set to be operated on becomes bigger, the proposed architecture becomes

better because of its pipelined nature. The graph of delay verses length of data set (n) is shown

in Figure 7.5 for LUT based CLB and for proposed architecture implemented both in memristive

and CRS crossbar. For larger data set this improvement is 1.28× for CRS crossbar and 1.45× for

memristive crossbar over LUT based CLB architecture. Also if function is to be reconfigured over

LUT based CLB, loading configuration data to configuration memory takes lot of time as writing

to configuration memory is done sequentially.

7.3 Power Analysis

The power consumed by different operations in crossbar is summarized in Table 7.4. For write

operation, 1/3 write scheme is chosen as it maintains the integrity of other memristors/CRSs. The

reading of CRS is done with the help of self resetting read scheme explained in Chapter 5. The

power consumed for evaluate (NOR) and write operations in crossbar is taken from results in

Chapter 4 and 5 by considering the array size to be 128 × 128.

The power consumed by different elements in conventional LUT based 3-input CLB is given in

Table 7.5.

The power consumed by LUT based 3-input CLB and proposed 3-input 1-output reconfigurable

architecture implemented in memristive and CRS crossbar is given in Table 7.6. CMOS 65

nm technology is used in calculation of power dissipation for LUT based 3-input CLB used in

conventional SRAM based FPGA. For proposed 3-input 1-output architecture, power dissipation in

all common CMOS blocks with 65 nm technology node is calculated along with power dissipation

Chapter 7. Performance Analysis 139

LUT based FPGA
Proposed architecture in memristive crossbar
Proposed architecture in CRS crossbar

D
ea

ly
(s

)

0

250n

500n

750n

1µ

1.25 µ

1.5 µ

Data set (n)

0 20 40 60 80 100

Figure 7.5. Delay verses length of data set(n) for LUT based CLB used in FPGA, proposed
architecture implemented in memristive and CRS crossbar. As length of data set increases,
proposed pipelined architecture shows improvement in delay over LUT based FPGA. Also the
proposed architecture is better if function changes because CLB needs to be reconfigured and the
configuration data is written sequentially to configuration memory.

in crossbar. The power dissipation for implementation of proposed architecture in CRS crossbar is

84.04 mW against that of implementation in memristive crossbar, where it is 64.02 mW . But still

CRS crossbar implementation is better as the voltages used in write operation are double for CRS

crossbar in comparison to memristive crossbar, and for evaluate operation the voltage used is three

times higher in CRS crossbar to that used in memristive crossbar. Also, the sneak path problem

limits the size of memristive crossbar for performing read and evaluate operations.

The proposed architecture provides 2.68× improvement in power consumption for implementation

in memristive crossbar and 2.04× for implementation in CRS crossbar over LUT based CLB

architecture.

Chapter 7. Performance Analysis 140

Table 7.4. Maximum power consumption in resistive crossbar(memristive and CRS crossbar) for
different operations to implement logic functions for array size of 128 × 128. For write operation,
VWRITE= ±1 V for memristive crossbar and VWRITE=±1.5 V for CRS crossbar. Read operation
for memristor applies voltage less than Vth,M=0.7 V while for CRS, Vth1,C <VREAD <Vth2,C
where Vth1,C=0.7 V and Vth2,C=1.4 V. For evaluate operation, VSET= 1V and VCOND= 0.8 V for
memristive crossbar while for CRS, Vx=3 V. All notations for voltages are defined in Chapters 4
and 5.

Sr.
No. Operation Power dissipation (mW)

Resistive crossbar CMOS
block Total

1 Write

Memristive
crossbar

Floating write
scheme 2.03

1.03 4.93
1/3 write scheme 3.9

CRS crossbar

Floating write
scheme 0.142

1.4 5.491/3 write scheme 4.09
configuration row
1/3 write scheme 3.9

2
Read

Memristor 1.08 0.8 1.88

CRS
3-step reading

scheme 1.64 1.03 2.67

Self-resetting
scheme 1.15 0.9 2.05

3 Evaluate
Memristive

crossbar 0.57 1.06 1.63

CRS crossbar 1.03 1.4 2.43

Table 7.5. Power consumed by different components in conventional LUT based 3-input CLB and
programmable interconnection switch using CMOS 65 nm technology. The structure of CLB is
shown in Figure 1.3 while that of programmable interconnection switch is shown in Figure 1.5

Sr. No. Unit Power consumption (mW)
1 MUX 2:1 0.83
2 MUX 4:1 2.29
3 MUX 8:1 6.33
4 SRAM 1.43
5 DFF 4.5
6 BUF 1.03

7.4 Area Analysis

The transistor count for LUT based 3-input 1-output CLB (see Figure 1.3) used in conventional

FPGAs is given in Table 7.7 while that for programmable interconnect switch (Figure 1.5) is shown

in Table 7.8. In order to implement any 3-input 1-output logic function on LUT based CLB, one

Chapter 7. Performance Analysis 141

Table 7.6. Power consumption in LUT based 3-input CLB, proposed 3-input 1-output
reconfigurable architecture implemented in memristive and CRS crossbar. The power consumption
in LUT based CLB is using 65 nm CMOS technology. While the power dissipation of proposed
architecture implemented in CRS crossbar is slightly higher than implementation in memristive
crossbar, the voltage values used in write and evaluate operations in CRS crossbar are higher than
in memristive crossbar as CRS is made up of antiserially connected two memristors.

Power consumption in
LUT based 3-input CLB

used in FPGA (mW)

Power consumption in
proposed 3-input 1-output
reconfigurable architecture
implemented in memristive

crossbar (mW)

Power consumption in
proposed 3-input 1-output
reconfigurable architecture

implemented in CRS
crossbar (mW)

171.58 64.02 84.04

Table 7.7. Transistor count for LUT based 3-input 1-output CLB used in conventional FPGAs
shown in Figure 1.3. In this design 6T SRAM cell is considered while other components are
designed using CMOS process. Buffers (BUF) are bidirectional.

Unit No. of MOSFETs/unit No. of Units Total count
SRAM 6 19 114

MUX 2:1 10 1 10
MUX 4:1 30 3 90
MUX 8:1 70 1 70

DFF 26 1 26
BUF 8 4 32

CLB and at least two programmable interconnection switches are required, one for directing input

and one for sending output of logic function to other devices. In this analysis, write circuit for

loading configuration data and LUTs is not taken into account.

Table 7.8. Transistor count for programmable interconnection switch used in conventional FPGAs
shown in Figure 1.5. In this design 6T SRAM cell is considered while other components are
designed using CMOS process. Buffers (BUF) are bidirectional.

Unit No. of MOSFETs/unit No. of Units Total count
SRAM 6 12 72

MUX 4:1 30 4 120
BUF 8 4 32

The device count for proposed reconfigurable 3-input logic block architecture shown in Figure

6.7 is given in Table 7.9. Memristor and CRS count is different because memristive architecture

requires one additional memristor in addition to input memristors for performing stateful-NOR

operation, while in case of CRS based architectures, destination CRS is one of the input CRSs.

The output from priority block needs to be grouped into two NOR gates, one producing output

Chapter 7. Performance Analysis 142

Table 7.9. Device count for proposed reconfigurable 3-input 1-output memristive/CRS crossbar
based architecture shown in Figure 6.7.

Unit No. of MOSFETs
per unit No. of Units Total count Memristors CRSs

LEVEL1
Write circuit 30 1 30

19 15Read circuit 9 7 63
Evaluate circuit 8 7 56

LEVEL2
Priority circuit 92 1 92 - -

LEVEL3
Write circuit 30 1 30

12 10Read circuit 9 4 36
Evaluate circuit 8 4 32

Destination
Write circuit 30 1 30 1 1

Reconfiguration components
Grouping units 2 8 16 8 8

Other components
AND gates 6 8 48 - -
Inverters 2 1 2 - -

logic ‘0’ and the other producing output logic ‘1’. The memristors/CRSs and transistors needed

for it are shown as reconfiguration components in the Table 7.9.

If fan-in of stateful-NOR is not restricted to 3, the logic block with more than three inputs can be

designed, but device count increases exponentially. If the logic function has n inputs, the number

of NOR blocks in LEVEL1 is given by

nCn +
nCn-1 + ...+ nC2 +

nC1 = 2n−1, (7.16)

where nCk represents the binomial coefficient.

Each k-input NOR block consists of k input memristors and one evaluation memristor. Hence, the

total number of memristors in LEVEL1 of the memristive architecture of an n-input logic function

is

(n+1)(nCn)+(n)(nCn-1)+ ...+2(nC1) = n2n−1 +2n−1. (7.17)

Chapter 7. Performance Analysis 143

For CRS based architecture, the total number of CRS in LEVEL1 is given by

(n)(nCn)+(n−1)(nCn-1)+ ...+(nC1) = n2n−1. (7.18)

LEVEL2 consists of the priority circuit. The maximum number of NOR blocks after the priority

block in LEVEL3 is equal to 4 if number of outputs is one for fan-in restriction of 3 for

stateful-NOR logic. The maximum number of memristors in these NOR blocks will be 12 for

memristive architecture and for CRS based architecture, maximum number of CRSs will be 10.

The memristive/CRS crossbar is fabricated above CMOS layer using CMOS Back End of Line

(BEOL) process. Hence the area comparison of proposed reconfigurable architecture with

conventional LUT based FPGA is done with reference to transistor count as it is deciding factor

of area. The 3-input 1-output reconfigurable logic block architecture using memristive/CRS

crossbar shows 1.8× improvement in the area with respect to 3-input 1-output LUT based

CLB of conventional FPGA. If number of outputs are more than one, there will be further

improvement in area because in case of conventional LUT based FPGA, more CLBs to be

connected in parallel to produce more outputs and hence effective number of transistors increases

in proportion to the number of outputs. In case of proposed architecture, components shown

in LEVEL3, reconfiguration components and destination components gets added as number of

outputs increases. For 3-input n-output function, the area improvement factor for proposed

architecture with respect to conventional LUT based CLB architecture for FPGA as a function

of n is shown in Figure 7.6.

The device count given in Table 7.7 and 7.8 is native to the specific CLB (and programmable

interconnections around it) for LUT based commercial FPGAs while in case of proposed

architecture, the common blocks (write circuit, read circuit, evaluate circuit and priority circuit)

are not native to specific logic block and are assigned to it during reconfigurable implementation.

Hence the number of common blocks to be present in integrated circuit depends on maximum

number of parallel implementations of logic blocks at a given time and is dependent on

applications for which the reconfigurable architecture is designed. Thus there will be further

improvement in area for proposed architecture with respect to LUT based FPGAs. If logic function

to be implemented has more than three inputs, then multiplexer based generalized architecture

shown in Figure 6.15 will be used, which is conceptually similar to that used in FPGAs made up

Chapter 7. Performance Analysis 144

A
re

a
im

pr
ov

em
en

tf
ac

to
r

1

2

3

4

5

6

No. of outputs (n)

0 10 20 30 40 50

Figure 7.6. Area improvement factor (ratio of area for proposed reconfigurable 3-input logic block
architecture to that of 3-input LUT based configuration logic block) for proposed reconfigurable
3-input logic block architecture against conventional LUT based 3-input configuration logic block
of FPGA as a function of no. of outputs (n) of logic function to be implemented.

of LUT based 3-input CLBs. Hence similar area improvement will be there as discussed above for

functions having more than 3-inputs.

7.5 Summary

The performance of proposed 3-input 1-output reconfigurable architecture is analyzed for

implementation in memristive and CRS crossbar with respect to delay, power and area, and

compared with LUT based CLB used in most commercial FPGAs. The subarray size in hierarchy

of banks-mats-subarray organization of ReRAM is restricted to 128 × 128 for analysis purpose.

The outcomes of analysis are summerized below.

• For already configured circuit function, the delay in LUT based CLB architecture is

better than proposed architecture for small data set. However for new circuit function

implementation, proposed architecture is better in terms of delay as reconfiguration (writing

Chapter 7. Performance Analysis 145

configuration data to configuration memory) is sequential process in most commercial

FPGAs. Also for larger data set size, the proposed architecture has shown 1.45× and 1.28×

improvement in delay for implementation in memristive and CRS crossbar, respectively over

implementation in LUT based CLB architecture.

• Implementation of proposed architecture in memristive crossbar has shown 2.68× less

power dissipation while CRS crossbar implementation has shown 2.04× less power over

implementation in LUT based CLB architecture.

• The area in resistive crossbar is decided mainly by supporting CMOS circuit as feature

size of memristor/CRS is very small as compared to transistor. The crossbar is fabricated

over CMOS layer using Back-End-Of-Line (BEOL) process. For 3-input 1-output

function implementation, the proposed architecture has shown 1.8× area improvement on

memristive/CRS crossbar over implementation in LUT based CLB architecture. For 3-input

n-output logic function implementation this improvement increases to 5.6× for larger values

of n. If number of inputs are more than 3, then similar improvement can be seen as same

arrangement of multiplexers is used in proposed as well as LUT based architecture.

Chapter 8

Summary and Future Scope of Work

In this chapter, the conclusions drawn from research work carried out are summerized and scope

for future work is presented.

8.1 Summary

ASICs are most efficient in terms of area, delay and power consumption but are becoming

increasingly expensive with technological development and takes longest development time. The

most economical and fast implementation of functions at circuit level is done with FPGAs. But

FPGAs are inferior in terms of speed, area and power consumption as compared to ASICs. In order

to increase the share of FPGAs in application implementation at circuit level, the performance gap

between ASIC and FPGA needs to be improved.

• The main cause of inferiority in terms of area, delay, power consumption and cost of FPGAs

over ASICs is extensive use of SRAM and programmable interconnections. Modifying

the architecture of SRAM based FPGA has shown limited improvement in performance

parameters and with technology scaling, it is becoming more and more difficult to sustain

Moore’s law because of leakage power and fabrication difficulty in CMOS technology.

Hence new emerging devices need to be investigated as a replacement of SRAM and in

developing low cost high performance reconfigurable architectures. In the work presented

146

Chapter 8. Summary and future work 147

in this thesis, fourth passive element called memristor is used in developing reconfiguration

architecture.

• Memristor can be used as a logic element and as a nonvolatile memory cell where

information is stored in the form of resistance. Universal gates like stateful NOR and stateful

NAND can be implemented using memristors. In this work stateful NOR gate is used to

design reconfigurable architecture.

• In order to carry out simulation of systems made up of memristors, its model is necessary so

that it can be used in electronic design automation tools for design, verification and testing.

Till date, universally acceptable and mature model of memristor is not available. Out of

the models available in the literature, VTEAM model is used in the work carried out in this

thesis as it is generic, accurate, simple, flexible and computationally efficient.

