CHAPTER

Economic Order Quantity Model for two
4 generations consecutive technology products

under permissible delay in payments

A trade-credit scheme is often offered by retailers to consumers to increase the diffusion of the
technology products in the social system. Also, trade credits play an important role in business
transactions related to these products. The importance of the trade credits is on account of two reasons:
first, these products are high-value products that need support on the working capital constraints; and
second, the distribution channel can find pushing these products more lucrative in the presence of the
trade credits. Trade financing among firms is one of the most popular sources of financing globally.
There are many benefits of inter-firm credit in a supply chain. To trade off liquidity risk and
profitability, a credit policy is not only desirable but also essential for an organization’s success
(Kehinde et al. 2017). A combination of bank financing and supplier financing gives a retailer the best
of both the Worlds (Chod, 2017). Also, the firms receiving purchase orders from creditworthy firms
can borrow money to enhance sales (Yamanaka, 2016). Trade credits help the buyer in making strategic
investments also, and thus, are an important mechanism of collaboration among the supply chain
partners (Baiman & Rajan, 2002). Therefore, the supply chain is no more considered as the flow of
material only. Rather, it is now understood to comprise of the flow of funds also (Timme & Timme,
2000). The importance of trade credit services has also increased with the increased focus of the

manufacturers on their core competency (Maloni & Benton, 1997).

The integration of material and information flows within the supply chain with the flow of financial
resources has become very important in recent times (Pfohl et al. 2003). Sometimes, the suppliers with
weak bargaining power with their customers, sell a larger share of goods on credit, and offer a longer
payment period before charging penalties (Fabbri and Klapper, 2016). The value of interest earned
during the trade credit period improves the overall value proposition of the product to the buyer,

incentivizing him to procure more volumes. The trade credits are also a risk mitigation mechanism for
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the buyer in case of uncertain demand. Sometimes, the firms offer differential trade credits on the
different products to promote cross-selling and to promote the sales of one product at the expense of
another one. At times, it also happens that the firms offer higher credit period on the higher profit margin
products while acting conservative on the low margin products. The trade credits not only influence the
sales volumes but also influence the overall profitability dynamics of the products. Trade credit offered
by the supplier to the buyers is a crucial tool to enhance the sales. Table 4.1 mentions the patterns of

the credit-linked demand that have been considered by the earlier studies.

Table4.1. Demand patterns considered by the existing studies on credit-linked demand

Demand Pattern

Studies

D(PD) = K exp(a. PD) where PD is the permissible delay in

payments , or the credit period, K and a are constants >0

Chern et al. (2013), Chern et al.
(2014), Wang et al. (2014), Wu et

al. (2017), Su et al. (2007), Chung
(2012a)
Ho et al. (2011)

D(N,p) = Dy N® pP where N is the credit period, p is the
selling price; D, , a and S are constants >0
D(s,N) = a(s) — [a(s) — B(s)]exp(—rN) where a(s) is the

maximum demand at the selling price of s, N is the credit

Thangam  and

(2009), Jaggi et al. (2008)

Uthay akumar

period, p is the selling price; 0 < r < 1 is the rate of demand
saturation

D(t) = Dyexp(byN(M — N)t) where N is the credit offered

Banu and Mondal (2016)
by retailer to the customer, and M is the credit period offered

to the retailer by the supplier, b; is a constant

Therefore, it becomes highly imperative for the supply chain managers to consider the effect of trade
credits on the optimal replenishment norms for these products. This influence needs to be considered
by the supply chain practitioners involved in the procurement of these products. The cost efficiencies
can be achieved if the perfect balance between the two conflicting costs- one time fixed cost of ordering
and the recurring inventory carrying cost is achieved. This is because while the former of these costs
rise with the increase in replenishment frequency, the later falls with the same. Panda et al. (2005) used
non-linear goal programming for determining the EOQ for multi-item supply chains. Tsao and Sheen
(2007) developed the inventory models to incorporate the purchase costs that were dependent upon time
and lot size for multiple items under the permissible delay of payments. Tsao (2010) extended the scope
of existing research by considering multiple echelons with trade allowances under the credit period.
However, none of the works on inventory modeling under credit financing has covered the multiple

generation products.
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When technology products are considered, their demand is governed by the diffusion of innovations
theory. And it is not just these products, but the usage of newer functions on these products that follows
the innovation diffusion theory (Lim et al. 2019). Kim et al. (2017) also proposed that even the demand
for the low involvement products gets influenced by electronic word-of-mouth suggesting an imitation
effect. When it comes to the inventory modeling for the technology generations under the trade credits
mechanism, the work is hard to find in the existing literature. Chanda and Kumar (2017) formulated the
EOQ model for technology products under the trade credits while considering dynamic pricing and
advertising. Chanda and Kumar (2019) developed a similar model under trade credits for dynamic
market potential. None of the works on inventory modeling under credit financing has covered the

multiple generation products.

In this chapter®, the optimal replenishment policies for two succeeding generations’ technology
products under partial trade credit financing are being discussed. Life cycle dynamics are used to track
demand rates of technology generations. For precise estimation of demands of technology generations
product, it is important to correctly identify the introduction time of the advanced generation product.
As it is often been seen that advanced generation product reduces the sales of existing generation
product. Thus for a multi-generation product, it is important to incorporate the interaction effect among
generational products in replenishment policies. In the first model, the total cost function has been
formulated for five different situations depending upon the new generation introduction timing and the
length of the trade credit period. A detailed sensitivity analysis is been performed to explore the efficacy
of the model in a given situation. In the second model, the multi-period inventory replenishment

decisions under trade credits and credit dependent demand have been considered.

Single period Inventory Model under Trade Credits
The objective of this model is to minimize the total cost and develop the EOQ model for successive
generations of high-technology products (that get diffused through the innovation diffusion process)
under the trade credit mechanism. In this section, the same demand model is used as formulated in
section 3.1 to derive the EOQ policies. The results of this research are expected to help the practitioners

in making inventory policies for such products while considering the impact of credit terms.

6 This chapter is based on two research papers:
a. Nagpal, G. & Chanda, U. (2021). “Economic Order Quantity Model for Two-Generation Consecutive Technology
Products under Permissible Delay in Payments”, International Journal of Procurement Management. 14(1), 193-225.
b. Nagpal, G. & Chanda, U. (2021). “Inventory Replenishment Policies for Two Successive Generations of Technology
Products under Permissible Delay in Payments”, /nternational Journal of Information Systems and Supply Chain

Management. (Under Review)
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4.1.1. Notations of the Model

A;j fixed cost of ordering per order for /™ generation product (j = 1,2)

C; basic procurement cost per unit for j™ generation product (j = 1,2)

1; inventory holding expense (as a % of cost) for ™ generation product (j = 1,2)

M; the size of market potential for /™ generation product (j = 1,2)

T; the duration of the planning horizon for j™ generation product (j = 1,2)

Q; number of units received at the beginning of planning horizon for ™ generation product (j = 1,2)

p; coefficient of innovation for " generation product (j = 1,2)

q; coefficient of imitation for ™ generation product (j = 1,2)

7 be the time at which the second-generation product is introduced

A1 (t) and A (t) demand rate at time 't’ of /* generation product for ¢ < 7 and t > 7 respectively

A, (t) demand rate at time 't’ of 2/ generation product

7, (t) is the conditional probability of a prospective adopter (who has not yet adopted the product till

time t) adopting the product in time (7, 1+4¢)

F; (t) is the cumulative fraction of adopters till time ¢.

f1 (@) is the fraction of adopters at time ¢.

