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Abstract 
 

 

The iris recognition is now becoming a common authentication method in handheld consumer 

electronics devices, such as cellphones and tablets. The iris being a biometric parameter is a way 

better than password protection because of its uniqueness for each individual. The embedded iris 

recognition system is in demand, which will give the advantages of portability, light weight and 

small size. This kind of embedded system would be using in general the low speed and low 

power CPU, which may not give the real-time performance for the iris recognition as it involves 

computational-intensive image processing tasks, such as the iris localization. The iris localization 

is first step in the iris recognition, which is followed by the feature extraction and the iris-

template matching, but the iris localization is most time consuming task in an iris recognition 

system with not having too big database size. Therefore, the hardware acceleration for iris 

localization can be very useful for obtaining the real-time performance. The field programmable 

gate array (FPGA) technology is preferred for realizing such a hardware accelerator.  

The accuracy of iris recognition is most important for the applications demanding high 

security, where confidential data/resources must not be compromised. In order to make iris 

recognition algorithms more accurate, in general, the complexity of the processing is increased 

by adding more computational stages. However, when implementing these complex signal 

processing algorithms on embedded systems with limited processing resources, the challenge of 

achieving real-time performance arises. 

Iris localization is an important stage in an iris recognition system, which involves image 

processing. The accuracy and speed of iris recognition depends on the iris localization algorithm. 

In this thesis, two aspects of iris localization are addressed: (a) Accurate and fast algorithms for 

the iris localization; and (b) FPGA based hardware accelerator for a selected iris localization 

algorithm. The objective of this research is to improve the performance of iris localization 

algorithms and implement the dedicated hardware for iris localization task without compromising 

accuracy. This dedicated hardware can be used to accelerate the iris localization task in more 

accurate and more affordable embedded iris recognition systems. Implementing dedicated 
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hardware for iris localization algorithm requires several embedded memory blocks (block 

RAMs) of FPGA, which makes it memory-intensive. This thesis work proposes a new hardware 

architecture, which is memory-efficient. Moreover, to improve accuracy, additional image 

preprocessing steps are implemented in the hardware, which further increases hardware 

complexity. Although, the iris localization algorithms proposed in the thesis use standard 

techniques, but additional image preprocessing steps have been introduced, which improves the 

overall performance. 

This thesis is composed of seven chapters. Chapter 1 introduces the research field of the 

thesis and discusses about motivation behind carrying out this thesis work along with scope and 

objectives of the thesis. After presenting literature review in chapter 2, the main research work is 

exposed in chapter 3, 4, 5 and 6. Chapter 7 presents conclusion, main contributions derived from 

the work and future directions.  
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Chapter 1                                            

Introduction 
 

 

1.1 Iris Biometric System                   

In the recent years, the field of automated human identification have grown with advent of 

different types of biometric systems, such as fingerprint, face, iris, voice and hand etc., which use 

sensors, image processing, pattern recognition and computers [Jain and Kumar, 2012], [Faundez-

Zanuy, 2006]. These systems identify or authenticate the individuals for security and access 

control purposes based on their biometric characteristics (physiological or behavioral). The 

authentication systems based on biometrics determine the user’s identity on the principle that 

some physiological or behavioral characteristics are unique for each person and hence, provide 

absolute authentication. For example, no two persons have the same iris-patterns even the 

identical twins; also, the left and right eye irises of the same person are different. Moreover, the 

iris pattern remains stable and does not change throughout one’s life provided no injury happens 

to the eye. In contrast to biometrics, traditional methods of authenticating persons based on (a) 

what they carry, such as identity card, driving license, passport and magnetic stripe card; and (b) 

what they know, such as username, passwords and pin number are less secured methods because 

they can be stolen, lost, forgotten, misplaced or forged. Automated biometric systems such as 

fingerprint or iris recognition have been successfully deployed in several large-scale public 

applications, increasing reliability and convenience for users and reducing identity fraud [Jain 

and Kumar, 2012]. 

An iris recognition system is a computer-assisted system that identifies individuals based 

on comparisons of iris-patterns [Ross, 2010]. The iris recognition is considered one of the most 

secure and reliable technologies among currently existing biometric modalities and finds 

application where high level of security is required, such as countering terrorism or providing 

access control for accessing important information. The iris recognition system consists of an 

automatic iris segmentation system that extracts the iris region from eye image. The extracted iris 
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region is then unwrapped into a rectangular block with constant dimensions. The iris features are 

extracted with a feature extraction method to encode the unique pattern of the iris into biometric 

template. The generated iris template is compared with the previously stored (recorded) iris 

templates to find a match based on a match-threshold. 

The two processes are involved in the use of biometric systems as shown in Figure 1.1: 

(a) enrollment and (b) recognition (verification). The enrollment is a process of creating the 

biometric template and storing it in the template store (database), whereas comparison (template 

matching) is done in recognition process in addition to the template creation. The enrollment for 

a user is generally done once and recognition is done every time a security check is performed. 

 

 

Figure 1.1. Functioning of iris biometric system. 

 

A biometric system is used to perform two kinds of recognition tasks [Liu-Jimenez et al., 

2011], [Faundez-Zanuy, 2006], [Bowyer et al., 2008]: (a) identification; and (b) authentication. 

These tasks are also known as modes of operation of a biometric system. In identification mode, 

the user does not provide any user identity (e.g. card or identification (ID) number) and the 

biometric system finds the user from a database of biometric data (templates). This process 

carries out a maximum of 1:N comparisons of the input template (biometric data) with the N 

templates stored in the database. In contrast to identification, authentication mode involves 1:1 

comparison to recognize a user, but the user has to provide either his biometric data in form of a 

smart card (biometric token) or an ID number referring to his template stored in the database. 

Therefore, a biometric system for authentication task can be designed using two approaches [Liu-
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Jimenez et al., 2011]: (a) online, which requires communication with central databases to access 

biometric data; and (b) offline, wherein biometric data is stored on personal biometric tokens. 

The online approach must deal with serious security and privacy issues, as the communication 

between the system and the central database can be attacked, and the identity may be stolen or 

altered. For this reason, offline systems are recommended, as long as the data is kept securely in 

the personal biometric token. 

1.2 Motivation and Scope 

A) Motivation 

The iris recognition systems are available as both stationary devices (usually equipped with 

standard personal computers (PCs)) and portable devices, but usually the implementation of iris 

recognition algorithms is carried out using high-performance serial microprocessors working at 

clock frequencies in the GHz range. These devices are designed with an advanced architecture 

based on several pipeline stages, cache memory, high-speed communication buses and additional 

units that facilitate rapid execution of complex algorithms. However, such software 

implementations could restrict the application of biometrics to specific markets because of the 

microprocessor cost, complete system cost, system size and high power consumption. In order to 

spread the biometric security, it is needed to develop the embedded biometric systems that can be 

easily integrated into any kind of product such as mobile phones, automatic teller machines, 

laptops, personal digital assistant devices, access control systems, etc. It is worth to emphasize 

that realization of iris recognition using reliable and handheld embedded systems remains an 

open problem in the biometrics because of the complexity of the computational tasks [Grabowski 

and Napieralski, 2011].  

Devices available in the low-cost consumer market are generally too slow for applications 

requiring intensive computations. For example, an iris recognition algorithm running on an 

ARM922 T at 160 MHz executes in 3162 ms, which is about 80 times slower than the execution 

of the same code on a high-performance microprocessor [Lopez et al., 2011]. The use of 

dedicated hardware is an alternative for implementing operations that require high-speed parallel 

processing. For example, under certain conditions, an image enhancement routine usually 

employed in a fingerprint recognition algorithm can be processed in dedicated hardware faster 

than on a Pentium clocked at a frequency 30 times higher [Lopez et al., 2011]. However, the 

speed benefits are obtained at the cost of chip area and design efforts. Designing a dedicated 
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hardware solution may not be justifiable always specifically for the algorithms that majorly 

contain sequential operations and hinder the parallel and pipelined implementation. Therefore, 

sometimes, an embedded system architecture based on dedicated hardware units and serial 

microprocessor called as hardware-software (HW-SW) co-design can provide the optimized 

solution as described in [Lopez et al., 2011] for iris recognition application. However, 

sometimes, the complete algorithm can also be implemented using dedicated hardware units 

without using HW-SW co-design approach [Liu-Jimenez et al., 2011]. 

 

(a)                                          (b) 

Figure 1.2. Personal biometric tokens: (a) Techshino fingerprint USB token; (b) Fingerprint-based HYPR 

Biometric OTP.  

Sources: (a) http://www.techshinobiometrics.com  (b) https://www.hypr.com 

 

An important and interesting application of small size, light weight and low power 

embedded iris recognition systems is token-based biometric systems that falls in the category of 

the offline biometric authentication, where the biometric data is stored in a smart card (token) 

instead of the centralized database [Liu-Jimenez et al., 2011]. The two different types of personal 

biometric tokens are used in offline biometric authentication: 1) the token only provides the 

biometric template of a person stored in it and does not perform the task of authentication; and 2) 

the token not only provides the biometric template, but also performs the authentication 

(verification) task and supplies the result. The tokens of second type avoid the external access to 

the user’s biometric template, which is a better strategy for security and privacy point of view. 

Such tokens (second type) for fingerprint biometrics are available in the market having Universal 

serial bus (USB) interface or Bluetooth enabled communication with host machine (Figure 1.2). 

The Bluetooth enabled token is also known as biometric one time password (OTP), which is used 

for log in purpose as an alternative of traditional username and password-based log in. These are 

being used for access control in the applications such as online banking, mobile payments, 

electronic trading and computer unlocking. These tokens provide password-less authentication 

while improving users’ experience, but they are also being used as an additional security check 
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along with traditional username and password, personal identification number (PIN) or OTP 

based authentication. For example, OTP is generated only when biometric check is passed using 

the token. USB token and biometric OTP (Bluetooth dongle) produced by Techshino and HYPR 

companies respectively are shown in Figure 1.2 having about size of today’s pen drives. USB 

token is a compact plug and play design; can be used instantly upon insertion, empowered with 

on-device template matching and extendable fingerprint template storage that is can be used 

more than one persons. 

These fingerprint tokens (Figure 1.2) are embedded system comprising of mainly a sensor 

and low power microprocessors to do the computations. Such biometric tokens for fingerprint 

biometrics are available in market, but are not yet developed for iris biometrics; the reason being 

that the fingerprint trait has higher acceptability rate [Jain et al., 1997]. The acceptability 

measures the people’s acceptance level for the use of a biometric trait in their daily lives. The 

development of biometric token based on iris trait is current topic of research. The authors in 

[Liu-Jimenez et al., 2011] have proposed an optimized hardware solution for development of 

such iris biometric tokens, which is a dedicated hardware design on field programmable logic 

array (FPGA) as discussed later in chapter 2. However, it has limitations of reduced accuracy and 

not implementing iris segmentation task. The issues in the development of tokens-based 

complete biometric systems are low computational power (processing capability), less space and 

limited resources. 

In the development of aforementioned embedded iris recognition systems, the usage of 

FPGA based platform plays an important role due to inexpensive nature for development, 

optimizing feasibility, reconfigurability and shorter time-to-market.   

B) Scope 

This thesis focuses on the iris localization stage of iris recognition system. The work carried out 

in the thesis can be divided in two parts. The first part of thesis describes the iris localization 

algorithms for localizing irises in less constrained images captured under near infrared (NIR) 

light. These algorithms show improved performance in terms of accuracy and time performance. 

The second part of thesis presents the dedicated hardware implementation of iris localization task 

on FPGA. This dedicated hardware for iris localization can work as a hardware accelerator in the 

embedded iris recognition systems, such as a biometric token, which may be having a low speed 

and low power CPUs operating in MHz. The hardware module for iris localization can be used in 
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such systems to meet the real-time performance. The thesis also presents preliminary work 

towards hardware implementation of iris localization for visible wavelength (VW) images. 

Iris localization was chosen because it is the slowest process among all the stages in an 

iris recognition algorithm provided that the template database is not too large, otherwise template 

matching stage may become the slowest process [Lopez et al., 2011], [Grabowski and 

Napieralski, 2011]. The iris localization is very first stage in iris recognition that is performed on 

the captured eye image, therefore, its accuracy affects the stages following it and a wrong iris 

localization will fail the whole process of recognition. This thesis describes the algorithms for iris 

localization that are accurate and fast. However, only one selected algorithm is used for hardware 

implementation due to its reduced complexity in terms of memory requirement and yet offering 

more accurate and faster localization. This thesis work offers solution to one of the problems that 

is a dedicated hardware implementation for iris localization task, which can help in improving 

the speed and accuracy of iris recognition systems. 

1.3 Objectives of Thesis 

The objectives of this thesis were set after literature review and identification of research gap in 

the existing work, which is described in chapter 2. The main objectives of this thesis are: 

1. To explore and improve the performance (speed and accuracy) of iris localization 

algorithms for NIR images in presence of image noise, such as eyelids and eyelashes 

occlusion, lighting reflections, non-uniform illumination, low contrast and eyebrow hair. 

2. Comparison of results with previous iris localization algorithms and testing of the 

algorithms for different NIR image databases. 

3. To implement selected algorithm on FPGA after algorithm optimization, which will work 

as dedicated hardware or hardware accelerator for iris localization. Comparison with 

previous work for hardware implementation of iris localization. 

4. Preliminary work towards hardware implementation of iris localization for VW images. 

1.4 Workflow  

The task of algorithm development and its hardware implementation in this thesis was 

accomplished using the flow described in Figure 1.3. This flow was used for all the tasks as 

simple as edge-detection or as complex as circle detection in an image. Three main stages were 

used to carry out the work in this thesis: 
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1. In the first stage, a thorough study of existing algorithms was done for the iris localization 

task and then we have proposed algorithms to achieve better accuracy and time 

performance. The implementations of these algorithms were done using high-level 

computing and programming language; and MATLAB was used for algorithm coding, 

data visualization and performance evaluation under a personal computer platform. The 

built-in MATLAB functions for image processing, such as ‘edge ( )’ for edge detection 

were also used while coding the algorithm. After the initial composition of the algorithm, 

as set of iterative loops is carried out in order to tune the algorithm to the properties of 

accuracy and speed. 

 

 

Figure 1.3. Algorithms and hardware development flow of thesis. 

 

2. In second stage, the algorithm proposed in stage 1 was optimized for its hardware 

implementation by using steps, such as the optimized algorithm may be using reduced 

filter size for making the hardware resource efficient. The optimized algorithm was coded 

in MATLAB and its accuracy was evaluated to compare with the original algorithm 

proposed in stage 1. The optimized algorithm was again coded in MATLAB, but this time 



    

 

8 
 

the built-in functions of MATLAB were not used. For example, we wrote the code for 

convolution operation for performing edge detection on image instead of using built-in 

function ‘edge ( )’ of MATLAB. 

3. In third stage, the flowchart of the algorithm was explored, main functions (operations) 

were identified and its hardware architecture was drawn with pen and paper, which was 

then modelled using Verilog Hardware Description Language (HDL). The hardware 

design had to go through a number of iterations to meet the functionality of the algorithm. 

After that, synthesizable design was ported on the FPGA for testing.  

1.5 Organization of Thesis 

This thesis is organized in seven chapters. After the introductory chapter, which presents the 

research topic and the main scope of this work, the thesis addresses each one of the following 

aspects in the next chapters. 

Chapter 2 provides the literature review on iris recognition and embedded system 

development for iris recognition; and explores research gap, which helps in framing objectives of 

this thesis. This chapter also describes in detail the existing algorithms of iris localization and the 

main techniques used in iris localization. The existing work on FPGA based hardware 

implementation of iris localization has also been reviewed.  

Chapter 3 discusses the iris localization based on integro-differential operator (IDO) and 

describes a method proposed by us that uses IDO to localize iris boundaries in the images 

captured under NIR light and contain significant noise. The method has been evaluated for its 

accuracy and time performance, and also compared with the previous methods. The algorithm 

was coded and tested in MATLAB installed on a personal computer (PC).  

Chapter 4 describes the iris localization based on circular Hough transform (CHT). This 

chapter discusses implementation of Wildes’ approach [Wildes, 1997] and a new method 

proposed by us for less constrained NIR images. The extensive evaluation of the algorithms has 

been done on different databases and results are compared with the existing algorithms. The 

algorithms were coded and tested using MATLAB on a PC platform. 

Chapter 5 is devoted to the hardware implementation of an iris localization algorithm 

based on CHT for NIR images. The algorithm was first optimized for hardware implementation 

and impact of optimization has been evaluated. The hardware simulation and synthesis results 

targeting Xilinx’s Zynq 7000 FPGA device are presented. 
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Chapter 6 describes the preliminary work towards hardware implementation of iris 

localization for VW images. We have proposed an iris localization algorithm for VW images, 

which is optimized for hardware implementation.    

Chapter 7 concludes the thesis and presents the research contributions of this thesis. This 

chapter also discusses about the future directions of the work presented in the previous chapters.   

1.6 Concluding Remarks 

This chapter has introduced the research field of this thesis. The scope of development of new 

embedded systems for iris recognition, such as a biometric token, has motivated to carry out this 

thesis work to support such systems. The scope of this thesis has been discussed, which is about 

iris localization stage. Finally, the work methodology used in this thesis and focus of the different 

chapters was described.    
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Chapter 2                                                 

Literature Review 
 

 

This chapter first discusses the literature review on iris recognition, the various stages of iris 

recognition and embedded systems for iris recognition. This preliminary literature review helped 

in identifying iris localization stage as a main research gap, which is the major hurdle in 

improving the performance of the embedded iris recognition system; and also helped in setting 

up the objectives of the thesis. Subsequently, a detailed literature review on iris localization 

algorithms and its hardware implementation has been presented.     

2.1 Iris Recognition 

The iris recognition technique is used for automatic identification (or authentication) of persons 

by converting their irises into mathematical representations. An iris has features that make this 

modality appropriate for recognition purposes. This section presents an introduction to iris 

recognition and provides a literature review on the techniques that are being used in iris 

recognition systems.   

2.1.1 Structures of Eye and Iris 

In this subsection, we start with the description of the human eye structure, followed by a 

detailed description of the iris. The detail of the iris structure is necessary to know, since it 

becomes important to understand these for an iris based automatic identification process. Figure 

2.1(a) shows the location of iris in a captured eye image. The iris is a ring-like structure fitted 

between pupillary and limbic boundaries and it is surrounded by sclera, pupil, eyelids and 

eyelashes.  
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A) Structure of Eye 

The human eye is a ball-like structure as shown in Figure 2.1(b). The sclera is a tough, white and 

opaque outer coat of eye and the surface of sclera is covered by a thin skin layer called the 

conjunctiva. The front part of the eye, where the outer coat of eye is transparent, is called the 

cornea and behind the cornea is the iris. The iris is the colored part of the eye and it has the pupil 

at its center forming a hole. The most important function of the iris is that it controls the size of 

the pupil with help of its muscles. The size of pupil is sensitive to the light entering the eye. The 

pupil becomes larger in the dim light and smaller in the bright light. The light passes through the 

lens that helps focus the light from the pupil onto the retina. The light that has passed through the 

cornea and pupil now passes through the lens that helps focus the light onto the retina. The retina 

is light sensitive layer inside the back of the eye on which what is being seen is focused. The 

retina has high density of light-sensitive cells at its center and this part of retina is called macula. 

The photoreceptor cells of retina coverts light into a series of electrical signals. These signals 

pass to the brain via optic nerve, where the final image is processed. 

 

         

                             (a)                                                                         (b) 

Figure 2.1. Human eye: (a) Location of iris in eye image; (b) Structure of human eye. 

Source: http://www.glaucoma-association.com/about-glaucoma/the-eye 

 

The space between the retina and lens is filled with vitreous humour through which the 

light passes to the retina. Also, there is an aqueous humour filled between cornea and the lens 
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that maintains the pressure of eye. The aqueous humour is produced by ciliary body. The layer of 

eye under the retina is choroid that provides the blood supply to the retina cells.  

B) Visible Features of Iris 

The tissue of the iris is soft and loosely woven and it is called stroma [Muron and Pospisil, 2000]. 

The density of stroma is one of the factors that determine the color of iris. The visible pattern of 

iris displays various distinctive features. The whole surface of the human iris is divided into the 

pupillary area and the ciliary area as shown in Figure 2.2(a). The collarette represent the zigzag 

boundary between the pupillary area the ciliary area and it is the thickest part of the iris. A few of 

the visible features of the human iris are shown in Figure 2.2(b), which are important features 

used for identifying a person. These are mainly pigment related features, features controlling the 

size of the pupil, pigment frill and collarette. 

 

      

(a)                                                                                  (b) 

Figure 2.2. Human iris: (a) Picture of human iris.; (b) Visible features on surface of the human iris: 1- 

Pigment frill, 2-Pupillary area, 3-Collarette, 4-Ciliary area, 5-Crypts, 6-Pigment spot, 7-Concentric 

furrows, 8-Radial furrows.  

Sources: (a) John Daugman’s home page: https://www.cl.cam.ac.uk/~jgd1000; (b) [Muron and Pospisil, 

2000].  

 

 The crypts and the pigment spots belong to the pigment related features. The crypts are 

very dark colored areas and the iris is relatively thin in these areas. They appear like sharply 

demarcated excavations and their presence is near the collarette or/and the periphery of the iris. 

The pigment spots are called as moles and freckles having nearly black colour. They are random 
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concentrations of pigment cells and generally appear in the ciliary area [Muron and Pospisil, 

2000].  

The iris features that control the size of the pupil are radial and concentric furrows. These 

furrows are called contraction furrows. The radial furrows may start near the pupil and extend in 

the ciliary area through the collarette. The concentric furrows are generally circular and 

concentric with the pupil. These furrows appear in the ciliary area and near the periphery of the 

iris. The pigment frill represents the boundary between the pupil and the iris. 

The iris grows from the ciliary body and its colour is given by the amount of pigment and 

by the density of the iris tissue, which means from blue to black. 

2.1.2 Iris as a Biometric Trait 

The properties of the iris that enhance its suitability for use in high confidence identification 

systems are discussed in this section [Daugman, 1993], [Daugman, 2004]. The advantages and 

disadvantages of using iris as a biometric identifier are discussed below. 

Advantages: 

1. Iris is a highly protected, internal organ of the eye. It is inherently isolated and protected from 

the external environment. It is impossible to surgically modify it without unacceptable risk to 

vision. 

2. Iris is stable throughout the person’s life. The human iris begins to form during the third 

month of gestation. The structure is complete by the eighth month of gestation. However, the 

pigmentation continues into the first year after birth. 

3. There is high level of randomness in iris pattern (structure), which makes the iris unique for 

each person and hence, a reliable automatic biometric identifier. 

4. A live detection test of iris can be performed with ease to avoid spoofing of the system using 

a photograph or video of iris, because the iris responds to the light and the changing size of 

pupil confirms natural physiology. 

5. Images of the iris are adequate for personal identification with very high confidence. They 

can be acquired from distances of up to about 3 feet. 

6. The iris image is captured at some distance from a subject without physical contact, which 

makes the identification process unobtrusive. 

7. There is no genetic determination of iris pattern. The identical twins have different iris 

patterns; and the left and right eye irises of the same person are also different. 
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Disadvantages: 

1. Iris is a small target to capture from a distance (>1m).  

2. Iris is a moving target in non-cooperative iris recognition, which is difficult to acquire. 

3. Iris is obstructed by eyelids, eyelashes and reflections that make the automatic iris 

recognition algorithms more complex. 