• Memristors are passive elements and need supporting CMOS circuit to implement any

function. They are fabricated in the form of crossbar array over CMOS layer using

nanoimprint lithography. For the realization of stateful NOR gate on memristive crossbar,

write, read and evaluate (NOR) operations need to be implemented without disturbing the

contents of memristors other than involved in logic operation.

• Thorough analysis is carried out of write, read and evaluate (NOR) operation

implementation on memristive crossbar in order investigate the effect on memristors in a

crosssbar that are not part of a logic and to find limitation on the size of a crossbar due to

sneak path problem. The outcomes of this analysis are:

– Floating write scheme is not suitable to write data in a memristor of memristive

crossbar as it alters the contents of other memristors even for small array size.

– The most useful write scheme for memristive crossbar is 1/3 write scheme as it does

not change the contents of other memristors while writing data to selected memristor/s.

– While reading the state of a memristor in a crossbar, the sneak path problem limits the

size of array to distinguish between LRS and HRS state of memristor. In this work,

array size is limited to 10× 10. This limit on size can be relaxed by forcing memristors

on bit line of memristor to be read to HRSs.

Chapter 8. Summary and future work 148

– While performing evaluate (NOR) operation, there is limit on minimum size of array so

that contents of other memristors in a crossbar not involved in logic, are not disturbed.

In this work, limit on crossbar size is 50×50. At the same time, in order to implement

stateful NOR operation correctly, there is limit on maximum size of array (10×10

in present work). Thus, either the size of crossbar should be kept small in order

to implement NOR logic correctly, neglecting changes in the contents of memristors

(memristors that are not part of logic, and present on bit and word lines of memristors

selected for logic, are only disturbed) or by forcing all bit line memristors to HRSs like

in read operation.

– The size of crossbar can be logically restricted to smaller size by using specialized

crossbar architectures such as CMOL and FPNI, and stateful NOR gate can be

implemented on them.

• CRS crossbar arrays are free from sneak path roblem as they store information in terms

HRS-LRS (logic ‘0’) and LRS-HRS (logic ‘1’) states presenting high equivalent resistance

in both cases.

• The stateful NOR gate using CRSs is proposed and has following advantages over memristor

based gate.

– Stateful NOR gate using CRSs requires single voltage source while memristor based

gate requires two voltage sources for its operation.

– N-input stateful NOR gate using CRS requires N CRSs as one of the input CRSs is also

destination. N-input stateful NOR gate using memristors requires (N+1) memristors

as destination memristor is different from input memristors.

– Destination memristor needs to be initialized to HRS before performing NOR

operation in memristor based stateful NOR. This step is not required in CRS based

stateful NOR as destination CRS is one of the input CRSs.

• Again, in order to implement stateful NOR gate on CRS crossbar, write, evaluate and read

operations need to be performed. The outcomes of analysis of these operations on CRS

crossbar are given below.

Chapter 8. Summary and future work 149

– For write operation, floating write scheme is not useful as it alters the contents of other

CRSs in a crossbar. 1/3 write scheme is the best method as it maintains the integrity of

other CRSs. Even though the configuration row based write scheme is slightly better

than 1/3 write scheme in terms of power dissipation, but at the cost of extra area for

configuration row and complex circuit in order to write LRS-LRS state to configuration

row CRSs.

– While performing stateful NOR operation on CRS crossbar-

* There is maximum limit on the size of a crossbar so that other CRSs on bit and

word lines of input CRSs (excluding destination CRS) either do not change their

states (if they are in LRS-HRS states) or can be restored back using self-resetting

read scheme (if they are in HRS-LRS states). If size limit is exceeded, they will

not change states at all. In this work this limit is 7000×7000.

* The contents of CRSs that are not on input and destination lines are not destroyed

for any array size.

* The contents of CRSs on word line of destination CRS (excluding it) will be

destroyed and can not be recovered back if they are in HRS-LRS states. To avoid

this, such CRSs in HRS-LRS states should be converted to LRS-LRS states before

operation and should be restored back after operation using self-resetting read

scheme. Other option is to reserve some word lines as destination word lines and

neglect their data in overall system operation.

– Read operation is destructive in nature as one of the states (out of HRS-LRS and

LRS-HRS) is converted into LRS-LRS during read. Analysis of read operation on

CRS crossbar shows that the state of CRS (HRS-LRS and LRS-HRS) can be safely

read without error even for very large array size. Self-resetting read scheme is better

choice for read operation as it uses the readout voltage (indicating state of CRS) as

control signal (after delaying it) to reinstate the original state of CRS.

• The stateful NOR logic based reconfigurable 3-input pipelined logic block architecture has

been proposed which can be implemented on memristive/CRS crossbar. It has three stages,

stage one and three are made up of stateful NOR blocks while stage two is priority block.

The automation algorithm for the same is presented. The input to algorithm is in the form of

Chapter 8. Summary and future work 150

truth table of logic function to be implemented, and it gives output in the form of netlist of

components in the architecture. If number of inputs are more than three for a function, the

proposed logic block architecture can be multiplexed to implement the function. Automation

algorithm for this multiplexing is also presented.

• The proposed 3-input reconfigurable logic block architecture implemented on

memristive/CRS crossbar is compared with LUT based 3-input CLB used in conventional

FPGA in terms of delay, power and area. The crossbar array size is restricted to 128×128

in this work. The results are summerized below.

– For already configured logic function, implementation in LUT based CLB is better for

small data set in terms of delay, but if the function is to be newly reconfigured, then

implementation using proposed architecture gives better results in terms of delay as

configuration data is written sequentially to configuration memory in most commercial

FPGAs. Also if data set to be operated on with logic function is large, then memristive

crossbar implementation shows 1.45 times and CRS crossbar shows 1.28 times delay

improvement over implementation in LUT based CLB architecture.

– With respect to power dissipation, proposed architecture implemented on memristive

crossbar has shown 2.68 times and on CRS crossbar 2.04 times improvement over

implementation in LUT based CLB architecture.

– Area of memristive/CRS crossbar is primarily decided by CMOS circuits used to

implement functions. The analysis of proposed architecture for implementation

of 3-input 1-output logic function has shown 1.8 times improvement in area over

implementation in LUT based 3-input CLB architecture. The improvement factor

increases to 5.6 times for implementation of 3-input n-output logic function for large

values of n. If number of inputs are more than 3, then similar trends are seen in the

area improvement for proposed architecture over LUT based CLB architecture.

8.2 Scope for future work

Following are some of the topics which can be explored further in the context of work carried out

in this thesis :

Chapter 8. Summary and future work 151

• New methods/materials need to be investigated so that while performing certain operations

in one section of crossbar, the data in other section is not disturbed, for any array size.

• The switching of signals between memristive/CRS crossbar and CMOS layer needs to be

minimized in order to improve the performance of circuits implemented on memristive/CRS

crossbar.

• The reading of results and writing back it on crossbar is redundant operation but presently

it can not be eliminated. If it is eliminated, then results of one NOR operation can be

used directly in next consecutive NOR operations (i.e. removing the fanout restrictions on

stateful NOR) and there will be improvement in performance parameters. New methods and

techniques need to be investigated.

• If fanout restriction on statful logic is removed, logic functions can be implemented with

NAND/NOR networks, with minimum number of read/write steps.

• Electronics Automation Design (EDA) tool need to be developed for implementation of

hybrid circuit made up of memristors and CMOS. Universally acceptable model based on

physical mechanism of switching in memristor needs to be available for this purpose.

Appendix A

Memristor Models and Window

Functions

Memristor model and window functions used in simulations are described in Chapter 3. In this

Appendix, remaining models and window functions are described.

A.1 Memristor Models

A.1.1 Linear Ion Drift Model

According to the linear ion drift model proposed by Strukov et al. [58], if external bias voltage

v(t) is applied across memristor shown in Figure 3.2, the boundary between undoped and doped

region will move due to drift of dopants. For ohmic electronic conduction and linear ionic drift in

uniform field with average ion mobility µv, the ohm’s law gives

v(t) =
(

RLRS
w(t)

D
+RHRS

(
1− w(t)

D

))
i(t), (A.1)

and the state variable w is defined by

dw(t)
dt

= µv
RLRS

D
i(t). (A.2)

152

Appendix A. Memristor Models and Window Functions 153

This model is called a linear drift model, as the drift of the state variable (w) is linearly proportional

to the current (i). Integrating (A.2) on both sides, we obtain

w(t) = µv
RLRS

D

∫ t

−∞

i(τ)dτ

= µv
RLRS

D

∫ t

0
i(τ)dτ +µv

RLRS

D

∫ 0

−∞

i(τ)dτ

= µv
RLRS

D

∫ t

0
i(τ)dτ +w0. (A.3)

From (A.1), the memristance M(t) is given by

M(t) = RLRS
w(t)

D
+RHRS

(
1− w(t)

D

)
. (A.4)

Substituting (A.3) into (A.4), we get

M(t) = RHRS +(RLRS−RHRS)
w0

D
+(RLRS−RHRS)

µvRLRS

D2

∫ t

0
i(τ)dτ. (A.5)

Using M =
dφ

dq
, we integrate (A.5) with respect to q, we get

φ(t) =
[
RHRS +(RLRS−RHRS)

w0

D

]
q(t)+(RLRS−RHRS)

µvRLRS

2D2 q2(t). (A.6)

From (A.6), the memristance is given by

M = RHRS +(RLRS−RHRS)
w0

D
+(RLRS−RHRS)

µvRLRS

D2 q(t). (A.7)

From (A.7), we see that the memristance is a linear function of the charge q(t).

The assumption of linear ion drift in the above model is not correct in practical memristors,

especially when state variable w approaches either w = 0 or w = D. The motion of dopants

becomes highly nonlinear and this effect should be included in the model.

Appendix A. Memristor Models and Window Functions 154

A.1.2 Nonlinear Ion Drift Model

To circumvent the problem of observed nonlinearity at w = 0 or w = D, the nonlinear ion drift

model is given by

i(t) = wn(t)β sinh(αv(t))+χ[exp(γv(t))−1], (A.8)

and the derivative of state variable is given by

dw(t)
dt

= avm(t) f (w), (A.9)

where f (w) is window function. Different window functions are described later.

Here memristor is modeled as voltage controlled device and has nonlinear dependency between

voltage and state derivative. Also asymmetric switching is also taken into account. α,β ,γ,χ,a and

m are experimental fitting parameters, and the parameter n determines the effect of state variable

on current. State variable w is normalized with respect to D within interval [0, 1]. During LRS

state, the I-V curve in the model follows a tunneling process (sinh part) while during HRS state, it

behaves like PN junction (exp part). Thus this model show asymmetric switching behavior. Low

voltage can be used for read operation as switching takes very long time and hence device is stable.

Higher voltages can be used for fast write operation. Another form of model is given by

dw(t)
dt

= µv
RLRS

D
i(t)Fp(w), (A.10)

where Fp(w) is called window function and takes care of all nonlinearities observed in memristors.

Parameter p is a positive integer. As p increases, the model tends to be more linear.

A.1.3 Simmons Tunnel Barrier Model

Simmons tunnel barrier model [154] is considered to be the most accurate model as it is based

on experimental data. Memristor is modeled as a resistor in series with an electron tunnel barrier.

Nonlinear and asymmetric switching behavior is assumed due to an exponential dependence of

the movement of the ionized dopants. The strength of the Simmons tunnel barrier model stands

in its experiment-based development and in its ability to describe some physical mechanism at the

Appendix A. Memristor Models and Window Functions 155

origin of memristor dynamics. It explains the mechanisms at the origin of the complex dynamics

observed in the TiO2-based memristor by means of the Simmons tunnel barrier model [155]. The

width of Simmons tunnel barrier is the state variable x. This model is given by

i(t) = A(x,vg)φ1(vg,x)× exp(−B(vg,x) ·φ 0.5
1 (vg,x))

−A(x,vg)(φ1(vg,x)+ e|vg|)× exp(B(vg,x)(φ1(vg,x)+ evg)
0.5),

(A.11)

and

vg = v− i(t)Rs. (A.12)

The time derivative of state variable is given by the following equations. In the case of HRS (OFF)

switching (i > 0)

dx(t)
dt

= fHRS sinh
(
|i|

iHRS

)
exp
[
−exp

(
x−aHRS

wc
− |i|

b

)
− x

wc

]
, (A.13)

with the fitting parameters fHRS = 3.5± 1 µm/s, iHRS = 115± 4 µA, aHRS = 1.2± 0.02 nm,

b = 500±70 µA and wc = 107±4 pm, whereas in the case of LRS (ON) switching (i < 0)

dx(t)
dt

= fLRS sinh
(
|i|

iLRS

)
exp
[
−exp

(
aLRS− x

wc
− |i|

b

)
− x

wc

]
, (A.14)

with the fitting parameters fLRS = 40± 10 µm/s, iLRS = 8.9± 0.3 µA, aLRS = 1.8± 0.01 nm,

b = 500±90 µA and wc = 107±3 pm.

The current i through the device has been modeled after that of a tunneling junction current [155]

and its functional form is given by:

i =
j0A
∆x2

{
φIe−B

√
φI−

(
φI + e|vg|

)
e−B
√

φI+e|vg|
}
, (A.15)

where

j0 =
e

2πh
,x1 =

1.2λx
φ0

,∆x = x2− x1, (A.16)

φI = φ0− e|vg|
(

x1 + x2

x

)
−
(

1.15λx
∆x

)
ln
(

x2 (x− x1)

x1 (x− x2)

)
, (A.17)

B =
4π∆x

√
2m

h
, (A.18)

Appendix A. Memristor Models and Window Functions 156

x2 = x1 + x

(
1− 9.2λ(

3φ0 +4λ −2e|vg|
)) , (A.19)

λ =
e2 ln(2)
8πκε0w

, (A.20)

where A is the channel area of the memristor, e is the electron charge, vg is the voltage across the

tunnel barrier, m is the mass of the electron, h is Planck’s constant, κ is the dielectric constant,

and φ0 is the barrier height in electron volts [154]. fLRS, fHRS,aLRS,aHRS, iLRS, iHRS and b are

fitting parameters. The parameters fLRS and fHRS affect the magnitude of rate of change of state

variable x and fLRS� fHRS. The parameters iLRS and iHRS effectively act like current thresholds.

The parameters aHRS and aLRS put upper and lower bound on x, respectively and hence window

function is not required in this model.

The model is most accurate but having some limitations : (1) The model is complicated, (2) In

this model, voltage and current relationships are not explicit, (3) As it describes specific type of

memristor, it is not generic model.