P is the selling price per unit of the first-generation product

P, is the selling price per unit of the second-generation product

I is the annual interest rate paid on the sales accomplished post the payment to the supplier

I, is the annual interest rate earned on the sales accomplished before the payment to the supplier

PD is the credit period offered to the retailer by the supplier

4.1.2. Assumptions of the Model

»

>
>
>

The supply gets replenished instantancously

There is zero lead time in the procurement of inventories

The shortages in meeting the demand at any time instant are not allowed

The rate of demand is influenced by the innovation diffusion process and follow the assumptions
as discussed in section 3.1.3 and can be given as follows:

,() = My f1(6) fort<rt

1@ = M f1(©) — My fi(D)F,(t) fort>rt

A2(8) = M2 f>(8) + My f1(©)F (0

The interest rates are the same across the generations

There is a finite credit period being offered by the supplier.

Page



If there is no deterioration of the product, the consumption of inventory takes place on account of the

demand usage only. Therefore, for0< ¢ < T

() =— M ;G =12) @.1)

4.1.3. Inventory Modeling for the single generation scenario

t
Jo —M@®dt  fort<rt
() = 4.2)
f =“A@®dt  fort>1
Solving equation (4.2) and considering that inventory is zero at the time “0”, the following equation

can be obtained:

Ql - MlFl(t) fOT' t < T
L) = { O -MF@O+ M f:ﬁ(t)Fz(t)dt fort>1 @3
Let f: f1(©F,(t — 1)dt be written as: L(t) — L(1) “4.4
By substituting (4.4) into (4.3), the following can be said.:

My (Fi(T) —L(TY) + L(T) — F,(¢)) fort<t
So.1(1) = { Q1 — MyFy () + ML(t) —M,L(T) fort>T1 )

Since the initial supply gets consumed in the planning horizon, it can be inferred that

Q1 = fg m(®dt + [T 2t = My [Fy(Ty) = L(Ty) + L(2)] (4.6)
Incorporating (4.6) into (4.5) gives the following:

L@ = {Ml(Fl(Tl) —L(M) + L) —F() fore<t
() =

4.7
My (FL(T) — L(TY) + L(©) — F,(t)) fort=>t @7

The total cost per unit time (K] (Tl)) is the sum of ordering cost, basic procurement cost, the inventory

holding cost, the interest charged, and the interest earned. Thus, K, (T;) can be given as:

Case 1: When PD € (0, 1]

Ky(Ty) =22 +%2 400 f L(Odt + [ [ (©)de] + 22 pr L®dt+ [ @©dt] -
L (PP a (O)dt
4 &G B 4+ 1€ I.P
K () = ;11 + lT *[aie = @10+ fir1 — frcl + 11 [@1c — @1pp + Bir1 = Bre] = 11 [Yipp —
Y1o] 4.8)

Where
A = f11(t)dt
Bit = f 11 (t)de

Y = f tA; (H)dt
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Case 2: When PD € (1,T;)

Ky(Ty) =22 +%2 400 f LDt + [ I (D) de] + 2 f I; (€)dt — =2 f tA, (O)dt +

/ ¢ IC ICC IgP
f tA; (t)dt] = + Q;ll + L [a1: — a0 + Bir1 — Picl + [ﬁ1T1 Bip 1 —5= [Yl‘r Y0+
$1pp — $1c] 4.9)

Where, &, = [ ta;(t)dt

Case3: When PD € (T;, );

K,(T) = Qlcl '161 T L(0dt+ [ (0de] - "fPl NZAGLE:
1
Ty L ar ’ c I,C
S e (©)dt + le f M (®) de+ f A1 () dt]dt] = T, =+ Q;ll + 1T e — a0+ firs — Prel —
IePy Qlcl 11C1
T [Yiz = Yy0 + &1r1 — &1 +[PD —T1]Q = T_1 + = f L (O)dt + f L(t)dt]  (4.10)

4.1.4. Inventory Modeling for the two generations scenario (t > 7)

Integration of equation (4.1) for the second generation gives:

I,(t) = — [ 2,(6)dt + Constant 4.11)
Since Inventory at time 7 is Q,, = Constant = Q,

Thus, the equation (4.11) states that I,(t) = Q, — f: A, (B)dt 4.12)

Incorporating the demand equation from the assumptions in (4.12), the following can be obtained:

1,(0) = Q; = MyFo(0) — My [ fi(DF, (6)de (4.13)
Incorporating (4.4) in (4.13) gives:

L) = Q@ — MyF, () — My L(0) + My L(7) “.14)

Since the planning horizon for both the generations is assumed to be the same, the inventory stocking
period for the second generation T, shall be lesser than that for the first generation T; by .

Thus, Ty =Ty — 7 (4.15)
Since initial inventory will get consumed by time T, thus the initial inventory is the total demand for
the second-generation product during the period (7, t)

So, Q; = MyF,(Ty) + M{L(Ty) — M{L(7) (4.16)
Incorporating (4.16) in (4.14) gives:

I,(t) = MyFy(Ty) + My L(Ty) — MyFy(t) — MyL(E) 4.17)

Thus, the total cost per unit time for the second generation product (Kz (T)) canbe given

Case 1: When PD € (0,1]
Case 1a: When PD € (0,7] and PD € (0,T, — 1]
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Iccz

Qs ¢, (T _IoPy (PD+
K (T) = ZT)+ Tt a e Od+; fPDHIZ(t)dt— = “PD+1 -

Q;C I,C IcC I,P
t)A,(t)dt = ( ) + (le i) + (Tj ZT) [azr1 — az:] + r_zr) [azrs — aZ(PD+‘L‘)] T 1T) [(PD +
7) (192(PD+‘L') —U20) — (¢2(PD+‘L‘) — ¢20)] (4.18)
Where

aZt = fotlz(t) dt
t

1921' = f /’lz(t)dt
0

aIld ¢)2t = fot t}lz (t)dt

Case 1b: When PD € (0,1l and PD € (T, —t,7] orwhen PD € (T, — 1,7l and T, € (1,21)

Q,C I,C T I P, IeP
KZ (Tl) (T ZT) + (le j.) 22 f 112(t) dt - (T i_) (Tl t)AZ(t)dt - 2 (PD Tl

1C

Q€ e
0 =7 ZT) + (le_:) + o a1 — @2] - r_zr) [T1(F2¢r1) = D20) — (¢2(PD+‘L‘) — ¢20) + (PD -

T, +1)Q3] 4.19)

Case2: When PD € (1,T,)
Case 2a: When PD € (7,T,)andPD e (T, — 7, Ty)

Q267

Az (P12 _ePs Ing

K,(Ty) = T + T + T d I2 (&) dt - T (T1 HA,(t)dt — (PD T, +

02C I,C I,P
0, = T ZT) + (le_:) + (TZ ZT) [azry — a2:] — ﬁ[ T1(O2(r1) — Y20) — (¢2(T1) — ¢2.) +(PD —
Ty +1)Q2] (4.20)
Case 2b: When PD € (7,T,) and PD € (7,T, — T)