4. NIR illumination is preferred to capture the iris; illumination should not be visible or bright. 

2.1.3 Iris Image Acquisition 

Image acquisition set up determines quality of the iris image data. Different choices of the 

camera sensor, lens, illumination and capture distance will result in data of varying quality 

[Wildes, 1997]. Almost all commercial iris recognition systems are using near infrared (NIR) 

illumination sources and NIR cameras. This is because color cameras are not as effective as NIR 

cameras in terms of capturing the textural information in iris. Visually dark brown (almost black) 

irises do not display much color variation and thus contain almost no information useful for iris 

recognition. Due to the requirement to be low cost, the iris recognition systems often involve 

inexpensive and thus low quality sensors and optics. This considerably limits capture distances as 

well as quality of captured data. In order to protect the eye from overheating and thus from 

damage, the strength of the NIR illumination is required not to exceed a predetermined threshold 

[Matey et al., 2006]. As was mentioned before, the NIR iris images are traditional input to iris 

recognition system, but in recent years, biometricians turned their attention to visible wavelength 

(VW) iris images acquired in the visible band of electromagnetic spectrum [Proenca et al., 2010]. 

This trend is supported by a variety of factors: (1) optical cameras in visible range are cheap and 

characterized by a very high resolution; (2) these cameras may capture face or iris images from a 

longer distance, which further may be used to authenticate a suspicious or violent individual; (3) 

today’s smartphones would not need additional NIR camera for running iris recognition 

application; (4) the NIR wavelength may be hazardous because the eye does not instinctively 

respond with its natural mechanisms (aversion, blinking, and pupil contraction) [Proenca, 2010]. 

2.1.4 Iris Image Database 

This section describes a number of iris image databases that are public and free available online. 

These databases are being used in the research on iris recognition to evaluate the performance of 
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algorithms developed for this application. These databases have been developed under two 

different types of illuminations: (1) NIR; and (2) VW. The images in different databases contain 

different level of obstructions and noises, such that an algorithm giving accurate results for one 

database may not be accurate for other database [Bowyer et al., 2008].   

Some of the databases have been developed under constrained environment and with 

user’s full cooperation. For example, these database images have minimum obstructions by 

eyelids and eyelashes, reflections confined to pupil area only, uniform illumination and frontal 

view that is user was looking straight towards camera while capturing the image, etc.  

A few databases have been developed under unconstrained environment and contain non-

ideal images, such as the images having the reflection spots appearing anywhere in the image, 

eyeglasses, non-uniform illumination, low contrast and heavy obstructions by eyelids, eyelashes 

and eyebrow etc. One more type of non-ideality is that the images have the off-angled irises 

(non-frontal view), which are captured while the user is not looking straight towards the camera.  

The quality of the iris images decides both complexity and accuracy of the iris 

recognition algorithms [Bowyer et al., 2008]. The most popular NIR and VW image databases 

that are being used to evaluate today’s iris recognition algorithms are described below.  

A) NIR Image Databases 

Most of the available iris image databases are the NIR images [Bowyer et al., 2008] because iris 

patterns are well pronounced in these images. The most commonly used NIR image databases are 

the CASIA Iris Image Databases (CASIA-Iris), which were developed by the Center of 

Biometrics and Security Research group in China [CASIA Iris Database]. The four versions 

(sets) of databases, CASIA-IrisV1 to CASIA-IrisV4, have been released by this research group 

since 2002 and each set has different subsets also. Up to thousands of images are contained in a 

subset, for example a subset CASIA-Iris-Thousand, version 4.0 (CITHV4) database contains 

20000 images collected from 1000 persons and a subset CASIA-Iris-Lamp, version 3.0 (CILV3) 

database contains 16212 images from 811 persons.  

The examples of other NIR databases are Multimedia University (MMU), Iris Challenge 

Evaluation (ICE)-2005, West Virginia University (WVU) and Indian Institute of Technology 

Delhi (IITD) databases. The summary of these databases except IITD database are provided in 

[Bowyer et al., 2008], where the information regarding the image capturing device (camera), size 

of database, way to get the database and links to download the database are given. A few sample 

images from these databases are shown in Figure 2.3. The two versions of the MMU database are 



    

 

16 
 

available: (1) Multimedia University, version 1.0 (MMUV1); and (2) Multimedia University, 

version 2.0 (MMUV2).  

 

   (g) 

Figure 2.3. Sample images from NIR databases: (a) CASIA-Iris-Interval, version 3.0; (b) CASIA-Iris-

Lamp, version 3.0; (c) CASIA-Iris-Thousand, version 4.0; (d) MMU, version 2.0; (e) ICE-2005; (f) WVU 

(off-angle image); (g) IITD, version 1.0.  

 

The iris images from the NIR databases can be categorized into two types: (1) High close-

up and constrained iris images, such as CASIA-Iris-Interval, version 3.0 database images (Figure 

2.3(a)); and (2) Medium close-up and less constrained iris images, such as CITHV4 database 

images (Figure 2.3(c)).  

B) VW Image Databases 

The most famous iris image database developed under visible wavelength illumination is 

University of Beira Interior iris database (UBIRIS) [UBIRIS Image Database]. It was developed 

with the purpose that this database would work as a helping tool to evaluate the feasibility of 

visible wavelength iris recognition. First version of UBIRIS was released in 2004 and is called 
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UBIRIS.v1 [Proença and Alexandre, 2005], whereas the second version, UBIRIS.v2 [Proenca et 

al. 2010] was developed in 2009. These databases are public and free available. The example 

images from these databases are shown in Figure 2.4. 

 

 

Figure 2.4. Sample images from VW databases: (a) UBIRIS.v1; (b) UBIRIS.v2. 

 

The UBIRIS.v1 database is composed of 1877 images collected from 241 eyes. These 

images were acquired under less constrained imaging conditions as compared to UBIRIS.v2. The 

UBIRIS.v2 database has over 11000 images (and continuously growing) and it contains more 

realistic noise factors. The images in this version were captured at a distance and on the move. 

2.1.5 Stages of Iris Recognition  

The typical stages of an iris recognition algorithm are shown in Figure 2.5. The rectangular boxes 

in this figure denote the different stages and function performed in each stage is written in the 

box. The first stage of an iris recognition algorithm is iris localization, which takes input from 

image acquisition system that deals with capturing the eye (iris) image using a digital camera as 

discussed before. In the iris localization stage, the inner (pupillary) and outer (limbic) boundaries 

of the iris are detected. The localized iris is then converted to a fixed size rectangular strip to 

compensate variations in pupil size and in the image capturing distances. This step is known as 

iris normalization. The iris is generally occluded by the eyelid (s) in the captured image; hence, 
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an eyelid detection step is carried out after the iris localization, so that the eyelid(s) can be 

avoided in further processing. The eyelid detection step combined together with the iris 

localization stage is also called iris segmentation. The normalized iris acts as the input for feature 

extraction stage. The feature extraction is a process that creates the binary template of iris. This 

process is known as isolation of distinctive features and the encoding phase. The final stage of 

iris recognition is template matching in which the comparison between the iris templates is made, 

producing a numeric dissimilarity value (d). If this value (d) is lower than a threshold (t), the 

system outputs a decision of match found, which means that both templates were extracted from 

the same iris. Otherwise, the system outputs a decision of match not found, meaning that the 

templates belong to different irises. The matching stage is required to do 1:1 (one is to one) 

comparison or 1:N (one is to many) comparisons depending on the mode of operation of iris 

recognition system that is verification or identification respectively as discussed in section 1.1 of 

chapter 1. 

 

 

Figure 2.5. Stages of an iris recognition system. 

 

Having defined the different stages of iris recognition system, these stages are described 

next in detail and a review on the most relevant approaches to perform each stage has been 

discussed. 

A) Iris Localization  

The purpose of iris localization is to locate the iris in the eye image for further processing. Iris 

localization is a very important stage in iris recognition systems because all the subsequent stages 
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depend on its accuracy. The pupillary and limbic boundaries of iris are considered as two circles 

in the frontal view (zero off angle) images, but these circles are not necessarily concentric. The 

frontal view images are obtained when user looks ahead towards the camera while capturing the 

images. Most of the iris localization methods model iris as a set of two non-concentric circles, 

but presence of different kinds of noise in the eye images, such as lighting reflections, occlusions 

by the eyelids and eyelashes, eyeglasses, low contrast and eyebrow hair etc., make iris 

localization difficult. 

The iris localization methods in the commercial iris recognition systems are typically 

based on Daugman and/or Wildes’s algorithms [Daugman, 1993], [Wildes, 1997]. Daugman 

proposed an integro-differential operator (IDO) that acts as a circular edge detector to localize the 

iris boundaries, whereas Wides’ method uses the Hough transform (HT) to detect the circular 

edges. However, these iris localization methods work under the controlled environments and 

their performance deteriorates when dealing with the noisy data [Jan et al., 2014]. After 

Daugman and Wildes’s methods, the researchers have proposed several iris localization methods 

with the improved accuracy and speed for different databases. Some of the methods are tabulated 

in [Shah and Ross, 2009], which shows that most of the iris localization methods still use the HT 

and IDO based techniques along with additional steps to improve the performance of previous 

algorithms. Some of the recent methods to localize the irises in the NIR and VW images are 

described in [Jan et al. 2012], [Jan et al., 2014], [Wang et al., 2014], [Zuo and Schmid, 2010] and 

[Li et al., 2010], [Proenca, 2010], [Sahmoud and Abuhaiba, 2013] respectively. 

The more detailed review on existing iris localization methods has been presented in 

section 2.4 later in this chapter. 

B) Eyelid Detection and Iris Normalization  

i) Eyelid Detection 

The upper and/or lower eyelids(s) may be occluding the iris in the eye images. One of the 

solutions to this problem is that exclude the upper and lower most parts of each iris that is 

expected to be covered by eyelids, which is done after the iris localization step. The eyelids are 

checked for their presence within the localized iris, so the region of interest for eyelid detection is 

inside the limbic boundary. The Daugman’s IDO can also be used to detect the eyelids by 

changing path of contour search from circular to arculate [Daugman, 1993]. The upper and lower 

eyelids are also modelled as parabolic arcs as suggested by [Wildes, 1997], where the eyelids are 
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detected by using a HT based technique. The other methods for eyelids detection are based on 

parabola polynomial fitting [Basit and Javed, 2007], line fitting and line detection based on HT 

approach [Masek and Kovesi, 2003].  

ii) Iris Normalization  

The purpose of iris normalization step is to prepare appropriate input for the feature extraction 

stage. The different images of the same eye have different sizes of the iris because the distance 

between the user and image capturing device (camera) can vary. Moreover, the pupil size also 

varies on varying intensity or position of lighting source, which causes variations in the iris 

patterns of same eye. Therefore, a proper normalization technique is required to compensate 

these variations. The circular ring-like iris is unwrapped into a fixed size rectangular strip in the 

iris normalization step, but the iris boundaries are not concentric circles, which increases the 

complexity of this process. The most common methods for iris normalization are based on rubber 

sheet model [Daugman, 2004], which is used to counter the size variations of irises as discussed 

above.   

C) Feature Extraction 

Feature extraction or encoding is performed to extract salient features representing an iris. This 

step ensures that data are compactly represented and also ensures that noise introduced by 

acquisition system is suppressed or removed. Therefore, an image preprocessing of normalized 

iris is generally done to enhance the contrast and remove noise due to eyelashes and uneven pixel 

intensities.  

Researchers have suggested many different filters to extract iris features, such as Gabor 

filters [Daugman, 2004], modified Log-Gabor filters [Yao et al., 2006], Gaussian filters [Lu and 

Lu, 2005], median filters [Zuo et al., 2008], dyadic wavelet transform [Ma et al., 2004] and 

discrete cosine transform [Monro et al., 2007] etc. The extracted features were quantized to two 

levels to obtain the binary iris codes. The techniques other than filter-based techniques can also 

be used to construct the binary iris codes, such as local histogram equalization and a quotient 

thresholding [Thoonsaengngam et al., 2006]. 

Instead of creating binary iris codes, the real-valued feature vectors can be generated 

using independent component analysis (ICA), principal component analysis (PCA) and linear 

discriminant analysis (LDA) etc. [Dorairaj et al., 2005], [Zuo et al., 2008]. 
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D) Template Matching 

The most commonly used matching technique is performed using Hamming distance [Daugman, 

2006]. This method measures the similarity/difference of two iris codes. Hamming distance 

method for comparing two iris codes is more reliable than the methods based on Euclidean 

distance and Zero-crossing distance [Lopez et al., 2011]. Hamming distance is a fractional value 

that ranges between 0 and 1 and represents the extent of similarity or disagreement between the 

two iris codes. A lower value of the Hamming distance represents a greater similarity and a high 

value represents dissimilar irises. Access to the system is granted only when the distance is lower 

than a certain threshold. The threshold value depends on the application for which the biometric 

system is used. The Hamming distance is computed by performing XOR (Exclusive-OR) for 

every bit of the two iris codes. The comparison is done as shown in Equation (2.1) for calculating 

Hamming distance.  

 

                       𝐻𝐷(𝑦, 𝑝) =
1

𝐿
∑ (𝑦𝑖 ⊕ 𝑝𝑖)

𝐿
𝑖=1                                                  (2.1) 

Where 

L = dimensions of the vector 

yi = ith component of the sample feature vector 

pi = ith component of the template feature vector 

 

 XOR is an inequality operation that gives a high output if the bits under comparison are 

disagreeing and a low output if the bits under comparison agree in their values.  

2.2 Embedded System for Iris Recognition 

Today, most of the iris recognition systems are using PC based platforms as they do not need 

hard real time deadlines, which makes these systems bulky and costly; restricting their use in 

certain application domains. In order to spread the biometric security all over the world, it is 

needed to develop the embedded biometric systems that can be easily integrated into any kind of 

product such as mobile phones, automatic teller machines, laptops, personal digital assistant 

devices, access control systems, etc. This section describes about embedded system and then 

discusses the commonly used architecture alternatives for embedded system based design for iris 

recognition along with its detailed literature review.   
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2.2.1 Definition of Embedded System 

An embedded system is a generalized term for many systems including biometric systems, which 

satisfy all or at least most of the following requirements [Berger, 2001]. 

1. An embedded system in general is designed for a specific purpose, whereas PCs are designed 

to perform several tasks and therefore, are considered as general-purpose devices. 

2. An embedded system is typically small in dimensions due to their performance restrictions. 

In the PC case, several peripherals are required such as a screen, mouse and keyboard, hard 

disk, video enhancement boards and cooling mechanisms, whereas only the necessary 

peripherals are used in embedded systems. 

3. The cost of embedded systems is lower than that of a general-purpose machine.  

4. The embedded systems prefer ROM memories to store their programs instead of hard disks or 

any other big storage device. The ROM memories reduce the storage capability and therefore, 

most of the systems use real-time operating systems (RTOS) or an embedded code called 

firmware, where its size is much smaller than the general-purpose operating systems. 

5. Most of the embedded systems perform under real time constraints due to the applications 

that range from time sensitive to time critical. For example, time is important in case of 

mobile telephones, but not restrictive as opposed to the instantaneous response required from 

a car airbag control system. 

6. There are several applications for these type of systems. They may form part of a larger 

system. An embedded system may be a stand-alone device or a co-processor. When the 

system is stand-alone, it is typically a battery-powered device.  

The large deployment of these systems has been motivated by the reduction in the area of 

the hardware required to implement complex systems. The increase in density of transistors on 

silicon chip has helped to develop more complex systems within a reduced space. Todays’ 

embedded systems provide increased performance within a smaller space. 

2.2.2 Architectures for Embedded Systems 

Several architectures may be used for designing embedded systems, which depends on the central 

element and the scheme to be followed [Noegaard, 2005]. This section discusses about some of 

these architectures along with their main advantages and disadvantages.  

The most commonly used solution is based on the use of a microprocessor or a 

microcontroller as the central processor unit. Several peripherals surround the microprocessor 



    

 

23 
 

and are required to perform the desired function. Microprocessors or microcontrollers require 

code to be executed due to which this type of solution is often referred as a software design for 

an embedded system. These solutions perform the code sequentially and therefore, several tasks 

are not time-optimized or must wait to be performed, as the microprocessor is only able to 

perform one task at a time. These architectures are quite flexible, and at the same time, are 

relatively easy to work with. The main disadvantage to this type of system is that they are not as 

fast as others are. It is also important to highlight systems that use more than one microprocessor, 

one as a central unit and the rest as co-processors used for different purposes. These are used in 

high performance systems, where several microprocessors are used for different tasks. 

Application-specific integrated circuits (ASICs) or full custom circuits are the best option 

when massive production and high performance is desired. The main problem with this type of 

solutions is related to their fixed costs and designing a solution of this type requires not only an 

experienced designer, which is more expensive than other personnel, but also specific developing 

tools, longer design time and more complex facilities when compared to other more 

straightforward architectures. However, once designed, these systems are cheaper than other 

solutions with respect to the manufacturing process. The investment can be recovered by the 

massive production of these systems, as the cost per unit is greatly reduced when compared to 

microprocessor architectures. At the same time, the hardware area required for these systems is 

smaller than other solutions that are used to perform the same task; this makes this solution 

suitable for small devices and helps to reduce the cost per unit. Because of the above-mentioned 

problems, full custom solutions are being used less and less each day, and are only being used in 

embedded systems where the performance is applicable to different systems and therefore, can be 

commercialized for different purposes. 

Hardware-software architectures are a half way solution when considering the previously 

discussed alternatives. These architectures are characterized by the use of both possible solutions 

in order to obtain the benefits from both types of systems; they use dedicated hardware, to 

perform some tasks and a microprocessor to perform others. By using this combination, the 

inherent advantages of both systems are obtained: such as reduced time, reduced area and also 

low power consumption. This architecture is more complex than others are and requires 

knowledge of both hardware and software. In spite of the difficulties that arise, co-design 

provides several advantages when compared to other alternative architectures. When the 

computational load of the system is high and it is under real-time restrictions, the alternative of 

using both approaches becomes popular and effective. By combining both solutions, advantages 

from both techniques are obtained: the simplicity of using software for sequential processes, and 
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the use of dedicated hardware to perform specific tasks, which require high performance. As a 

result, process acceleration is achieved. However, several parts of the design process become 

more complicated, requiring additional tedious tests. Not only problems from each platform 

should be solved but also those related to the connections and communication between them. 

Among all the potential architectures, we would like to highlight the differences between 

conventional hardware-software solutions and System on Chip (SoC) solutions. In the first case, 

the microprocessor and the hardware are located on different chips. However, due to the 

transistor integration capacity, many chips that contain both a microprocessor and dedicated 

hardware are becoming increasingly popular. These chips are a half way solution between the 

conventional microprocessors and the full custom chip solutions.  

FPGA Based Architectures 

Among the different commercial alternatives Field Programmable Gate Arrays (FPGA) are 

currently regarded as the most interesting. A FPGA is a semiconductor device that can be 

configured by the customer or designer after manufacturing, hence the name ‘field-

programmable’. FPGAs are programmed using a logic circuit diagram or source code based on a 

HDL to specify how the chip is to operate. The FPGA can be used to implement any logical 

function that an ASIC can perform, but the ability to update the functionality after manufacturing 

offers advantages for many applications. FPGAs contain programmable logic components called 

‘logic blocks’ and a hierarchy of reconfigurable interconnections that allow the blocks to be 

‘wired together’.  

In today’s system design approach, the system simulation is usually performed on a 

FPGA based platform, which is capable of combining both the hardware and software solutions. 

Both the microprocessors and dedicated hardware can be implemented on the same FPGA 

device, where debugging tools are provided by manufacturers for this purpose. 

2.2.3 Existing Works on Embedded Iris Recognition Systems 

A) Parallelizing Iris Recognition [Rakvic et al., 2009] 

This research work [Rakvic et al., 2009] demonstrates parallelization of three major components 

of the Ridge Energy Detection (RED) iris recognition algorithm: (1) iris segmentation with local 

kurtosis; (2) template creation via filtering; (3) template matching via hamming distance. In 
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particular, the [Rakvic et al., 2009] authors parallelized portions of iris segmentation, template 

creation and template matching on an FPGA-based system and demonstrated speedup of 9.6, 324 

and 19 times respectively as compared to a state-of-the-art CPU-based version.  

The FPGA experiment was executed by the authors on a DE2 board manufactured by 

Altera Corporation. The DE2 board consists of a Cyclone-II EP2C35 FPGA chip, as well as the 

required FPGA programming interface. The Cyclone-II family is designed for high-performance 

and low-power applications. It contains over 30000 logic elements and over 480000 embedded 

memory bits. The clock signal was drawn from DE2 board, which contains a 50 MHz clock. 

The authors’ parallel algorithm on FPGA greatly outperforms their calculated theoretical 

best Intel CPU design. The authors conclude that a full implementation of a very fast iris 

recognition algorithm on a state-of-the-art FPGA, is more than feasible, which would provide a 

small form-factor solution. 

B) Hardware–Software Co-Design of an Iris Recognition Algorithm [López et al., 2011] 

This work [Lopez et al., 2011] has set one of the best examples of embedded system design for 

iris recognition algorithm. The main purpose of this work was to implement an iris recognition 

algorithm using a low-cost FPGA. The architecture alternative used for implementing the iris 

recognition algorithm was based on a hardware-software co-design. The experimental results 

reported in this work were obtained using a Spartan-3 FPGA clocked at 40 MHz. The system 

architecture consists of a 32-bit soft-core microprocessor (Xilinx Microblaze) and several 

dedicated hardware units.  

All the stages of the iris recognition algorithm, such as image preprocessing, iris 

segmentation, iris normalization, feature extraction and iris-template matching were 

implemented. Out of these stages, the less computation intensive tasks and those involving 

floating-point operations are executed by the microprocessor in software, whereas the tasks 

having higher computational cost are speed up by coprocessors, the hardware accelerators. The 

image preprocessing task for removing specular reflections and the iris localization (pupillary 

and limbic boundary detection) stage were found suitable for hardware implementation because 

they were taking 71% of the total (all stages’) execution time in software. Moreover, the 

reflection removal and the iris localization involve integer arithmetic operations and they have an 

acceleration ratio of greater than 11 as compared to their software execution.  

All the remaining stages of iris recognition other than iris localization, such as eyelid 

detection and iris normalization, feature extraction and iris-template matching, were executed on 
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the microprocessor because they mainly contain floating point operations and represent a small 

percentage of the total execution time (each one <5%) in software. In addition, their theoretical 

acceleration ratio was low. The active contours function was used to fine-tune pupillary and 

limbic boundaries detection. This function was partially implemented in hardware.  

The [Lopez et al., 2011] authors implemented their hardware-software co-design on a 

low-cost Spartan 3 FPGA and the results showed that the execution time of the entire iris 

recognition algorithm was 522.6 ms for an image of 640×480 pixels with a clock frequency of 40 

MHz. The best software solution for the iris recognition algorithm implemented on a 

microprocessor as Pentium 133 MHz gave an execution time of 1112 ms, which is about 2.12 

times slower than Lopez et al. system operating at a clock frequency 3.3 times lower. 