A.1.4 Boundary Condition Memristor (BCM) Model

As analytically demonstrated in [156], the BCM model can capture single-valued and

multi-valued memductance-flux characteristics under sign-varying control voltage source offering

the opportunity to tune the boundary behavior and the non-volatility degree according to the

dynamics under modeling. In this model the input is assumed in voltage form, i.e. u = v, and

the window function is expressed as

f (w,v) =


b, if C1 or C2 holds,

0, if C3 or C4 holds,

a, if C5 holds,

(A.21)

where parameters a ∈ R0,+ and b ∈ R+(b > a) describe the degree of non-volatility of the

nano-structure and tunable conditions Cn(n = 1,2,3,4,5) are mathematically described by

C1 = {(w ∈ (0,D) and ((v > vt0)or (v <−vt1))) .} (A.22)

Appendix A. Memristor Models and Window Functions 157

C2 = {(w = 0 and v > vth0)or (w = D and v <−vLRS)} . (A.23)

C3 = {w = 0 and v≤ vth0} . (A.24)

C4 = {w = D and v≥−vLRS} . (A.25)

C5 = {(w = w̄ ∈ (0,D) and ((v≤ vt0)and (v≥−vt1)))} . (A.26)

In conditions (A.23), (A.24), (A.25) voltage parameters vth0 ∈ R0,+ and vLRS ∈ R0,+ represent the

boundary threshold voltages (i.e. the threshold voltage of the input needs to exceed, after a sign

reversal, for the state to be released from the lower and upper bound, respectively). Further voltage

parameters vt0 ∈ R0,+ and vt1 ∈ R0,+ in (A.22) and (A.26) denote the programmability threshold

voltages (i.e. the threshold voltage magnitude of a positive and negative input, respectively needs

to be exceeded for the window function to exhibit a discontinuous transition from a smaller a to a

larger b value).

A.1.5 Other Models

Li and Hu [157] presented a compact model of the spintronic memristor based on the

magnetic-domain-wall motion mechanism for circuit design by taking into account the variations

of material parameters and fabrication process. Abdalla and Pickett [158] presented a SPICE

model for the titanium dioxide memristor device from its modeling equations as described in

[154]. SPICE models based on physical models given by Strukov et al.[58] and Yang et al. [69]

are given in [34, 159–163]. Its emulators and macro models have been proposed in [164, 165].

A.2 Window Functions

Every memristor model should have bound on region of operation. For example, the linear ion

drift model should work within bound [0, D]. Thus in order to bound the state variable in certain

range and to include the nonlinearity and asymmetry observed in practical memristors at bounds,

window function is used. The state variable derivative is multiplied by window function to limit

Appendix A. Memristor Models and Window Functions 158

the working interval and to add nonlinearity and asymmetry. Different window functions used in

memristor models are described in this section.

A.2.1 Joglekar’s Window

Joglekar’s window function [166] is given by

Fp(w) = 1−
(

2w
D
−1
)2p

(A.27)

This window function for various values of p is plotted in Figure A.1, where p is a positive integer

controlling the rate of decrease of the state variable as it approaches either bound.

p = 1
p = 2
p = 3
p = 4
p = 5

F p
(w

)

0

0.2

0.4

0.6

0.8

1

(w
D

)0 0.2 0.4 0.6 0.8 1

Figure A.1. The plot of normalized (with respect to width D of memristor) Joglekar’s window
function given by (A.27) for different values of parameter p. Parameter p is a positive integer
which controls the rate of decrease of state variable w as it approaches zero or D.

The first limitation of Joglekar’s window is that when state variable w achieves the extreme values

(w = 0 or w = D), then from (A.27), value of window function Fp(w) = 0. Thus when its terminal

state of memristor in the model is either LRS or HRS, it is not possible to change its state thereafter

even with application of external stimulus. It will held its state forever which is contradictory to

practical memristive devices. Second limitation lies in the fact that it models the memristor as a

component which exactly remembers the entire charge which is passing through (given by (A.5)).

The memory effect is lost at the boundaries.

Appendix A. Memristor Models and Window Functions 159

A.2.2 Biolek’s Window

The stuck at boundary problem of Joglekar’s window explained in previous section and

discrepancy between the behavior of the model and the requirements for the operation of a real

circuit element is resolved by designing a modified window function given by Biolek [161]. It

models the fact that the speeds of approaching and leaving the boundary of thin film limits are

different. Biolek introduced window function which is dependent on sign of input current (current

controlled memristor). This window function is given by

Fp(w, i) = 1−
[w

D
− st p(−i)

]2p
, (A.28)

where p is a positive integer controlling the rate of decrease of the state variable from each bound

to the other one. The st p(i) function is given by

st p(i) =

1, if i≥ 0,

0, if i < 0.
(A.29)

The Biolek’s window function is drawn in Figure A.2 for p = 2.

i < 0, p = 2
i > 0, p = 2F p
(w
,i
)

0

0.2

0.4

0.6

0.8

1

(w
D

)0 0.2 0.4 0.6 0.8 1

Figure A.2. The plot of normalized (with respect to width D of memristor) Biolek’s window
function given by (A.28) for parameter p = 2 and for positive/negative values of current.

The limitation of Biolek’s window is the continuity condition at the boundaries. Also, Biolek’s

window function is a multivalued function which make it difficult in the analysis of the

memristor-based circuits[167].

Appendix A. Memristor Models and Window Functions 160

A.2.3 Prodomakis’ Window

Prodomakis’ [168] window function is independent of i and also gives maximum value of function

other than unity. This is given as

Fp(w) = j
{

1−
[(w

D
−0.5

)2
+0.75

]p}
, (A.30)

where p and j are positive real parameters which determine both the rate of decrease of the window

function as the state variable approaches any of its two bounds and the maximum value of the

window function itself. Figure A.3 gives the plot for Prodomakis window for different values of

parameter j with p = 30 while Figure A.4 gives plot for Prodomakis window for different values

of parameter p with j = 0.2.

j = 0.6
j = 0.8
j = 1.0
j = 1.2

F p
(w

)

0

0.25

0.5

0.75

1

1.25

(w
D

)0 0.2 0.4 0.6 0.8 1

Figure A.3. The plot of normalized
(with respect to width D of memristor)
Prodomakis’ window function given by
(A.30) for parameter p= 30 and for different
values of parameter j.

p = 6
p = 10
p = 20
p = 60

F p
(w

)

0

0.05

0.1

0.15

0.2

(w
D

)0 0.2 0.4 0.6 0.8 1

Figure A.4. The plot of normalized
(with respect to width D of memristor)
Prodomakis’ window function given by
(A.30) for parameter j = 0.2 and for
different values of parameter p.

Appendix B

Imply Logic Analysis

In order to find the value of voltage VSET, VCOND and RG in Figure 3.6 to implement imply

operation as shown in Table 3.3, analysis is carried out. Let R1 and R2 be resistance of memristors

M1 and M2, respectively. Voltage across RG is given by

VRG =
VSET(R1||RG)

(R1||RG)+R2
+

VCOND(R2||RG)

(R2||RG)+R1
. (B.1)

Voltage across R1 and R2 is given by

VR1 =VCOND−VRG, (B.2)

and

VR2 =VSET−VRG . (B.3)

Four combinations of input and output from Table 3.3 are analyzed below.

• Case 1: R1 = RHRS,R2 = RHRS, final value of R2 = RLRS For this case, (B.1) can be written

as

VRG =
VSET(RHRS||RG)

(RHRS||RG)+RHRS
+

VCOND(RHRS||RG)

(RHRS||RG)+RHRS
. (B.4)

161

Appendix B. Imply Logic Analysis 162

To change the final value of R2 from RHRS to RLRS, current through R2 must cross ILRS.

Hence
VR2

R2
=

VSET−VRG

R2
> ILRS. (B.5)

If RLRS << RG << RHRS (necessary to satisfy all conditions) then (B.4) can be

approximated as

VRG ≈ 0, (B.6)

and (B.5) can be written as
VR2

R2
=

VSET

R2
> ILRS. (B.7)

After this step, circuit will follow case 4.

• Case 2: R1 = RHRS,R2 = RLRS, final value of R2 = RLRS For this case, (B.1) can be written

as

VRG =
VSET(RHRS||RG)

(RHRS||RG)+RLRS
+

VCOND(RLRS||RG)

(RLRS||RG)+RHRS
. (B.8)

To maintain the final value of R2 as RLRS, either IHRS < IR2 < ILRS or IR2 may cross ILRS.

Both conditions are satisfied by

VR2

R2
=

VSET−VRG

R2
> IHRS. (B.9)

If RLRS << RG << RHRS, (B.8) can be approximated as

VRG ≈VSET, (B.10)

and (B.9) can be written as

IHRS < 0. (B.11)

• Case 3: R1 = RLRS,R2 = RHRS, final value of R2 = RHRS For this case, (B.1) can be written

as

VRG =
VSET(RLRS||RG)

(RLRS||RG)+RHRS
+

VCOND(RHRS||RG)

(RHRS||RG)+RLRS
. (B.12)

Appendix B. Imply Logic Analysis 163

To maintain the final value of R2 as RHRS, either IHRS < IR2 < ILRS or IR2 may fall below

IHRS. Both conditions are satisfied by

VR2

R2
=

VSET−VRG

R2
< ILRS. (B.13)

If RLRS << RG << RHRS (B.12) can be approximated as

VRG ≈VCOND, (B.14)

and (B.13) can be written as

VR2

R2
=

VSET−VCOND

R2
< ILRS. (B.15)

• Case 4: R1 = RLRS,R2 = RLRS, final value of R2 = RLRS For this case, (B.1) can be written

as

VRG =
VSET(RLRS||RG)

(RLRS||RG)+RLRS
+

VCOND(RLRS||RG)

(RLRS||RG)+RLRS
. (B.16)

To maintain the final value of R2 as RLRS, IHRS < IR2 < ILRS or IR2 may cross ILRS. Both

conditions are satisfied by
VR2

R2
=

VSET−VRG

R2
> IHRS. (B.17)

If RLRS << RG (B.16) can be approximated as

VRG ≈ 0.5(VSET +VCOND), (B.18)

and (B.17) can be written as

VR2

R2
= 0.5

(
VSET−VCOND

R2

)
< ILRS. (B.19)

Note that VSET−VCOND can not be negative as VSET >VCOND.

Similar analysis is given in [81, 169] but in this analysis, state drift (due to often alternate read

and write) is neglected and the number of memristors in each NOR block is limited to four (like

3 input LUT) so scaling of RG is not required. Also resultant equations are in terms of R1, R2,

Appendix B. Imply Logic Analysis 164

RG, VSET and VCOND which can be solved for getting RG, VSET and VCOND. (R1, R2 takes values

RLRS or RHRS).

Appendix C

Specialized Memristive Crossbar

Array

Due to the sneak path problem, the size of memristive crossbar has to be restricted in order to

use it for logic function implementation and as a memory. The specialized architectures such as

CMOL [46] and FPNI [54] can be used where wire segments of small length are arranged such

that small segmented array structure is created in large architectural area. These hybrid circuits

combine CMOS technology with memristors in crossbars, called CMOS-MOLecule (CMOL) [46]

and Field Programmable Nanowire Interconnect (FPNI) [54]. They are FPGA-like architectures

and combine the advantages of CMOS (high yield, high gain, versatile functionality) with the

reconfigurability and scalability of nanoscale crossbars.

C.1 CMOL Architecture

The transistor-based configuration memory and associated routing circuits are removed from

CMOS transistors layer and replaced them with crossbar network in a layer of metal interconnect

above CMOS Layer. The total area of an FPGA has been decreased by a factor of 10 or more

while simultaneously it has increased the clock frequency and decreased the power consumption

of the chip [46, 54].

165

Appendix C. Specialized memristive crossbar array 166

In CMOL architecture nanowire segment is restricted to length L. CMOS layer is interfaced with

nanolayer through nanopins distributed all over the circuit area. One set of pins connects CMOS

with lower metal nanowire while other with upper nanowire. Nanopins in a set are arranged in

square array fashion with distance between adjacent pins in a set equal to 2βFCMOS where FCMOS

is half pitch of CMOS subsystem and β is dimensionless factor greater than one and depends on

the CMOS cell complexity.

The nanocrossbar layer is rotated by an angle α with respect to CMOS pin array and nanowires in

a crossbar are delimited to length L so that one pin connects to exactly one nanowire. The distance

between two parallel nanowires connected by adjacent nanopins is 2rFnano where Fnano is nanowire

half pitch and r is dimensionless parameter greater than one. This generic architecture is shown in

Figure C.1. The angle of rotation (α) is given by,

sinα =
2Fnano

2βFCMOS
=

Fnano

βFCMOS
, (C.1)

and

cosα =
2rFnano

2βFCMOS
=

rFnano

βFCMOS
. (C.2)

Hence

α = tan−1
(

1
r

)
. (C.3)

From Figure C.1,

sinα =
2βFCMOS

L
=

Fnano

βFCMOS
. (C.4)

Therefore,

L =
2(βFCMOS)

2

Fnano
. (C.5)

Also,

(2βFCMOS)
2 = (2rFnano)

2 +(2Fnano)
2 (C.6)

(βFCMOS)
2 =

(
1+ r2)F2

nano. (C.7)

Thus,

L = 2
(
1+ r2)Fnano. (C.8)

Appendix C. Specialized memristive crossbar array 167

The number of memristors N on nanowire segment of length L will be,

N =
L

2Fnano
−1 =

2
(
1+ r2)Fnano

2Fnano
−1 = r2. (C.9)

From Figure C.1 and (C.3),

tanα =
2βFCMOS

K
=

1
r
. (C.10)

Hence,

K = 2β rFCMOS (C.11)

Therefore total number of CMOS cells (C) spanned by horizontal (vertical) nanowire of segment

of length L in horizontal (vertical) direction is

C =
K

2βFCMOS
=

2β rFCMOS

2βFCMOS
= r. (C.12)

One pin in a cell can connect to other (N− 1) CMOS cells through pin - nanowire - memristor -

nanowire - pin interface, where N = r2 as in (C.9). Hence, through this pin, a cell is connected

to cell area (r2− 1)(2βFCMOS)
2 around it. Remember each cell has 2 CMOS nanopins. Thus

the array of size r2× r2 can be accessed for NOR implementation. The size of array can be

restricted by controlling r which is function of angle of rotation α . The analysis of usage of

CMOL architecture will be similar to memristive crossbar with m = n = r2.