A 0C LC, (T ICC [P, (PD+t
K,(T)) = T 2 5t (le :) 22 f L (b) dt+ 2 fPDHIZ(t)dt— 2 f (PD +1-—
A, (O)dt
4 0,C LC I.C 1P
= (ler) + (le_:) + (Tj_zr) [azcr1) — 2] + _(Tl_zr) [a2(r1) = @2(pp+n)] — a ZT) [(PD +T)@O2pp+1) —
U2¢) = (P2(pp+7) — $20)] (4.21)
Case3: When PD € (T,, «);
Ka(Th) = s + 225 4 25 [T, (8 de = 222 [Ty — (0t — 2 (PD = Ty +
1

0C 1,C .
00 =7 ZT) + (le_:) + (TZ ZT) [azr1 — az] = (Tl_zr) [T1(F2¢r1) = D20) — (¢2(T1) — ¢20) + (PD -
Ty +1)Q2] (4.22)

Using the above equations, the total cost can be given as follows:
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Total cost per unit period (K(T;)) can be given as:
K(Ty) = K1(T) + K(Ty)

Since the objective is to minimize the cost function K(T;), hence the necessary conditions for

2
KT _ ) with the sufficient condition e

oT oT? >0

minimizing K (T) are —=

Case 1a; When PD € (0,7] and PD € (0,T, — 1]

- Tl *
T;=T1 -T
| 5 e PD—"*
1 | — |
0 T PD+r T,
L8 he ICC IgP
K(Ty) = 111 + 1_11 [ — aro + Birt — Brel + 5= [0-’11 aipp + Bir1 = Biel — 5= [Y1pp —
A, 0,6 LGy 1.C, B
Y1) + Ton T T 7o [@er1 — %2l +m[a2n Ao+ — (T T) [(PD +
D O2pp+7) — Y20) — (P2(pp 1) — P22)] (4.23)
A IgP A IoP
K(Ty) = Fi —= [YlP — Yol + (Tl—fr) - (Tl_lr) [(PD + D) @2pp+7) — V2¢) = (@D2(pp1r) — P20)] +
0161 IC ICC 02C LC
% + 1711 [@1: — @10 + fir1 — Brol + = [t1r — aupp + Bir1 — Bred + (le_i) (TZ ZT) lazrs —

I.C
Aoc] + r_zr) [az2r1 — a2(PD+7)] 4.24)

In the above expression, the following two tenns = and are decreasing with T; at an increasing

(1 - )
rate. This is because of the first derivative w.r.t. T1 being lesser than zero, and the second derivative
w.r.t Ty being positive for each of these. Also, the two expressions of interest earned are decreasing
with T; at an increasing rate, based on a similar agreement. This interest earned is getting deducted to
give the overall cost. Since for small values of PD< 7, interest earned is very small, and is too minimal
to nullify the decline in the ordering cost with the planning horizon. Thus, the ordering cost net off the

interest earnings per unit time falls with the increase in the length of planning horizon.

1t is well-known that if there are two functions in x, f(x) and g(x) over the interval (a, b) such that
f(x) <0 and g'(x) > 0 in the interval (a,b); f’(a) > g”(a) and f’(b) < g”(b), then the curve
h(x) = f(x) + g(x) is convex to the origin.

During the early stage of introduction, the demand rate will follow the increasing pattern and because
of which the basic purchase costs per unit time increase. So, the first derivative as well as the second

derivative of basic purchase cost per unit time with respect to planning horizon is positive. However,
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the second derivative of the declining ordering cost is much higher than the second derivative of the
rising basic purchase costs and holding costs, as a result of which the overall cost declines with the

increase in the length of planning horizon. Gradually, as the demand picks up, the second derivative of

Q16 and Q203

the rising basic purchase costs ( - )
1 1=

) and that of holding costs exceeds the second derivative

of the falling ordering costs; and therefore, the overall costs start rising with the planning horizon. Since
the overall costs per unit time initially fall and then rise with the planning horizon, they are convex to
the origin and have a point of minima. The Figure4.1 shows the convex nature of the total cost curve

for the case 1a.

Ordering Costs net off interest earnings Basic, Holding and Interest costs
Total Cost
12,00,000
10,00,000
8,00,000
6,00,000
4,00,000
2,00,000

Total Cost per unit time

0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Planning Horizon T1

Figured.1. Total Cost Curve for Case 1a

Case 1b: When PD € (0,7] and PD € (T, —t,7] or when PD € (T, — 7,7l and T, € (1,21)

T .
T PD | |
e | ke
0 PD T T, PD+t
A 0.C I,C 1.C 1P
K(T) =7+ =7+ 5 lane = @ao + Brrs = Bued + 717 [aae = app + Burs = frel === [Yapp =
Az Q26 1C;

I,P
Yio] + Ton T T @ [azr1 — @2:] — r_zr) [Ty (92(r1) = V20) = (P2(pp+7) — P20) + (PD —

T, + 1)@ (4.25)
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Ay IP A I,P
K(Ty) = ?i - T_ll [Yipp — Y10l + (Tl—jr) - (Tl—_zr) [T1(O2(r1) — U2¢) — (P2(pp+7) — P2:) + (PD —
Q.C 14C 1.C Q,C.
T11)Q2] + % + 1T_11 [a1; — a10 + Bir1 — Bicl + T_ll @1 —a1p + Bir1 — Pl + (le_:) +
LC
ﬁ [a2r1 — Q] (4.26)

Now, consider the above total cost per unit time expression. The ordering costs (net off the interest
earnings) per unit time fall with the increase in the length of planning horizon. While the basic purchase
costs and the interest charges per unit time increase with the increase in the length of the planning
horizon, since a larger planning horizon indicates the larger lot of supply, and these costs are volume
dependent. For the small values of the planning horizon T, it pertains to the initial stages of the product
life cycle, when the volumes are very low. Therefore, the basic purchase costs, and the interest charges
per unit time will rise at a lower rate as compared to the rate of increase in the ordering costs with the
increase in the length of planning horizon. Thus, the total cost per unit time declines with the planning
horizon for the smaller values of the planning horizon. As the value of the planning horizon increases,
this pattern reverses, and the total cost per unit time starts increasing with the planning horizon; thereby,

creating a point of minima and the convexity of the total cost curve to the origin.

Since the length of the planning horizon in the case 1b less than 27, it corresponds to the initial stages
of the product life cycle, in which the demand-dependent costs (like basic purchase cost, holding cost,
and interest charges) per unit time increase at a very slow rate. Therefore, while the total cost per unit
time of the first generation product achieves a point of minima by then, the cost per unit time of the
second generation product is less prone to achieving the point of minima. However, the overall costs of
the first generation product during this stage are higher than those of the second generation stage. The

Figure4.2 shows the convex nature of the total cost curve for the case 1b.
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Ordering Costs net off interest earnings Basic, Holding and Interest costs Total Cost
14,00,000
12,00,000
10,00,000
8,00,000
6,00,000

4,00,000

Total Cost per unit time

2,00,000

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10

Planning Horizon T1

Figured.2. Total Cost Curve for Case 1b
Case 2a: When PD € (7,T)andPD € (T, — 7,T})

T
E 3 PD
TQ:Tl =T 5
| _ !
0 T T, PD+t

4 Q¢ | IiC 1. 1P
K(Ty) = Ti + %"‘ lT—ll[au = @10+ Bir1 — Brc] + CT—ll[ 111 = Bipp] = eTll Y1z = Y10 +&1p

A Q€ LC IoP
il + (ler) + (le_:) + (Tj_zr) [azr1 — @2:] — F_ZT) [Ty 9211y — V2¢) = (P2(r1) — P20) + (PD —