C) Hardware Architecture Optimized for Iris Recognition [Grabowski and Napieralski, 

2011] 

This work [Grabowski and Napieralski, 2011] describes the implementation of the complete iris 

identification system (1:N) on a multicore embedded system. This system architecture is mainly 

composed of digital signal processors (DSPs) and FPGAs. The algorithms for iris recognition 

used in this architecture are the algorithms developed by the authors on a PC platform in their 

previous work [Sankowski et al., 2010]. Their work shows that the iris segmentation is the most 

time consuming task when executed on the PC based platforms, whereas it takes very less 

computation time when it was realized using multicore embedded system described in 

[Grabowski and Napieralski, 2011]. The feature extraction and the template matching stages of 

iris recognition were also implemented using DSPs. However, the authors plan to implement the 

template matching stage on dedicated hardware using FPGA in the future, as they found this 

stage most time consuming stage in their embedded system.  

The [Grabowski and Napieralski, 2011] authors applied their hardware architecture to the 

biometric application BioServer platform that consists of two separate physical boards: (1) 

biometric system (BioSys) that consists a Virtex-5 FXT Xilinx ML510 platform forming the 

basis for an embedded system, which is based on two PowerPC 440 microprocessors; (2) the 

biometric computation unit (BioCU) that consists a Xilinx Spartan 3AN FPGA and four DSPs. 

The BioCU board is inserted into a 32-bit slot on the ML510 platform of BioSys.  

The authors compared the performance of their multicore embedded system for iris 

recognition with the implementations on three different PC-based platforms: (1) PC1 based on 

Intel Core2 6600 2.4 GHz; (2) PC2 based on Intel Pentium4 3.4 GHz; (3) PC3 based on Intel 
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Core2 Duo T7100 1.79 GHz. For testing the performance, the size of the image was of 640×480 

pixels, the template size was equal to 2048 bits and database size was N=10000 templates. The 

comparison with these implementations showed that their embedded system was fastest.   

D) Iris Biometrics for Embedded Systems [Liu-Jimenez et al., 2011] 

This work [Liu-Jimenez et al., 2011] presented two implementations of iris biometrics on two 

different platforms used for embedded system development: (1) a microprocessor-based 

architecture; and (2) a dedicated hardware design. However, these implementations do not 

include iris segmentation stage of iris recognition and include only feature extraction and 

template matching. The first implementation uses an ARM7TDMI microprocessor, which is a 

16/32-bit RISC CPU and it is widely used in many commercial applications due to its high 

computational power and reduced cost. The second implementation that is the dedicated 

hardware uses Xilinx’s Virtex4sx35 FPGA, which has been specially designed for digital signal 

processing, providing MAC units that reduce the implementation cost of complex transforms, 

such as fast wavelet transform (FWT). The microprocessor in the first implementation running @ 

50 MHz takes 10 times more processing time than computer platform with CPU@2.6 GHz, but 

in relative term, the microprocessor gives optimized solution as it is clocked 50 times lower than 

the computer platform. The second implementation (FPGA-based dedicated hardware solution) 

gives the best processing time, which shows 200 times speed up over microprocessor-based 

solutions, and 20 times speed up over computer-based solution. Both the microprocessor and 

FPGA–based implementations exhibit benefits of data security, system size and cost as compared 

to the general-purpose computer systems. Selecting one of these two platforms depends on 

system and authentication application requirements.  

2.3 Gaps in Existing Research  

In [Lopez et al., 2011], when iris recognition algorithm is run on two different microprocessors, 

Intel Centrino 1.7GHz and 32-bit ARM922T 160MHz, the iris localization function takes 

execution time of 71% and 89% respectively of the total execution time of the overall algorithm. 

The literature review presented in the previous sections shows that iris localization is the most 

time consuming stage in the whole iris recognition algorithm either running on a PC platform 

[Lopez et al., 2011], [Basit and Javed, 2007] or on a microprocessor-based embedded system 

[Grabowski and Napieralski, 2011] with limited database size or when 1:1 comparison is 



    

 

28 
 

required. Therefore, iris localization is the best candidate for dedicated hardware implementation 

while developing embedded iris recognition systems. The iris localization was implemented on 

FPGA in [Lopez et al., 2011] and it took an execution time of 159 ms, but neither the hardware 

architecture design of iris localization nor its accuracy evaluation was revealed. Moreover, 

execution time also seems non-optimized and there exists a scope for improvements in terms of 

suitable selection of algorithm to achieve better speed and may be accuracy. In [Lopez et al., 

2011], the IDO based algorithm was used for FPGA implementation, but we found the IDO less 

suitable compared to CHT for parallel implementation on FPGA. To impart parallelism in the 

IDO based algorithm, k copies of the input image are required to store in the memory 

corresponding to k radii for the circle detection since the IDO requires to read pixel intensity 

values of the image, whereas a single edge-map image is needed in CHT to perform parallel 

processing corresponding to k radii since the CHT does not require pixel intensity values of the 

image.  The literature review also suggests that the FPGA based platforms containing single or 

multicore processors (CPUs) and the configurable logic in a single chip are best suited for 

development of embedded iris recognition systems. Therefore, implementing computation 

intensive tasks, such as iris localization on FPGA as a dedicated hardware, can offload the CPU 

by not executing the computation intensive tasks on it, which will improve the processing time of 

the whole system. The [Liu-Jimenez et al., 2011] authors implemented dedicated hardware for 

feature extraction and matching stages of iris recognition, but not for iris localization stage due to 

the complexity of this stage. Based on the literature review on iris recognition and its embedded 

systems, we found iris localization a research gap in development of fast and accurate embedded 

systems for iris recognition.  

The accuracy of iris localization is most important because it is very first stage in an iris 

recognition algorithm and all the stages following this stage will fail if the iris localization goes 

wrong. Sometimes, the accuracy has to be compromised when designing a dedicated hardware of 

an algorithm in order to reduce the complexity of the algorithm. Therefore, the algorithm 

selection is also very important before going to start designing the dedicated hardware for an 

application.  

This point onwards, the rest of thesis will focus on the iris localization stage from 

perspective of algorithms and its hardware implementation. After identifying iris localization as 

main thesis objective as described in chapter 1, the further literature review on iris localization 

algorithms and its hardware implementation is discussed in section 2.4 and section 2.5 

respectively. 
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2.4 Algorithms for Iris Localization 

2.4.1 Daugman’s IDO 

The first successful iris localization method was proposed by Daugman in [Daugman, 1993], 

which uses IDO shown in Equation (2.2). The IDO was used to localize iris, which considers 

iris’s inner and outer boundaries as two circles. He applied the IDO to the image domain to 

search for iris’s outer boundary first then within the iris’s outer boundary to search for pupil. 

Daugman applied it on the images in which gray difference between iris and sclera is more than 

pupil and iris. This is true for images captured under VW light. Given a preprocessed 

image I(x, y), the IDO can be used first to determine the iris’s outer boundary. Daugman’s IDO is 

mathematically expressed as below. 

max(r,xo,yo) |Gσ(r) ∗
∂

∂r
∮

I(x,y)

2πr

 

r,xo,yo
ds|                                          (2.2) 

 The operator searches over image domain (x,y) for maximum in the blurred partial 

derivative with respect to increasing radius r of the normalized contour integral of I(x, y) along a 

circular arc ds of radius r and center coordinates (xo,yo). The symbol * denotes the convolution 

operation and Gσ(r) is a smoothing function such as a Gaussian of scale σ (standard deviation). 

To normalize the circular integral with respect to its perimeter, it is divided by 2πr. In short, the 

IDO behaves as circular edge detector blurred at a scale set by σ, which searches iteratively over 

image space through the parameter set {xo, yo, r}. First search is for iris’s outer boundary with 

higher value of σ. Once the iris’s outer boundary is localized, the search process with finer value 

of σ, for the iris inner boundary is carried out only within the pre-determined region. The 

computation time associated with an iris’s outer boundary search process can be reduced by 

providing a range of estimates for the parameter r that are close to the actual boundary radius. 

 The additional details on Daugman’s iris localization method have been provided in 

chapter 3: section 3.1. 

2.4.2 Wildes’ Method 

Second famous segmentation method was proposed by Wildes in [Wildes, 1997], which is based 

on HT technique. He used HT to detect circles in an image. Given a preprocessed image I(x, y), 

the edges contained in the image are first determined using an edge detector. Consider the set of 

edge-points obtained by the edge detection algorithm to be (xi,yi), where i = 1, 2, . . . , n. Since 
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these edge-points could represent a non-continuous or non-circular contour, a voting procedure is 

used to fit a circle to the boundary. For this purpose, HT, a standard contour fitting algorithm, is 

used. The voting procedure in the HT technique is carried out in a parameter space, from which 

object candidates (in this case, circular contours) are obtained as local maxima in an accumulator 

space constructed by the algorithm. In the field of iris recognition, Wildes demonstrated the use 

of HT to determine the iris boundaries. For a given set of edge-points, (xi,yi), i = 1, 2, . . . , n, HT 

can be used to fit a circle with center (xc,yc), and radius r as follows: 

                                H(xc, yc, r) = ∑ h(xi , yi, xc, yc, r)n
i=1                                             (2.3)          

                      h(xi , yi, xc, yc, r) = {
 1            if g(xi , yi, xc, yc, r) = 0  
0                   otherwise                 

                          (2.4)              

                      g(xi , yi, xc, yc, r) = (xi − xc)2 + (yi − yc)2 − r2                               (2.5) 

 For each edge-point contained in the set (xi , yi), g(xi , yi, xc, yc, r) is considered to be 0, if 

the parameter triplet (xc, yc, r) represents a circle through that point. H(xc, yc, r) shown in 

Equation (2.3) is an accumulator array and its values (indexed by discretized values for xc, yc 

and r) are incremented according to the Equation (2.4) and Equation (2.5). The parameter triplet 

that corresponds to the largest value in the accumulator array is considered to be the most 

suitable parameter set for the circle that fits the given contour. 

 The implementation and evaluation of Wildes’ iris localization method has been 

described in chapter 4: section 4.1, which also discusses implementation of HT algorithm for 

circle detection that is Circular Hough Transform (CHT).  

2.4.3 Other Methods 

There are several iris segmentation methods available in relevant literature. Some of the state-of-

the-art iris segmentation methods and their relevant main techniques are given in Table 2.1. 

Many of these methods in the table are based on HT (or CHT) and IDO techniques. However, 

along with HT and IDO, other processing steps are also used, such as reflection removal, edge-

map creation of eye image using various techniques, thresholding, morphological operations, 

image filtering operations, image quality enhancement and active contours to fine-tune iris-

boundaries etc. These image processing techniques become dominant when image-data are non-

ideal having heterogeneous image characteristics, inconsistent illumination, low contrast, 

defocused and blurred images etc. The different methods listed in the table have been developed 

for specific image data, such as NIR or VW images, off angle iris images, colored VW images 
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and the non-ideal data for non-cooperative iris recognition etc. However, some of the techniques 

developed for NIR images can also be applied to VW images and vice versa with some 

modifications. For same type of image data, the newer methods show the improvement in 

computation time or accuracy performance or both over the previous methods.  

In the iris localization of the NIR images, the pupil is generally localized prior to the iris’s 

outer boundary because it is the dark compact region in the image, the pupil boundary is stronger 

than the iris’s outer boundary and the pupil is visible as full circle in almost all the images. 

Having localized the pupil in the image, a sub-image around the pupil is processed to detect the 

iris’s outer boundary [Jan et al., 2014], [Wang et al., 2014]. As opposed to NIR images, iris’s 

outer boundary is detected prior to pupil in VW images as its boundary has more contrast than 

pupillary boundary [Chen et al., 2010], [Radman, 2013]. A few methods for noisy VW images, 

locate sclera region first in the images as it is pronounced white area in the eye images [Proenca, 

2010].  

The literature review reveals that the existing iris localization algorithms for the NIR 

images detect the pupil using either intensity thresholding [Khalighi et al., 2015], [Zuo and 

Schmid, 2010] or edge detection based segmentation techniques [Jan et al., 2012], [Hasan and 

Amin, 2014], [Marciniak et al., 2014], whereas iris’s outer boundary is detected using either edge 

detection based techniques or IDO based approaches. 

Table 2.1. Iris localization/segmentation methods 

Method Main technique(s) used 

[Daugman, 1993] Integro-differential operator (IDO) 

[Wildes, 1997] Edge detection and Hough transform (HT) 

[Bole and Boashash, 1998] Edge and contour detection 

[Masek and Kovesi, 2003] Edge detection and HT 

[Ma et al., 2004]  Gray level information, canny edge detection and HT 

[Liu et al., 2005] Canny edge detection and HT 

[Daugman, 2007] Active contour model 

[Basit and Javed, 2007] Intensity gradient  

[Schuckers et al., 2007] IDO and angular deformation model  

[He et al., 2009] Pulling and pushing elastic model 

[Shah and Ross, 2009] Binarization, CHT and Geodesic Active contours   

[Chen et al., 2010] Edge detection and HT 

[Tan et al., 2010] IDO  

[Proenca , 2010] Feature extraction and polynomial fitting 

[Sankowski et al., 2010] Reflections localization and filling, and IDO 

[Zuo and Schmid, 2010] Thresholding, erosion-dilation and ellipse fitting  

[Puhan et al., 2011] Fourier spectral density 

[Roy et al., 2011] Variational level set-based curve evolution method 
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 In IDO based methods, the image preprocessing is very important to estimate the rough 

centers of pupil and iris so that the IDO can be applied on the selected pixels in the image or a 

subimage containing iris region can be extracted. These preprocessing steps make the iris 

localization fast and accurate. For example, [Radman, 2013] author, use circular Gabor filter for 

coarse detection of pupil and iris centers followed by IDO for fine detection of centers. The 

reflection removal is a common step in almost all the iris localization methods as  IDO is very 

sensitive to the reflections and the reflections also mislead the circle detection in CHT based 

methods [Jan et al., 2013].    

 In the HT based algorithms, first optimal edge-maps of the iris image are generated that 

contain minimal false edges, so that the iris circles can be detected accurately and efficiently as 

demonstrated in [Jan et al., 2012] and [Hasan and Amin, 2014]. The generating optimal edge-

maps get more challenging if the images are noisy such as CASIA-Iris-Thousand, version 4.0 

(CITHV4) database images. The noisy images are first preprocessed to remove the noise such as 

lighting reflections, non-uniform illumination and low contrast as described in [Jan et al., 2012], 

[Jan et al., 2013], [Jan et al., 2014], [Wang et al., 2014], which improves the accuracy and time 

performance of the iris localization. The image inpainting techniques are used for removing the 

lighting reflection spots of the iris images and the histogram equalization is used for 

compensating the non-uniform illumination and low contrast. For the iris localization in noisy 

NIR images from CITHV4 database, [Wang et al., 2014] authors proposed an inpainting 

technique based on Navier-Stokes equations to remove the lighting reflection spots and Probable  

boundary (Pb) edge detection operator to counter the non-uniform illumination. 

[Jan et al., 2012] HT, grey level statistics, adaptive thresholding, geometrical transform, 

radial gradients and active contours     

[Ibrahim et al., 2012] Local histogram and other image statistics 

[Radman, 2013] Circular Gabor filter and  IDO 

[Jan et al., 2013] HT, histogram-bisection and eccentricity 

[Mehrotra et al., 2013] Adaptive thresholding, hole filling and IDO like approach 

[Wang et al., 2014] Image inpainting using Navier-Stokes equations, Probable boundary 

(Pb) edge detection operator and CHT 

[Jan et al., 2014] Canny edge detection, CHT, histogram bisection, adaptive binarization,  

eccentricity,  gray statistics,  radial gradients and Fourier series 

[Marciniak et al., 2014] Canny edge detection and CHT 

[Hasan and Amin, 2014] Canny edge detection and CHT 

[Khalighi et al., 2015] Thresholding, eccentricity, dilation, Canny edge detection and CHT  
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2.5 Hardware Implementation of Iris Localization  

The iris localization was implemented on FPGA by [Lopez et al., 2011] authors and they 

obtained an execution time of 159 ms with a clock of 50 MHz. They used Daugman’s algorithms 

based on IDO and active contour models for the hardware implementation of iris localization. 

The hardware architecture design of iris localization is not presented in the [Lopez et al., 2011] 

and only performance results are provided.  

 In a most recent work, [Ngo et al., 2014] authors have presented hardware 

implementation of CHT for iris localization, but with constraints that: 1) it localizes outer iris 

boundary only without detecting the inner iris-boundary and; 2) the iris should be fully visible so 

that it can be estimated as a full circle. Moreover, this work focuses on hardware architecture 

design and implementation of CHT for circle detection and does not include the hardware 

implementation of edge-map generation for CHT. Their CHT hardware takes 5 ms time in 

detecting circle in the edge-map of eye image, which is much faster as compared to IDO based 

hardware [Lopez et al., 2011] mentioned above. However, aforementioned constraints are main 

drawbacks of this work.  

 The iris localization can be implemented on FPGA by implementing the CHT algorithm 

[Pedersen, 2007], [Yuen et al., 1990] on FPGA. The CHT is a very computation-demanding and 

memory-demanding algorithm; and it is applied on the binary edge-map of the image. In the 

CHT algorithm, the circles are drawn at all edge-points in the edge-map with different radii and 

an accumulator array is used to store the count values every time a circle passes through it 

[Pedersen, 2007]. The peak in the accumulator array is used to find the center and radius of the 

circle. The standard sequential CHT algorithm [Yuen et al., 1990] uses a single 3-dimensional 

(3D) accumulator array for all radii, but for the parallel implementation on FPGA, the CHT 

algorithm requires k number of 2D accumulator arrays for k radius values. The size of each 2D 

accumulator array is same as the image in general (direct) CHT implementation. Therefore, the 

main hurdle in the FPGA implementation of the CHT algorithm is large memory requirement for 

realizing the 2D accumulator arrays, which may also exceed the block random access memories 

(RAMs) available in some low-end FPGA devices. The researchers have used the techniques to 

reduce the memory requirement, which is discussed below.  

 The authors in [Ngo et al., 2014] describe a CHT architecture design and its 

implementation on FPGA to localize outer iris-boundary, which reduces the memory requirement 

by a factor of n. In this method, the accuracy of the circle detection decreases as n increases 

beyond n=2. Their CHT architecture provides a large memory reduction of 93% as compared to 
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direct CHT implementation for n=16, but same time accuracy degrades by 8% and there is 

restriction that almost full circle should be visible in the edge-map.   

 The [Elhossini and Moussa, 2012] authors proposed a memory efficient FPGA 

implementation of HT to detect lines and circles. It reduces the memory requirement by sampling 

the HT voting space (accumulator array) and selected radii are taken for the circle to be detected. 

In this architecture, memory reduction is obtained at the expense of the accuracy. [Chen et al., 

2012] authors proposed an FPGA architecture and implementation of HT to detect straight lines 

in which the image was divided into blocks to impart the parallelism. The [Chen et al., 2012] 

provides very efficient resource utilization by using incrementing property in HT but it was not 

developed for circle detection. [Zhou et al., 2013] presents FPGA-based implementation of HT 

for straight-line detection in image, which utilizes several DSP and block RAMs as the main 

resources.  

 In other work, [Ngo et al., 2012] authors provide FPGA-based real time iris segmentation, 

which implements the Canny edge detection and a circle detection algorithm other than the CHT. 

The algorithm requires estimation of circle location in the image and it is applied on the selected 

pixels that could be circle center. 

2.6 Concluding Remarks 

Iris recognition is a reliable biometric technique of identifying, authenticating or verifying 

persons for security purpose due to randomness of iris patterns and its implementation techniques 

in software are well explored. Several algorithms are available in the literature to perform the 

tasks involved in iris recognition process. However, iris recognition application still runs on PC-

based platforms and development of small size and low-cost embedded systems for iris 

recognition is still a current topic of research. The researchers are trying to implement iris 

recognition process on FPGA based architectures to develop embedded iris recognition system as 

FPGAs facilitate the development of ASIC-like solutions at a lower cost and at a reduced 

development time. 

The iris localization is the slowest stage of iris recognition process executing on PC based 

platforms. The fast iris localization algorithms are very essential to meet real-time performance 

in developing embedded system architectures for iris recognition. The fast iris localization 

implementation without compromising with the iris localization accuracy is identified as a gap in 

the present research, which can help in improving the speed and accuracy of iris recognition 

systems.  
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Chapter 3                                                          

IDO Based Iris Localization for NIR Images 
 

 

The literature review on iris localization in chapter 2 has revealed that many of the existing iris 

localization methods and the commonly used methods in commercial iris recognition systems are 

based on Daugman’s integro-differential operator (IDO) [Daugman, 1993]. But, these IDO based 

methods also require image preprocessing steps, such as the process of identifying potential 

circle centers (i.e. estimation of circle centers) in the image before applying the IDO to the 

image. These image preprocessing steps sometimes play a lead role in some of the iris 

localization methods especially for noisy data (images) and can be more complex than the IDO. 

The IDO performs worse (less accurate) in presence of lighting reflections in the images and 

other noise such as occlusion by eyelids and eyelashes, because it detects circle based on 

intensity gradient, which is maximum in case of reflections. In addition to this, if IDO is applied 

to each pixel in the image, it would take much longer time for circle detection. The image 

preprocessing is required before applying the IDO for better accuracy and time performance. The 

total time for iris localization is sum of time taken by preprocessing and IDO steps. 

 This chapter proposes an image preprocessing technique for the IDO based iris 

localization in near infrared (NIR) images that makes the iris localization more accurate and fast. 

The proposed method uses modified IDO for limbic boundary detection, which acts as circular 

arc detector. 

3.1 Daugman’s Method 

The Daugman’s iris localization method [Daugman, 1993] uses the IDO that is described in 

chapter 2 under subsection 2.4.1. The method involves applying the IDO on the Gaussian 

smoothed image to detect both the pupillary and limbic boundaries as shown in Figure 3.1(a). 

However, the [Daugman, 1993] does not provide enough details that are required to implement 

this method. For example, it says that the IDO searches the whole image for circular edges with a 

given range of radii, but if the IDO is applied on each pixel in the image, it takes too long in 
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detecting a circle. In another paper, [Daugman, 2004] says that the IDO is first applied for coarse 

search of circle center and then it is again applied for fine search (single-pixel precision) of the 

circle center as shown in Figure 3.1(b). However, the scheme of coarse or fine search was not 

provided in this paper. Both [Daugman, 1993] and [Daugman, 2004] state that once the IDO 

completes the process of limbic boundary detection, the IDO is again used for detecting the 

pupillary boundary, but [Daugman, 1993] applies this scheme to the images in which the limbic 

boundary is more pronounced than the pupillary boundary. However, for NIR images, the 

pupillary boundary should be detected first because it is more pronounced than the limbic 

boundary. Taking inputs from [Daugman, 1993] and [Daugman, 2004], we have proposed an iris 

localization method for NIR images that is based on the IDO as shown in Figure 3.1(c).  

 The proposed method is described in next section, which performs image preprocessing 

on the image in addition to applying the IDO. The image preprocessing does two tasks (a) 

reflection removal; (b) estimation of the potential circle centers (candidate pixels) in the image 

on which the IDO is applied instead of applying the IDO on whole image. Moreover, the IDO 

was also modified little while detecting the limbic boundary such that it searches for a set of two 

vertical arcs instead of a full circle. The purpose of the proposed method is to localize irises in 

the images that are captured under either constrained or less constrained environments. The less 

constrained images may have noise such as lighting reflection spots, iris obstruction by eyelids 

and eyelashes, low contrast and eyeglasses etc.  