Hybrid CMOS/Memristor based CMOL architecture consists of nanocrossbar stacked over CMOS

plane. The scheme for accessing single memristor in CMOL architecture is shown in Figure

C.2. Two pairs of perpendicular CMOS lines are used to access a memristor and performing

operations on it. For example, in Figure C.2 vertical metal wires Vm and Vn are used to access

memristor at the crosspoint of two nanowires. To write data into memristor, horizontal lines Hr

and Hp are used. One drives voltage ±VW on one nanowire and the other drives ∓VW on other

nanowire making effective voltage across memristor as ±2VW. The voltage ±VW is selected such

that |±VW|< |Vth1, M| and |±VW|< |Vth2, M| but |±2VW|> |Vth1, M| and |±2VW|> |Vth2, M|. Half

selected memristor (out of two nanowires forming memristor at their crosspoint, one nanowire is

driven while other not) will not be affected in this scheme but only fully selected will be written

Appendix C. Specialized memristive crossbar array 168

2β
F C

M
O

S

2rFnano

α

L

K

Nanowire
segment

Interrupting
nanopins

Figure C.1. Generic CMOL architecture top view. The nanocrossbar is rotated with an angle
α with respect to CMOS nanopin array. Each nanopin connects CMOS cell with exactly one
nanowire (red (blue) connects with vertical (horizontal) nanowire).

with state (RHRS or RLRS) depending on voltage polarity across memristor. In read operation, one

nanowire is driven with read voltage VR, and is sensed on the other nanowire to know the state of

memristor.

The CMOS cell has inverter in addition to pass transistors to implement wired-NOR gate. The

structure is shown in Figure C.3. The inverter can be disabled if required by cutting power supply

of it. The implementation of wired-NOR gate is shown as an example to implement the function

C = A+B on CMOL architecture in Figure C.4 and its equivalent circuit in Figure C.5.

In CMOL, nanowires are used for signal routing and performing wired-OR logic while other

functions are being implemented in CMOS layer. As CMOL uses non-complementary wired-NOR

logic, careful optimization is required of closed junction resistance, pass-transistor resistance

Appendix C. Specialized memristive crossbar array 169

α
Memristor

Vm Vn

Hp

Hr

T1

T2

Nanowires

Figure C.2. Single memristor can be accessed through CMOS - nanowire - memristor - nanowire
- CMOS interface. In this generic figure vertical metal wires are used to select nanowire and
horizontal metal wires for driving/receiving data to/from selected nanowires.

α Memristor

Vm Vm+1

Hr+1

Hr

T1

T2
VDD

Input nanowire

Output
nanowire

Figure C.3. CMOL cell consisting of inverter and pass transistors to implement wired-NOR gate.
The inverter can be disabled in case not required by switching off the power supply.

and supply voltage. Also the configurable junctions need to be extremely nonlinear antifuses

in order to implement the wired-OR function and may restrict fan-in because of device variability

or insufficient nonlinearity. This in turn will reduce circuit density. Nonlinear devices are difficult

to fabricate in crossbar. The fabrication of tapered nanopins with extremely small tip diameter and

Appendix C. Specialized memristive crossbar array 170

A

B

C

Figure C.4. Example implementation of
wired-NOR gate on CMOL architecture,
implementing C = A+B. Each CMOS cell
consists of inverter and pass transistors (not
shown in this Figure) [46].

C

CMOS inverter
Rpass

Cwire

Memristors

A B

pass transistor

Figure C.5. The equivalent NOR gate for
example implementation of wired-NOR in
CMOL architecture shown in Figure C.4
[46].

their placement is difficult [54]. The modification to this architecture is FPNI architecture.

C.2 FPNI Architecture

FPNI architecture is similar to CMOL with following changes: In FPNI logic operations are

done only in CMOS while signal routing is done only through nanowires and memristors. This

significantly reduces static power dissipation. The FPNI routing network is buffer based (CMOL

routing is inverter based) and it simplifies signal routing through available routing algorithms. The

alignment of FPNI nanowire crossbar with CMOS pins require accuracy on CMOS scale. FPNI

uses conventional CMOS process and voltages, and provides planar silicon surface for nanowires.

In CMOL, nanopins of different height makes surface nonplanar and CMOL architecture works at

very low voltage levels.

The top view of FPNI architecture is shown in Figure 2.8 and its side view is drawn in Figure 2.7.

In order to simplify the nanocrossbar CMOS interface and to avoid the tapering of CMOS pins, the

nanowires are flattened at the location of CMOS nanowire interface. The CMOS level resolution

Appendix C. Specialized memristive crossbar array 171

is sufficient to fabricate the CMOS pins. However this arrangement makes the crossbar sparser

with less circuit density. Figure C.6 shows the example implementation of simple NAND function

C = AB on FPNI fabric. The signal routing is only done through nanocrossbar while logic function

is executed in CMOS part.

A

B

C

memristors
(in ON states)

Buffer

NAND gate

Figure C.6. Example implementation of NAND function (C =AB) in FPNI fabric where the inputs
are routed through nanowire and memristors while actual logic function (NAND in this case) is
implemented in CMOS layer along with buffers [54].

Appendix D

CRS Logic Analysis

Basic 2-input NOR gate with CRS is shown in Figure 5.8. Consider the voltage applied at CRS

Q (which is one of the inputs and destination CRS) is VQ = Vx and voltage applied at other input

CRS P is VP = Vx−∆V for logic evaluation. Voltage at point C in Figure 5.8 is given by

VC =
(Vx−∆V)

(
RG||

(
RQM1 +RQM2

))(
RG||

(
RQM1 +RQM2

))
+(RPM1 +RPM2)

+
Vx (RG||(RPM1 +RPM2))

(RG||(RPM1 +RPM2))+
(
RQM1 +RQM2

) (D.1)

All possible cases of states of memristors that are part of CRS based stateful NOR gate in Figure

5.8 are listed in Table 5.2. The resultant voltage across each memristor in stateful NOR gate for

Case 1 is evaluated in Chapter 5 while for remaining cases, evaluation is done below.

• Case 2 : RPM1 = RLRS, RPM2 = RHRS, RQM1 = RLRS, RQM2 = RLRS

For Case 2 where RPM1 = RLRS, RPM2 = RHRS, RQM1 = RLRS, RQM2 = RLRS, (D.1) becomes

VC =
(Vx−∆V)(RG||(RLRS +RLRS))

(RG||(RLRS +RLRS))+(RLRS +RHRS)
+

Vx (RG||(RLRS +RHRS))

(RG||(RLRS +RHRS))+(RLRS +RLRS)
,

(D.2)

which can be approximated as,

VC ≈
(Vx−∆V)2RLRS

3RLRS +RHRS
+

VxRG

RG +2RLRS
≈Vx. (D.3)

172

Appendix D. CRS Logic Analysis 173

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−Vx]
RLRS

RLRS +RHRS
≈ −∆V RLRS

RHRS
≈ 0. (D.4)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−Vx]
RHRS

RLRS +RHRS
≈−∆V, (D.5)

voltage across QM1 is

VQM1 = [Vx−Vx]
RLRS

RLRS +RLRS
≈ 0, (D.6)

and across QM2 is

VQM2 = [Vx−Vx]
RLRS

RLRS +RLRS
≈ 0. (D.7)

• Case 3 : RPM1 = RHRS, RPM2 = RLRS, RQM1 = RLRS, RQM2 = RLRS

For Case 3 where RPM1 = RHRS, RPM2 = RLRS, RQM1 = RLRS, RQM2 = RLRS, (D.1) becomes

VC =
(Vx−∆V)(RG||(RLRS +RLRS))

(RG||(RLRS +RLRS))+(RHRS +RLRS)
+

Vx (RG||(RHRS +RLRS))

(RG||(RHRS +RLRS))+(RLRS +RLRS)
,

(D.8)

which can be approximated as,

VC ≈
(Vx−∆V)2RLRS

3RLRS +RHRS
+

VxRG

RG +2RLRS
≈Vx. (D.9)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−Vx]
RHRS

RLRS +RHRS
≈−∆V. (D.10)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−Vx]
RLRS

RLRS +RHRS
≈ −∆V RLRS

RHRS
≈ 0, (D.11)

voltage across QM1 is

VQM1 = [Vx−Vx]
RLRS

RLRS +RLRS
≈ 0, (D.12)

Appendix D. CRS Logic Analysis 174

and across QM2 is

VQM2 = [Vx−Vx]
RLRS

RLRS +RLRS
≈ 0. (D.13)

• Case 4 : RPM1 = RHRS, RPM2 = RHRS, RQM1 = RLRS, RQM2 = RLRS

For Case 4 where RPM1 = RHRS, RPM2 = RHRS, RQM1 = RLRS, RQM2 = RLRS, (D.1) becomes

VC =
(Vx−∆V)(RG||(RLRS +RLRS))

(RG||(RLRS +RLRS))+(RHRS +RHRS)
+

Vx (RG||(RHRS +RHRS))

(RG||(RHRS +RHRS))+(RLRS +RLRS)
,

(D.14)

which can be approximated as,

VC ≈
(Vx−∆V)2RLRS

2RLRS +2RHRS
+

VxRG

RG +2RLRS
≈Vx. (D.15)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−Vx]
RHRS

RHRS +RHRS
≈−∆V

2
. (D.16)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−Vx]
RHRS

RHRS +RHRS
≈−∆V

2
, (D.17)

voltage across QM1 is

VQM1 = [Vx−Vx]
RLRS

RLRS +RLRS
≈ 0, (D.18)

and across QM2 is

VQM2 = [Vx−Vx]
RLRS

RLRS +RLRS
≈ 0. (D.19)

• Case 5 : RPM1 = RLRS, RPM2 = RLRS, RQM1 = RLRS, RQM2 = RHRS

For Case 5 where RPM1 = RLRS, RPM2 = RLRS, RQM1 = RLRS, RQM2 = RHRS, (D.1) becomes

VC =
(Vx−∆V)(RG||(RLRS +RHRS))

(RG||(RLRS +RHRS))+(RLRS +RLRS)
+

Vx (RG||(RLRS +RLRS))

(RG||(RLRS +RLRS))+(RLRS +RHRS)
,

(D.20)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +2RLRS
+

Vx (2RLRS)

3RLRS +RHRS
≈Vx−∆V. (D.21)

Appendix D. CRS Logic Analysis 175

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)− (Vx−∆V)]
RLRS

RLRS +RLRS
≈ 0. (D.22)

In a similar manner, voltage across memristor PM2 is

VPM2 ≈ 0, (D.23)

voltage across QM1 is

VQM1 = [Vx− (Vx−∆V)]
RLRS

RLRS +RHRS
≈ ∆V RLRS

RHRS
≈ 0, (D.24)

and across QM2 is

VQM2 = [Vx− (Vx−∆V)]
RHRS

RLRS +RHRS
≈ ∆V. (D.25)

• Case 6 : RPM1 = RLRS, RPM2 = RHRS, RQM1 = RLRS, RQM2 = RHRS

For Case 6 where RPM1 = RLRS, RPM2 = RHRS, RQM1 = RLRS, RQM2 = RHRS, (D.1) becomes

VC =
(Vx−∆V)(RG||(RLRS +RHRS))

(RG||(RLRS +RHRS))+(RLRS +RHRS)
+

Vx (RG||(RLRS +RHRS))

(RG||(RLRS +RHRS))+(RLRS +RHRS)
,

(D.26)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +RLRS +RHRS
+

VxRG

RG +RLRS +RHRS
≈ (2Vx−∆V)RG

RHRS
≈ 0. (D.27)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 =

[
(Vx−∆V)− (2Vx−∆V)RG

RHRS

]
RLRS

RLRS +RHRS
≈ 0. (D.28)

In a similar manner, voltage across memristor PM2 is

VPM2 =

[
(Vx−∆V)− (2Vx−∆V)RG

RHRS

]
RHRS

RLRS +RHRS
≈Vx−∆V, (D.29)

Appendix D. CRS Logic Analysis 176

voltage across QM1 is

VQM1 =

[
Vx−

(2Vx−∆V)RG

RHRS

]
RLRS

RLRS +RHRS
≈ 0, (D.30)

and across QM2 is

VQM2 =

[
Vx−

(2Vx−∆V)RG

RHRS

]
RHRS

RLRS +RHRS
≈Vx. (D.31)

• Case 7 : RPM1 = RHRS, RPM2 = RLRS, RQM1 = RLRS, RQM2 = RHRS

For Case 7 where RPM1 = RHRS, RPM2 = RLRS, RQM1 = RLRS, RQM2 = RHRS, (D.1) becomes

VC =
(Vx−∆V)(RG||(RLRS +RHRS))

(RG||(RLRS +RHRS))+(RHRS +RLRS)
+

Vx (RG||(RHRS +RLRS))

(RG||(RHRS +RLRS))+(RLRS +RHRS)
,

(D.32)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +RLRS +RHRS
+

VxRG

RG +RLRS +RHRS
≈ (2Vx−∆V)RG

RHRS
≈ 0. (D.33)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 =

[
(Vx−∆V)− (2Vx−∆V)RG

RHRS

]
RHRS

RLRS +RHRS
≈Vx−∆V. (D.34)

In a similar manner, voltage across memristor PM2 is

VPM2 =

[
(Vx−∆V)− (2Vx−∆V)RG

RHRS

]
RLRS

RLRS +RHRS
≈ 0, (D.35)

voltage across QM1 is

VQM1 =

[
Vx−

(2Vx−∆V)RG

RHRS

]
RLRS

RLRS +RHRS
≈ 0, (D.36)

and across QM2 is

VQM2 =

[
Vx−

(2Vx−∆V)RG

RHRS

]
RHRS

RLRS +RHRS
≈Vx. (D.37)

Appendix D. CRS Logic Analysis 177

• Case 8 : RPM1 = RHRS, RPM2 = RHRS, RQM1 = RLRS, RQM2 = RHRS

For Case 8 where RPM1 = RHRS, RPM2 = RHRS, RQM1 = RLRS, RQM2 = RHRS, (D.1) becomes

VC =
(Vx−∆V)(RG||(RLRS +RHRS))

(RG||(RLRS +RHRS))+(RHRS +RHRS)
+

Vx (RG||(RHRS +RHRS))

(RG||(RHRS +RHRS))+(RLRS +RHRS)
,

(D.38)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +2RHRS
+

VxRG

RG +RLRS +RHRS
≈ 0. (D.39)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−0]
RHRS

RHRS +RHRS
≈ Vx−∆V

2
. (D.40)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−0]
RHRS

RHRS +RHRS
≈ Vx−∆V

2
, (D.41)

voltage across QM1 is

VQM1 = [Vx−0]
RLRS

RLRS +RHRS
≈ 0, (D.42)

and across QM2 is

VQM2 = [Vx−0]
RHRS

RLRS +RHRS
≈Vx. (D.43)

• Case 9 : RPM1 = RLRS, RPM2 = RLRS, RQM1 = RHRS, RQM2 = RLRS

For Case 9 where RPM1 = RLRS, RPM2 = RLRS, RQM1 = RHRS, RQM2 = RLRS, (D.1) becomes

VC =
(Vx−∆V)(RG||(RHRS +RLRS))