T, +1)Q3] 4.27)

Re-arranging the terms, the following expression is obtained:

lePy A

A 1P
K(T) = Ti T [Yiz = Y10 + &1pp — $12] + T~ r_zr) [T1 @21y — V22) — (@2(r1) — P20) +

Q.C; | I,C 1.C Q,C

(PD —T; +1)Q;] + % + 1T—11 [@1z — 10 + P11 — Brz) + Tll [Bir1 — Bipp] + (le_:) +

LC

(Ti_zr) [aur1 — ] (4.28)

From the above expression, the first part is the ordering costs net off interest benefits from trade credit
mechanism per unit time. This part falls with the increase in the length of the planning horizon. The
second part of the expression is the inventory carrying cost and interest cost per unit time which
increases with the length of the planning horizon since these costs are incurred on a larger lot of supply.
However, the small values of planning horizon correspond to the initial stages of productlife cycle when

the volumes are quite small, and hence, rise in he second ortion of the expressions is much lesser than
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the fall in the first portion, which leads to the falling cost per unit time. For small values of planning
horizon, the total cost falls for the short terms of the planning horizon. But as the length of the planning
horizon increases, the total cost per unit time starts increasing due to the sharper rise in the product
holding costs and interest charges as compared to the fall in ordering costs. Thus, the total cost curve is

convex to the origin.

Case 2b: When PD € (t,T,) and PD € (t,T, — 1)

T
TZ:TI 'T
PD

0 T 2t PD+T T,

Az Q267 (P12 leP;

IC
K,(Ty) = oot T @ @2y — @zl + r_zr)[az(n) — Qzpp+0)] — G [(PD +

7) (192(PD+‘L') —Uz7) — (¢2(PD+‘L‘) = ¢21)] 4.29)

The Figure4.3 shows the convex nature of the total cost curve for the case 2a.

Ordering Costs net off interest earnings Basic, Holding and Interest costs Total Cost
6,00,000
5,00,000
4,00,000
3,00,000

2,00,000

Total Cost per unit time

1,00,000

0.65 0.75 0.85 0.95 1.05 1.15

Planning Horizon T1

Figured4.3. Total Cost Curve for Case 2a

This scenario corresponds to relatively larger values of planning horizon since it has to be greater than
the credit period, which in turn has to be greater than the introduction timing 7. By this time, the product
lifecycle has reached a stage where the rising demand dependent costs (i.¢., the inventory holding cost
and interest cost per unit time) have nullified the declining ordering costs. Hence, the total cost per unit

time curve is convex to the origin with minima at the lowest possible value of the planning horizon.
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Case3: When PD € (T,, »);

Q262 G Ty

Az leP; Ty leP;

K,(Ty) = D) + SRS L) dt - o) e (Ty — O)D,(O)dt — = (PD—-T, +
4 1P Q€
Q; = (Tlfr) - ﬁ[Tl(ﬁz(n) —U20) = (P20r1) — P20) + (PD —T1 +1)Q2] + ﬁ +
LC
ﬁ [azr1 — a2] (4.30)

The total cost per-unit-time curve for this situation is also convex to the origin on similar lines as per
the above arguments.

The Figure4.4 shows the convex nature of the total cost curve for the case 2b.

Ordering Costs net off interest earnings Basic, Holding and Interest costs
Total Cost
12,00,000
10,00,000
8,00,000
6,00,000

4,00,000

Total Cost per unit time

2,00,000

1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

Planning Horizon T1

Figure4.4. Total Cost Curve for Case 2b

The Figure4.5 shows the convex nature of the total cost curve for case 3.

Ordering Costs net off interest earnings Basic, Holding and Interest costs Total Cost

20,00,000
18,00,000
16,00,000
14,00,000
12,00,000
10,00,000
8,00,000
6,00,000
4,00,000
2,00,000

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Planning Horizon T1

Total Cost per unit time
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Figured4.5. Total Cost Curve for Case 3

4,1.5. Theorems and Special Cases
In the subsection above, it has been shown that the nature of the total cost curve is convex to the origin.

In the current subsection, some of the important theorems have been proposed and discussed.

Theorem 4.1: With the increase in the credit terms, the total cost per unit time does not change for very
small values of the planning horizon, but decreases for the larger values of the planning horizon.

Proof: Please refer to Annexure 4A.

Theorem 4.2: The second generation gets more benefit from the increase in credit term as compared to
the first generation

Proof: Please refer to Annexure 4B.

Theorem 4.3; With the increase in the introduction timing of the second generation product, the optimal
cost reduces and the optimal length of the planning horizon increases

Proof: Please refer to Annexure 4C.

Theorem 4.4: With the increase in the interest rates, the optimal planning horizon falls for lesser values
of credit periods and increases for higher values of the credit period

Proof: Please refer to Annexure 4D.

4,1.6. Numerical illustration

The behavior of the model proposed in the earlier section can be illustrated with the help of the
numerical example. In this section, first, the sensitivity of the optimal planning horizon is checked with
the coefficient of innovation, the coefficient of imitation and the introduction timing of the second
generation. At a later stage, the sensitivity with the credit period and the interest rate is checked. Since
the single period model consists of the supply for the entire life cycle of a product at the single time, it
can be used only for the products with small one-time market potential. To perform the former range of

sensitivity analysis, the following parameter values have been considered:

A, = INR 30000, A, = INR 15000, C; = INR 1500, C, = INR 2200, M; = 500, M, = 1000, p; =
0.1,p,=0.06,¢, =1 g, =16, 1; = 0.15,1, = 0.15, 7 = 0.6, I, = .06, I, = .08, PD = 0.1

At T" =0.86, it can be observed that the optimal cost and optimal ordered quantity are:
K(T™ =0.86) =409,843, @Q,(T"=0.86) =54.18 and @Q,(T" = 0.84) = 17.76. Furthermore,

Table4.2 below depicts that when the value of 7 is changed while keeping other parameters constant,
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the optimal length of the planning horizon and optimal ordering quantity reduces with the increase in .
This is because the greater T helps us pool the inventories over a larger period and brings more
predictability of demand into the system. However, the inventory managers do not have the luxury to
increase the introduction time of the second generation beyond a limit, because then, the competition

will take over the non-innovating players.

Table4.2. Sensitivity analysis on T

T=.6 7= 7=.38
K(T™) | 409,843 | 417,859 | 427,716
T 0.86 0.96 1.08
Q. (T™) | 62.42 72.57 85.57
Q,(T™) | 19.35 19.37 21.23

Next, a sensitivity analysis was conducted with regards to innovation and diffusion coefficients
together. The parameter values were considered as used for the scenario; i.¢., T =.6 as the base case and
taking the different values of coefficients innovation and diffusion. The results are shown in the tables

below.

Table4.3. Sensitivity analysis of innovation coefficients

Innovation coefficient of 1** generation

Innovation coefficient of 2" generation

0.1 0.13 0.17 0.06 0.075 0.09
K(T") 409,843 444,852 488,795 409,843 470,784 500,629
T 0.86 0.86 0.86 0.86 0.84 0.82

From Table4.3, it can be observed that with the increase in the coefficients of Innovation, the value of
K(T™) also increases. This is because the increase in the innovation coefficient leads to the increase in
demand, and hence the overall cost curve moves up. While the optimal T™ does not change (with the
increase in innovation effect) for first-generation, it decreases for the second generation. The optimal
T* does not change much for the first generation because the increase in the demand (caused by higher
innovation coefficient) has the conflicting effects of increasing inventory carrying cost per unit time
and decreasing the ordering cost per unit time; both of which strike a fine balance. For the second
generation, the ordering costs per unit time show a sharper fall as compared to the rise in holding costs
per unit time. This in turn is because of lower fixed costs of ordering in case of second-generation

products on account of the learning curve.