 

 

 

Figure 3.1. Iris localization based on IDO: (a) Original method [Daugman, 1993]; (b) Modified method 

[Daugman, 2004]; (c) Proposed method. 
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3.2 The Proposed Method 

The pupillary boundary is detected prior to the limbic boundary because it is stronger than the 

limbic boundary in NIR images. The proposed method considers both the pupillary and limbic 

boundaries as perfect circles, which is true for the frontal view iris images. The iris localization is 

achieved in three phases. In first phase, the iris image is preprocessed to counter some of the non-

ideal issues of it and make it suitable for the subsequent steps. In second and third phases, the 

pupillary and limbic boundaries are detected respectively. The steps involved in the proposed iris 

localization method are shown in Figure 3.1(c). The proposed method is described in detail 

below.  

3.2.1 Reflections Removal 

The way the IDO works, it cannot be tolerant to reflection spots and uneven high intensity pixels 

present in the iris image. The reflection spots in iris images cover portions of the image that 

causes hindrance in the iris detection process. The original pixel intensity values are replaced by 

the much higher intensity values in the parts of the image, affected by light reflections as shown 

in Figure 3.2(a). Therefore, the original information of these parts of the image has been lost. As 

apparent from Figure 3.2(a), there is much difference in intensity values between reflection spots 

and surrounding dark pixels. In order to avoid light reflection and uneven high intensity pixel 

values affecting the iris detection, a morphological operator is used which fills in the high 

intensity regions with the average of intensities of pixels from the region surrounding them. The 

MATLAB function ‘imfill’ with hole filling option is used as the morphological operator, which 

is applied on the complemented iris image. Taking the complement again, returns the original iris 

image in which the reflection spots and high intensity pixels are removed as shown in Figure 

3.2(b). The image shown in Figure 3.2(b) is called preprocessed iris image, which is used as 

input image in detection of both the iris boundaries. 

 

(a)                             (b) 

Figure 3.2. Reflections removal: (a) A noisy image from CITHV4; (b) The preprocessed iris image 

obtained from (a). 
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3.2.2 Pupillary Boundary Detection 

To localize pupil using the IDO, the image pixels on which the IDO is applied are identified first 

otherwise it may take much large time in localizing the pupil. These identified pixels are the 

potential centers of pupil circle (pupil-centers). The inputs given to the IDO for pupil localization 

are a range of pupil radii (rminp to rmaxp) and a set of image pixels that are the potential pupil-

centers. The set of image pixels on which the IDO is applied are obtained using the steps below, 

which reduces the false candidate pixels those cannot be potential pupil-centers. Steps for 

pupillary boundary detection are shown in Figure 3.3.  

 

 

Figure 3.3. Pupillary boundary detection: (a) Preprocessed iris image; (b) Binarized-image obtained after 

thresholding; (c) Binary image after image cleanup step; (d) After removing pixels close to image border 

in (c); (e) Pupil localized image by the IDO. 

A) Image Binarization 

The pupil is segmented from the iris image using thresholding operation [Gonzalez et al., 2009], 

as the pupil is relatively much darker region as compared to the iris, sclera and the skin. The 

thresholding operation on an intensity image f(x,y) with global threshold value T results in binary 

image g(x,y) according to Equation (3.1). 

                                   g(x, y) = {
1          if f(x, y) ≥ T

  0                otherwise
                                                    (3.1)        

The value of T is determined by finding minimum pixel value (M) in the smoothed image 

and adding 40 to M. The pupil is considered as darkest region in the NIR image and the number, 
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40 indicates the variation of pixel values inside the pupil. The binary iris image, shown in Figure 

3.3(b), is obtained by applying thresholding on the preprocessed iris image of Figure 3.3(a). The 

black regions in the binary iris image (see Figure 3.3(b)) correspond to pupil, eyelashes, eyelids, 

eyeglass frame and low illumination near the image border. The regions other than pupil in this 

image are noise and are false candidate pixels for pupil-center. Therefore, they are removed using 

morphological operation below.  

B) Binary Image Cleanup 

The noise in the binarized-image is removed using image erosion for black objects, which is a 

morphological operation [Gonzalez et al., 2009]. The erosion operation uses a structuring 

element of type disk because pupil is circular region. The disk radius value must be smaller than 

the minimum pupil radius in the selected iris image database. The disk radius is taken as 15 for 

CASIA-iris-thousand, version 4.0 (CITHV4) image database. A larger disk radius value may 

remove pupil completely and a smaller value may not remove false candidate pixels significantly. 

The image after erosion operation is shown in Figure 3.3(c), which removes the noise to a much 

extent and reduces the pupil size also. This step not only reduces the false candidate pixels for 

pupil-center due to the noise, but also removes pixels in the pupil, which cannot be the potential 

pupil-center pixels. The false candidate pixels are further reduced using step below.  

C) Removing Pixels Close To Image Border 

It is certain in every iris image that pupil cannot be touching the image border as pupil is 

surrounded by iris region. Therefore, some pixels closer to the image border can be discarded, as 

they cannot be potential pupil-centers. The range (distance) of discarded pixels from image 

border is taken as {k×rminp}, where the k is a positive scalar greater than one whose value is 

estimated by visualizing and inspecting the iris database images. The value of k chosen for 

CITHV4 is 3.5 and rminp is equal to 20. The value of k depends on the database chosen. This step 

is for a particular database (CASIA) only. Although removing this step will not affect the 

accuracy, only computation time will increase. The remaining pixels after removing the pixels 

close to image border are shown in Figure 3.3(d). The black pixels in Figure 3.3(d) are identified 

as the potential pupil-centers. 

 The reduced candidate pixels because of above discussed steps have been identified as the 

potential pupil-centers. Now, the IDO described in chapter 2 under subsection 2.4.1, is applied on 
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these pixels’ coordinates in the preprocessed iris image, which gives the center and radius of 

pupil as output.  

3.2.3 Limbic Boundary Detection 

Limbic boundary detection may be hurdled by eyelids, eyelashes, reflections and low contrast 

between the iris and sclera. The reflections and uneven high intensity values have already been 

removed after the image preprocessing step. The eyelids and eyelashes occlusion as shown in 

Figure 3.4 is handled by modified IDO in Equation (3.2) that acts as the circular arc detector and 

it has been derived by taking motivation from the Daugman’s IDO discussed in the previous 

chapter. The upper and/or lower eyelids occlude the iris in the noisy iris images, but the vertical 

iris contours are always visible, which are used for detecting the limbic boundary by taking 

partial integration (Equation (3.2)).   

 The modified IDO for limbic boundary detection is mathematically expressed as: 

              max(r,xo,yo) |Gσ(r) ∗ [
∂

∂r
(∫

I(x,y)

5πr/12
ds

π/6

−π/4
+ ∫

I(x,y)

5πr/12
ds

5π/4

5π/6
)]|                         (3.2) 

 The parameter r denotes the radius of the circular arc ds centered at (xo,yo). To normalize 

the intensity integral of arc-pixels with respect to arc length, it is divided by 5𝜋𝑟/12. The 

modified IDO searches iteratively over a portion of the image domain for the maximum 

difference of sum of contour pixels intensities between two adjacent circular arcs one pixel radius 

apart and defined by {–π/4: π/6 and 5π/6: 5π/4} rad (see Figure 3.4). These ranges of angles were 

chosen after experiments on a number of images through MATLAB simulation and if we further 

reduce or increase these ranges, the accuracy suffers. The upper angle (above x-axis) is 30o, 

whereas lower angle is 45o, as upper eyelid occlusion is more than lower eyelid. If these angles 

are further reduced, computation time will reduce due to reduced partial integration, but accuracy 

also decreases, because the available arc information does not provide single-pixel precision in 

circle center detection in certain images.      

 

 

Figure 3.4. Selection of iris search region in the image. 
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A) Define Iris Search Region 

The iris search area is defined by the pupil center, radii range of the limbic boundary and a small 

area around the pupil center that contains the potential candidate pixels for limbic boundary 

center. The white area on both sides of pupil in Figure 3.4 represents search region for the 

modified IDO with (xo,yo) equal to pupil center. As the pupillary and limbic boundary circles 

may not be concentric [Daugman, 2004], the modified IDO is applied on a rectangle of size 10 ×

10 centered at the pupil center to find precise center and radius of limbic boundary circle. Iris 

localized image is shown in Figure 3.5(b). 

 

 

  (a)                                                                   (b) 

Figure 3.5. Limbic boundary detection: (a) Input is preprocessed iris image with pupil center known; (b) 

Iris localized image obtained using modified IDO. 

3.2.4 Performance Evaluation 

To evaluate performance of the proposed method, we have used MATLAB version 8.3 installed 

on a PC with Windows 7 Professional, Intel® Core™ i5 CPU @ 2.40 GHz, 8.00 GB RAM and a 

set of images from CITHV4 and Multimedia University, version 1.0 (MMUV1) databases.  

A) Input Dataset 

The short description of iris database taken for testing the proposed method is given below.  

1. CITHV4 contains 20000 iris images collected from 1000 subjects. The main sources of 

intra-class variations in the database are eyeglasses and specular reflections. CITHV4 

images are 8-bit gray-level JPEG files with resolution 640×480 pixel and collected under 

NIR illumination. Collectively, the images in the database contain non-ideal issues such 

as occlusions by eyelids, eyelashes, eyebrow hair, eyeglasses, low illumination, low 

contrast and reflections. 
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2. MMUV1 iris database contributes a total number of 450 images, which were taken using 

LG IrisAccess®2200. This camera is semi-automated and it operates at the range of 7-25 

cm. The images are 24-bit gray-level BMP files with resolution of 320×240 pixels and all 

the images were collected under near infrared illumination. 

       The first 1000 images from CITHV4 were taken for testing the proposed method, whereas all 

the images of MMUV1 database were included in the experiments. 

B) Results and Discussion 

Figure 3.6 shows sample images from the CITHV4 database, whereas Figure 3.7 shows images 

from MMUV1 database with accurately localized irises by the proposed method.  

 The percentage accuracy of a localization method is defined as [Jan et al., 2013]:  

                                                Accuracy (%) =
NI

 NT
× 100                                                   (3.3) 

Where NI is number of irises accurately localized and NT is total number of iris images 

taken for testing. The accuracy of the proposed method was calculated using Equation (3.3) and 

the accuracy results are shown in Table 3.1. To find the average time cost per image, first 1000 

images from the CITHV4 were taken. MATLAB timer functions ‘tic’ and ‘toc’ were used to find 

execution time of a code which runs to localize 1000 images and dividing the execution time by 

1000 gives average time cost per image. The average time cost per image for MMUV1 database 

was also calculated in the same manner. The simulation results of the proposed localization 

method are shown in Table 3.1. 

 

 

Figure 3.6. Examples of accurately localized irises in CITHV4 images using the proposed method. 
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Figure 3.7. Examples of accurately localized irises in MMUV1 images using the proposed method. 

 

Table 3.1. Simulation results 

Iris Database 
Performance of proposed method 

Accuracy (%) Average time cost per image (sec) 

CITHV4  

(640×480) 
99.30 1.86 

MMUV1 

(320×240) 
99.11                                                              0.67 

3.2.5 Comparison with Other Methods 

To compare the proposed method with published iris localization methods in the literature, we 

chose [Jan et al., 2012] and [Jan et al., 2013] work because their iris localization methods were 

tested with the CITHV4 dataset and used similar platform, which we have used for testing the 

proposed method. Moreover, these methods are highly accurate methods in the literature as 

described in [Jan et al., 2012]. Table 3.2 shows that the accuracy of proposed method is similar to 

Jan et al. methods, but time cost performance is much better than Jan et al. methods. The major 

reason of reduced time cost of the proposed method is reduced number of pixels on which the 

IDO is applied during pupillary boundary detection. The use of modified IDO for limbic 

boundary detection further reduces time cost of iris localization, as it does not require drawing 

full circles.     

Table 3.2. Comparison of the results of proposed method with the published results for CITHV4 database 

images 

Method 

 CITHV4 

 Accuracy 

(%) 

Time cost per image 

(sec) 

[Jan et al., 2012]  99.5 4.93 

[Jan et al., 2013]  99.23 3.4 

Proposed method  99.30 1.86 
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Table 3.3 shows that the accuracy of the proposed method for MMUV1 is 99.11%, which 

is better than some state-of-the-art methods listed in the table. The accuracy results of the other 

methods in the table are taken from [Ibrahim et al., 2012], but this paper does not provide the 

computation time results. The reduction in the number of false candidate pixels that cannot be 

potential centers of pupil circle makes the proposed method more accurate. The use of modified 

IDO to localize limbic boundary is another reason for improvement in the accuracy performance 

of the proposed method.  

 

Table 3.3. Comparison of accuracy of proposed method with published results (accuracy results in the 

table are taken from [Ibrahim et al., 2012])  

Method Accuracy (%) for MMUV1 

[Daugman, 2004] 85.64 

[Ma et al., 2004] 91.02 

[Daugman, 2007]  98.23 

Proposed method 99.11 

 

3.3 Concluding Remarks 

In this chapter, we have presented a method to localize irises in NIR iris images. The proposed 

method starts with image preprocessing followed by iris’s inner and outer boundary detection 

using IDO and modified IDO respectively. A novel technique for pupil localization is proposed 

that reduces the number of false candidate pixels, which cannot be potential centers of pupil 

circle and makes the IDO based circle detection faster and accurate. The method also uses a 

modified IDO to detect iris’s outer boundary, which increases the speed. The simulation results 

show that the proposed method is highly accurate and is tolerant to non-ideal issues in iris images 

such as reflections, low contrast, low illumination and occlusions by eyelids, eyelashes and 

eyebrow hair. The comparison of the proposed method with published work shows that it 

outperforms some of the iris localization methods in both accuracy and computation time. 
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Chapter 4                                                         

CHT Based Iris Localization for NIR Images 
 

 

The circular Hough transform (CHT) based iris localization methods are most famous methods 

like integro-differential operator (IDO) based methods, which are also used in commercial iris 

recognition systems. The first CHT based method was proposed by Wildes in [Wildes, 1997], 

which is based on the edge detection and CHT. The CHT based methods perform iris localization 

mainly in two steps: (a) Edge-map generation; (b) Circle detection in the edge-map using CHT. 

These two steps are used for each of the pupillary and limbic boundary detection. However, the 

edge-map generation is not just an edge detection step; it also requires image preprocessing steps 

especially for the iris localization of less constrained images. For example, the image 

preprocessing, such as image inpainting techniques are used for removing the lighting reflection 

spots of the iris images and the histogram equalization is used for compensating the non-uniform 

illumination and low contrast [Wang et al., 2014]. The literature review in chapter 2 reveals that 

the edge-map generation techniques are the primary components in most of the CHT based iris 

localization methods for less constrained images, as they directly affect the overall accuracy and 

time performance of iris localization.  

 This chapter proposes the novel edge-map generation techniques for the CHT based iris 

localization in less constrained near infrared (NIR) images that makes the iris localization more 

accurate and fast. The chapter also proposes an adaptive CHT for limbic boundary detection, 

which is faster than CHT. 

4.1 Wildes’ Approach 

Wildes’ iris localization approach [Wildes, 1997] detects each of the pupillary and limbic 

boundaries using a two-step process: (a) Binary edge-map of the input image is generated; (b) 

CHT is used to detect a circle in the edge-map. The separate edge-maps are used for detection of 

the pupillary and limbic boundaries. However, the same CHT algorithm is applied twice, but 

with different range of radii to detect both the pupillary and limbic boundaries as shown in Figure 
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4.1(a). The Wildes’ and the proposed approaches are shown in Figure 4.1. The proposed 

approach uses some additional operations than Wildes’ approach, which are shown in bold in 

Figure 4.1(b). The proposed approach is described later in section 4.2, whereas Wildes’ approach 

is discussed in current section.   

 

Figure 4.1. Iris localization: (a) Wildes’ approach; (b) Proposed approach. 

The detailed implementation of Wildes’ approach (Figure 4.1(a)) is described next in two 

phases: (a) Pupillary boundary detection; (b) Limbic boundary detection. 

4.1.1 Pupillary Boundary Detection 

The two steps involved in the pupillary boundary detection are the edge-map generation and the 

circle detection using CHT. The edge-map is generated by applying Gaussian smoothing and 

Sobel edge detection on the input image.  

 The iris image is smoothed using the Gaussian filter [Gonzalez et al., 2009] of size 5×5 

and sigma (σ) equal to 1.0. The larger filter size makes the image more blurred and reduces the 

pupil boundary contrast. The sigma (σ) equal to 1.0 makes the computer implementation of 

Gaussian filter simple. The smoothing of the iris image removes the random noise and the 

uneven intensities that may result in unnecessary false edges in the edge-map of iris image. The 

smoothed iris image is shown in Figure 4.2(b).  

 The edge-map is generated by applying Sobel edge detection with thinning operation on 

the smoothed image as shown in Figure 4.2(c). A suitable threshold value is chosen in the edge 

detection so that the pupil edges, which are among the strong edges in the image, are detected 
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and the faint edges are not. A lower threshold value may detect the iris’s outer boundary edges, 

which we do not want to be detected at this stage. The initial value of threshold was determined 

by ‘edge ( )’ function of MATLAB, which was then adjusted by simulations of database images 

and visualization of edge-detected images in MATLAB. The higher threshold gives fewer edge 

pixels and lower threshold gives more edge pixels. The final value of threshold is chosen after a 

number of iterations of simulation and manual inspection of edge-detected images, and then it 

remains constant for a given database. Figure 4.2(c) shows the edge-detected image after the 

Sobel operator is applied on the smoothed iris image (Figure 4.2(b)) in both the horizontal and 

vertical directions with threshold value equal to 0.03 in ‘edge ( )’ function. The edge-detected 

image has the pupil edges and other (false) edges due to the lighting reflection spots, eyelids, 

eyelashes and eyeglass frames as shown in Figure 4.2(c). 

 

Figure 4.2. Pupillary boundary detection: (a) Input image; (b) Gaussian smoothed image; (c) Edge-map 

for pupillary boundary detection; (d) Pupil localization using CHT. 

 The CHT algorithm is applied on the edge-map in Figure 4.2(c) to detect the pupillary 

boundary circle. The CHT implementation is discussed next. 

CHT Implementation 

There are a number of different approaches that can be taken in the CHT implementation 

[Pedersen, 2007], [Yuen et al., 1990]. To meet the requirement of detecting a circle in the edge-

map of iris image, we propose an implementation technique for CHT that detects a single 

strongest circle in an image. The proposed CHT implementation described in Algorithm 1 uses a 

2D accumulator to store votes for one radius at a time, whereas the standard CHT requires a 3D 

accumulator to store votes for multiple radii that results in large storage requirements [Yuen et 
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al., 1990]. The 2D array is used to find maximum count value for a given radius, its maximum 

count is stored and for next radius, the same 2D array is used again to find the maximum count 

value, its maximum count is stored and so on. Since the same 2D array is used repetitively for all 

the radii, the space complexity of the algorithm reduces. At all the edge pixels (a,b), which are 

the white pixels in the edge-map, the virtual circles are drawn with different radii using Equation 

(4.1). A circle with radius r and center (a,b) can be described with parametric equations below. 

x = a − r ∗ sinθ
 y = b + r ∗ cosθ

    }                                                                 (4.1) 

 When angle θ sweeps by full 360 degrees, the circle-points (x,y) lying on the perimeter of 

the circle are generated. A 2D accumulator array of size same as the image is initialized to zero. 

The cells’ values in the array are incremented by one every time a circle passes through the cells; 

the process is known as accumulator voting as shown in Algorithm 1. The peak (maximum 

value) in the 2D accumulator array is determined for every radius. The maximum among all the 

peaks gives center and radius of the detected circle. 

 

 

Algorithm 1. Proposed CHT implementation for pupillary boundary 

detection using 2D accumulator    

Inputs: Edge map of iris image, minimum pupil radius (rminp) and 

maximum pupil radius (rmaxp)  

Outputs: pupil circle radius (rp) and center coordinates (xp,yp) 

 

 1.  for pupil_radius=rminp :1: rmaxp   do     // comments: 

  2.         A=zeros(rows,cols) ;                       // 2D accumulator of 

                                                                     iris image size 

 3.       for all “white pixels” in edge map of iris image   do 

 4.            for  θ =1 to 360o       do 

 5.              Calculate (x,y) using Equation (4.1) 

 6.               if (x,y) is in image bounds   do 

 7.                A(x,y) = A(x,y)+1 ;              // Accumulator-voting 

                                                                    step 

 8.               end if 

 9.            end for 

 10.       end for 

 11.       Find maximum value in A:   

 12.           M=A(x’,y’) ;                           //M is maximum value 

                                                                   in A 

 13.         Max_Array(pupil_radius)=M ; 

 14.         X_Array(pupil_radius)=x’ ; 

 15.         Y_Array(pupil_radius)=y’ ; 

 16.  end for 

 17. Find maximum in Max_Array:  

 18. M’=Max_Array(index)                  //M’ is maximum value 

                                                                 in Max_Array               

 19.  rp = index;   xp = X_Array(index);    

        yp = Y_Array(index)  ;                  // End of CHT algorithm    
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4.1.2 Limbic Boundary Detection 

The limbic boundary detection may be hurdled by the eyelids, eyelashes, reflections and low 

contrast between the iris and sclera in the iris images. The input image is filtered using a median 

filter [Gonzalez et al., 2009] to suppress the noise, such as the eyelash hair and uneven pixel 

intensities, without damaging the edge structure as shown in Figure 4.3(b). The upper and/or 

lower eyelids occlude the iris mostly in the iris images, but the vertical iris contours are always 

visible. Therefore, to get the vertical edge pixels, the Sobel edge detection is applied in horizontal 

(x) direction only (Figure 4.3). A low threshold value of 0.0075 was set in the ‘edge ( )’ function, 

as the limbic boundary is of low-contrast. An edge thinning operation follows the edge detection.  

 

 

 

Figure 4.3. Limbic boundary detection: (a) Input image; (b) 9×9 median filtered image; (c) Edge-map for 

limbic boundary detection; (d) Limbic boundary localization using CHT. 

 

 Now, CHT is applied on the edge-map in Figure 4.3(c) to detect the limbic boundary, but 

[Wildes, 1997] suggests that the voting space of CHT is constrained to lie within the pupillary 

boundary. In this implementation, the CHT voting space in the accumulator is constrained to a 

10×10 rectangle centered at the pupil center because the centers of the pupil and limbic boundary 

circles lie within a small window [Daugman, 2004]. The CHT that was used to detect the 

pupillary boundary is used to detect the limbic boundary also, but with different range of radii 

and different CHT voting space. 
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4.1.3 Performance Evaluation 

The experiments on the datasets were done using a computer with Intel i5 CPU @ 2.40 GHz, 8 

GB RAM and Windows 7 operating system. The proposed algorithm is implemented and tested 

with MATLAB (version 8.4) tool. Three different datasets were used in the experiments for 

performance evaluation. Collectively, the set of these databases contains noises, such as lighting 

reflections, non-uniform illuminations, eyeglasses, low contrast, defocus and the occlusions by 

eyelids, eyelashes and eyebrow hair etc. The following datasets were used: 

1. CASIA-iris-thousand, version 4.0 (CITHV4): First 1000 images of this database were taken.  

2. Multimedia University, version 1.0 (MMUV1): All 450 images of this database were taken.  

3. CASIA-iris-lamp, version 3.0 (CILV3): This database contains images from 411 different 

subjects. The total number of the images in the database is 16212. For thorough 

experimentation with the database, 811 images were chosen selecting first left and first right 

eye image of each subject except 11 subjects. CILV3 contains 8-bit gray-level JPEG images 

with resolution of 640×480 pixels. 