(RG||(RHRS +RLRS))+(RLRS +RLRS)
+

Vx (RG||(RLRS +RLRS))

(RG||(RLRS +RLRS))+(RHRS +RLRS)
,

(D.44)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +2RLRS
+

Vx (2RLRS)

3RLRS +RHRS
≈Vx−∆V. (D.45)

Appendix D. CRS Logic Analysis 178

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)− (Vx−∆V)]
RLRS

RLRS +RLRS
≈ 0. (D.46)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)− (Vx−∆V)]
RLRS

RLRS +RLRS
≈ 0, (D.47)

voltage across QM1 is

VQM1 = [Vx− (Vx−∆V)]
RHRS

RLRS +RHRS
≈ ∆V, (D.48)

and across QM2 is

VQM2 = [Vx− (Vx−∆V)]
RLRS

RLRS +RHRS
≈ 0. (D.49)

• Case 10 : RPM1 = RLRS, RPM2 = RHRS, RQM1 = RHRS, RQM2 = RLRS

For Case 10 where RPM1 = RLRS, RPM2 = RHRS, RQM1 = RHRS, RQM2 = RLRS, (D.1)

becomes

VC =
(Vx−∆V)(RG||(RHRS +RLRS))

(RG||(RHRS +RLRS))+(RLRS +RHRS)
+

Vx (RG||(RLRS +RHRS))

(RG||(RLRS +RHRS))+(RHRS +RLRS)
,

(D.50)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +RLRS +RHRS
+

VxRG

RG +RLRS +RHRS
≈ 0. (D.51)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−0]
RLRS

RLRS +RHRS
≈ 0. (D.52)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−0]
RHRS

RLRS +RHRS
≈Vx−∆V, (D.53)

Appendix D. CRS Logic Analysis 179

voltage across QM1 is

VQM1 = [Vx−0]
RHRS

RLRS +RHRS
≈Vx, (D.54)

and across QM2 is

VQM2 = [Vx−0]
RLRS

RLRS +RHRS
≈ 0. (D.55)

• Case 11 : RPM1 = RHRS, RPM2 = RLRS, RQM1 = RHRS, RQM2 = RLRS

For Case 11 where RPM1 = RHRS, RPM2 = RLRS, RQM1 = RHRS, RQM2 = RLRS, (D.1)

becomes

VC =
(Vx−∆V)(RG||(RHRS +RLRS))

(RG||(RHRS +RLRS))+(RHRS +RLRS)
+

Vx (RG||(RHRS +RLRS))

(RG||(RHRS +RLRS))+(RHRS +RLRS)
,

(D.56)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +RLRS +RHRS
+

VxRG

RG +RLRS +RHRS
≈ 0. (D.57)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−0]
RHRS

RLRS +RHRS
≈Vx−∆V. (D.58)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−0]
RLRS

RLRS +RHRS
≈ 0, (D.59)

voltage across QM1 is

VQM1 = [Vx−0]
RHRS

RLRS +RHRS
≈Vx, (D.60)

and across QM2 is

VQM2 = [Vx−0]
RLRS

RLRS +RHRS
≈ 0. (D.61)

• Case 12 : RPM1 = RHRS, RPM2 = RHRS, RQM1 = RHRS, RQM2 = RLRS

Appendix D. CRS Logic Analysis 180

For Case 12 where RPM1 = RHRS, RPM2 = RHRS, RQM1 = RHRS, RQM2 = RLRS, (D.1)

becomes

VC =
(Vx−∆V)(RG||(RHRS +RLRS))

(RG||(RHRS +RLRS))+(RHRS +RHRS)
+

Vx (RG||(RHRS +RHRS))

(RG||(RHRS +RHRS))+(RHRS +RLRS)
,

(D.62)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +2RHRS
+

VxRG

RG +RLRS +RHRS
≈ 0. (D.63)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−0]
RHRS

RHRS +RHRS
≈ Vx−∆V

2
. (D.64)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−0]
RHRS

RHRS +RHRS
≈ Vx−∆V

2
, (D.65)

voltage across QM1 is

VQM1 = [Vx−0]
RHRS

RLRS +RHRS
≈Vx, (D.66)

and across QM2 is

VQM2 = [Vx−0]
RLRS

RLRS +RHRS
≈ 0. (D.67)

• Case 13 : RPM1 = RLRS, RPM2 = RLRS, RQM1 = RHRS, RQM2 = RHRS

For Case 13 where RPM1 = RLRS, RPM2 = RLRS, RQM1 = RHRS, RQM2 = RHRS, (D.1)

becomes

VC =
(Vx−∆V)(RG||(RHRS +RHRS))

(RG||(RHRS +RHRS))+(RLRS +RLRS)
+

Vx (RG||(RLRS +RLRS))

(RG||(RLRS +RLRS))+(RHRS +RHRS)
,

(D.68)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +2RLRS
+

Vx (2RLRS)

2RLRS +2RHRS
≈Vx−∆V. (D.69)

Appendix D. CRS Logic Analysis 181

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)− (Vx−∆V)]
RLRS

RLRS +RLRS
≈ 0. (D.70)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)− (Vx−∆V)]
RLRS

RLRS +RLRS
≈ 0, (D.71)

voltage across QM1 is

VQM1 = [Vx− (Vx−∆V)]
RHRS

RHRS +RHRS
≈ ∆V

2
, (D.72)

and across QM2 is

VQM2 = [Vx− (Vx−∆V)]
RHRS

RHRS +RHRS
≈ ∆V

2
. (D.73)

• Case 14 : RPM1 = RLRS, RPM2 = RHRS, RQM1 = RHRS, RQM2 = RHRS

For Case 14 where RPM1 = RLRS, RPM2 = RHRS, RQM1 = RHRS, RQM2 = RHRS, (D.1)

becomes

VC =
(Vx−∆V)(RG||(RHRS +RHRS))

(RG||(RHRS +RHRS))+(RLRS +RHRS)
+

Vx (RG||(RLRS +RHRS))

(RG||(RLRS +RHRS))+(RHRS +RHRS)
,

(D.74)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +RLRS +RHRS
+

VxRG

RG +2RHRS
≈ 0. (D.75)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−0]
RLRS

RLRS +RHRS
≈ 0. (D.76)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−0]
RHRS

RLRS +RHRS
≈Vx−∆V, (D.77)

Appendix D. CRS Logic Analysis 182

voltage across QM1 is

VQM1 = [Vx−0]
RHRS

RHRS +RHRS
≈ Vx

2
, (D.78)

and across QM2 is

VQM2 = [Vx−0]
RHRS

RHRS +RHRS
≈ Vx

2
. (D.79)

• Case 15 : RPM1 = RHRS, RPM2 = RLRS, RQM1 = RHRS, RQM2 = RHRS

For Case 15 where RPM1 = RHRS, RPM2 = RLRS, RQM1 = RHRS, RQM2 = RHRS, (D.1)

becomes

VC =
(Vx−∆V)(RG||(RHRS +RHRS))

(RG||(RHRS +RHRS))+(RHRS +RLRS)
+

Vx (RG||(RHRS +RLRS))

(RG||(RHRS +RLRS))+(RHRS +RHRS)
,

(D.80)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +RLRS +RHRS
+

VxRG

RG +2RHRS
≈ 0. (D.81)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−0]
RHRS

RLRS +RHRS
≈Vx−∆V. (D.82)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−0]
RLRS

RLRS +RHRS
≈ 0, (D.83)

voltage across QM1 is

VQM1 = [Vx−0]
RHRS

RHRS +RHRS
≈ Vx

2
, (D.84)

and across QM2 is

VQM2 = [Vx−0]
RHRS

RHRS +RHRS
≈ Vx

2
. (D.85)

• Case 16 : RPM1 = RHRS, RPM2 = RHRS, RQM1 = RHRS, RQM2 = RHRS

Appendix D. CRS Logic Analysis 183

For Case 16 where RPM1 = RHRS, RPM2 = RHRS, RQM1 = RHRS, RQM2 = RHRS, (D.1)

becomes

VC =
(Vx−∆V)(RG||(RHRS +RHRS))

(RG||(RHRS +RHRS))+(RHRS +RHRS)
+

Vx (RG||(RHRS +RHRS))

(RG||(RHRS +RHRS))+(RHRS +RHRS)
,

(D.86)

which can be approximated as,

VC ≈
(Vx−∆V)RG

RG +2RHRS
+

VxRG

RG +2RHRS
≈ 0. (D.87)

Therefore, voltage across memristor PM1 is approximately given as,

VPM1 = [(Vx−∆V)−0]
RHRS

RHRS +RHRS
≈ Vx−∆V

2
. (D.88)

In a similar manner, voltage across memristor PM2 is

VPM2 = [(Vx−∆V)−0]
RHRS

RHRS +RHRS
≈ Vx−∆V

2
, (D.89)

voltage across QM1 is

VQM1 = [Vx−0]
RHRS

RHRS +RHRS
≈ Vx

2
, (D.90)

and across QM2 is

VQM2 = [Vx−0]
RHRS

RHRS +RHRS
≈ Vx

2
. (D.91)

Appendix E

Materials and Properties

The information presented here is taken directly as it is from [170] in order to know the various

materials being used in memristors and for their top and bottom electrode. Also some of the

properties of memristors and their values are specified in the end.

Table E.1. Materials used in anion devices (VCM) along with top and bottom electrode material.

Sr. No. Insulators
Bottom

Electrode

Top

Electrode

Switching

Mode

1 MgO Pt Pt Unipolar

2 TiOx Ru, Pt Al, Pt
Non/Uni

/Bipolar

3 ZrOx
P+- Si,

n+- Si
Pt, Cr Uni/Bipolar

4 HfOx TiN TiN Bipolar

5 VOx N/A N/A Threshold

6 NbOx P+- Si Pt Unipolar

7 TaOx Pt, Ta Pt, Ta Bipolar

8 CrOx TiN Pt Bipolar

9 MoOx Pt Pt-Ir Uni/Bipolar

10 WOx W, FTO TiN, Au Bipolar

184

Appendix E. Materials and Properties 185

11 MnOx Pt Al, TiN Bipolar

12 FeOx Pt Pt Non/Bipolar

13 CoOx Pt Pt Nonpolar

14 NiOx Pt Pt
Nonpolar

/Threshold

15 CuOx
TiN, TaN,

SRO, Pt
Pt Bipolar

16 ZnOx Pt, Au TiN, Ag Bipolar

17 AlOx Ru, Pt Pt, Ti
Unipolar

/Bipolar

18 GaOx ITO Pt, Ti Bipolar

19 SiOx
Poly-Si,

TiW

Poly-Si,

TiW
Unipolar

20 SiOxNy W Cu Bipolar

21 GeOx ITO, TaN Pt, Ni Bipolar

22 SnOx Pt Pt Unipolar

23 BiOx Bi
W, Re,

Ag, Cu
Bipolar

24 SbOx Pt Sb
Unipolar

/Bipolar

25 SmOx TiN Pt Bipolar

26 GdOx Pt Pt Unipolar

27 YOx Al Al Unipolar

28 CeOx Pt Al Bipolar

29 EuOx TaN Ru
Unipolar

/Bipolar

30 PrOx TaN Ru Bipolar

31 ErOx TaN Ru Unipolar

32 DyOx TaN Ru Unipolar

33 NdOx TaN Ru Unipolar

34 Ba0.7Sr0.3TiO3 SrRuO3 Pt, W Bipolar

Appendix E. Materials and Properties 186

35 SrTiO3
SrRuO3,

Au, Pt
Au, Pt Bipolar

36 SrZrO3 SrRuO3 Au Bipolar

37 BiFeO3 LaNiO3 Pt Bipolar

38 Pr0.7Ca0.3MnO3
YBCO, Pt,

LaAlO3

Ag Bipolar

39 La0.33Sr0.67FeO3 Au Al Bipolar

40 PryLa0.625−yCa0.375MnO3 Ag Ag Bipolar

41 Nitrides (AlN)
Al, TiN,

Pt

Al, TiN,

Pt
Bipolar

42 Telluride (ZnTe) Si Au Bipolar

43 selenide (ZnSe) P+-Ge In, In-Zn Bipolar

44 Polymers
Al, ITO,

Cu

Al, ITO,

Cu
Bipolar

Appendix E. Materials and Properties 187

Table E.2. Materials used in cation devices along with materials for top electrode, bottom
electrode and switching modes.

Sr.
No. Electrolytes Bottom

Electrode
Top

Electrode
Switching

Mode
Sulfides:
1 GexSx W Ag Bipolar
2 As2S3 Au Ag Bipolar
3 Cu2S Cu Pt Bipolar
4 ZnxCd1−xS Pt Ag Bipolar

Iodides:
5 AgI Pt Ag Bipolar
6 RbAg4I Pt Ag Bipolar

Selenides:
7 GexSey W Ag, Cu Bipolar

Tellurides:
8 GexTey TiW Ag Bipolar

Ternary chalcogenides:
9 Ge-Sb-Te Mo Au, Ag Bipolar

Oxides:
10 Ta2O5 Pt Cu Bipolar

11 SiO2 W Cu
Unipolar/
Bipolar

12 HfO2 Pt Cu Bipolar
13 WO3 Pt Cu Bipolar
14 ZrO2 Ag Au Bipolar
15 SrTiO3 Pt Ag Bipolar
16 TiO2 Pt Ag Bipolar
17 CuOx Cu Al Unipolar

18 ZnO
Pt, Al

doped ZnO Cu Bipolar

19 Al2O3 Al Cu Bipolar
20 MoOx Cu Pt Bipolar

21 GdOx Pt
Cu doped

MoOx
Others:
22 MSQ Pt Ag Bipolar

23
Doped Organic
Semiconductors Pt Cu Bipolar

24 Nitrides Pt Cu Bipolar
25 Amorphous Si P+-Si Ag Bipolar
26 Carbon Pt Cu Bipolar

27 Vacuum Gaps
RbAg4I5/Ag,

Ag2S/Ag W, Pt Bipolar

Appendix E. Materials and Properties 188

Table E.3. Various properties of switching materials used in memristors and their values in typical
applications.

Property Storage Memory Logic Neuro
Best

Reported

Reproducibility <10% <1 % <20 % <50 % few percent

Endurance >104 >1016 >100 >100 - 106 1012

Switching

Energy
<1 pJ <5 pJ not critical not critical 1 pJ

Switching

Speed
<10 µs <1 ns not critical not critical 100 ps

Retention >10 Years
>Minutes -

months
>days

>seconds-

days
1014

ON/OFF

current ratio
>10 >50 >100 >500 >1011

OFF-state

Resistance
>1 MΩ >100 kΩ >10 MΩ >100 MΩ 1 kΩ -100 GΩ

Density

>(10 nm)−2

and

>4 layers

>(10 nm)−2

>(20 nm)−2

&

multilayer

>(10-100

nm)−2

& multilayer

4 layer

1/(10 nm)2

Number of

States
2-16 2 2-16 2-32 ∼ 100

I-V

nonlinearity
>100 - 10000 >100 - 1000 >10 not critical 100

Bibliography

[1] I. Kuon and J. Rose, Quantifying and exploring the gap between FPGAs and ASICs, 1st ed.