Table4.4. Sensitivity analysis of imitation coefficients
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Imitation coefficient of 1* generation

Imitation coefficient of 2" generation

1.0 13 1.5 1.6 1.8 2.0
K(T*) | 409,843 428,503 442109 409,843 414,949 419,600
T" 0.86 0.84 0.82 0.86 0.85 0.84

From Table4 .4, it can be found that with the increase in the coefficient of imitation for first-generation,
the value of K(T™) rises while the optimal T™ falls. K(T*) increases because of the increase in demand
due to more imitation, and therefore, an upward shift in the total cost per unit time curve. The optimal
T~ increases for both the generations because the greater consumption rate of inventories caused by the
higher imitation coefficients, results in a faster increase in the inventory carrying costs and early

achievement of cost minima; and hence, the optimal T* decreases.

The above research work tried to lay a foundation for consideration of credit period in the inventory
planning and optimization for high technology multi-generation products under the innovation diffusion
framework. The framework is also is expected to help the inventory managers and practitioners in
evaluating the influence of trade credit mechanism on the overall cost structure of successive generation
products over the short-range and long-range period. The framework can be further generalized by
considering credit-dependent demand for optimizing multiperiod inventory control problems. In the

next section, a new multiperiod EOQ model is proposed using credit-dependent demand.

4.2, Multi-period Inventory Model using Credit Linked demand Model

As discussed, trade credit offered by the supplier to the buyers is a crucial tool to enhance the sales.
Sometimes, the suppliers with weak bargaining power with their customers, sell a larger share of goods
on credit, and offer a longer payment period before charging penalties (Fabbri and Klapper, 2016).
Trade financing among firms is one of the most popular sources of financing globally. Kehinde et al.
(2017) suggested that to balance the liquidity risk and profitability, a credit policy is not only desirable
but also essential for an organization’s success. Thus, from the hi-technology market perspective, it
becomes important for the supply chain managers to consider the effect of trade credits on the optimal
replenishment policies. The proposed EOQ model in this section discusses the importance of trade
credit strategy on procurement policies in the different stages of the product life cycle. Apart from the
notations and assumptions as used in section 4.1.1, some additional notations and assumptions are also

used in this section as given below.

4.2.1. Additional Notations
M;" is the Market Potential of the jth generation product after the incorporation of the trade credits
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CD,(¢t) is the cumulative demand of the first generation product before the launch of the second
generation till time ¢

CD,(t) is the cumulative demand of the second generation product before the launch of the second
generation till time ¢

CD,'(t) is the cumulative demand of the first generation product post the launch of the second
generation till time ¢

n denotes the sequence of the planning horizon

Rev; is the total turnover for the ith generation product

Rev’ is the total turnover in a planning horizon post the launch of the second generation product

BC; is the total basic purchase cost for the ith generation product

BC' is the total basic purchase cost in a planning horizon post the launch of the second generation
product

TCM,; is the contribution margin for the ith generation product

TCM’ is the total contribution margin in a planning horizon post the launch of the second generation
product

A; is the fixed product-specific ordering cost of the ith generation product irrespective of the order
volumes, while A is the fixed generic ordering cost

0C; is the total ordering cost specific to the ith generation product

OC is the total generic ordering cost which is not specific to the products being ordered

HC; is the total inventory holding cost for the ith generation product

HC' is the total inventory holding cost in a planning horizon post the launch of the second generation
product

I is the interest cost on the credit offered

z is a binary variable which equals 1 for joint replenishment and 0 for disjoint replenishment

RC; is the replenishment cost (including inventory ordering, inventory carrying and interest on credit)
for the ith generation product

RC' is the total replenishment cost (including inventory ordering, inventory carrying and interest on
credit) in a planning horizon post the launch of the second generation product

TP; is the total profit for the ith generation product

TP’ is the total profit in a planning horizon post the launch of the second generation product

$in 18 the quantity of the ith generation product ordered in each lot in the horizon n

&ins 1s the quantity of the ith generation product ordered in each lot in the horizon n post the launch
of the second generation product

¢ is the length of the horizon for which the inventory norms are fixed

4.2.2. Additional Assumptions
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» The credit period is offered by the retailer to the customer and it tends to increase the market
potential of the product. Thus mathematically, the Market Potential for the first generation product
gets increased from M, to M;’; and similarly, that for the second generation product from M, to
M, in the presence of the credit period.

M; = M;.exp(a.PD;)
Mj; = M,.exp(a.PD,)
where « is a positive constant

» The rate of demand is influenced by the innovation diffusion process and follow the assumptions
as discussed in section 3.1.3 and can be given as follows:
M) =Mifi(t) fort<rt
1@ =M[1() = M f1(OF () fort 27
A2(8) = My'f,(8) + My fL (O F,(t)

» The interest rates are the same across the generations

» There is a finite credit period being offered by the supplier.

The models of credit linked demand as discussed in Table 4.1 have not been applied to the technology
generations. Since the Demand Model D(PD) = K exp(a. PD) has been the most popular one among
the ones mentioned above, the same model shall be integrated with the Norton and Bass Model (1987)
in this research for the technology generations.

The adoption functions have been specified in equations of section (3.1.3).

6.2.3. Inventory Model in case of single generation scenario

The business decisions related to the procurement of inventories are tactical by nature. For a particular
planning horizon, the retailers decide their EOQ and then, review it at regular periodic intervals, with
the life cycle dynamics of the product changing in each of these horizons. Thus, the retailers try to
determine their inventory replenishment strategies based on the stage of the life cycle of the product. If
the length of each of those horizons is ¢, and there is ¢, amount of order quantity in the n horizon, the
value of &, for which the total profit is maximum in the horizon n needs to be determined.

The time at which the horizon 1 starts is given by (n — 1), and the time at which it ends is ()¢ as
shown in Figure4.6.
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Figured4.6. Horizons into which product life cycle is divided in the single generation case

Since the EOQ in this horizon is &, the number of orders to be placed in this period is given by

i=(&)emid) - eoy (- 1.9 @431

The time of the start of the k4 ordering cycle is given by tin gy = -1+ & —-1)/)NT (4.32)
The time of the end of the kth ordering cycle is given by Ler1)ng, = -1+ k//)T (4.33)
The holding costs of inventory in the k# ordering cycle in the horizon n are given by

t t=t u=t
LG, ft k(":L:l)'rLer Ldt = 1,¢y ft:t k('l:b;).m [ fu:t Gernnén 3 (w)du] dt

(4.34)

Net interest costs on the credit period in k#h replenishment cycle of the x horizon are given as =

I.C,.PD. |, t:tjc(':b:[).mfn A (t)de (4.35)

The replenishment costs for the 5 horizon are given as

- k=j rt=t =t
RC, =j(A+ A+ 1C Zkzjl tztk(’:bgrll).rbfq [fuuzt(k+1).rbfn,11(t)dt] dt +

k=j rt=t
L.C.PD.Y, 70 tzt;l;;:).mfn A (B)dt (4.36)