 The accuracy of Wildes’ approach was calculated using Equation (3.3) described in 

chapter 3, and the time cost per image was calculated using the MATLAB’s timer functions ‘tic’ 

and ‘toc’, which was also discussed in chapter 3 under subsection 3.2.4.  

 

  Table 4.1. Performance of Wildes’ Approach (Simulation results) 

Method 

Accuracy (%) & Average time cost per image (sec) 

CITHV4 

(640×480) 

CILV3 

(640×480) 

MMUV1 

(320×240) 

[Jan et al., 2012] 99.5  &  6.4 98 &  4.93 -- 

[Jan et al., 2013] 99.23 & 3.4 99.21 &  3.35 -- 

Wildes’ approach 95.10 & 2.35 85.69 & 3.79 98.44 & 2.63                                                              

*640×480 image is resized to 320×240 image before applying the iris localization method and resize time is included 

in the time cost of iris localization.  

A) Accuracy 

The accuracy results of Wildes’ approach (Figure 4.1) are listed in Table 4.1. The MMUV1 has 

the highest accuracy among the three datasets because it contains less noisy images. The CILV3 

dataset has the lowest accuracy (Table 4.1) because the occlusion by eyelids and eyelashes noise 
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is more prominent in these images, which hinders the iris boundaries detection. The lighting 

reflections cause incorrect iris localization in a few of the CITHV4 images. A few causes of the 

wrong iris localization in CITHV4 and CILV3 datasets are illustrated with help of the images in 

Figure 4.4, Figure 4.5 and Figure 4.6. These figures include only one of the two edge-maps, 

which is responsible for wrong localization.  

 

(a)                                                      (b) 

Figure 4.4. Examples of wrong iris localization in CITHV4 images due to lighting reflections: (a) Edge-

map for pupillary boundary detection; (b) Wrong iris localization. 

 

(a)                                        (b) 

Figure 4.5. Examples of wrong iris localization in CILV3 images due to eyelids, eyelashes and eyebrow 

hair: (a) Edge-map for pupillary boundary detection; (b) Wrong iris localization. 
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The Figure 4.4 and Figure 4.5 show that when the pupil is located wrongly in the image, the limbic 

boundary detection also fails, because the center of the pupil circle is used as an input in detecting the 

limbic boundary.   

 

   

(a)                                        (b) 

Figure 4.6. Wrong limbic boundary detection: (a) Edge-map for limbic boundary detection; (b)                 

Wrong limbic boundary detection, but correct pupillary boundary detection.  

B) Computation Time 

It was observed that the computation time (or time cost) of iris localization in an image is directly 

associated with the number of edge-points in the edge-maps. The edge-map should contain false 

edges as less as possible. Secondly, the range of radii specified to CHT algorithm should be 

chosen judiciously for a database; a wider range makes the circle detection slow. The edge-points 

close to the image border can be discarded because the pupil can not be touching the image 

border as it is surrounded by the iris. All the above mentioned parameters were taken into 

account while choosing the threshold values in the edge detection processes and applying the 

CHT for pupillary and limbic boundary detection. The time cost per image obtained for different 

datasets is listed in Table 4.1. The iris localization in CILV3 images is slower than CITHV4 or 

MMU1 because the edge-maps of CILV3 images contain more edge-points.      

 The iris localization results obtained with the Wildes’ approach are moderate and there is 

a scope of improvement as today’s algorithms provide iris localization accuracy as high as 99% 
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[Jan et al., 2014]. The results of Wildes’ approach are compared with other methods in Table 4.1 

to show its effectiveness. To improve these results, we need to improve the edge-maps, meaning 

that the edge-maps should contain as less as possible false edges. This will increase not only the 

accuracy of iris localization, but will improve the time performance also, because the CHT 

detects the circles more accurately and rapidly in the images whose edge-maps are optimized.  

 The proposed method described in next section discusses a novel edge-map generation 

technique for pupillary boundary detection, which reduces the false edges abruptly. The proposed 

method also introduces adaptive CHT for limbic boundary detection that makes the limbic 

boundary detection faster and more accurate. This method is also much faster than Wildes’ 

approach as it processes a subimage surrounding the pupil for limbic boundary detection.  

4.2 The Proposed Method              

This method achieves iris localization for the NIR images in two phases: Phase 1) Pupillary 

boundary detection, and Phase 2) Limbic boundary detection. Each phase consists of two process 

steps, which are edge-map generation from iris image and circle detection in the edge-map as 

depicted earlier in Figure 4.1. This figure demonstrates how the proposed method differs the 

Wildes’ approach. The goal of the edge-map generation is to prepare appropriate input for CHT 

so that the iris circles can be detected accurately and rapidly. The original iris image of size 

640×480 pixels is scaled down to 320×240 pixels using a scaling factor of 0.5 to speed up the 

processing. The proposed algorithm is applied on the scaled iris image and the obtained circle’s 

parameters are multiplied by two for mapping the parameters in the original iris image.  

4.2.1 Pupillary Boundary Detection 

For accurate iris localization in the NIR images, a high pupil localization accuracy is required 

because if the pupil were wrongly detected in the image, the iris’s outer boundary would also be, 

as it requires pupil circle parameters as input for detection [Jan et al., 2014], [Wang et al., 2014]. 

Here, we propose a novel edge-map creation technique for the less constrained NIR images that 

reduces the false edges drastically so that the pupil can be localized accurately and rapidly using 

a general CHT algorithm. The two steps involved in the pupillary boundary detection are the 

edge-map generation and the CHT for pupillary boundary detection, which are discussed below. 
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Figure 4.7. Edge-map generation techniques for pupillary boundary detection: (a) Thresholding based 

technique resulting in wrong pupil localization; (b) Edge detection based technique resulting in wrong 

pupil localization; (c) Proposed technique that combines the edge-maps of (a) and (b) using logical 

ANDing, which results in correct pupil localization.  

A) Edge-Map Generation  

The two standard edge-map generation techniques for pupillary boundary detection are: (a) 

Thresholding based; and (b) Edge detection based. In the proposed technique, the edge-map for 

pupillary boundary detection is generated by combining the two edge-maps obtained using (a) 

and (b), which improves the accuracy and speed of pupillary boundary detection as illustrated in 

Figure 4.7. This improved performance is obtained due to reduction of false edges in the edge-

map that CHT uses for circle detection. The proposed edge-map generation technique is 

explained in detail using Figure 4.8 and Figure 4.9. 

 In the proposed technique (Figure 4.8), the idea of generating an optimal edge-map relies 

on combining two edge-maps obtained via two paths: Path 1 is applying intensity thresholding on 

the iris image to segment the pupil region followed by the edge detection; and Path 2 is applying 

the edge detection on the intensity iris image. Since both the edge-maps obtained via Path 1 and 

Path 2 have pupil contour in common, they are combined in a single edge-map using the 

intersection operation (logical AND), which minimizes the false edges due to noise such as 

eyelids, eyelashes and lighting reflections etc. significantly. The edge-map in Figure 4.8(e) 
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obtained via Path 1 excludes the effect of reflections, but contains the edges due to dark 

illumination, whereas the edge-map in Figure 4.8(f) obtained using Path 2 excludes the edges due 

to dark illumination, but contains the edges due to reflections. Therefore, the intersection 

operation on the two edge-maps (Figure 4.8(e) and Figure 4.8(f)) removes the effect of both 

reflections and dark illumination as shown in Figure 4.8(g). To get more advantage out of the 

intersection operation in reducing the false edges, the two morphological operations are also used 

in Path 1. 

  

 

Figure 4.8. Edge-map generation for pupil boundary detection: (a) Iris image (320×240) from CITHV4; 

(b) Gaussian smoothed iris image (σ =1.0, k=5); (c) Binary image after applying intensity thresholding on 

(b); (d) Cleaned binary image obtained from (c) using hole filling followed by image opening (se=‘disk’, 

k=7); (e) Edge image obtained after applying Sobel edge detector without thinning on (d); (f) Edge image 

obtained after applying Sobel edge detector without thinning on (b); (g) Edge-map obtained by 

intersection (logical AND) operation on (e) and (f); (h) Iris image with pupil detection (shown by white 

circle) obtained after applying CHT on (g). 

   

The two morphological operations are applied on the binary image in Figure 4.8(c) to get 

the cleaned binary image shown in Figure 4.8(d); and the objective of these operations is 

reducing the noise-size so that the noise edges can be avoided in the intersection operation, which 

is illustrated later using Figure 4.9. First, a hole filling operation is applied on the binary image in 

Figure 4.8(c) to fill the white dots in the pupil region and then the image opening operation for 

black objects using a structuring element of type disc [Davies, 2012] is applied to reduce the size 

of the noise due to eyelids, eyelashes and eyebrow etc. Figure 4.8(d) shows the cleaned binary 

image in which the noise due to eyelids and eyelashes has been completely removed, but if the 

noise doesn’t remove completely, its size reduces because the black regions of eyelids along with 

eyelashes in the binary image are not solid boundary compact objects like the pupil and the 

image opening operation removes the pixels at their boundaries. 
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The edge image of the cleaned binary image, shown in Figure 4.8(e), has the false edges 

due to dark illumination and eyeglass frame, but it could have contained other false edges due to 

the eyelids and eyelashes that can be removed or minimized by the intersection operation as 

illustrated using Figure 4.9.  

 

 

Figure 4.9. Edge-map generation for pupil boundary detection: (a) Ideal edge-map (image 7) that contains 

pupil boundary edges only; (b) Edge-map (image 7) that contains pupil boundary edges as well as false 

edges; [the images in (a) and (b) are: 1. Iris image from CILV3; 2. Smoothed iris image; 3. Binary image 

after thresholding 2; 4. Cleaned binary image obtained from 3; 5. Edge image of 4; 6. Edge image of 2; 7. 

Edge-map obtained by intersection operation on 5 and 6; 8. Pupil localized iris image obtained after 

applying CHT on 7]. 

 

 The Figure 4.9 shows that the edge image of the cleaned binary image (image 5) contains 

the false edges due to eyelids and eyelashes, but these false edges are removed completely or 

partially after the intersection operation as shown in image 7. The image opening operation on 

the binary image (image 3) reduces the size of the noise due to the eyelids and eyelashes and 

hence, the reduced noise-size in the cleaned binary image (image 4) is not same as detected by 

the edge detection on the original iris image (image 6). Therefore, the intersection operation on 

the image 5 and the image 6 avoids the noise-edges completely or partially. Figure 4.9(a) shows 

an ideal situation, where the intersection operation removes the false edges completely (image 7), 

but the edge-map in Figure 4.9(b) has a few false edges also (image 7). The suitable threshold (T) 

for image binarization is chosen as discussed in chapter 3 under subsection 3.2.2, and threshold 

for edge detection on smoothed iris image kept same as Wildes’ approach. 
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B) CHT for Pupillary Boundary Detection 

The CHT that was implemented in subsection 4.1.1 and was used to detect the pupillary 

boundary in previously discussed Wildes’ approach is used here also to detect the pupillary 

boundary. The 2D accumulator array after voting is shown in Figure 4.10 when the CHT is 

applied on the edge-map of Figure 4.8(g). In Figure 4.10, the radius (r) is equal to the pupil 

radius; therefore, the coordinates of the peak in the 2D accumulator array are the coordinates of 

the pupil center. 

 

Figure 4.10. The surface plot of the 2D accumulator array corresponding to one radius after voting. 

4.2.2 Limbic Boundary Detection 

The center of the pupil circle is used as an input in detecting the limbic boundary as shown in 

Figure 4.11. The edge-map generation and adaptive CHT for limbic boundary detection are 

discussed below. 

A) Edge-Map Generation 

The limbic boundary detection may be hurdled by the eyelids, eyelashes, reflections and low 

contrast between the iris and sclera in the iris images [Jan et al., 2014]. A subimage is extracted 

from the iris image using a rectangle centered at the pupil center as shown in Figure 4.11(a) and 

Figure 4.11(b). The width of the rectangle (or subimage) is twice the maximum possible value of 
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the limbic boundary radius and the height is half of the width. The height of the rectangle can be 

increased further if the iris-occlusion by the eyelids and eyelashes is not much. The size of the 

rectangle remains constant for all the images from a database, but the location of the rectangle in 

the image changes as the rectangle is positioned using the pupil center. 

 

 

Figure 4.11. Limbic boundary detection: (a) Iris image (320×240) after pupil boundary detection; the 

rectangle in white indicates the size of subimage to be processed for limbic boundary detection; (b) The 

subimage  (130×65) extracted from the iris image using the rectangle in (a); (c) Filtered subimage after 

applying a median filter of size 9×9 on (b); the two rectangles in white on left and right sides of the pupil 

are used to cover the iris’s vertical contours; (d) Edge-map obtained after applying Sobel edge detection 

without thinning in horizontal direction inside the two rectangles in (c); (e) Circle detection after applying 

the adaptive CHT on (d); (f) Iris localized image (320×240). 

 

The subimage in Figure 4.11(b) is filtered using a median filter [Gonzalez et al., 2009] to 

suppress the noise, such as the eyelash hair and uneven pixel intensities without damaging the 

edge structure. The upper and/or lower eyelids occlude the iris in the noisy iris images, but the 

vertical iris contours are always visible, which are used for detecting the limbic boundary. The 

vertical iris contours are covered using two rectangles that are placed as shown in Figure 4.11(c). 

The three sides of each rectangle touch the subimage borders and the fourth side of each 

rectangle is at a distance of pupil radius (rp) + 5 from the pupil center. To get the edge pixels, the 

Sobel edge detection without thinning operation is applied in the two rectangles in horizontal (x) 

direction only and threshold for edge detection kept same as Wildes’ approach. Figure 4.11(d) 

shows the edge pixels that are used for the limbic boundary detection using the proposed 

adaptive CHT. 

B) Adaptive CHT for Limbic Boundary Detection 

Radman et al. in [Radman, 2013] had proposed an adaptive IDO for the limbic boundary 

detection, but here, we propose an adaptive CHT for the limbic boundary detection. In pupillary 

boundary detection, the CHT detects full circle and the circle-drawing angle sweeps by full 360 

degree while detecting limbic boundary, the angle is changed to -45:45 and 135:225 degree. The 
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term “adaptive” means here that CHT has been modified to detect circular arcs instead of full 

circle. Instead of using the general CHT algorithm for the circle detection [Yuen et al., 1990], an 

adaptive CHT for the circular arc detection is applied on the edge-map shown in Figure 4.11(d). 

The adaptive CHT detects a structure of two circular arcs defined by -45:45 and 135:225 degree 

as shown in solid in Figure 4.12. The voting space in the adaptive CHT is limited to a small 

region around the pupil center instead of the whole image. The adaptive CHT for limbic 

boundary detection is useful for the images having iris-occlusions by the eyelids and eyelashes.   

 

Figure 4.12. A set of two vertical arcs that the adaptive CHT finds in an image. 

 

 

 

The accumulator voting part of the adaptive CHT for limbic boundary detection is 

described in Algorithm 2. At all the white pixels (a,b) in the edge-map, the arcs’ structure shown 

in Figure 4.12 is drawn using the Equation (4.1) for a radius (r) and corresponding voting is done. 

The size of the 2D accumulator is same as the subimage, but voting space in the accumulator is 

limited to a 10×10 rectangle centered at the pupil center because the centers of the pupil and 
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limbic boundary circles lie within a small window [Daugman, 2004]. The peak in the 2D 

accumulator is determined corresponding to each radius and the maximum among the peaks 

gives the center and the radius of the limbic boundary circle. The 2D accumulator after voting is 

shown in Figure 4.13 when the adaptive CHT is applied on the edge-map of Figure 4.11(d). The 

Figure 4.13 shows the surface plot of the 2D accumulator corresponding to a radius equal to the 

limbic boundary radius and hence, the coordinates of the peak in the accumulator are the center 

coordinates of the limbic boundary circle. The adaptive CHT for limbic boundary detection is 

faster as it searches for half the circle length instead of a full circle, which requires only half the 

virtual circle length to be drawn at each edge pixel. 

 

Figure 4.13. The surface plot of 2D accumulator array in the adaptive CHT corresponding to one radius 

after voting. [voting space is a 10×10 rectangle centered at pupil center] 

4.2.3 Performance Evaluation 

In this section, the performance of the proposed algorithm is evaluated by conducting 

experiments on iris databases, the iris localization results are summarized and the results are 

compared with some state-of-the-art iris localization methods in the literature. The datasets used 

in the experiments to evaluate the proposed algorithm are described below. 

A) Datasets Used 

The datasets are taken from two CASIA iris databases: CITHV4 and CILV3. These databases are 

chosen because they contain the noisy images having the noise such as reflections, non-uniform 
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illuminations, low contrast, eyeglasses and intrusions by the eyelids, eyelashes and eyebrow hair. 

Both CITHV4 and CILV3 contain 8-bit gray-level JPEG images with resolution of 640×480 

pixels.  

1. CITHV4 dataset: For extensive experimentation with this database, the images from all 

1000 subjects are chosen. A total 5600 images are chosen which include all the images of 

the first 100 subjects and 3600 images from the rest of 900 different subjects (selecting 4 

images from each subject).  

2. CILV3 dataset: This database contains images from 411 different subjects [17]. The total 

number of the images in the database is 16212. For thorough experimentation with the 

database, 811 images were chosen selecting first left and first right eye image of each 

subject except 11 subjects. 

 

The experiments on the datasets were done using a computer with Intel i5 CPU @ 2.40 

GHz, 8 GB RAM and Windows 7 operating system. The proposed algorithm is implemented and 

tested with MATLAB (version 8.4) tool. 

B) Results and Discussion 

Figure 4.14 shows the sample images with accurately localized irises by the proposed algorithm. 

Figure 4.15 and Figure 4.16 are the examples, which illustrate that the standard edge-map 

generation techniques for pupil localization give wrong results, but they are corrected by the 

proposed technique. The wrong pupil localization fails the limbic boundary localization also as it 

uses the pupil circle parameters as inputs. The results of the proposed iris localization algorithm 

are summarized in Table 4.2. 

 

 

Figure 4.14. Accurately localized irises in the iris images from two CASIA databases: (a) CITHV4; (b) 

CILV3. 
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Figure 4.15. Examples of wrong pupil localization using thresholding based technique, which is corrected 

by the proposed technique. 

 

 

Figure 4.16. Examples of wrong pupil localization using edge detection based technique, which is 

corrected by the proposed technique. 
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Table 4.2. Performance of the proposed iris localization method (Simulation results) 

Iris database Number of images 

taken for testing  

(NT) 

 Number of correct iris 

localized images  

(NI) 

Accuracy (%) = 

(NI/NT) ×100 

Average time cost 

per image (sec) 

CITHV4* 

(640×480) 
5600 

 
5583 99.70 0.92 

CILV3* 

(640×480) 
811 

 
806 99.38 0.89 

MMUV1 

(320x240) 
450 

 
448 99.55 0.78 

* 640×480 image is resized to 320×240 image before applying the iris localization method and resize time is 

included in the time cost of iris localization.  

 

The accuracy of the proposed method is close to 100 percent as shown in Table 4.2. The 

accuracy of the circle detection in an image by the CHT depends on the amount of false edges the 

edge-map of the image contains. Fewer the false edges higher would be the accuracy of the CHT 

presented in subsection 4.1.1. Many false edges present in the edge-map of an image may form 

an imaginary arc/circle, which increases probability of false circle detection (Refer to Figure 4.5). 

The edge-map used for the pupil boundary detection in the proposed algorithm contains very less 

false edges due to the intersection operation as discussed in the subsection 4.2.1. The use of the 

adaptive CHT for limbic boundary detection to counter the iris-occlusions by the eyelids and 

eyelashes is another cause for high accuracy.  

Table 4.2 also shows the time performance results of the proposed method. The average 

time cost is reported in the table, as the time taken by the CHT for circle detection is directly 

proportional to the number of edge pixels in the edge-map of the image. Fewer the false edges in 

the edge-map of iris image, lesser will be the time cost. The average time cost per image was 

calculated by randomly choosing 500 images from each individual database. The MATLAB’s 

timer functions ‘tic’ and ‘toc’ were used to know the execution time of a code that runs to 

localize irises in 500 images. The execution time obtained was then divided by 500 to find the 

average time cost per image. 

4.3 Comparison  

The comparison of Wildes’ iris localization approach discussed in section 4.1 and the proposed 

method described in section 4.2, is shown in Table 4.3, which shows the improved results for the 

proposed method in terms of both accuracy and time performance. 
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Table 4.3. Comparison of iris localization methods 

Method 

CITHV4 MMUV1 CILV3 

Accuracy 

(%) 

Time cost 

per image 

(sec) 

Accuracy 

(%) 

Time cost 

per image 

(sec) 

Accuracy 

(%) 

Time cost 

per image 

(sec) 

Wildes  95.10 2.35 98.44 2.63 85.69 3.79 

Proposed  99.70 0.92 99.55 0.78 99.38 0.89 

 

Table 4.3 shows that Wildes’ approach gives good accuracy for MMUV1 database as it 

contains less noisy images, but its accuracy degrades for the noisy images of CILV3 and 

CITHV4. The Wildes’ approach gives less iris localization accuracy mainly due to the reflection 

spots in CITHV4 and too many false edges from the occlusions by eyelids and eyelashes in 

CILV3. The proposed algorithm is more accurate and faster than Wildes’ approach as it uses the 

optimal edge-maps with very less false edges and the adaptive CHT for iris boundary detection 

improves it further. The proposed method is faster than Wildes’ approach due to significant 

reduction in the number of false edges in the edge-maps for each of the pupillary and limbic 

boundaries detection. During accumulator voting process, the CHT requires to draw significantly 

less number of circles on the edge-points, which reduces the computation time in the proposed 

method. Although the edge-map generation for pupillary boundary in the proposed method is 

slower than the edge-map generation in Wildes’ approach, as it is based on generating two edge-

maps and then combining them using intersection operation, but the overall speed of the 

proposed algorithm is higher due to significant reduction in the number of false edges in the 

edge-map for CHT.     

 

Table 4.4. Comparison with published iris localization results 

Method 
Accuracy (%) & Average time cost per image (sec) 

CITHV4 CILV3 

[Jan et al., 2012] 99.5  &  6.4 98 &  4.93 

[Jan et al., 2013] 99.23 & 3.4 99.21 &  3.35 

Proposed method 99.70 & 0.92 99.38 & 0.89 

 

The comparison of the results of the proposed method with the published results is shown 

in Table 4.4. The published methods included in the comparison are chosen on the basis that they 

used same databases and similar platform for experimentation that we have taken. Moreover, 
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[Jan et al., 2012], [Jan et al., 2013] show the highest accuracy among all the iris localization 

methods available in the literature for CITHV4 and CILV3 databases. The Table 4.4 shows that 

the proposed method has the highest accuracy and lowest time cost per image, which has 

happened due to the proposed edge-map and the adaptive CHT used for pupil and limbic 

boundary detection respectively, as compared to the other methods in the table. In the proposed 

method, the original iris image is scaled down to half size, which was also done in the Jan et al. 

methods to speed up the processing. The image resizing by a scaling factor, s = 0.5 not only 

reduces all the edge pixels to half in number, but also the number of radii taken in a CHT 

algorithm becomes half. 