Springer Publishing Company, Incorporated, 2009.

[2] D. B. Strukov, K. K. Likharev, and R. Waser(Eds), Nanoelectronics and information

technology, 3rd ed. Wiley, 2012.

[3] G. Lemieux and D. Lewis, “Circuit design of routing switches,” in ACM/SIGDA

International Symposium on Field Programmable Gate Arrays. ACM Press, 2002.

[4] S. Hauck and A. DeHon, Eds., Reconfigurable computing: The theory and practice of

FPGA-based computation. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2007.

[5] V. George and J. M. Rabaey, Low-energy FPGAs - Architecture and design. Springer

Science+Business Media, LLC, 2001.

[6] G. Lemieux and D. Lewis, Design of interconnection networks for programmable logic.

Norwell, MA, USA: Kluwer Academic Publishers, 2004.

[7] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and challenges,” Foundations

and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2008.

[8] K. J. Han, N. Chan, S. Kim, B. Leung, V. Hecht, B. Cronquist, D. Shum, A. Tilke,

L. Pescini, M. Stiftinger, and R. Kakoschke, “A novel flash-based FPGA technology with

deep trench isolation,” in 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop,

2007, pp. 32–33.

189

Bibliography 190

[9] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203–215,

2007.

[10] A. DeHon, “Reconfigurable architectures for general-purpose computing,” Ph.D.

dissertation, MIT, 1996.

[11] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron FPGA

performance and density,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 12, no. 3, pp. 288–298, 2004.

[12] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power modeling and characteristics of field

programmable gate arrays,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 24, no. 11, pp. 1712–1724, 2005.

[13] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-programmable gate

arrays: the effect of logic block functionality on area efficiency,” IEEE Journal of

Solid-State Circuits, vol. 25, no. 5, pp. 1217–1225, 1990.

[14] J. Kouloheris and A. El Gamal, “FPGA performance versus cell granularity,” in Proceedings

of the IEEE 1991 Custom Integrated Circuits Conference, 1991, pp. 6.2/1–4.

[15] S. Singh, J. Rose, P. Chow, and D. Lewis, “The effect of logic block architecture on FPGA

performance,” IEEE Journal of Solid-State Circuits, vol. 27, no. 3, pp. 281–287, 1992.

[16] Y. Xie, G. H. Loh, B. Black, and K. Bernstein, “Design space exploration for 3D

architectures,” ACM Journal on Emerging Technologies in Computing Systems, vol. 2, no. 2,

pp. 65–103, 2006.

[17] W. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. Sule, M. Steer, and P. Franzon,

“Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Design Test of

Computers, vol. 22, no. 6, pp. 498–510, 2005.

[18] A. Rahman, S. Das, A. Chandrakasan, and R. Reif, “Wiring requirement and

three-dimensional integration technology for field programmable gate arrays,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 1, pp. 44–54,

2003.

Bibliography 191

[19] M. Lin, A. E. Gamal, Y.-C. Lu, and S. Wong, “Performance benefits of monolithically

stacked 3D-FPGA,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 26, no. 2, pp. 216–229, 2007.

[20] Y. Chen, J. Zhao, and Y. Xie, “3D-nonFAR: Three-dimensional non-volatile FPGA

architecture using phase change memory,” in Proceedings of the 16th ACM/IEEE

International Symposium on Low Power Electronics and Design, ser. ISLPED ’10, 2010,

pp. 55–60.

[21] C. Dong, D. Chen, S. Haruehanroengra, and W. Wang, “3D nFPGA: A reconfigurable

architecture for 3D CMOS/nanomaterial hybrid digital circuits,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 54, no. 11, pp. 2489–2501, 2007.

[22] C. Chen, R. Parsa, N. Patil, S. Chong, K. Akarvardar, J. Provine, D. Lewis, J. Watt,

R. T. Howe, H.-S. P. Wong, and S. Mitra, “Efficient FPGAs using nanoelectromechanical

relays,” in Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, ser. FPGA ’10, 2010, pp. 273–282.

[23] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R.

Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible

resistance switching in polycrystalline NiO films,” Applied Physics Letters, vol. 85, no. 23,

pp. 5655–5657, 2004.

[24] K. Akarvardar, D. Elata, R. Parsa, G. Wan, K. Yoo, J. Provine, P. Peumans, R. Howe,

and H.-S. Wong, “Design considerations for complementary nanoelectromechanical logic

gates,” in IEEE International Electron Devices Meeting IEDM 2007, 2007, pp. 299–302.

[25] R. Nathanael, V. Pott, H. Kam, J. Jeon, and T.-J. K. Liu, “4-terminal relay technology

for complementary logic,” in 2009 IEEE International Electron Devices Meeting (IEDM),

2009, pp. 1–4.

[26] F. Chen, H. Kam, D. Markovic, T.-J. K. Liu, V. Stojanovic, and E. Alon, “Integrated circuit

design with NEM relays,” in IEEE/ACM International Conference on Computer-Aided

Design ICCAD, 2008, pp. 750–757.

Bibliography 192

[27] R. Bez and A. Pirovano, “Non-volatile memory technologies: emerging concepts and new

materials,” Materials Science in Semiconductor Processing, vol. 7, no. 4–6, pp. 349 – 355,

2004.

[28] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a

scalable DRAM alternative,” in Proceedings of the 36th Annual International Symposium

on Computer Architecture, ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 2–13.

[29] X. Dong, N. Jouppi, and Y. Xie, “PCRAMsim: System-level performance, energy,

and area modeling for Phase-Change RAM,” in IEEE/ACM International Conference on

Computer-Aided Design - Digest of Technical Papers ICCAD., 2009, pp. 269–275.

[30] F. Bedeschi, R. Fackenthal, C. Resta, E. Donze, M. Jagasivamani, E. Buda, F. Pellizzer,

D. Chow, A. Cabrini, G. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi,

and G. Casagrande, “A bipolar-selected phase change memory featuring multi-level cell

storage,” IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 217–227, 2009.

[31] Y. S. Chen, H. Lee, P. Chen, P. Gu, C. Chen, W. Lin, W. Liu, Y. Hsu, S. Sheu, P.-C. Chiang,

W.-S. Chen, F. Chen, C. Lien, and M. J. Tsai, “Highly scalable hafnium oxide memory with

improvements of resistive distribution and read disturb immunity,” in IEEE International

Electron Devices Meeting (IEDM), 2009, pp. 1–4.

[32] S.-S. Sheu, P.-C. Chiang, W.-P. Lin, H.-Y. Lee, P.-S. Chen, Y.-S. Chen, T.-Y. Wu, F. Chen,

K.-L. Su, M.-J. Kao, K.-H. Cheng, and M.-J. Tsai, “A 5ns fast write multi-level non-volatile

1 K bits RRAM memory with advance write scheme,” in Symposium on VLSI Circuits,

2009, pp. 82–83.

[33] C.-H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, C.-J. Lin, S.-S. Sheu, Y.-S.

Chen, H.-Y. Lee, F. Chen, and M.-J. Tsai, “Three-dimensional 4F2 ReRAM cell with CMOS

logic compatible process,” in IEEE International Electron Devices Meeting (IEDM), 2010,

pp. 29.6.1–4.

[34] M. Mahvash and A. Parker, “A memristor SPICE model for designing memristor circuits,”

in 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2010,

pp. 989–992.

Bibliography 193

[35] S. Yu, J. Liang, Y. Wu, and H.-S. P. Wong, “Read/write schemes analysis for novel

complementary resistive switches in passive crossbar memory arrays,” Nanotechnology,

vol. 21, no. 46, pp. 465 202:1–5, 2010.

[36] M. Liu and W. Wang, “rFGA: CMOS-nano hybrid FPGA using RRAM components,” in

IEEE International Symposium on Nanoscale Architectures NANOARCH, 2008, pp. 93–98.

[37] C. Xu, X. Dong, N. Jouppi, and Y. Xie, “Design implications of memristor-based RRAM

cross-point structures,” in Design, Automation Test in Europe Conference Exhibition

(DATE), 2011, pp. 1–6.

[38] P.-E. Gaillardon, M. Ben-Jamaa, G. Beneventi, F. Clermidy, and L. Perniola, “Emerging

memory technologies for reconfigurable routing in FPGA architecture,” in 17th IEEE

International Conference on Electronics, Circuits, and Systems (ICECS), 2010, pp. 62–65.

[39] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi,

A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “Low power and high speed

switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V,” in

IEEE International Electron Devices Meeting (IEDM), 2007, pp. 767–770.

[40] R. Huang, L. Zhang, D. Gao, Y. Pan, S. Qin, P. Tang, Y. Cai, and Y. Wang, “Resistive

switching of silicon rich oxide featuring high compatibility with CMOS technology for 3D

stackable and embedded applications,” Applied Physics A, vol. 102, no. 4, pp. 927–931,

2011.

[41] Z. Abid, D. Homouz, B. Mohammad, and W. Wang, “Memristors-based NMOS logic

circuits,” in 24th International Conference on Microelectronics (ICM), 2012, pp. 1–4.

[42] J. Cong and B. Xiao, “mrFPGA: A novel FPGA architecture with memristor-based

reconfiguration,” in IEEE/ACM International Symposium on Nanoscale Architectures

(NANOARCH), 2011, pp. 1–8.

[43] A. Dehon, “Array-based architecture for molecular electronics,” in Proceedings of the First

Workshop on Non-Silicon Computation (NSC-1), 2001, pp. 1–8.

[44] M. Ziegler and M. Stan, “CMOS/nano co-design for crossbar-based molecular electronic

systems,” IEEE Transactions on Nanotechnology, vol. 2, no. 4, pp. 217–230, 2003.

Bibliography 194

[45] ——, “The CMOS/nano interface from a circuits perspective,” in Proceedings of the 2003

International Symposium on Circuits and Systems ISCAS’03, vol. 4, 2003, pp. 904–907.

[46] D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable architecture for

hybrid digital circuits with two-terminal nanodevices,” Nanotechnology, vol. 16, no. 6, pp.

888–900, 2005.

[47] P. Kuekes and R. Williams, “Demultiplexer for a molecular wire crossbar network

(MWCN DEMUX),” Jul. 3 2001, US Patent 6,256,767. [Online]. Available: http:

//www.google.co.in/patents/US6256767

[48] Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, “Nanowire crossbar arrays as

address decoders for integrated nanosystems,” Science, vol. 302, no. 5649, pp. 1377–1379,

2003.

[49] P. J. Kuekes, W. Robinett, G. Seroussi, and R. S. Williams, “Defect-tolerant interconnect

to nanoelectronic circuits: Internally redundant demultiplexers based on error-correcting

codes,” Nanotechnology, vol. 16, pp. 869–882, 2005.

[50] G. Snider and W. Robinett, “Crossbar demultiplexers for nanoelectronics based on n-hot

codes,” IEEE Transactions on Nanotechnology, vol. 4, no. 2, pp. 249–254, 2005.

[51] K. Gopalakrishnan, R. Shenoy, C. Rettner, R. King, Y. Zhang, B. Kurdi, L. Bozano,

J. Welser, M. Rothwell, M. Jurich, M. Sanchez, M. Hernandez, P. Rice, W. Risk, and

H. Wickramasinghe, “The micro to nano addressing block (MNAB),” in IEEE International

Electron Devices Meeting IEDM Technical Digest, 2005, pp. 471–474.

[52] P. J. Kuekes, W. Robinett, R. M. Roth, G. Seroussi, G. S. Snider, and R. S. Williams,

“Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes,”

Nanotechnology, vol. 17, no. 4, pp. 1052–1061, 2006.

[53] D. B. Strukov and K. K. Likharev, “A reconfigurable architecture for hybrid

CMOS/nanodevice circuits,” in Proceedings of the 2006 ACM/SIGDA 14th International

Symposium on Field Programmable Gate Arrays, ser. FPGA ’06. New York, NY, USA:

ACM, 2006, pp. 131–140.

http://www.google.co.in/patents/US6256767
http://www.google.co.in/patents/US6256767

Bibliography 195

[54] G. S. Snider and R. S. Williams, “Nano/CMOS architectures using a field-programmable

nanowire interconnect,” Nanotechnology, vol. 18, no. 3, pp. 035 204:1–11, 2007.

[55] M. C. McAlpine, R. S. Friedman, and C. M. Lieber, “Nanoimprint lithography for hybrid

plastic electronics,” Nano Letters, vol. 3, no. 4, pp. 443–445, 2003.

[56] K. Kim, S. Shin, and S.-M. Kang, “Field programmable stateful logic array,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 12,

pp. 1800–1813, 2011.

[57] L. Chua, “Memristor-The missing circuit element,” IEEE Transactions on Circuit Theory,

vol. 18, no. 5, pp. 507–519, 1971.

[58] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor

found,” Nature, vol. 453, pp. 80–83, 2008.

[59] R. Williams, “How we found the missing memristor,” IEEE Spectrum, vol. 45, no. 12, pp.

28–35, 2008.

[60] B. Magyari-Köpe, S. Park, H.-D. Lee, and Y. Nishi, “First principles calculations of oxygen

vacancy-ordering effects in resistance change memory materials incorporating binary

transition metal oxides,” Journal of Materials Science, vol. 47, no. 21, pp. 7498–7514,

2012.

[61] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya,

“TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,”

Applied Physics Letters, vol. 89, no. 22, pp. 223 509:1–3, 2006.

[62] D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen,

K. A. Nielsen, and J. F. Stoddart, “Molecule-independent electrical switching in Pt/organic

monolayer/Ti devices,” Nano Letters, vol. 4, no. 1, pp. 133–136, 2004.

[63] L. Courtade, C. Turquat, J. Lisoni, L. Goux, D. Wouters, D. Deleruyelle, and C. Muller,

“Integration of resistive switching NiO in small via structures from localized oxidation

of nickel metallic layer,” in 38th European Solid-State Device Research Conference

ESSDERC, 2008, pp. 218–221.

Bibliography 196

[64] Y. Wang, Q. Liu, H. Lü, S. Long, W. Wang, Y. Li, S. Zhang, W. Lian, J. Yang, and

M. Liu, “Improving the electrical performance of resistive switching memory using doping

technology,” Chinese Science Bulletin, vol. 57, no. 11, pp. 1235–1240, 2012.