The revenue is given by

=j rt=t
Rev; = pry.Yhc) t:tk(’;:l)'“f‘lxll(t).dt (4.37)
k=j rt=t
BC, = C1.X,1 tztk(;;)"bfﬂxll(t). dt (4.38)
TCM, = Rev, — BC, (4.39)
TP, = TCM; — RC, (4.40)

6.2.4. Inventory Model for the two generations scenario
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Let us say that planning horizon n’ begins at time t = 7+ (' — 1)(?) and ends at time t =7 +

(M) (@).
The time at which the horizon n starts is given by (’-1) ¢, and the time at which it ends is (n) ¢ as shown

in Figure4.7.
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Figured.7. Horizons into which product life cycle is divided after the launch of the second
generation product

If &' and &,y be the order quantities of the products of the first generation and the second generation
respectively, the number of orders to be placed for the products are:

J1=1[CD1(x+ ()(©)) = CD1(7 + (n— ()N 1/ (441

J2 = [CD(t+ () ) — CD,(r + (n— 1)) 1/éan (4.42)

The kth replenishment cycle for the first generation starts at the time Lle-1)8, =T F
(n—1+ (kK —1)/j1)0) and ends at the time bigyy =7+ m—-1+k/j1)Q

Similarly, the &tk replenishment cycle for the second generation starts at the time Lle-1)6n =TT
(n—1+ (k —1)/j,)?) and ends at the time tig,, =T+ mM—-1+k/j2)0

In case of consolidated logistics for both the generations of products, the clubbed quantity to be
transported in the £t replenishment cycle is Cie-1)607 = Ee-1)d and g = ik

Similar to the way the economics in the single generation case has been worked out, the economics of
the two generations situation can be captured as below:

RC' = RC, + RCy = ji(Ay + A) + jo(A; + A) —z. (A) +

k= =tk =trg '
HiC T, ’lft e 3; , fu . A (wdu] dt +

k= =t =tg.¢ k= =tkg ’
HyCy X ’th e j;lf 0™ dp@du] de + I.Cy PDy X CH ft o v  A(0de +

I,.C,.PD.YKh ft t"fz‘l 2, (t)de (4.43)

Where z = 1if j; = j,, and 0 otherwise
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;L k=j t=teernnggs o, k=j, rI=tk+1)nég
Rev' = pri. ¥, 1 =t A1(®).dt + pry. Y, P A,(t).dt (4.44)

E=t(k+1)nén2

’ k=j
;ll(t)' dt + CZ- Zk:jlz ft:f:k -
L5

TP' = Rev' — BC' — RC' (4.46)

k=ji t=tkr1)ngns

BC'=BC,+ BC, = C1.%) bt s Ax(t).de (4.45)
el

The optimization problem is:
Max TP' = Rev' — BC' — RC’
Subject to the constraints
J1=J2

Jj1 and j, are positive integers

6.2.5. Theorems and Special Cases
Theorem 4.5; With the increase in the trade credits, the holding costs tend to fall given other factors
constant.

Proof: Please refer Annexure 4E

Theorem 4.6: With the increase in trade credits, the total contribution margin tends to increase.

Proof: Please refer Annexure 4F

Theorem 4.7; Offering the higher trade credits on the newer generation product expedites the phase-
out timing of the first generation product.

Proof: Please refer Annexure 4G

Theorem 4.8: A threshold level of credit sensitivity is required for the trade credits to increase the
profits in a supply chain.

Proof: Please refer Annexure 4H

Theorem 4.9: For the fast-moving popular products with lower per-unit contribution margins, the
retailers should offer a negative or lesser credit period, while for the slow-moving and higher per-unit
contribution margin products, it makes sense to offer a higher credit period.

Proof: Please refer Annexure 41

Special Case 4.1: When the credit period is two-sided, i.e. from supplier to retailer PD, and from

retailer to customer PD,. , the demand for the products increases with PD,. as long as PD,, <
G) PD,., Also, there shall be no influence on demand when PD,, = PD,.. or PD,;,, = 0

Proof: Please refer Annexure 4J
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Special Case 4.2: Under the capital constraints of credit, it is better to offer credits on the newer
generation product rather than the earlier generation product.

Proof: Please refer Annexure 4K

6.2.6. Solution procedure

The solution procedure to find the optimal solutions can be summarized in the following algorithm
Step 1: Enter the base values of all model parameters such as per-unit costs, coefficients of innovation
and imitation, potential market sizes, time to the introduction of second-generation products, etc. for
each generation independently.

Step 2. Compute all possible values of profit for the given value of T using equation (4.40) and (4.46)
as the case may be.

Step 3: Select the appropriate value of replenishment frequency that satisfies the sufficiency condition
that the second derivative of profit has to be negative, with the first derivative being positive.

Step 4: Compute the EOQ from equation (4.31), (4.41), and (4.42).

6.2.7. Numerical Illustrations

Let us use the following values of the parameters to illustrate the model proposed above.
H, = .15, H, = .15, p1=.5 g, = 2.5, p: = .06, q, = 4, I, = .18,
pr; = INR 3500, pr, = INR 4200, C; = INR 1500, C, =INR 1700,
PD, = .25, PD, = .25, a=.5, T=0.5, {=0.5,
M; = 100000, M, = 120000, A = INR 500000, A; = INR 50000,
A, = INR 50000
The values of innovation and imitation coefficients have been taken different in the different models to
get a wide variety of illustrations. With the help of the proposed model, the results as tabulated in
Table4.5 were obtained. The number of replenishments at the optimal EOQ in the first two planning
horizons have been delivered. The optimal EOQ refers to the lot size that delivers the highest profit.
Since the technology products can have very short product life cycles in the light of changing consumer
preferences and ever-up-gradation of technologies and business models, it can be observed how the
share of the first generation product reaches minuscule levels over a short period.
Table4.5. The optimal EOQ corresponding to the pooled logistics scenario (All figures in Mn INR

unless stated otherwise)

Planning | Technology EOQ Revenue | Contribution | Replenishment | Credit | Total
Horizon | Generation (Absolute Margin Cost (Ordering | Cost Profit
Units) + Holding)
m =1 1t 11,577 121.56 69.46 2.47 456 | 254.40
2nd 27,315 344.18 204.87 12.91
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m =2 1+ 1,821.14 19.12 10.93 1.96 0.72 | 166.45
2nd 22,511.11 | 283.64 168.83 10.64

m =3 1+ 72.39 0.76 0.43 0.55 0.03 33.67
2nd 4,811.51 60.63 36.09 2.27

The cross elasticity of demand for any generation product with the credit terms of the other generation
can also be checked. On changing the credit terms of the second generation, the demand for the first
generation increases, and vice versa.

The Table4.6 shows the influence of the credit terms of the products on the demand of each other. It
can be seen that the cumulative adoption of a product is dependent upon the credit term of that product
as well as the substitutable products. The increase (or decrease) in the credit terms of the substitutable
generation product leads to a fall (or rise) in the demand for a product.