4.4 Concluding Remarks 

The Wildes’ approach was implemented for localizing irises in NIR images and its performance 

evaluation showed that this approach could be applied to constrained images having less 

occlusions by eyelids and eyelashes, no reflection spots and homogeneous image characteristics, 

etc.   

 The proposed iris localization method is tolerant to the non-ideal issues and noises in the 

iris images such as iris-occlusions by the eyelids and eyelashes, lighting reflections, non-uniform 

illumination, eyeglasses, low contrast and eyebrow hair. However, the simulation results show 

that the proposed method also improves iris localization in the images that do not have reflection 

spots and non-uniform illumination, but have mainly the iris-occlusions by the eyelids and 

eyelashes.  

 The comparison of the proposed method with the Wildes’ approach demonstrates that the 

introduction of new edge-maps for pupillary and limbic boundary detection, and adaptive CHT 

for limbic boundary detection make the proposed iris localization method more accurate and fast. 

The performance results of the proposed algorithm are much better than the Wildes’ approach. 

The comparison with some recent published results for CASIA databases also shows that the 

proposed method has improved performance. The proposed algorithm can be used for the 

accurate iris segmentation in less constrained iris recognition systems. 
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Chapter 5                                                 

Hardware Implementation of Iris 

Localization for NIR Images 
 

 

The circular Hough transform (CHT) based method is chosen for hardware implementation of 

iris localization as we found it more suitable for parallel implementation on field programmable 

gate array (FPGA) in contrast to the integro-differential operator (IDO) based algorithm. To 

impart parallelism in the IDO based algorithms, k copies of the input image are required to store 

in the memory corresponding to k radii for the circle detection since the IDO requires to read 

pixel intensity values of the image, whereas a single edge-map image is needed in CHT to 

perform parallel processing corresponding to k radii since the CHT does not require pixel 

intensity values of the image.  

 This chapter first discusses the hardware implementation of CHT algorithm that detects 

the circle in an image. The CHT algorithm is core of any CHT based iris localization method. 

However, the edge-map of image that acts as input for CHT algorithm is also important as it 

decides the overall performance of the iris localization method. The hardware implementation of 

the edge-map generation techniques has been described first for the edge-map generation of 

pupillary boundary followed by the edge-map generation of limbic boundary in individual 

sections. 

5.1 CHT Hardware 

The voting process in the CHT for a radius is an iterative process, which repeats for every edge 

pixel (edge-point) in the edge-map as shown in Figure 5.1. The Figure 5.1 shows that the size of 

2D accumulator array (A) is same as the image in the direct CHT implementation and A stores 

the count values those are incremented by the generated circle points (x,y). The Figure 5.1 shows 

the voting process in the direct CHT for a radius (r), but the maximum count (peak) value stored 
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in A is also determined for every radius. The maximum of all the peaks corresponding to 

different radii gives center and radius of the detected circle. 

 

 

Figure 5.1. Pseudo code for voting process in general (direct) CHT algorithm. 

 

For an image of P×Q pixels, the sequential implementation of general (direct) CHT 

requires a single 2D accumulator array of P×Q cells (Figure 5.1) for all k number of radii, but for 

the parallel implementation on FPGA, k number of P×Q accumulator arrays are required (One 

accumulator array per radius). This would result in large memory requirement as it is equivalent 

to storing k images in the memory. Assuming k equal to 16 and each image pixel of 16 bits, the 

total memory requirement in the CHT implementation for a 320×240 image would be 320 ∗

240 ∗ 16 ∗ 16 (=19660800) bits. This memory is too large that it exceeds the total size of 

embedded memory blocks in some FPGAs, such as Xilinx Zynq-7000 or Spartan 6. Moreover, 

this memory requirement would increase further in the situations, where the image size is beyond 

320×240 pixels or k is greater than 16, which is very much feasible. Therefore, an alternative 

CHT architecture has been proposed that will solve this problem. This architecture is described in 

next subsection. 

5.1.1 Proposed CHT Method   

For a given radius, the circle detection in the proposed CHT is a two-step process: (1) Coarse 

circle center detection using one 2D accumulator array; (2) Fine circle center detection using two 

1D accumulator arrays. For detecting a circle in an image of P×Q pixels, the proposed CHT uses 

a 2D accumulator array of (P/m)×(Q/n) cells and two 1D accumulator arrays of P×1 and Q×1 

cells as shown in Figure 5.2, where m and n are integers in power of two form. In ‘voting process 

Algorithm: Voting process in general (direct) CHT implementation  

 [rows,cols]=size(image);                         // Input iris image 

A=zeros(rows,cols);                                  // 2D accumulator array 

 for all “Edge-points (a,b)” in edge map of image do 

           for  θ =1 to 360o       do 
                     θcosrax  ;       

                     sinrby  ;              // Circle point generation 

                     );x(roundx            

                     )y(roundy  ;                   

                     if (x,y) is in image bounds   do 

                    1 )y,x(A)y,x(A ;      // Accumulator voting step 

                    end if 

          end for 

end for 
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in the proposed CHT for a radius (r), the coordinates, x and y of the generated circle point (x,y) in 

Figure 5.1 are divided by n and m respectively before the accumulator voting step to map (fit) the 

coordinates in the reduced size 2D accumulator array, but voting in the two 1D accumulator 

arrays is done directly using the coordinates, x and y without dividing by n and m. The 2D 

accumulator array is used to find radius of the circle based on the maximum count value stored in 

it and the 1D accumulator arrays are used to find center of the circle (Figure 5.2).  

 

Figure 5.2. Voting space structure in the proposed CHT. 

 

 A cell in the 2D array pointed by (row number, column number) stores the count value, 

which is incremented by 1 every time a circle passes through it. Similarly, the cells in 1D arrays 

store the count values. The 2D array in Figure 5.2 cannot give the exact value of circle center 

because its each column comprises m consecutive columns of the image and each row comprises 

n consecutive rows of the image. For example, for m=2, the columns 0 and 1 of the image are 

combined to form column 0 in the 2D array, and the columns 2 and 3 of the image constitute 

column 1 of the 2D array and so on. Similarly, for n=4, the rows 0, 1, 2 and 3 of the image are 

combined to form row 0 in the 2D array, and the rows 4, 5, 6 and 7 of the image constitute row 1 

of the 2D array and so on. Therefore, the 2D accumulator array in the proposed CHT provides 

coarse center of the circle, which is a cell with maximum count value.  

 To find the exact (fine) circle center from the coarse circle center, the 1D arrays shown in 

Figure 5.2 are used. The m and n consecutive cells in the two 1D accumulator arrays are located 

corresponding to the coordinates of the coarse center and a cell with maximum count value in 

each group of m and n consecutive cells gives a coordinate of fine circle center. The coarse to 

fine detection approach for circle center in the proposed CHT is illustrated in Figure 5.3. The 

Figure 5.3 shows that the proposed CHT uses one 2D accumulator array of 160×60 cells and two 

1D accumulator arrays of 320 and 240 cells to detect a circle in a 320×240 pixel image for a 

given radius value, where the 2D array gives coarse center (90,29) of the circle (coarse detection) 
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and the coordinates, 90 and 29 of coarse center are multiplied by m (=2) and n (=4) respectively 

to locate the cells, 180 and 116 in the 1D arrays for fine detection process. The cell with 

maximum value in each of {180,181} and {116,117,118,119} cells gives the column and row 

coordinates of fine center respectively (fine detection). 

 

Figure 5.3. Coarse to fine detection strategy for the circle center in the proposed CHT. 

 

Table 5.1. Memory requirements in the proposed CHT 

5.1.2 Memory Requirements 

The memory requirements in the proposed CHT architecture for detecting a circle in a 320×240 

pixel image are shown in Table 5.1, when each memory location is 16 bits wide and 16 different 

radii are taken. Therefore, for m=2 and n=2, the memory required to realize all the accumulator 

arrays of the proposed CHT is 5058560 (=[160×120+320+240]×16×16) bits, whereas the 

CHT technique Memory in bits Memory reduction (%) 

Direct CHT 19660800  0 

Proposed (m=2, n=2) 5058560 74.27 

Proposed (m=2, n=4) 2600960 86.77 

Proposed (m=4, n=2) 2600960 86.77 

Proposed (m=4, n=4) 1372160 93.02 

Proposed (m=4, n=8) 757760 96.14 

Proposed (m=8, n=4) 757760 96.14 

Proposed (m=8, n=8) 450560 97.70 
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memory required in the direct CHT implementation is 19660800 (=320×240×16×16) bits, 

thereby providing a memory reduction of 74.27% in the proposed CHT as compared to the direct 

CHT. Since the size of 1D arrays are negligible as compared to the 2D array for smaller values of 

m×n, so, it can be stated that the memory requirement in the proposed CHT is reduced by a factor 

of m×n as compared to the direct CHT implementation. 

5.1.3 CHT Hardware Architecture 

The proposed CHT hardware architecture is shown in Figure 5.4, which imparts the parallelism 

by running the CHT modules for different radii (CHT Module 0, CHT Module 1, CHT Module 2 

and so on corresponding to radii r0, r1, r2 and so on) in parallel. Each CHT module detects a 

circle in the image for a given radius value and the best circle among all the detected circles is 

chosen using ‘maximum selector’ component and a multiplexer (Figure 5.4).  

 

Figure 5.4. The proposed CHT hardware architecture. 

For an edge-point (a,b), each of the CHT modules generates the circle points and updates 

its corresponding accumulator arrays (one 2D and two 1D). After all the edge-points are taken, 



    

 

71 
 

each CHT module is also responsible for finding the maximum count (peak) value stored in its 

2D accumulator array and detecting the fine circle center. Once fine detection is over, the CHT 

modules output the center coordinates as (xc0,yc0), (xc1,yc1), (xc2, yc2) and so on, along with the 

peak values of the 2D accumulator arrays as sum0, sum1, sum2 and so on (Figure 5.4). Now, the 

‘maximum selector’ block finds the maximum among the peak values (sum0, sum1, sum2 and so 

on) and outputs the index of the maximum peak value. For example, if the maximum is sum9, an 

index 9 (1001) is the output of the ‘maximum selector’ block. The index value then selects the 

best circle among all the circles using the multiplexer.  

  The number of CHT modules taken is 16, which are decided by the range of radii 

specified as input to the CHT. For example, if the minimum and maximum radius of the circle to 

be detected were specified as 15 and 30, the number of CHT modules would be 16. The two user 

defined look-up tables are used to store sine and cosine values, which are needed for the circle 

point generation (Figure 5.4). The each look-up table is implemented by configuring block RAM 

as read only memory (ROM) of size 360×32-bits, which stores the values in 32-bit fixed-point 

format. For example, sin240o (= -0.866) is stored as 10000000011011101100110011110111, 

where most significant bit (MSB) represents the sign, 8 bits next to the MSB represent integer 

part and rest of 23 bits are used for fraction part. As shown in Figure 5.4, (a,b) is the edge-point 

in an image of 320×240 pixels, where a is 8-bit number and b is 9-bit number. 

All the CHT modules (CHT Module 0 to CHT Module 15) in Figure 5.4 are identical 

construction and the hardware architecture of a single CHT module is discussed next. 

A) CHT Module 

The main units in a CHT module are circle point generator, address generation for coarse circle 

detection and accumulator voting with fine detection as shown in Figure 5.5. Each unit and its 

constituents are described below. For a given radius, the computation of sum (the maximum 

count) stored in 2D accumulator array and corresponding fine circle center (xc,yc) is explained in 

this section.  

i) Circle Point Generator 

This unit generates the circle points (x,y) taking edge-point (a,b) as center of the circle for a 

given radius (r), using the equations provided in Figure 5.1. The product terms, r*cosθ and r*sinθ 

are generated using two fixed-point multipliers followed by rounding off operation as shown in 
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Figure 5.5. The radius value is provided in 32-bit fixed-point format and the values of cosθ and 

sinθ are read from the ROMs (user defined look-up tables). In ‘rounding and signed integer 

conversion’ component (Figure 5.5), the 32-bit output of the fixed-point multiplier is rounded off 

to the nearest integer using a 32-bit adder and then applied to a logic circuit to convert it to 8-bit 

signed integer. The signed integers are added to the edge-point coordinates, a and b to obtain the 

circle point coordinates, x and y. 

 

 

Figure 5.5. Hardware block diagram of a single CHT module. 

 

ii) Address Generation for Coarse Detection 

This unit takes the generated circle points (x,y) as input and divides their coordinates by m and n 

to map (fit) them in the 2D accumulator array as shown in Figure 5.5. The division is performed 

using shifters as m and n are the numbers in power of two form. The 2D accumulator array is first 

converted to a 1D array and then implemented using block RAMs, which provides minimal 

wastage of the words of block RAMs as discussed later in subsection 5.1.7. Therefore, the two 

indices (xn,yn) which are used to access cells in a 2D array are converted to a single index 

denoted by ‘Address’ in Figure 5.5, to access cells in the 1D array. The ‘Address’ is generated by 

a ‘2D to 1D convertor’ for voting in the accumulator space as shown in Figure 5.5 for m=2, n=4 

and 320×240 image. For the generated circle point (x,y), x is 8-bit number and y is 9-bit number. 

For m=2 and n=4, as the rows and columns get reduced, the circle point (x,y) gets converted to 6-

bit and 7-bit number respectively for coarse detection and perform the accumulator voting in 2D 

array, whereas for finer detection, the circle point (x,y) remains 8-bit and 9-bit number 

respectively and performs the accumulator voting in 1D array. The accumulator voting and fine 

detection is explained in next section. 
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iii) Accumulator Voting and Fine Detection 

The one 2D accumulator array and two 1D accumulator arrays of the proposed CHT are 

implemented using block RAMs, which are denoted by BRAM1, BRAM2 and BRAM3 

respectively in Figure 5.6. For an image of 320×240 pixels, the size of BRAM1 is 9600×16-bits 

for m=2 and n=4, whereas the size of BRAM2 and BRAM3 are 320×16-bits and 240×16-bits 

respectively. The BRAM1 is used for coarse circle detection, whereas BRAM2 and BRAM3 are 

used for fine detection.  

 

Figure 5.6. Accumulator voting and fine detection unit. 

 The BRAM1 is updated using the address generated by the ‘address generation for coarse 

detection’ unit as shown in Figure 5.5, whereas the addresses for updating BRAM2 and BRAM3 

are the coordinates, x and y of the circle point. The updating of BRAM1, BRAM2 or BRAM3 

means reading the contents of a memory location, adding one to the contents and writing the 

contents back to the same memory location. The dual port block RAMs are used so that data can 

be read and written in same clock cycle. To update BRAM1, BRAM2 or BRAM3 in a single 

clock cycle, an additional register is introduced between read and write address as shown in 

Figure 5.6. In a single clock cycle, the memory for current address is read; and the previously 

read and incremented memory data is written at the previous address, called as accumulator 

voting. The process of finding maximum count (peak) value stored in the 2D accumulator 

(BRAM1), also goes simultaneously with accumulator voting and the peak value is saved in a 

register named as SUM (Figure 5.6). The SUM is initially zero and while updating BRAM1, the 

read out data is incremented by 1 and compared with the current value of SUM and if it is 
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greater, the SUM contents are replaced by incremented data, but finding the peak value in 

BRAM2 and BRAM3 is not required. The indices xn and yn associated with SUM contents are 

stored in the registers xn’ and yn’, and the coarse center (x’,y’) of the circle is obtained by 

multiplying these registers’ contents by m and n as shown in Figure 5.6. 

 Once voting is over for all edge-points, the process of fine detection for circle center is 

turned on by a control signal s0. The value of s0 remains 0 during the accumulator voting process 

and it becomes 1 as soon as the process completes. The s0 activates all the blocks involved in 

fine detection process (the portion in the diagram right to dotted line) as shown in Figure 5.6. The 

writing in capability for BRAM2 and BRAM3 is disabled using s0 and read address line is also 

changed using a multiplexer. Now, m memory locations in BRAM2 and n memory locations in 

BRAM3 are read, whose addresses are generated by the ‘address generation for fine detection’ 

block illustrated in Figure 5.6. A memory location with maximum stored value among each of m 

and n memory locations is determined by the ‘maximum detector’ block, which gives the fine 

circle center (xc,yc). 

 

Figure 5.7. Maximum selector: (a) Architecture; (b) Processing element (PE) used in (a). 
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B) Maximum Selector 

Referring to Figure 5.4 shows that the ‘maximum selector’ block finds the maximum of the 

accumulated peak values (sum0, sum1, sum2 and so on) as soon as accumulator voting and fine 

detection process completes. It not only finds the maximum value but also outputs index of the 

maximum value that is used to select one of the sets of circle parameters provided by CHT 

modules. For instance, if sum8 happens to be the maximum value, the output of the ‘maximum 

selector’ block would be index 8 (1000 in binary). 

The ‘maximum selector’ module is designed as a comparator tree as shown in Figure 5.7. 

For 16 input values, the overall architecture is partitioned into 4 stages consisting of 15 

interconnected homogeneous processing elements (PEs). The results of the PEs in the previous 

stage are used as inputs to the PEs in the next stage. A PE compares the two values and the result 

is used to allow the higher value to pass through to the next stage along with its (higher value’s) 

index. Each PE consists of one comparator, two multiplexers and two registers as shown in 

Figure 5.7(b).  

5.1.4 Hardware Control Flow  

The hardware components involved in the proposed CHT architecture are already discussed, but 

the control of operation of the components is described in Figure 5.8. The major portion of the 

flowchart in Figure 5.8 describes the control flow inside a CHT module, which applies to all the 

CHT modules (CHT module 0 to CHT module 15 corresponding to radii r0 to r15 as discussed 

earlier) running in parallel. The CHT module runs every time it receives a new edge-point (a,b) 

and stops after all the N edge-points in the edge-map of the image are taken. 

 When a new edge-point (a,b) is received (read), the addresses of the ROMs (look-up 

tables, which store sine and  cosine values) are reset to zero for reading the first memory 

locations of the ROMs, which is indicated in the flowchart (Figure 5.8) by initializing θ to 0. The 

‘circle point generator’ unit generates a circle point (x,y) every clock cycle by incrementing the 

addresses of ROMs by 1 and a total 360 clock cycles are taken to generate all the circle points for 

an edge-point (a,b). The accumulator voting corresponding to the generated circle points also 

goes in parallel as the pipelined registers are used between different units of the CHT module 

(Figure 5.5). 

 For every clock cycle, a circle point (x,y) is generated, but BRAM1, BRAM2 and 

BRAM3 inside the ‘accumulator voting and fine detection’ unit are updated only if the generated 
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circle point is in image bounds. The generated circle point may go out of the image boundaries 

for the edge-points lying close to the image border. Therefore, the ‘address generation for coarse 

detection’ unit takes only those circle points that fall within the image boundaries.  

 

Figure 5.8. Hardware control flow of the proposed CHT architecture. 

The fine detection process inside each CHT module is triggered immediately after all the 

N edge-points are taken, followed by best circle selection using ‘maximum selector’ component. 

For detecting circle in an image, the processing time of complete CHT architecture is directly 

proportional to the total number of edge-points, N because the time taken by the fine detection 

process and the best circle selection is insignificant as they execute only once.  

5.1.5 Accuracy Evaluation of Proposed CHT Architecture 

In this section, the accuracy performance of the proposed CHT method (architecture) is evaluated 

for iris localization application. We have proposed a new CHT method for hardware 

implementation, which requires less memory requirements due to reduced size of accumulators. 

This method was evaluated for its accuracy performance using MATLAB, as the MATLAB 
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supports accuracy evaluation of image processing algorithms. To evaluate the accuracy 

performance, the edge-maps for pupillary and limbic boundary detection were generated using 

MATLAB and the edge-points were applied to CHT as shown in Figure 5.9.  

 

Figure 5.9. Accuracy evaluation of the proposed CHT architecture: (a) Input iris image; (b) Edge-map for 

pupillary boundary detection obtained after applying Sobel edge detector without thinning on (a) in both 

horizontal and vertical directions; (c) CHT architecture to detect circle in (b); (d) Smoothed image of (a) 

obtained using median filter; (e) Edge-map of (d) obtained using  vertical Sobel edge detector without 

thinning: The edge-points covered by two rectangles (in blue) are used for limbic boundary detection; (f) 

The CHT architecture used for pupillary boundary detection is used again for limbic boundary detection 

also. 

 

In Figure 5.9, the edge-map generation technique for limbic boundary detection is same 

as was discussed in the proposed method of chapter 4, but the edge-map generation technique for 

pupillary boundary detection is different, because here, the purpose is to find the accuracy of the 

proposed CHT method (architecture) with respect to direct CHT. The CHT hardware runs twice 

in Figure 5.9, to detect both pupillary boundary (inner iris-circle) and limbic boundary (outer iris-

circle). The CHT for detecting outer iris-circle is applied only on the selected edge-points in the 

edge-map. The edge-points are selected taking the detected center of inner iris-circle as input for 

selection and using two rectangles to cover vertical outer iris-contours avoiding iris-occlusions 

by the eyelids as shown in Figure 5.9(e).  
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The two CASIA iris databases are chosen: a) CASIA-iris-thousand, version 4.0 

(CITHV4); b) CASIA-Iris, version 1.0 (CIV1). The CIV1 database images have bigger iris-

circles as compared to CITHV4 as shown later in Figure 5.10(b). The 200 images of different 

subjects are chosen from each database. These images were chosen such that, in all the images, 

the pupils are accurately localized by the direct CHT using the method of Figure 5.9. This image 

selection makes easier the visualization of accuracy difference between the proposed CHT 

architectures and the direct CHT. The accuracy results of inner and outer iris-circle detection are 

summarized in Table 5.2 and Table 5.3 respectively. 

 

Table 5.2. Inner iris-circle (pupillary boundary) detection results 

 

 

Table 5.3. Outer iris-circle (limbic boundary) detection results 

CHT method 
CITHV4 (320×240) 

Accuracy (%) 

CIV1 (320×240) 

Accuracy (%) 

Direct CHT 100 94 

Proposed (m=2, n=2) 

Proposed (m=2, n=4) 

Proposed (m=4, n=4) 

100 

98 

96 

94 

94 

93 

  

 Table 5.2 shows that the direct CHT detects the inner iris-circles accurately in all the 

images taken for testing. To find the accuracy of outer iris-circle detection, all input images taken 

are the images with accurately detected inner iris-circles because inner iris-circle center is used to 

select the edge-points on which the CHT is applied as described in Figure 5.9. Three different 

sets of m and n values are only taken for finding the accuracy of the proposed CHT (Table 5.2, 

Table 5.3), because for higher m and n values, the accuracy falls down and does not remain close 

to the direct CHT. The set {m=4, n=2} is not shown in Table 5.2 and Table 5.3 as its accuracy is 

same as the set {m=2, n=4}.  