[65] W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, “Nonpolar nonvolatile resistive switching

in Cu doped ZrO2,” IEEE Electron Device Letters, vol. 29, no. 5, pp. 434–437, 2008.

[66] Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, “Si/a-Si core/shell nanowires

as nonvolatile crossbar switches,” Nano Letters, vol. 8, no. 2, pp. 386–391, 2008.

[67] J. Borghetti, D. B. Strukov, M. D. Pickett, J. J. Yang, D. R. Stewart, and R. S. Williams,

“Electrical transport and thermometry of electroformed titanium dioxide memristive

switches,” Journal of Applied Physics, vol. 106, no. 12, pp. 124 504:1–5, 2009.

[68] L. Chua, “Resistance switching memories are memristors,” Applied Physics A, vol. 102,

no. 4, pp. 765–783, 2011.

[69] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and

R. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,”

Nature Nanotechnology, vol. 3, no. 7, pp. 429–433, 2008.

[70] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, “Synaptic behaviors

and modeling of a metal oxide memristive device,” Applied Physics A, vol. 102, no. 4, pp.

857–863, 2011.

[71] F. Corinto, A. Ascoli, and M. Gilli, “Nonlinear dynamics of memristor oscillators,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 6, pp. 1323–1336,

2011.

[72] A. Talukdar, A. Radwan, and K. Salama, “Non linear dynamics of memristor based 3rd

order oscillatory system,” Microelectronics Journal, vol. 43, no. 3, pp. 169 – 175, 2012.

[73] D. Strukov, D. Stewart, J. Borghetti, X. Li, M. Pickett, G. Ribeiro, W. Robinett, G. Snider,

J. Strachan, W. Wu, Q. Xia, J. Yang, and R. Williams, “Hybrid CMOS/memristor circuits,”

in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS),

2010, pp. 1967–1970.

Bibliography 197

[74] Y. V. Pershin, S. La Fontaine, and M. Di Ventra, “Memristive model of amoeba learning,”

Phys. Rev. E, vol. 80, pp. 021 926:1–6, 2009.

[75] G. K. Johnsen, “An introduction to the memristor – a valuable circuit element in

bioelectricity and bioimpedance,” Journal of electrical bioimpedance, vol. 3, pp. 20–28,

2012.

[76] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, “Sub-nanosecond

switching of a tantalum oxide memristor,” Nanotechnology, vol. 22, no. 48, pp.

485 203:1–7, 2011.

[77] L. Chua, “The fourth element,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1920–1927,

2012.

[78] D. Biolek, Z. Biolek, V. Biolkova, and Z. Kolka, “Some fingerprints of ideal memristors,”

in IEEE International Symposium on Circuits and Systems (ISCAS), 2013, pp. 201–204.

[79] Z. Biolek, D. Biolek, and V. Biolkova, “Computation of the area of memristor pinched

hysteresis loop,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59,

no. 9, pp. 607–611, 2012.

[80] L. Chua and S. M. Kang, “Memristive devices and systems,” Proceedings of the IEEE,

vol. 64, no. 2, pp. 209–223, 1976.

[81] S. Kvatinsky, E. Friedman, A. Kolodny, and U. Weiser, “TEAM: ThrEshold Adaptive

Memristor Model,” IEEE Transactions on Circuits and Systems I: Regular Papers,, vol. 60,

no. 1, pp. 211–221, 2013.

[82] S. Kvatinsky, M. Ramadan, E. Friedman, and A. Kolodny, “VTEAM: A general model for

voltage-controlled memristors,” Circuits and Systems II: Express Briefs, IEEE Transactions

on, vol. 62, no. 8, pp. 786–790, 2015.

[83] ITRS, “Emerging research devices,” ITRS, Tech. Rep., 2009. [Online]. Available:

http://www.itrs.net/Links/2009ITRS/2009Chapters 2009Tables/2009 ERD.pdf

[84] D. A. Allwood and R. P. Cowburn, Magnetic domain wall logic. Wiley-VCH Verlag GmbH

& Co. KGaA, 2010.

http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ERD.pdf

Bibliography 198

[85] J. Wang, H. Meng, and J.-P. Wang, “Programmable spintronics logic device based on

a magnetic tunnel junction element,” Journal of Applied Physics, vol. 97, no. 10, pp.

10D509:1–3, 2005.

[86] H. Kimura, T. Hanyu, M. Kameyama, Y. Fujimori, T. Nakamura, and H. Takasu,

“Complementary ferroelectric-capacitor logic for low-power logic-in-memory VLSI,” IEEE

Journal of Solid-State Circuits, vol. 39, no. 6, pp. 919–926, 2004.

[87] A. N. Whitehead and B. Russell, “Principia mathematica. Vol. I.” Cambridge: University

Press. XV u. 666 S. 4◦ (1910), 1910.

[88] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams,

“Memristive switches enable stateful logic operations via material implication,” Nature,

vol. 464, pp. 873–876, 2010.

[89] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A.

Nielsen, J. F. Stoddart, and R. S. Williams, “Nanoscale molecular-switch crossbar circuits,”

Nanotechnology, vol. 14, no. 4, pp. 462–468, 2003.

[90] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. Stanley Williams, J. O. Jeppesen,

K. A. Nielsen, J. F. Stoddart, D. L. Olynick, and E. Anderson, “Nanoscale molecular-switch

devices fabricated by imprint lithography,” Applied Physics Letters, vol. 82, no. 10, pp.

1610–1612, 2003.

[91] G.-Y. Jung, E. Johnston-Halperin, W. Wu, Z. Yu, S.-Y. Wang, W. M. Tong, Z. Li, J. E.

Green, B. A. Sheriff, A. Boukai, Y. Bunimovich, J. R. Heath, and R. S. Williams, “Circuit

fabrication at 17 nm half-pitch by nanoimprint lithography,” Nano Letters, vol. 6, no. 3, pp.

351–354, 2006.

[92] G. Y. Jung, S. Ganapathiappan, D. A. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong,

and R. S. Williams, “Fabrication of a 34 × 34 crossbar structure at 50 nm half-pitch by

UV-based nanoimprint lithography,” Nano Letters, vol. 4, no. 7, pp. 1225–1229, 2004.

[93] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno,

Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath,

Bibliography 199

“A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre,”

Nature, vol. 445, no. 7126, pp. 414–417, 2007.

[94] I. Ebong and P. Mazumder, “CMOS and memristor-based neural network design for

position detection,” Proceedings of the IEEE, vol. 100, no. 6, pp. 2050–2060, 2012.

[95] D. T., Q. J., K. S., K. H. T., K. B. J., P. Y. V., D. V. M., and B. D. N., “Memristive adaptive

filters,” Applied Physics Letters, vol. 97, no. 9, pp. 093 502:1–3, 2010.

[96] S. Shin, K. Kim, and S.-M. Kang, “Memristor applications for programmable analog ICs,”

IEEE Transactions on Nanotechnology,, vol. 10, no. 2, pp. 266–274, 2011.

[97] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and

B. Linares-Barranco, “STDP and STDP variations with memristors for spiking

neuromorphic learning systems,” Frontiers in Neuroscience, vol. 7, no. 2, pp. 1–15,

2013.

[98] A. Gelencser, T. Prodromakis, C. Toumazou, and T. Roska, “Biomimetic model of the

outer plexiform layer by incorporating memristive devices,” Phys. Rev. E, vol. 85, pp.

041 918:1–10, 2012.

[99] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis,

“Integration of nanoscale memristor synapses in neuromorphic computing architectures,”

Nanotechnology, vol. 24, no. 38, pp. 384 010:1–13, 2013.

[100] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature

Materials, vol. 6, no. 11, pp. 833–840, 2007.

[101] S. H. Jo, K.-H. Kim, and W. Lu, “Programmable resistance switching in nanoscale

two-terminal devices,” Nano Letters, vol. 9, no. 1, pp. 496–500, 2009.

[102] ——, “High-density crossbar arrays based on a Si memristive system,” Nano Letters, vol. 9,

no. 2, pp. 870–874, 2009.

[103] H. Lee, P. Chen, T. Y. Wu, Y. Chen, C. Wang, P. Tzeng, C. H. Lin, F. Chen, C. Lien, and M. J.

Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in

robust HfO2 based RRAM,” in IEEE International Electron Devices Meeting IEDM, 2008,

pp. 1–4.

Bibliography 200

[104] S. H. Jo and W. Lu, “CMOS compatible nanoscale nonvolatile resistance switching

memory,” Nano Letters, vol. 8, no. 2, pp. 392–397, 2008.

[105] L. Cario, C. Vaju, B. Corraze, V. Guiot, and E. Janod, “Electric-field-induced resistive

switching in a family of mott insulators: Towards a new class of RRAM memories,”

Advanced Materials, vol. 22, no. 45, pp. 5193–5197, 2010.

[106] H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J.-E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho,

S. O. Kim, R. S. Ruoff, and S.-Y. Choi, “Graphene oxide thin films for flexible nonvolatile

memory applications,” Nano Letters, vol. 10, no. 11, pp. 4381–4386, 2010.

[107] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, “High speed resistive switching

in Pt/TiO2/TiN film for nonvolatile memory application,” Applied Physics Letters, vol. 91,

no. 22, pp. 223 510:1–3, 2007.

[108] S.-Y. Wang, C.-W. Huang, D.-Y. Lee, T.-Y. Tseng, and T.-C. Chang, “Multilevel resistive

switching in Ti/CuxO/Pt memory devices,” Journal of Applied Physics, vol. 108, no. 11, pp.

114 110:1–6, 2010.

[109] G. Snider, “Spike-timing-dependent learning in memristive nanodevices,” in IEEE

International Symposium on Nanoscale Architectures NANOARCH, 2008, pp. 85–92.

[110] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale

memristor device as synapse in neuromorphic systems,” Nano Letters, vol. 10, no. 4, pp.

1297–1301, 2010.

[111] F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat,

and D. Vuillaume, “An organic nanoparticle transistor behaving as a biological spiking

synapse,” Advanced Functional Materials, vol. 20, no. 2, pp. 330–337, 2010.

[112] T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K. Gimzewski, and

M. Aono, “Learning abilities achieved by a single solid-state atomic switch,” Advanced

Materials, vol. 22, no. 16, pp. 1831–1834, 2010.

[113] R. Cavin and V. Zhirnov, “Future devices for information processing,” in Proceedings of the

31st European Solid-State Circuits Conference ESSCIRC, 2005, pp. 7–12.

Bibliography 201

[114] R.Cavin, V. Zhirnov, D. Herr, A. Avila, and J. Hutchby, “Research directions and challenges

in nanoelectronics,” Journal of Nanoparticle Research, vol. 8, pp. 841–858, 2006.

[115] C. P. Collier, E. W. Wong, M. Belohradský, F. M. Raymo, J. F. Stoddart, P. J. Kuekes,

R. S. Williams, and J. R. Heath, “Electronically configurable molecular-based logic gates,”

Science, vol. 285, no. 5426, pp. 391–394, 1999.

[116] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, “Carbon

nanotube-based nonvolatile random access memory for molecular computing,” Science, vol.

289, no. 5476, pp. 94–97, 2000.

[117] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and

computation from assembled nanowire building blocks,” Science, vol. 294, no. 5545, pp.

1313–1317, 2001.

[118] M. Stan, P. Franzon, S. Goldstein, J. Lach, and M. Ziegler, “Molecular electronics: from

devices and interconnect to circuits and architecture,” Proceedings of the IEEE, vol. 91,

no. 11, pp. 1940–1957, 2003.

[119] J. R. Heath and M. A. Ratner, “Molecular electronics,” Physics Today, vol. 56, pp. 43–49,

2003.

[120] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a

molecular junction,” Science, vol. 278, no. 5336, pp. 252–254, 1997.

[121] S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa,

K. Terabe, T. Nakayama, and M. Aono, “A nonvolatile programmable solid-electrolyte

nanometer switch,” IEEE Journal of Solid-State Circuits, vol. 40, no. 01, pp. 168–176,

2005.

[122] Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton,

D. W. Price, A. M. Rawlett, D. L. Allara, J. M. Tour, and P. S. Weiss, “Conductance

switching in single molecules through conformational changes,” Science, vol. 292, no.

5525, pp. 2303–2307, 2001.

Bibliography 202

[123] C. N. Lau, D. R. Stewart, R. S. Williams, and M. Bockrath, “Direct observation of nanoscale

switching centers in metal/molecule/metal structures,” Nano Letters, vol. 4, no. 4, pp.

569–572, 2004.

[124] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A defect-tolerant

computer architecture: Opportunities for nanotechnology,” Science, vol. 280, no. 5370, pp.

1716–1721, 1998.

[125] A. DeHon, “Array-based architecture for FET-based, nanoscale electronics,” IEEE

Transactions on Nanotechnology, vol. 2, no. 1, pp. 23–32, 2003.

[126] G. S. Snider, “Self-organized computation with unreliable, memristive nanodevices,”

Nanotechnology, vol. 18, no. 36, pp. 365 202:1–13, 2007.

[127] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer

resolution,” Science, vol. 272, no. 5258, pp. 85–87, 1996.

[128] P. J. Kuekes, D. R. Stewart, and R. S. Williams, “The crossbar latch: Logic value storage,

restoration, and inversion in crossbar circuits,” Journal of Applied Physics, vol. 97, no. 3,

pp. 034 301:1–5, 2005.

[129] J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. A. Ohlberg, W. Wu, D. R. Stewart, and R. S.

Williams, “A hybrid nanomemristor/transistor logic circuit capable of self-programming,”

Proceedings of the National Academy of Sciences, vol. 106, no. 6, pp. 1699–1703, 2009.

[130] D. Strukov and K. Likharev, “Reconfigurable hybrid CMOS/nanodevice circuits for image

processing,” IEEE Transactions on Nanotechnology, vol. 6, no. 6, pp. 696–710, 2007.

[131] G. Snider, “Computing with hysteretic resistor crossbars,” Applied Physics A, vol. 80, no. 6,

pp. 1165–1172, 2005.

[132] K. K. Likharev, A. Mayr, I. Muckra, and O. Turel, “Cross nets: High-performance

neuromorphic architectures for CMOL circuits,” Annals of the New York Academy of

Sciences, vol. 1006, no. 1, pp. 146–163, 2003.

[133] A. Flocke and T. Noll, “Fundamental analysis of resistive nano-crossbars for the use in

hybrid Nano/CMOS-memory,” in 33rd European Solid State Circuits Conference ESSCIRC,

2007, pp. 328–331.

Bibliography 203

[134] M. Leslie and R. Jacob Baker, “Noise-shaping sense amplifier for mram cross-point arrays,”

IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 699–704, 2006.

[135] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for

passive nanocrossbar memories,” Nature Materials, vol. 9, pp. 403–406, 2010.