Table4.6. Influence on the adoption of the first-generation product by changing the relative credit

terms with the second generation product

Cumulative Number of adopters (Mn)
PD;=PD,=.25 PD;=0, PD,=.5 PD;=5, PD,=0

t | Ist Gen | 2nd Gen | Ist Gen | 2nd Gen | Ist Gen | 2nd Gen
0.5 0.04 0.00 0.04 0.00 0.36 0.00
1 0.04 0.15 0.04 0.15 0.04 0.15
1.5 0.08 0.23 0.09 0.21 0.07 0.25
2 0.10 0.23 0.12 0.22 0.09 0.26
2.5 0.11 0.24 0.13 0.22 0.10 0.26

The Table4.7 shows that credit sensitivity has an important influence on the total profit. If the credit
sensitivity (the influence of trade credits on the sales volumes) as denoted by a is low, the total profit
falls with the increase in trade credits. On the other hand, for the products that have high credit
sensitivity, the total profit increases with the trade credits. This is also illustrated in Figure4.8.

Table4.7. The behavior of total profit (in Mn INR) for different values of credit sensitivity

PD, = PD, 0=.05 0=.25 o=.5

0 239.63 239.63 239.63
0.05 236.49 239.39 241.57
0.1 233.35 239.20 243.66
0.15 230.22 239.04 245.91
0.2 227.08 238.92 248.33
0.25 223.95 238.84 250.91
0.3 220.82 238.80 253.66
0.35 217.68 238.80 256.59
0.4 214.56 238.84 259.70
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0.45 211.43 238.92 262.99
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Figure4.8. The trend of the optimal profit for varying levels of credit sensitivity

4.3. Academic and Business Implications of the proposed models

This research study can guide the industry practitioners in appreciating the cannibalization among the

different generations of the technology products. It can also guide them in determining the optimal

credit terms in business. The optimal credit terms would be the one at which the total profit is

maximized. With the increase in the credit period, the contribution margin increase and the holding

costs fall, but at the expense of a rise in the credit costs. It makes business sense to offer incremental

credit as long as the rise in credit costs is overweighed by the rise in the contribution margin and fall in

holding costs. This research has illustrated the importance of the credit period and the interest rates in

formulating the inventory policies for the multi-generation products. The key insights generated for the

managers are:

» The higher the credit period, the lesser shall be the overall costs

» The savings per unit time in the interest costs due to the credit period offering are higher in the
longer planning horizons than in the shorter planning horizons

» It makes sense for a manager to negotiate a better credit term for the later generation product, as the
expense of that for an older generation product. The credit period offerings give more benefit to the
later generations’ product than to the earlier generations” product.

» The value of the credit offer is more in the cycles of higher interest rate than in the cycles of lesser

interest rate
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» The value of the credit period offering is more in the growing economies as compared to that in the
stagnant economies

This chapter also helps the managers understand the interplay between the credit periods and the
demand rates of multiple generations’ substitutable products. Another important implication for the
managers is that the credit period offers become more beneficial in the times of recessionary business
cycles as compared to the growing business cycles. Also, the credit terms provide more value for the
low-volume high-margin products, in contrast to the high-volume low-margin products. The inventory
practitioners in the supply chains of the technological products can make sound business decisions
related to the inventory replenishment frequency, economic order lot size, and credit terms. The
differential service levels can be explored in a capital-constrained supply chain, and generally, it is
better to achieve higher service levels for the later generation product at the expense of that for the
earlier generation product.

It also came out that the higher credit period offered on any product has a negative influence on the
demand of the substitutable products. It is also important to note that the in case of multi-echelon supply
chains, the credit periods offered by the intermediate echelons benefit the total profit only till a certain
point.

While the influence of the trade credits has been covered in detail in this chapter, the next possible
dimension that comes to the mind is the price of the product. The price elasticity of demand is a
phenomenon that cannot be escaped from in today’s hyper-competitive markets for high technology
products. Therefore, one of the important extensions of this work is to consider the impact of the price

variations on the inventory decisions for technology generation products.
Appendix 4

A. Theorem 4.1: With the increase in the credit terms, the total cost per unit time does not change for
very small values of the planning horizon, but decreases for the larger values of the planning horizon.
Proof: This is because the interest earned during the credit period per unit time is proportional to the

consumption in that unit time. It can be scen that interest carnings per unit time are given by
% fOT tD(t)dt. For very small values of the planning horizon, the product is into the introduction and

growth stage when the demand is very less, and hence, the interest benefit is lesser. As the planning
horizon increases, the demand rate D (t) increases significantly, resulting in higher interest earnings per
unit time.

For small values of the planning horizon, D (t) the relationship
between credit period and interest earnings is typically more sloped, or convex, rather than a straight
line. Therefore, convexity is a better measure for assessing the impact on interest earnings when there

are large fluctuations in credit periods.
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B. Theorem 4.2: The second generation gets more benefit from the increase in credit term as compared
to the first generation
Proof: This is because the second-generation product, by possessing advanced features, has higher

demand in the market, and therefore, has greater consumption per unit time as compared to the first-

generation product. Thus, the interest earnings per unit time are given by % fOT tA(t)de . The term

interest earnings per unit time are given by (%) fOT tA(t)dt. Since the g2 > q1,p2 < P, G2 > P2, q1 >

p1. the demand rate for the second generation is much higher than that of the first generation. And

hence, it gets a higher benefit of the credit period than the first-generation.

C. Theorem 4.3: With the increase in the introduction timing of the second generation product, the
optimal cost reduces and the optimal length of the planning horizon increases

Proof: With the increase in the introduction timing of the second generation product, the increase in the
overall demand gets delayed, and hence the holding costs (which increase with the demand rate) take
more time to nullify the fall in the ordering costs.

It is known that if there are two functions in x: f(x) and g(x) over the interval (a, b) such that f(x) <
0 and g’(x) > 0 in the interval (a,b); f”(a) > g”(a) and f’(b) < g”(b), then the curve h(x) =
f(x) + g(x) is convex to the origin and there exists a point ¢ in thee interval (a, b) such that f'(c) +
g'(c) = 0. Asthe g’(x) falls, then the point of minima ¢, (where f’(c) + g’(c) = 0) shifts towards
the right.

Also, it can be observed that the high time gap between the launch of successive generations enables us
to leverage the economics of pooling across different times, and therefore allows us to have the longer

planning horizon for the minimum cost.

D. Theorem 4.4: With the increase in the interest rates, the optimal planning horizon falls for lesser
values of credit periods and increases for higher values of the credit period

Proof: For the smaller values of the credit period, interest carnings per unit time are much lesser than
the interest charges per unit time. Therefore, an increase in the interest rates will lead to a faster increase
in g(x) and will facilitate the early reaching of the minima. Hence, the optimal planning horizon will

reduce with the increase in interest rates for smaller values of the credit period.

E. Theorem 4.5: With the increase in trade credits, the total contribution margin tends fo increase.

. O(HCy) _ [ OHCY 1 [0AL )] [UL ()
Proof. - ] [a(fl(t))] [O(PDl)

" a(PDy) A(A1(1))
All three terms in the expression above are positive.
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It is known that holding costs tend to fall with the increase in demand rate due to lesser time spent by

the inventories in the system. Hence, [ aa (Eletl))) is negative.
1
(A (t
[M _ M, >0
9(1(®)
(fi(®) _ 2ab? exp(—b,t) [exp(a.PD,)]? _ 2bipa exp(—b,t) exp(a.PD;)
9(PDy) [p1{1 + ay.exp(—b,1)}?] [p1{1 + a;.exp(—b;t)}*]

b#t.a.exp(—b,t) exp(a. PD;) p,
[p1{1 + ay. exp(—b1t)}*]
B 2ab? exp(—b;t) [exp(a.PD;)]?>  2b;p,a exp(—b,t) exp(a. PD;)
T [t aepEn0¥] ({1 +asexp(=bi0))]
b?t.a.exp(—b;t) exp(a. PDy) py
[p1{1 + a;. exp(=b; )}]

a(f1(t)
6((;—D)) = a.exp(=byt) exp(a.PD,) /[p1{1 + ay. exp(=b;)}]) [2b] exp(a. PD;) — 2b;p,
1
+ b?t.pq]
Si . () . .
ince b, exp(a. PD,) > py, it can be concluded that S(py 1S always positive
1

The Figure4.E. 1. illustrates the influence of the credit period on the adoption rate for any product.