 

CHT method 
CITHV4 (320×240) 

Accuracy (%) 

CIV1  (320×240) 

Accuracy (%) 

Direct CHT 100 100 

100 

100 

98.5 

Proposed (m=2, n=2) 

Proposed (m=2, n=4) 

Proposed (m=4, n=4) 

100 

99 

96.5 
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Table 5.4. Iris localization (inner + outer iris-circle detection) results 

CHT method 
     Accuracy (%) 

Memory reduction (%) 
 CITHV4        CIV1  

Direct 100 94 0 

Proposed (m=2, n=4) 96 94 87 

 

 The iris localization accuracy of the proposed CHT for localizing both iris-boundaries is 

shown in Table 5.4. We choose the set {m=2, n=4} for the proposed CHT as it gives the accuracy 

almost same as the direct CHT but memory reduction of 87% is obtained, whereas the sets {m=2, 

n=2} and {m=4, n=4} provide lesser memory reduction and lesser accuracy respectively. For 

CITHV4 and CIV1 images, the proposed CHT gives the accuracies of 96% and 100% 

respectively as compared to the direct CHT. 

5.1.6 FPGA Implementation Results 

The proposed CHT architecture was implemented with the Verilog HDL to target Xilinx’s 7 

series FPGA, Zynq xc7z020-1clg484 and tested on Zedboard. Table 5.5 shows the synthesis 

results of the complete CHT architecture presented in Figure 5.4. The overall frequency obtained 

is 203.00 MHz. The total number of block RAMs is 98 which implements all the accumulator 

arrays of 16 CHT modules and two ROMs (user defined look-up tables) used for storing sine and 

cosine values. For a single CHT module, 6 block RAMs are used which comprises 5 block 

RAMs for implementing 2D array converted to 1D array of size 9600 and 1 block RAM for both 

1D arrays of size 320 and 240. The target FPGA contains 36K size block RAMs and each block 

RAM can be configured as a dual port RAM of aspect ratio 2K×16-bits. Each block can also be 

used as two independent 1K×16-bits dual port RAMs. The dual port block RAMs are used to 

realize accumulators, which are available in Zynq FPGA device. We did not use FPGA fabric to 

implement these multiport block RAMs. 

Table 5.5. Synthesis results of the proposed CHT architecture 

Logic utilization Proposed CHT (m=2,n=4) 

Number of slice LUTs 12886 

Number of slice registers 1416 

Number of block RAMs 98 

Maximum frequency, fmax = 203.00 MHz 

Table 5.6 shows that the memory reduction in terms of the number of block RAMs is 84% for 
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the proposed CHT, whereas theoretical reduction was 87%. This difference is due to the wasted 

bits (words) in implementing 2D array converted to 1D array of 9600 cells (BRAM1) and two 1D 

arrays of 320 (BRAM2) and 240 (BRAM3) cells using 36K size block RAMs.   

Table 5.6. Utilization of number of block RAMs (synthesis results) 

Proposed CHT (m=2,n=4) Direct CHT Block RAMs reduction 

98 602 84% 

   

 

(a) 

 

(b) 

Figure 5.10. (a) Testing of CHT hardware on FPGA; (b) Iris localized images using the proposed CHT 

architecture.  

5.1.7 Performance Results and Discussion 

Figure 5.10(a) shows testing of CHT hardware on FPGA. The coordinates of edge-points were 

stored in two BRAMs, which act as input for CHT hardware. These BRAMs and CHT hardware 

was ported on FPGA, which gives circle parameters as output after execution. The Zedboard was 
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used, which contains Xilinx’s 7 series FPGA, Zynq xc7z020-1clg484.  

 To evaluate the time performance, 100 images of different subjects from CITHV4 

database were taken. The numbers of edge-points in the edge-maps of iris image are calculated 

for inner and outer iris-circle detection (Figure 5.9). The time performance results (obtained by 

multiplying  number of clock cycles and clock period) of 5 images with a clock of 200 MHz are 

listed in Table 5.7, and it was found that processing time for circle detection is directly 

proportional to the number of edge-points. The average processing time per image would be 6.25 

ms, which is calculated from 100 images as shown in Table 5.8.  

 In subsection 5.1.4, it is mentioned that 360 clock cycles are taken to generate all the 

circle points for one single edge-point. In addition to this, 21 clock cycles are taken collectively 

by pipelined registers, fine detection process and maximum selector block. Therefore, for N 

number of edge-points, processing time is equal to (N*360+21)*(1/200MHz), where, 200MHz is 

frequency of operation of the architecture. Ignoring the number, 21, as it is negligible as 

compared to (N*360), the processing time shown in Table 5.8 is obtained as follows: 

Average processing time for inner iris-circle detection = 2350*360*(1/200MHz) = 4.23 ms 

Average processing time for outer iris-circle detection = 1124*360*(1/200MHz) = 2.02 ms 

Thus, average processing time for iris localization = 4.23 + 2.02 = 6.25 ms 

 The Ngo et al. [7] CHT has the average processing time of 5.15 ms but for outer iris-

circle detection only. The sequential execution of the proposed CHT takes average computation 

time of 1.6 sec per image when runs using MATLAB (version 8.4) installed on a computer with 

Intel i5 CPU @ 2.40 GHz, 8 GB RAM and Windows 7 operating system. Therefore, the 

proposed CHT hardware architecture gives a 250× speedup as compared to the sequential 

execution.  

Table 5.7. Processing time of the proposed CHT hardware architecture     

CITHV4 

image  

Inner iris-circle detection Outer iris-circle detection 
Total processing 

time (ms) Number  

of edge-points 

Processing time 

(ms) 

Number  

of edge-points  

Processing time 

(ms) 

S5004R00.jpg 2065 3.72 1399 2.52 6.24 

S5009R07.jpg 2842 5.12 955 1.72 6.84 

S5024L00.jpg 4190 7.54 973 1.75 9.29 

S5033L00.jpg 3481 6.27 1241 2.23 8.5 

S5063L00.jpg 1483 2.67 885 1.59 4.26 
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Table 5.8. Average processing time        

Number of 

CITHV4  

images  

Inner iris-circle detection Outer iris-circle detection 

Average 

processing time 

per image (ms)  

Average 

number  

of edge-points 

(N) 

Average 

processing time 

(ms) 

Average 

number  

of edge-points 

(N)  

Average 

processing time 

(ms) 

100 2350 4.23 1124 2.02 6.25 

5.1.8 Comparison with Other CHT Architecture 

To compare the accuracy of the proposed CHT, we also implemented the Ngo et al. CHT [Ngo et 

al., 2014] and applied in the iris localization method presented in Figure 5.9. The Ngo et al. CHT 

differs from the proposed CHT as its voting space structure contains one 2D accumulator array of 

size 320×(240/n) cells and one 1D accumulator array of size 240×1 cells (compare with Figure 

5.2) for detecting circle in a 320×240 image. The 2D array is used to find radius and column 

coordinate (y) of circle center, whereas 1D array gives the row coordinate (x) of the circle center 

[Ngo et al., 2014]. For n=4, n=8 and n=16, the obtained memory reduction in Ngo et al. CHT is 

74.4%, 86.9% and 93.1% respectively as compared to the direct CHT. The accuracy results of the 

Ngo et al. CHT are shown in Figure 5.11.    

   

(a)                                                                            (b) 

   

(c)                                                                           (d) 

Figure 5.11. Accuracy comparison of the proposed CHT with the [Ngo et al., 2014] CHT for inner and 

outer iris-circle (iris-boundary) detection in CITHV4 and CIV1 images. 
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 The MATLAB simulation results in Figure 5.11 show that the proposed CHT has better 

accuracy than the Ngo et al. CHT for both inner and outer iris-circle detection to get same 

memory reduction. The results are discussed below. 

 The charts (a) and (b) in Figure 5.11 show that the Ngo et al. CHT is more accurate for 

CIV1 images than CITHV4 because the circles in CIV1 are bigger, whereas the proposed CHT is 

accurate for both CITHV4 and CIV1 images. The Ngo et al. CHT combines more number of 

rows in a group as compared to the proposed CHT to get same memory reduction, which reduces 

its accuracy for small circles. For example, to get the memory reduction of 93%, the Ngo et al. 

CHT combines 16 rows of the image in a single row of the 2D accumulator array (i.e. n=16), 

whereas the proposed CHT combines 4 rows of the image in a single row and 4 columns of the 

image in a single column of the 2D accumulator array (i.e. n=4 and m=4). It is concluded here, 

that the Ngo et al. CHT can detect bigger circles accurately but its accuracy degrades when 

applied to detect smaller circles, whereas the proposed CHT shows better accuracy for both 

smaller and bigger circles.  

 The charts (c) and (d) in Figure 5.11 illustrate that although the outer iris-circles are 

bigger, but the accuracy is not better than the inner iris-circle detection for both the Ngo et al. and 

the proposed CHTs because full circle is not visible as the iris is obstructed by eyelids and 

eyelashes. In [Ngo et al., 2014], the accuracy of 92% for outer iris-boundary detection with 93% 

memory reduction was reported, but remember that it was not for CASIA database (CITHV4 and 

CIV1) images where the iris is occluded by eyelids and eyelashes. 

 For complete iris localization also, the proposed CHT architecture is more accurate than 

the Ngo et al. CHT as shown in Table 5.9. 

Table 5.9. Comparison of iris localization (inner + outer iris-circle detection) results 

CHT method 
     Accuracy (%) 

Memory reduction (%) 
 CITHV4        CIV1  

Direct 100 94 0 

Ngo et al. (n=8) 68 88.5 87 

Proposed (m=2, n=4) 96 94 87 

 The synthesis results of the proposed CHT are compared with the synthesis results taken 

from [Ngo et al., 2014] as shown in Table 5.10. However, these results are for different FPGA 

devices. This comparison is to show the drastic reduction in number of BRAMs used. The 

synthesis results reported in [Ngo et al., 2014] are however for n=16, whereas the proposed 

CHT’s synthesis results are for m=2 and n=4, but they can be compared for the resources usage 
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other than block RAMs because by changing m or n, only the number of block RAMs changes 

without any major change in slice LUTs or other resources of FPGA. The [Ngo et al., 2014] used 

16 block RAMs for a single CHT module and the complete CHT architecture had required 256 

block RAMs for 16 different radii as shown in Table 5.10, but this number of block RAMs would 

get double almost for n=8 as each row buffer uses one block RAM. The target FPGA used in 

[Ngo et al., 2014] contains M9K memory blocks (block RAMs), where each block is configured 

as 512×16-bits dual port RAM module. 

Table 5.10. Comparison with other CHT implementation 

CHT implementation [Ngo et al., 2014]  Proposed  

Image resolution (pixels) 320×240 320×240 

Bit resolution (bits) 16 16 

Number of slice LUTs 9688 12886 

Number of slice registers 12165 1416 

Number of block RAMs 256 98 

Maximum frequency 214.78 MHz 203.00 MHz 

 

 There are two ways to implement memory in FPGA: 1) As distributed RAM realized 

using FPGA fabric; 2) As block RAM realized using prebuilt embedded memory blocks called 

BRAMs. There is no wastage of bits if memory is realized as distributed RAM, but there may be 

wastage of bits if realized as block RAM. For example, if BRAM size is 1K words and we want 

to implement 1D accumulator array (memory) of 320 cells using BRAM, then (1K-320) are 

wasted words.  

 The number of block RAMs and wasted words in implementing the 2D accumulator array 

is more in Ngo et al. as it uses one block RAM of size 512×16-bits for each row buffer of 320 

columns, thus wasting 192 (= 512 - 320) words per block RAM; whereas in the proposed CHT, 

the 2D accumulator array is first converted to 1D array and then implemented by interconnection 

of multiple block RAMs using their full words-capacity except last one which could have wasted 

words. Therefore, the proposed implementation utilizes embedded memory of FPGA more 

efficiently. The utilization of slice LUTs is more in the proposed CHT because it computes the 

circle points (r*cosθ, r*sinθ) for 16 different radii from the stored values of cosθ and sinθ, 

whereas the Ngo et al. CHT stores the pre-computed circle points (r*cosθ, r*sinθ) for all 16 

different radii in the look-up tables. Moreover, there are other components in the proposed CHT 

which are not used in the Ngo et al. CHT such as ‘Rounding and signed integer conversion’, ‘2D 

to 1D convertor’ and hardware for fine detection. 
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5.2 Edge-Map Generation Hardware for Pupillary Boundary  

The technique of edge-map generation for pupillary boundary detection was discussed in section 

4.2 of the previous chapter, which generates the optimal edge-map by combining two different 

edge-maps using intersection operation. Now, this section describes the hardware implementation 

of that technique. However, that technique is first optimized here for hardware implementation as 

shown in Figure 5.12. The optimized technique shows some modification of excluding the 

morphological operations over the previous technique presented in chapter 4: section 4.2, but 

both the techniques are based on the same idea of applying intersection operation (logical 

ANDing) on two different edge-maps of the same image to get the final edge-map. This 

modification has insignificant effect on the iris localization accuracy, which is shown later in 

section 5.5 of this chapter.    

 

Figure 5.12. Edge-map generation technique for pupillary boundary optimized for hardware 

implementation: (a) Original iris image (320×240) from CITHV4; (b) Gaussian smoothed iris image (σ 

=1.0, k=3); (c) Edge image obtained after applying Sobel edge detector without thinning on (b); (d) 

Binary image after applying intensity thresholding on (b); (e) Edge image obtained after applying Sobel 

edge detector without thinning on (d); (f) Edge-map obtained by intersection (logical ANDing) operation 

on (c) and (e). 

The proposed technique is suitable for parallel implementation on hardware as both the 

edge-maps in Figure 5.12(c) and Figure 5.12(e) can be generated in parallel and then combined 

using AND gates to obtain the optimized edge-map. The proposed technique (Figure 5.12) not 

only reduces the false edges due to eyelids, eyelashes, eyeglasses and eyebrow hair, but also 

eliminates the false edges due to reflections and dark illumination caused by the lighting source 

while capturing the image. 
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5.2.1 Proposed Hardware Architecture 

The proposed hardware architecture is shown in Figure 5.13 for the edge-map generation 

technique of Figure 5.12. This architecture reads one pixel of the input image every clock cycle 

and starts outputting one pixel per clock cycle of the final edge-map after an initial latency, 

thereby giving a throughput of one pixel per clock cycle. The initial latency is majorly caused by 

the sliding window component. This architecture is a parallel and pipelined design. 

 

 

Figure 5.13. Proposed edge-map generation hardware architecture for pupillary boundary. 

 

 The pipelining is realized using the sliding windows and the pipelined registers, and 

parallelism means the two edge-detected images are generated in parallel and combined to give a 

single edge-map. The sliding windows provide 3×3 pixels (P1, P2, P3… P9) of image to the 

Gaussian and Sobel filters. Figure 5.13 shows that the pixels of the input (original) image are 

processed by passing through a number of modules, such as sliding window, Gaussian filter, 

image binarization, Sobel edge detector and finally through AND gate, to get the final edge-map 

of the input image. The various hardware modules used in the proposed architecture are 

described next. 

5.2.2 Sliding Window  

In window based filtering [Bailey, 2011], [Gonzalez et al., 2009], the pixels of the input image 

are transformed using their local neighborhood pixels, which are selected using a window of size 
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W×W as shown in Figure 5.14. This window is generally a square in shape with W an odd 

number. The pixel of the output (filtered image) is obtained by performing some computations on 

the pixels within the window. The computations performed are determined by the type of filter 

(filter function, f). As the window is scanned through the input image, each possible position of 

window generates an output pixel according to filter function, f. Since the output depends not 

only on the input pixel but also on its local context, filters can be used for noise removal or 

reduction, edge detection and feature detection [Bailey, 2011]. 

 

 

Figure 5.14. Window filter. The shaded pixels represent the input window located at P5 that produces the 

filtered value, P5’ for the corresponding location in the output image. Each possible window position in 

the input image generates the corresponding pixel value in the output image. 

 

 

 From a purely software perspective, images are 2D arrays that reside in memory. The 

image filtering is a convolution operation of the input image with filter mask (kernel) defining 

the filter function. A 3×3 convolution in software pseudo-code would look as shown in Figure 

5.15 for a filter kernel, k and input image, I to get the filtered output image, O (= k ∗ I). The 

pseudo-code shows that image filtering is an iterative process, which repeats for each pixel in the 

input image. Figure 5.15(c) shows the 3×3 pixel window of the input image, whose pixels keep 

on changing when the window moves through the whole image from top-left to bottom-right of 

the image.   
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Figure 5.15. Window based image filtering: (a) Filter kernel; (b) Pseudo-code of 3×3 convolution for 

image filtering using filter kernel of (a); (c) 3×3 image window. 

   

 For hardware implementation of image filters, the sliding window architecture is used to 

perform the filtering operation as shown in Figure 5.16 for a 3×3 filter kernel. This architecture 

takes a pixel stream (one pixel per clock cycle) of the image as input and provides a 3×3 pixel 

stream (3×3 pixels per clock cycle) of the image as output, after an initial delay that is roughly 

equal to the time required to fill the line buffers (as described later). The output, 3×3 pixel (P1, 

P2, P3… P9) stream of the image is used in calculations with the 3×3 filter mask (kernel) of a 

particular filtering operation. This will have the effect of sliding a 3×3 kernel window in raster 

scan over the image, that is starting at the top-left and going up to the bottom-right of the image. 

The sliding window architecture has a single input line and nine output lines. 

 

Figure 5.16. 3×3 sliding window architecture. 
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The architecture uses two line buffers, which are essentially two FIFO (First in, First out) 

register sets, and nine 8-bit registers. The length of each line buffer is equal to W-3 for an image 

width, W. The line buffer is implemented using a dual port block RAM (BRAM) of FPGA, 

where a pixel is read from and another pixel is written into the BRAM simultaneously at every 

clock cycle to use it as a FIFO. The read and write addresses of the BRAM are incremented at 

every clock cycle and they reset to zero when they reach the full length of the line buffer. The 

read address always advances the write address by one.  

 This architecture provides an initial delay of 2W+3 clock cycles before it gives the first 

valid 3×3 pixel set as output, but after that it gives 3×3 pixel set at every clock cycle.     

5.2.3 Gaussian Filter 

The 3×3 filter mask or kernel (k) for Gaussian image filtering [Davies, 2012] is shown in 

Equation (5.1). The Equation (5.2) performs convolution of filter kernel (k) with the input image 

(I), which gives the smoothed image (IG). The elements of k are multiplied with corresponding 

pixels of image window to get the weighted sum as per Equation (5.3). The hardware architecture 

of Gaussian filter module implements the Equation (5.3) as shown in Figure 5.17, which 

computes a pixel P5’ of IG corresponding to a pixel P5 of I by placing the kernel (k) at P5 (center 

of k lies on P5). The input pixel values (P1, P2, P3… P9) change every clock cycle that are 

provided by sliding window architecture as discussed before in Figure 5.15. The blocks in Figure 

5.17 indicate the operations that are done on the 3×3-pixel stream of the input image to get the 

pixel stream of the filtered output image. Apart from the adders, the architecture uses the shifters 

to carry out multiplication and division operations and shifting by more than one bit is obtained 

in a single clock cycle. The pipelined registers are introduced in the architecture to get the 

throughput of one output pixel per clock cycle.             

                                        

k =
1

16
[
1 2 1
2 4 2
1 2 1

]                                                           (5.1)                                             

                                            IG = k ∗ I                                                                   (5.2)  

P5′ = (P1 + 2 ∗ P2 + P3 + 2 ∗ P4 + 4 ∗ P5 + 2 ∗ P6 + P7 + 2 ∗ P8 + P9)/16          (5.3) 
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Figure 5.17. Gaussian filter architecture. 

5.2.4 Sobel Edge Detector 

  The Sobel edge detector [Davies, 2012] utilizes two 3×3 gradient filter masks, which are 

convolved with the input image (I) to compute x-derivative and y-derivative of the image 

gradients that is Gx and Gy using Equation (5.4) and Equation (5.5) respectively.   

  Gx = [
−1 0 1
−2 0 2
−1 0 1

] ∗ I                                                             (5.4) 

   Gy = [
−1 −2 −1
   0    0    0
   1    2    1

] ∗ I                                                  (5.5) 

 The local edge strength is defined as the gradient magnitude (GM) and it is computed 

using Equation (5.6). It is expensive to design a hardware that will compute square and square 

root operations for every pixel. Thus, it is suitable to approximate the operations by absolute 

values as shown in Equation (5.7).       

      GM = √Gx
2 + Gy

2                                                                 (5.6) 

                      GM = |Gx| + |Gy|                                                               (5.7) 

G𝑥 = P3 + 2 ∗ P6 + P9 − P1 − 2 ∗ P4 − P7                                         (5.8) 

Gy = P7 + 2 ∗ P8 + P9 − P1 − 2 ∗ P2 − P3                                         (5.9) 
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 The Sobel edge detection architecture is shown in Figure 5.18, which computes image 

gradient components, Gx and Gy as per Equations (5.8) and Equation (5.9). These equations are 

obtained using image window and filter kernels given in Equation (5.4) and Equation (5.5), 

where P1, P2, P3… P9 are pixels of image window and these pixel values change as the window 

moves through the entire image as discussed previously in Figure 5.15. The Sobel edge detection 

architecture computes Gx and Gy in parallel and uses the pipelined registers for want of achieving 

throughput of one output pixel per clock cycle. After computing gradient magnitude using 

Equation (5.6), the edge pixel is chosen based on a threshold value as shown in Figure 5.18. The 

threshold was set at 85. The architecture involves addition, subtraction and multiplication 

operations and since the multiplication is costly in hardware, it is performed by left shift 

operation. 

 

Figure 5.18. Sobel edge detection architecture. 
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5.2.5 Image Binarization 

Image binarization also known as image thresholding is a region segmentation technique in the 

image based on intensity values. The global thresholding [Davies, 2012], [Gonzalez et al., 2009] 

with threshold value (T) is applied on the intensity image, f(x,y) to get the binarized-image 

(binary image). The binary image, g(x,y) is obtained using Equation (5.10). 

                                         g(x, y) = {
255 ← f(x, y) ≥ T

0     ← f(x, y) < T
                                                        (5.10) 

The hardware module with registered output for image binarization is shown in Figure 5.19, 

which is implementing Equation (5.10) with T = 40.  

 

 

 

Figure 5.19. Image binarization hardware. 

 

 

5.2.6 FPGA Implementation Results 

The edge-map generation architecture for pupillary boundary detection (Figure 5.13) was 

implemented with the Verilog HDL to target Xilinx’s 7 series FPGA, Zynq xc7z020-1clg484 and 

tested on Zedboard. Table 5.11 shows the synthesis results of the complete architecture presented 

in Figure 5.13. The overall frequency obtained is 276.625 MHz. The total number of block 

RAMs is 3, which were used to realize line buffers of sliding window architecture. 
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Table 5.11. Synthesis results of proposed edge-map generation hardware architecture for pupillary 

boundary  

Device Utilization Summary  

Logic Utilization Used Available Utilization 

Number of Slice Registers 396 106400 0% 

Number of Slice LUTs 462 53200 0% 

Number of fully used LUT-FF pairs 315 543 58% 

Number of Block RAM 3 140 2% 

Maximum frequency, fmax = 276.625 MHz 

 

 

 

 

Figure 5.20. Set-up to test the edge-map generation hardware for pupillary boundary on FPGA. 

5.2.7 Performance Results and Discussion 

A) Accuracy Test of the Proposed Edge-Map Generation Hardware for Pupillary 

Boundary 

For testing hardware of edge-map generation on FPGA, the Xilinx’s ‘system generator for DSP’ 

tool of VIVADO v2014.4 was used. A Simulink model was created, which uses Simulink 
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blocksets for reading image files from computer’s hard disk and saving the output image into 

MATLAB’s workspace. A snapshot of Simulink model that was used for testing the images on 

ZedBoard (Zynq FPGA board) is shown in Figure 5.20.   