[136] E. Katsia, N. Huby, G. Tallarida, B. Kutrzeba-Kotowska, M. Perego, S. Ferrari, F. C. Krebs,

E. Guziewicz, M. Godlewski, V. Osinniy, and G. Luka, “Poly(3-hexylthiophene)/ZnO

hybrid pn junctions for microelectronics applications,” Applied Physics Letters, vol. 94,

no. 14, pp. 143 501–1–3, 2009.

[137] M. Sven, P. Craig, J. Warren, T. Carl, and F. S. R., “A polymer/semiconductor write-once

read-many-times memory,” Nature, vol. 426, pp. 166–169, 2003.

[138] B. S. Kang, S.-E. Ahn, M.-J. Lee, G. Stefanovich, K. H. Kim, W. X. Xianyu, C. B. Lee,

Y. Park, I. G. Baek, and B. H. Park, “High-current-density CuOx/InZnOx thin-film diodes

for cross-point memory applications,” Advanced Materials, vol. 20, no. 16, pp. 3066–3069,

2008.

[139] C. Nauenheim, C. Kugeler, A. Rudiger, R. Waser, A. Flocke, and T. Noll, “Nano-crossbar

arrays for nonvolatile resistive ram (RRAM) applications,” in 8th IEEE Conference on

Nanotechnology, 2008. NANO ’08., 2008, pp. 464–467.

[140] J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart, and R. S. Williams, “A family

of electronically reconfigurable nanodevices,” Advanced Materials, vol. 21, no. 37, pp.

3754–3758, 2009.

[141] L. Emanuel, J. Ciszek, J. T. Heike, and Riel, “Reversible and controllable switching of a

single-molecule junction,” Small, vol. 2, no. 8-9, pp. 973–977, 2006.

[142] G. Csaba and P. Lugli, “Read-out design rules for molecular crossbar architectures,” IEEE

Transactions on Nanotechnology, vol. 8, no. 3, pp. 369–374, 2009.

[143] D. B. Strukov and K. K. Likharev, “Defect-tolerant architectures for nanoelectronic crossbar

memories,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 1, pp. 151–167, 2007.

Bibliography 204

[144] Y. Yang, J. Mathew, M. Ottavi, S. Pontarelli, and D. Pradhan, “Novel complementary

resistive switch crossbar memory write and read schemes,” IEEE Transactions on

Nanotechnology, vol. 14, no. 2, pp. 346–357, 2015.

[145] S.-J. Ham, H.-S. Mo, and K. sik Min, “Low-powerower VDD/3 write scheme with inversion

coding circuit for complementary memristor array,” IEEE Transactions on Nanotechnology,

vol. 12, no. 5, pp. 851–857, 2013.

[146] O. Kavehei, S. Al-Sarawi, K.-R. Cho, K. Eshraghian, and D. Abbott, “An analytical

approach for memristive nanoarchitectures,” IEEE Transactions on Nanotechnology,

vol. 11, no. 2, pp. 374–385, 2012.

[147] I. E. Ebong and P. Mazumder, “Self-controlled writing and erasing in a memristor crossbar

memory,” IEEE Transactions on Nanotechnology, vol. 10, no. 6, pp. 1454–1463, 2011.

[148] S. Kvatinsky, G. Satat, N. Wald, E. Friedman, A. Kolodny, and U. Weiser, “Memristor-based

material implication (IMPLY) logic: Design principles and methodologies,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp.

2054–2066, 2014.

[149] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,” in IEEE/ACM

International Symposium on Nanoscale Architectures NANOARCH ’09., 2009, pp. 33–36.

[150] X. Dong, C. Xu, Y. Xie, and N. Jouppi, “NVSim: A circuit-level performance, energy,

and area model for emerging nonvolatile memory,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[151] A. Mazady and M. Anwar, “Memristor: Part II- DC, transient, and RF analysis,” IEEE

Transactions on Electron Devices, vol. 61, no. 4, pp. 1062–1070, 2014.

[152] L. Zhang, Z. Chen, J. J. Yang, B. Wysocki, N. McDonald, and Y. Chen, “A compact

modeling of TiO2-TiO2−x memristor,” Applied Physics Letters, vol. 102, no. 15, pp.

153 503:1–4, 2013.

[153] H. Owlia, P. Keshavarzi, and A. Rezai, “A novel digital logic implementation approach

on nanocrossbar arrays using memristor-based multiplexers,” Microelectronics Journal,

vol. 45, no. 6, pp. 597 – 603, 2014.

Bibliography 205

[154] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, and

R. S. Williams, “Switching dynamics in titanium dioxide memristive devices,” Journal of

Applied Physics, vol. 106, no. 7, pp. 074 508:1–6, 2009.

[155] J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin

insulating film,” Journal of Applied Physics, vol. 34, no. 9, pp. 2581–2590, 1963.

[156] F. Corinto, A. Ascoli, and M. Gilli, “Symmetric charge-flux nonlinearity with combined

inherently-asymmetric memristors,” in 20th European Conference on Circuit Theory and

Design (ECCTD), 2011, pp. 632–635.

[157] H. (Helen) Li and M. Hu, “Compact model of memristors and its application in computing

systems,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pp.

673–678.

[158] H. Abdalla and M. Pickett, “SPICE modeling of memristors,” in IEEE International

Symposium on Circuits and Systems (ISCAS), 2011, pp. 1832–1835.

[159] E. Lehtonen and M. Laiho, “CNN using memristors for neighborhood connections,” in 12th

International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA),

2010, pp. 1–4.

[160] D. Batas and H. Fiedler, “A memristor SPICE implementation and a new approach for

magnetic flux-controlled memristor modeling,” IEEE Transactions on Nanotechnology,

vol. 10, no. 2, pp. 250–255, 2011.

[161] Z. Biolek, D. Biolek, and V. Biolkova, “SPICE model of memristor with nonlinear dopant

drift,” Radioengineering, vol. 18, no. 2, pp. 210–214, 2009.

[162] A. Rak and G. Cserey, “Macromodeling of the memristor in SPICE,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 4, pp. 632–636,

2010.

[163] S. Benderli and T. Wey, “On SPICE macromodelling of TiO2 memristors,” Electronics

Letters, vol. 45, no. 7, pp. 377–379, 2009.

Bibliography 206

[164] H. Kim, M. Sah, C. Yang, S. Cho, and L. Chua, “Memristor emulator for memristor circuit

applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 10,

pp. 2422–2431, 2012.

[165] Y. Pershin and M. Di Ventra, “Practical approach to programmable analog circuits with

memristors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8,

pp. 1857–1864, 2010.

[166] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: Properties of basic electrical

circuits,” European Journal of Physics, vol. 30, pp. 661–675, 2009.

[167] F. Corinto and A. Ascoli, “A boundary condition-based approach to the modeling of

memristor nanostructures,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 59, no. 11, pp. 2713–2726, 2012.

[168] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A versatile memristor

model with nonlinear dopant kinetics,” IEEE Transactions on Electron Devices, vol. 58,

no. 9, pp. 3099–3105, 2011.

[169] K. Kim, S. Shin, and S.-M. Kang, “Stateful logic pipeline architecture,” in IEEE

International Symposium on Circuits and Systems (ISCAS), 2011, pp. 2497–2500.

[170] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nature

Nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

Publication Based on Present Work

Journal publications:

1. Pravin Mane, Nishil Talati, Ameya Riswadkar, Ramesh Raghu, and C.K. Ramesha,

”Stateful-NOR based reconfigurable architecture for logic implementation”,

Microelectronics Journal, Volume 46, Issue 6, pp. 551-562, 2015.

2. Pravin Mane, Nishil Talati, Ameya Riswadkar, Ramesh Raghu, and C.K. Ramesha,

”Reconfiguration on nanocrossbar using material implication”, Sadhana - Academy

Proceedings in Engineering Science (Under review- minor revision submitted).

3. Pravin Mane, Sudeep Mishra, Ravish Deliwala, and C. K. Ramesha, ”Reconfiguration in

resistive switching crossbar”, Microelectronics Journal, under review.

Conference publications:

1. Pravin Mane, Nishil Talati, Ameya Riswadkar, Bhavan Jasani, and C.K. Ramesha,

”Implementation of NOR logic based on material implication on CMOL FPGA

architecture,” 28th International Conference on VLSI Design, Bangalore, pp. 523-528,

2015.

2. Pravin Mane, Nishil Talati, Ameya Riswadkar, Ramesh Raghu, and C.K. Ramesha,

”Implicating logic functions with memristors,” 2014 International SoC Design Conference

(ISOCC), Jeju, pp. 232-233, 2014.

3. Pravin Mane, Namita Paul, Nikhilesh Behera, Madankumar Sampath, and C. K. Ramesha,

”Hybrid CMOS - memristor based configurable logic block design,” 2014 International

Conference on Electronics and Communication Systems (ICECS), Coimbatore, pp. 1-5,

2014.

4. Madankumar Sampath, Pravin Mane, and C. K. Ramesha, ”Hybrid CMOS-memristor

based FPGA architecture,” 2015 International Conference on VLSI Systems, Architecture,

Technology and Applications (VLSI-SATA), pp. 1-6, Bangalore, 2015.

207

Brief Biography of the Candidate

Mane Pravin Sakharam received Bachelor of Engineering degree in the Electronics Engineering

discipline from Rajarambapu Institute of Technology, Sakharale, Maharashtra, India, in 1998. He

obtained his Master of Technology degree in the System Engineering & Operations Research from

Indian Institute of Technology, Roorkee, Uttarakhand, India in 2006.

He has worked as Lecturer in Electronics department of Rajaram Shinde College of Engineering,

Chiplun, Maharashtra, India from August 1999 to July 2004. After completing, M. Tech.

in 2006, he has worked as Assistant Professor in Mody Institute of Technology and Science,

Lakshmangarh (Sikar), Rajasthan, India from August 2006 to July 2007 and in Vidyalankar

Institute of Technology, Wadala, Mumbai, Maharashtra, India from July 2007 to December 2008.

He is currently working as a Lecturer in Electrical & Electronics Engineering department since

January 2009.

He has conducted 5 days workshop on ”Cadence IC615 Analog & Digital Flow” under faculty

development program in Electronics & Telecommunication department of Sir Visvesvaraya

Institute of Technology, Nashik (Affiliated to University of Pune) in June 2014. He has

been carrying out research in the area of reconfigurable architectures using novel devices and

in-memory calculations in Resistive RAM and published papers in international journals and

conferences.

208

Brief Biography of the Supervisor

Ramesha C K received the M.Sc degree from Mangalore University, Konaje, Mangalore in 1990

and Ph.D degree in Electronics from University of Mysore, Mysore, India in 2007. He has

published more than 11 articles in referred journals, and has been author or co-author of over

15 conference papers. He is also actively involved in Major Research Projects sponsored by UGC

and DST, New Delhi, India. His current research interests are (i) Ohmic and Schottky Contacts

to wide-band gap semiconductors, (ii) Surface analysis of III-V and II-VI semiconductors, Low

power VLSI design, RF Antenna design and cognitive radio.

209

	Certificate
	Declaration
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Introduction
	1.2 FPGA: Basic Architecture
	1.3 Advantages of FPGA Approach
	1.4 Challenges in FPGA Approach
	1.5 Objectives of Research Work
	1.6 Organization of Thesis

	2 Literature Survey
	2.1 Introduction
	2.2 Literature Review
	2.3 Summary

	3 Introduction to Memristor
	3.1 Introduction
	3.2 Memristor Fundamentals
	3.3 Memristor Models and Window Functions
	3.3.1 TEAM Model
	3.3.2 Kvatinsky's Window

	3.4 Memristor as Logic Element
	3.4.1 Implication logic
	3.4.2 Stateful NAND Logic using Memristors
	3.4.3 Stateful NOR Logic using Memristors

	3.5 Other Applications of Memristors
	3.6 Summary

	4 Logic Implementation on Memristive Crossbar Array
	4.1 Introduction
	4.2 Passive Memristive Crossbar Array
	4.3 Sneak Path Problem
	4.4 Analysis of Operations on Memristive Crossbar
	4.4.1 Write Operation
	4.4.1.1 Floating Write Scheme
	4.4.1.2 1/3 Write Scheme

	4.4.2 Read Operation
	4.4.3 Evaluate Operation (Stateful-NOR Operation)

	4.5 Logic Implementation on Specialized Memristive Crossbar
	4.6 Summary

	5 Logic Implementation on CRS Crossbar Array
	5.1 Introduction
	5.2 CRS Fundamentals
	5.3 Stateful NOR Gate using CRSs
	5.4 Analysis of Operations on CRS Crossbar
	5.4.1 Write Operation
	5.4.1.1 Floating Write Scheme
	5.4.1.2 1/3 Write Scheme
	5.4.1.3 Configuration Row based 1/3 Write Scheme

	5.4.2 Read Operation
	5.4.2.1 Conventional Read Scheme
	5.4.2.2 Self-resetting Read Scheme

	5.4.3 Stateful NOR Operation

	5.5 Summary

	6 Reconfigurable Architecture
	6.1 Introduction
	6.2 Common Circuit Blocks in CMOS Layer
	6.2.1 Write Circuit
	6.2.2 Evaluate Circuit
	6.2.3 Read Circuit
	6.2.4 Priority Logic

	6.3 Reconfigurable Architecture using Stateful NOR
	6.3.1 Architecture Description
	6.3.2 Automation Algorithm for 3-input Logic Block Architecture
	6.3.3 Simulation of 3-input Function using Proposed Architecture

	6.4 n-Input Function Implementation
	6.4.1 Automation Algorithm for Generalized Architecture for n-Input Function Implementation

	6.5 Summary

	7 Performance Analysis
	7.1 Introduction
	7.2 Timing Analysis
	7.3 Power Analysis
	7.4 Area Analysis
	7.5 Summary

	8 Summary and Future Scope of Work
	8.1 Summary
	8.2 Scope for future work

	A Memristor Models and Window Functions
	A.1 Memristor Models
	A.1.1 Linear Ion Drift Model
	A.1.2 Nonlinear Ion Drift Model
	A.1.3 Simmons Tunnel Barrier Model
	A.1.4 Boundary Condition Memristor (BCM) Model
	A.1.5 Other Models

	A.2 Window Functions
	A.2.1 Joglekar's Window
	A.2.2 Biolek's Window
	A.2.3 Prodomakis’ Window

	B Imply Logic Analysis
	C Specialized Memristive Crossbar Array
	C.1 CMOL Architecture
	C.2 FPNI Architecture

	D CRS Logic Analysis
	E Materials and Properties
	Bibliography
	Publication Based on Present Work
	Brief Biography of the Candidate
	Brief Biography of the Supervisor