Influence of PD; over f/(t)

—--—--PDj=0
- - -PDj=0.1

=== PDj=0.2

t

Figured.E.1. Influence of the credit period PD4 on the adoption rate f4(t)

The Figure4.E.2. shows the influence of the credit period on the cumulative adoption rate of any

product.
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Influence of PD;over Fi(t]

----PDj=0
- - -PDj=0.1
--- PDj=0.2

-+ PDj=0.3

—PDj=0.4

t

Figured.E.2. Influence of the credit period PD, on the cumulative adoption rate F,(t)

A(HC,)

50. 5Dy

<0

F. Theorem 4.6: With the increase in trade credits, the total contribution margin tends to increase.
Proof: If the partial derivative of the total contribution margin is taken w.r.t. credit terms, the following

expression can be obtained:

o(TCM,) _ [O(TCM ) [6(/11 () [a(fl ()
9(PDy) o(4) [[0(fa(e))] [ 0(PDy)
[—6(67"(311\/;1)] =prn,—C; >0
Since the later two terms in the expression above have already been proven to be positive,
o(TCM,)
oy

G. Theorem 4.7: Offering the higher trade credits on the newer generation product expedites the phase-
out timing of the first generation product.

Proof: The higher trade credits on the second generation product leads to an increase in its demand rate,
at the expense of cannibalization of the carlier generation product. The lower demand rate of the first
generation product, thus caused, results in the replenishment costs from being recovered from the

contribution margin, thus making the first-generation product a loss proposition.

(1) _[a(al(t))] [a(zl(t)) _ [a(fz(t))]
1

a(PD,)  |o(f(e))] |0(()| a(PD,))
a(f2(6)) _ 2abj exp(=b,(t — 1)) [exp(a. PD,)]? >0
a(PD,)) [p1{1 + ay.exp(=by (t — 7))}?]

Thus, it can be said that
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The Figure4.G.1 sums up the phenomenon explained above.

Influence of PD, over demand of 1st generation product

s

'g.

g | ——PD2=0.4
‘:_,‘" S mememmm———— e N e PD2=0.3
5 ---PD2=0.2
T - . .PD2-0.1
g - - PD2:0
3

Figure4.G.1. Influence of the credit period of second product generation on the demand of the

first generation product

H. Theorem 4.8: A threshold level of credit sensitivity is required for the trade credits to increase the
profits in a supply chain

Proof: Asthe credit term increases, the contribution margin of the product increases due to a rise in the
demand, while the credit costs also increase. It makes sense to increase the credit terms until the point
where the increase in contribution margin is more than the rise in credit costs. Let D be the demand in

the absence of the credit period, and AD be the rise in demand with the credit period PD,, then

(AD)(pry — C1) > (D)pry- () (PDy)
2> 1. (PD)/(1 ~ €, /pm)
Or, exp(a.PD;)—1>IL..(PDy)/(1 — C,/pry)

Or, exp(a.PDy) > Ir.(P—DCll) +1

(1-5%)

1 (PDy)
Or,a > (E).ln(lr. =~ +1)

(1)

From the above expression, it is evident that if the interest rates are higher, the trade credits are useful

only with higher credit sensitivity. Also, if the contribution margins are lower, the trade credits are

useful only with higher credit sensitivity.

I Theorem 4.9: For the fast-moving popular products with lower per-unit contribution margins, the
retailers should offer a negative or lesser credit period, while for the slow-moving and higher per-unit

contribution margin products, it makes sense to offer a higher credit period.
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Proof: The credit period has three effects on the profit margin:
a) the increase in contribution margin due to higher volumes, as explained below
b) the reduction in inventory carrying costs due to faster movement of inventories caused by
higher demand rate, and

¢) the higher credit costs, as explained below

a1y ) .
O(P_Dll) =M a(P_L1>1) > 0 as proved above in Theorem 1
O(Zk:j =t kt1)néy Al(t)dt)
a(TCM) _ _ =1 lt=te gy . . .. .
2@D) (pry — Cy). 300 > 0 since it is cumulative of a positive function
=j
a(RCl) t=t(k+1),rbfq
—=1.C,. A &)dt >0
O(PDl) r-+-1 f 1( )

k=1"t=tknéy

While the first two have a positive influence on the profit, the third effect has a negative influence on
the profit. For the mass market technology products that enjoy smaller contribution margins per unit,
and faster inventory turnover rates, the positive effect on the retailer’s profit will be lesser than the
negative effect on credit costs. Therefore, it makes sense for the retailers to offer lesser credit periods
(or sometimes, negative credit periods, i.e. insisting on advance collection from customers) on the
popular technology products. While in the case of the technology products with higher contribution
margin per unit and slower inventory turnover rates, the positive effect of the first two influences is
higher than the negative effect of the third influence, making it an attractive proposition to offer a higher

credit period.

J. Special Case 4.1: When the credit period is two-sided, i.e. from supplier to retailer PDg, and from

retailer to customer PD,. , the demand for the products increases with PD,. as long as PDg, <
G) PD,., Also, there shall be no influence on demand when PDg, = PD,.. or PDg,. = 0

Proof: As proposed by Banu and Mondal (2016), the demand in such a case is proportional to
exp(by PDg(PDyc — PDs;))

a([exp(blstr(PDrc - PDsr))])
9(PDsy)

This is positive PD,.. — 2. PDy,. > 0. Therefore, the demand for the product rises with the increase in

= [bl-exp(blstr(PDrc - PDsr))]((PDrc — 2.PDg;)

2. PDq, till the point where PDy, < G) PD,.

Also, the expression exp(by PDg, (PD,. — PDy,.)) reaches the value of 1 when PD,. = PD,. or PD,, =

0, and therefore, loses its multiplier effect on the demand.

K. Special Case 4.2: Under the capital constraints of credit, it is better to offer credits on the newer

generation product rather than the earlier generation product.
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Proof: This is a special case of constraints on the credit capital. Let us consider that SZ; be the service
level of the ith generation product, D; be the demand of the ith generation product during the credit
cycle and TVPPU; be the total variable profit per unit for the ith generation product. The problem
becomes approximately a linear program with the following formulation.

Max. Z = SLy.D,.TVPPU, + + SL,.D,. TVPPU,

Subject to the constraints:

SLi.Dy + SL,.D,- CC <=0

z<M.SLy

z<1

SLiand SL, 2 0and <1

M is a very large number

The newer generation products have higher contribution margins as compared to the older generation
products on account of price skimming for the advanced features.

Therefore, TVPPU,; < TVPPU,

Since these are technology products, within a very short span of the launch of next-generation, the
significant cannibalization happens, making D; < D,

Hence, TVPPU,.D; < TVPPU,.D, . Therefore, it makes sense to increase the SL, at the expense of
SL;, This is illustrated in the figure4.L.1.
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Figure4.K.1. The service level determination for Profit Maximization in a capital-constrained

supply chain
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