 The ‘Read Input Image’ is a subsystem that we built using Simulink blocks to provide 

input pixel stream to the hardware under test as shown in Figure 5.20. The central block in this 

Simulink model is Xilinx’s JTAG hardware co-simulation, which contains the bitstream file (.bit) 

of our edge-map generation hardware for configuration of Zynq xc7z020-1clg484 FPGA on 

ZedBoard. The Zedboard connects to the computer using JTAG cable only. When the model runs 

first time, the FPGA device on ZedBoard is programmed, and then it receives the input pixel 

stream from the computer, processes the pixels and sends the output pixel stream back to the 

computer. The output pixel stream is saved into the computer as ID array of pixels and it is 

viewed as image using MATLAB. Now, to test next image, the new image path is specified in 

the model and the edge-map generation hardware in the FPGA runs again to generate edge-map 

of the image. This time model is run with skipping the FPGA configuration as FPGA is already 

programmed.  

 

 

Figure 5.21. Accuracy-test of edge-map generation hardware for pupillary boundary: (a) Test image; (b) 

Edge-map generated using the edge-map generation hardware executing on FPGA; (c) Edge-map 

generated using equivalent MATLAB code of edge-map generation hardware; (d) Difference image of (b) 

and (c). The images (320×240) are taken from CITHV4 and CILV3 database. 
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 The edge-maps generated by the FPGA implementation of edge-map generation for 

pupillary boundary detection are shown in Figure 5.21. The edge-map generation technique 

described in Figure 5.12 was also implemented in MATLAB, but without using built-in functions 

of MATLAB. Figure 5.21 shows that edge-map obtained from hardware implementation on 

FPGA exactly matches the edge-map obtained using MATLAB implementation. Therefore, the 

proposed hardware implementation is 100% accurate.  

B) Processing Time of the Proposed Edge-Map Generation Hardware for Pupillary 

Boundary 

The processing time of edge-map generation hardware was determined by counting the total 

clock cycles taken in completing the task of edge-map generation. The clock cycle latency of 

edge-map architecture and the latencies of its modules are given in Table 5.12.  

  

Table 5.12. Clock cycle latency of the proposed edge-map generation hardware for pupillary boundary 

Module Clock cycle latency 

3×3 sliding window (for 320×240 image, W=320)                643 (=2W+3) 

Gaussian filter 2 

Sobel edge detector 4 

Image binarization 1 

Complete architecture 643×2+7=1293 

 

Table 5.13. Processing time per image of the proposed edge-map generation hardware for pupillary 

boundary 

Image size 
Number of clock 

cycles 

Hardware 

simulation 

@200 MHz 

Sequential 

execution 

CPU@2.40GHz 

Speedup 

320×240 pixels 1293+320×240 390.46 µsec 0.82 sec 2100 

 

 The total number of clock cycles taken to generate the edge-map of an image of size 

320×240 pixels is given in Table 5.13. The maximum frequency of operation of the proposed 

edge-map generation hardware is 276.625 MHz, but we calculated processing time for a clock of 

200 MHz because maximum operating frequency of CHT was 203 MHz. The overall operating 

frequency is decided by the block having minimum frequency of operation, which is CHT in this 

case. The processing time is 390.46 µsec, which was obtained by multiplying number of clock 
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cycles with clock period as shown in Table 5.13. The equivalent MATLAB code of edge-map 

generation hardware takes average computation time of 0.82 sec per image when runs using 

MATLAB (version 8.4) installed on a computer with Intel i5 CPU @ 2.40 GHz, 8 GB RAM and 

Windows 7 operating system. However, the edge-map generation code written in MATLAB does 

not use built-in function of MATLAB, such as ‘edge ()’ function for edge detection. We wrote 

the MATLAB code for image filtering operations the way it is described in pseudo code of 

Figure 5.15. The MATLAB’s timer functions ‘tic’ and ‘toc’ were used to find the execution time 

of the MATLAB code. The proposed parallel and pipelined edge-map generation hardware 

architecture gives a 2100× speedup as compared to its equivalent MATLAB code executing 

sequentially using high speed CPU mentioned above. 

5.3 Edge-Map Generation Hardware for Limbic Boundary 

 

 

Figure 5.22. Edge-map generation for limbic boundary: (a) Input image; (b) Median filtered image; (c) 

Edge-map obtained using vertical Sobel edge detection. 

 

The edge-map for limbic boundary is generated by applying median filter on the input image 

followed by Sobel edge detection tuned to detect vertical edges in the filtered image. All the 
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edge-points in this edge-map are not used for circle detection using CHT rather only a selected 

number of edge-points on left and right sides of the pupil are used, as was shown in Figure 5.9 

and discussed in detail in the proposed method in chapter 4. The proposed method in chapter 4 

uses 9×9 median filter, but we have chosen a 5×5 median filter for hardware implementation to 

save the hardware resources. However, this filter size reduction has marginal effect on circle 

detection accuracy as it has been demonstrated later in section 5.5. The effect of size of median 

filter on edge-map generation is shown in Figure 5.22. The median filter is a nonlinear filter that 

is used to remove noise from images while preserving edges. It is particularly effective at 

removing ‘salt and pepper’ type noise. 

5.3.1 Proposed Hardware Architecture 

The edge-map generation hardware architecture for limbic boundary is shown in Figure 5.23. A 

general n×n median filter is shown in this figure, which means that depending on input data 

(image), a suitable size can be chosen. The larger size of the median filter hides more the small 

details of the image, but without damaging the edge structure in the image. To implement n×n 

median filter, an n×n sliding window architecture is required to provide the inputs to the filter. 

The vertical Sobel edge detection is obtained using a 3×3 filter. This differs from the Sobel filter 

discussed before in subsection 5.2.4, in a way that it computes vertical gradients only, hence, 

uses a single kernel. The image is applied as a pixel stream to this architecture and it produces an 

output pixel stream of the edge-map.  

 

 

Figure 5.23. Proposed edge-map generation hardware architecture for limbic boundary. 

 

 We have implemented hardware of 5×5 median filter. The parallelism and pipelining 

techniques have been used in the implementation of median and Sobel filters, so that a new 

output pixel is obtained at every clock cycle after an initial latency. For implementing the 5×5 

median filtering, a 5×5 sliding window architecture is required, which is described next.   
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A) 5×5 Sliding Window  

The 3×3 sliding window architecture discussed in subsection 5.2.2 is extended here, to a 5×5 

sliding window architecture shown in Figure 5.24 that provides a 5×5 pixel stream of the input 

image to the median filter core. This window buffer gives the first valid output after a delay of 

(4W+5) clock cycles for an image width, W and after that it gives valid output every clock cycle. 

It uses 4 line buffers and 25 shift registers. This module has a single input line and 25 output 

lines. 

 

Figure 5.24. 5×5 sliding window architecture. 

 

5.3.2 Median Filter Architecture 

The median filter works by moving through the image pixel by pixel, replacing each value with 

the median value of neighboring pixels. The pattern of neighbors is called the ‘window’, which 

slides, pixel by pixel over the entire image. The median is calculated by first sorting all the pixel 

values from the window into numerical order, and then replacing the pixel being considered with 

the middle (median) pixel value.  

 For a 5×5 window centered at the pixel to be processed in the input image, first all the 25 

pixels are arranged in ascending order and the median is taken that assigns to the processing pixel 

in the output image as shown in Figure 5.25. This 5×5 window then will move to the next pixel 

to be processed and then performs the same operation. This process continues, until all pixels of 

the input image are covered. 
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Figure 5.25. Working of 5×5 median filtering. 

 

A) Algorithm for Finding Median 

The algorithm to find median of 25 values is taken from [Kolte and Smith, 2000] and is shown in 

Figure 5.26. This algorithm was used for hardware implementation of 5×5 median filter. All the 

25 values are arranged as a 5×5 matrix without worrying about their order (position) in the 

matrix. In first stage (level) of the algorithm, all the 5 rows of the matrix are sorted in ascending 

order and sorted values are placed in new matrix as shown in Figure 5.26 (b). In second level, all 

the 5 columns of the new matrix are sorted in ascending order and three [1,1] middle diagonals of 

the sorted matrix are used for further processing. These 3 diagonals are shown in gray in Figure 

5.26 (d), which are also sorted and a single [2,1] diagonal is selected from these three [1,1] 

diagonals after sorting as shown in Figure 5.26(e). Finally, this [2,1] diagonal is sorted and the 

middle value is the median. The white cells in Figure 5.26(d) and Figure 5.26(e) are not involved 

in the computations.  

 This algorithm was chosen for hardware implementation of median filter because it 

involves independent sorting operations that can be carried out in parallel. For example, sorting 

of all rows or columns or diagonals can be done in parallel.  
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Figure 5.26. Algorithm for finding median of 5×5 values. 

 

B) Proposed Hardware Architecture for 5×5 Median Filter 

The proposed hardware architecture for 5×5 median filter is shown in Figure 5.27. This 

architecture implements the algorithm of Figure 5.26, which can be seen as four different stages: 

(1) Row sort; (2) Column sort; (3) Three [1,1] diagonal sort; (4) One [2,1] diagonal sort. In stage 

1 and stage 2 of the architecture, sorting of a row or a column means sorting 5 values, whereas in 

stage 3, two diagonals consist of 4 values each and one diagonal contain 5 values, that require 

sorting of 4 and 5 values respectively. Finally, a three value sorter is used for a single diagonal in 

stage 4, which gives the output of the architecture. All the rows, columns, or diagonals in a stage 

are sorted in parallel and the values are sorted in ascending order. In order to get throughput of 

one pixel per clock cycle, the pipelined registers are introduced in between different stages of the 

architecture. This parallel and pipelined architecture makes the median filter hardware fast. The 

sorting in each stage completes in a single clock cycle and the sorted values are stored in the 

registers that act as input for next stage. The sorting of five values or four values is carried out 

using a three value sorter as explained in next section. 
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Figure 5.27. The proposed 5×5 median filter hardware architecture. 

C) Sorting of Five Values 

The procedure for sorting five values using sorting of three values (three-value sorter) at a time is 

shown in Figure 5.28. This sorting completes in four steps. For sorting n values using a three-

value sorter, it will take n-1 steps (iterations) to complete. 

 

 

 

Figure 5.28. Example of sorting of five values using a three-value sorter. 
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 The combinational circuit for sorting of five values is shown in Figure 5.29. The circuit 

takes five 8-bit values as input, which are a, b, c, d and e and provides these values in ascending 

order as v, w, x, y and z. The inputs are applied to three-value sorter in a specific order as per 

procedure described in Figure 5.28. The proposed hardware architecture in Figure 5.27 also uses 

sorting module for four values, which requires 3 three-value sorters, as sorting of four numbers 

takes three steps to complete as per procedure explained in Figure 5.28. 

 

(a) 

 

(b) 
Figure 5.29. Sorting of five values: (a) Sorting module; (b) Circuit that uses three-value sorter. 

D) Three-Value Sorter 

The three-value sorter is fundamental component in the proposed median filter architecture and 

all the other sorting modules have been implemented using it. The conventional three-value 

sorter is shown in Figure 5.30, which is implemented using 3 two-value sorter [Vasanth et al., 

2010]. This is a three level serial implementation, where output of a two-value sorter in one level 

is used as input for other two-value sorter in next level.   

              

                                                (a)                                                                  (b) 

Figure 5.30. Three-value sorter: (a) Conventional sorter; (b) Two-value sorter used in (a). 
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                  (a)                                                                     (b) 

Figure 5.31. Proposed three-value sorter: (a) Sorting module; (b) Circuit diagram. 

 The three-value sorter is very important component in the proposed median filter 

architecture (Figure 5.27) as it decides the overall speed and resource utilization of the 

architecture. Sorting of five values and sorting of four values is achieved by cascading 4 and 3 

three-value sorters respectively as shown in Figure 5.29. The speed of all the sorting modules and 

hence, speed of overall architecture depends on the propagation delay of this combinational 

circuit. The proposed three-value sorter is designed using 3 two-value comparators and 3 

multiplexers. This proposed circuit shown in Figure 5.31 is faster than conventional three-value 

sorter and requires lesser hardware resources.  

5.3.3 Vertical Sobel Edge Detector 

The vertical Sobel edge detector computes only x-derivative component of image gradients to 

detect vertical edges in the image. It utilizes a 3×3 filter mask, which is convolved with the input 

image (I) to compute the x-derivative component, Gx using Equation (5.11). The local edge 

strength is defined as the gradient magnitude (GM) shown in Equation (5.12). 

Gx = [
−1 0 1
−2 0 2
−1 0 1

] ∗ I                                                             (5.11) 

                           GM = |Gx|                                                            (5.12) 

G𝑥 = P3 + 2 ∗ P6 + P9 − P1 − 2 ∗ P4 − P7                                       (5.13) 
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Figure 5.32. Vertical Sobel edge detector 

 

 The vertical Sobel edge detector architecture computes image gradient using Equation 

(5.13) and after taking its absolute value, the edge pixel is chosen based on a threshold value as 

shown in Figure 5.32. The threshold was set at 25. 

5.3.4 FPGA Implementation Results  

The edge-map creation architecture for limbic boundary detection (Figure 5.23) was 

implemented with the Verilog HDL to target Xilinx’s 7 series FPGA, Zynq xc7z020-1clg484 and 

tested on Zedboard. Table 5.14 shows the synthesis results of the complete architecture given in 

Figure 5.23. The overall frequency obtained is 394.633 MHz. Four block RAMs were used to 

realize line buffers of 5×5 and 3×3 sliding window architectures.  

 

Table 5.14. Synthesis results of the proposed edge-map generation hardware for limbic boundary using 

5×5 median filter 

Device Utilization Summary  

Logic Utilization Used Available Utilization 

Number of Slice Registers     1681 106400 1% 

Number of Slice LUTs 1841 53200 3% 

Number of fully used LUT-FF pairs 1368 2154 63% 

Number of Block RAM 3 140 2% 

Maximum frequency, fmax = 394.633 MHz 
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 We also implemented 3×3 median filter for comparing it with the 5×5 median filter, and 

it was used in the edge-map generation architecture of Figure 5.23. The algorithm for finding 

median of 3×3 values completes in three steps as per algorithm shown in Figure 5.26. These three 

steps are: (1) Sorting of three rows; (2) Sorting of three columns; and finally (3) Sorting of three 

elements of the [1,1] diagonal  [Kolte and Smith, 2000]. The mid value of these three elements is 

the median of 3×3 matrix. The synthesis results in Table 5.15 show that use of 3×3 median filter 

instead of 5×5 median filter reduces the logic utilization significantly.   

 

Table 5.15. Synthesis results of the proposed edge-map generation hardware for limbic boundary using 

3×3 median filter 

Device Utilization Summary 

Logic Utilization Used Available Utilization 

Number of Slice Registers 373 106400 0% 

Number of Slice LUTs 314 53200 0% 

Number of fully used LUT-FF pairs 246 441 55% 

Number of Block RAM/FIFO 2 140 1% 

Maximum frequency, fmax = 394.633 MHz 

 

 

Figure 5.33. Accuracy-test of edge-map generation hardware for limbic boundary: (a) Test image; (b) 

Edge-map generated using the edge-map generation hardware running on FPGA; (c) Edge-map generated 

using equivalent MATLAB code of edge-map generation hardware; (d) Difference image of (b) and (c). 
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5.3.5 Performance Results and Discussion  

A) Accuracy of Proposed Edge-Map Generation Hardware for Limbic Boundary 

To test the accuracy of edge-map generation hardware with respect to its equivalent MATLAB 

implementation, the previously discussed set-up of Figure 5.20 was used. The test images in 

Figure 5.33 show that the edge-maps obtained using the hardware (FPGA) and software 

(MATLAB) implementations are 100% matching.     

B) Processing Time of Proposed Edge-Map Generation Hardware for Limbic Boundary 

The clock cycles latency of the proposed architecture is shown in Table 5.16 and the total 

number of clock cycles the architecture takes for edge-map generation of 320×240 image is 

shown in Table 5.17. These numbers of clock cycles are practically verified. The input was fed to 

the hardware under test as shown in Figure 5.20 and output was received from FPGA board 

(Zedboard) via JTAG cable using ‘system generator for DSP’ tool. 

  

Table 5.16. Clock cycle latency of the proposed edge-map generation hardware for limbic boundary 

Module 
Clock cycle latency 

(for 320×240 image, W=320) 

n×n sliding window (for n=5)                          1285 (=4W+5) 

n×n median filter (for n=5)                            4 

3×3 sliding window                          643 (=2W+3) 

Vertical Sobel edge detector                             3 

Complete architecture                          1935 

 

Table 5.17. Processing time/ image of the proposed edge-map generation hardware for limbic boundary  

Image size 

Number of 

clock cycles 

Hardware 

simulation 

@200 MHz 

Sequential 

execution using 

CPU@2.40GHz 

Speedup 

320×240 pixels 1935+320×240 393.675 µsec 5.53 sec 14047 

 

 The proposed architecture gives a processing time (obtained by multiplying no. of clock 

cycles and clock period) of 393.675 µsec using a clock of 200 MHz as shown in Table 5.17. 

However, the maximum frequency of operation of the proposed architecture is 394.633 MHz. 
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The performance is evaluated at 200 MHz to keep minimum operating speed for all the blocks. 

The equivalent MATLAB code of edge-map generation hardware for limbic boundary detection 

takes execution time of 5.53 sec when allowed to run sequentially using MATLAB (version 8.4) 

on a computer with Intel i5 CPU @ 2.40 GHz, 8 GB RAM and Windows 7 operating system. 

This code does not use built-in MATLAB functions and the code for median filter was written as 

per algorithm described in subsection 5.3.2 that was used for hardware implementation of median 

filter. We did not use MATLAB function ‘sort ( )’ for sorting of values in the median filter 

algorithm, rather we coded a three-value sorter and it was used to sort the higher number of 

values like we did in the hardware implementation of median filter. The proposed edge-map 

generation hardware architecture gives a huge 14047× speedup as compared to its equivalent 

MATLAB code execution on a PC platform mentioned above.  

 

Table 5.18. 5×5 window median filter architectures 

Architecture 
Clock cycle 

latency 

Maximum frequency 

of operation (fmax) in 

MHz 

FPGA Resources (%) 

[Prokin and Prokin, 2010] 8 318 <1 (Altera Stratix II) 

Batcher sort* 15 215 2 (Altera Stratix II) 

Systolic sort* 27 310 4.2 (Altera Stratix II) 

Radix sort* 30 280 2.4 (Altera Stratix II) 

Merge sort* 70 140 11 (Altera Stratix II) 

Proposed 4 394.633 (Xilinx Zynq) 

Slice registers=1 

Slice LUTs =3 

*Results are taken from [Prokin and Prokin, 2010]. 

5.3.6 Comparison of Median Filter Architectures 

The proposed 5×5 median filter architecture (Figure 5.27) provides least latency for computing 

median of 25 values as compared to the existing architectures [Prokin and Prokin, 2010]. The 

proposed architecture has a clock cycle latency of 4, whereas the other architectures based on 

Batcher sort [Batcher, 1968], systolic sort [Thompson, 1983], radix sort [Danielsson, 1981] and 

merge sort [Knuth, 1998] have clock cycle latency of 15, 27, 30 and 70 respectively (Table 5.18). 

These architectures are described in [Scott et al., 2008]. The most recent architecture proposed by 

[Prokin and Prokin, 2010] has a latency of 8 clock cycles, which is still double of the proposed 

architecture. The maximum frequency of operation of the proposed architecture is 394.633 MHz 
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as discussed later, which is higher than all the above-mentioned architectures. The proposed 

architecture achieves this improvement in the latency at the cost of increased hardware resources 

as compared to [Prokin and Prokin, 2010]. However, our 3×3 median filter implemented using 

same method is more hardware efficient.  

5.4 Adaptive CHT for Limbic Boundary Detection 

CHT hardware discussed in section 5.1 can be used as adaptive CHT hardware for limbic 

boundary detection. While using the CHT hardware of Figure 5.4 as adaptive CHT, the circle 

point generator unit will have to read 180 values from each look-up table of sinθ and cosθ instead 

of all the 360 values stored in the look-up tables, because the adaptive CHT detects a structure of 

two circular arcs defined by -45:45 and 135:225 degree as was discussed in chapter 4. 

 

Table 5.19. Difference between the method used for iris localization hardware implementation and the 

proposed method described in chapter 4 

Stages Proposed method described in chapter 4 Iris localization hardware method 

Edge-map 

generation 

for pupillary 

boundary 

detection 

 5×5 Gaussian filtering 

 Thresholding 

 Image opening and hole filling  

 Sobel edge detection without 

thinning 

 Intersection of images 

 3×3 Gaussian filtering 

 Thresholding 

 Sobel edge detection without 

thinning 

 Intersection of images 

Edge-map 

generation 

for limbic 

boundary 

detection 

 9×9 median filtering 

 Vertical Sobel edge detection 

without thinning 

 5×5 median filtering 

 Vertical Sobel edge detection 

without thinning 

CHT  General CHT for pupillary circle 

detection 

 Adaptive CHT for limbic circle 

detection  

 CHT (m=2, n=4) for pupillary 

circle detection 

 CHT (m=2, n=4) or adaptive 

CHT (m=2,n=4) for limbic 

circle detection 

5.5 Accuracy Evaluation of Iris Localization Hardware 

The iris localization hardware would consist of the edge-map generation hardware (for pupillary 

and limbic boundary) and CHT hardware. The edge-map generation hardware modules for 
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pupillary and limbic boundary detection can run in parallel, but CHT hardware has to run twice; 

first to detect pupillary boundary and then limbic boundary, as limbic boundary detection 

requires pupil circle parameters as input as shown in Figure 5.9. As it has been discussed in the 

previous sections that the CHT technique and the edge-map generation techniques for pupillary 

and limbic boundary detection have been modified (or optimized) in favor of their hardware 

implementation and they are not exactly same as the techniques described in the proposed 

method in previous chapter. Optimization for hardware implementation means, for example, 

CHT was modified by reducing its accumulator voting space in order to achieve memory 

reduction and median filter size was reduced to save hardware resources. However, these 

optimizations have resulted in marginal loss of accuracy. The differences between the proposed 

method of chapter 4 and its new version that was implemented in hardware in this chapter are 

show in Table 5.19. These modified techniques were evaluated to know their impact on iris 

localization accuracy. The evaluation was done using MATLAB software, because the edge-

maps obtained using edge-map generation hardware are exactly same as the edge-maps obtained 

using the equivalent MATLAB code for both pupillary and limbic boundary detection as 

discussed in the previous sections.  

5.5.1 Datasets Used  

The following two datasets were used in the experiments to find accuracy of the iris localization 

hardware method:   

1. CITHV4: First 1000 images of this database were taken.  

2. CASIA-iris-lamp, version 3.0 (CILV3): A total 811 images were chosen from this 

database selecting first left and first right eye image of each subject. 

 

Table 5.20. Accuracy results of iris localization methods  

S.No. Method 
Accuracy (%)  

CITHV4 CILV3 

1 Proposed method described in chapter 4 99.7 99.38 

2 Iris localization hardware method with CHT (m=2, n=4) 98.7 96.9 

3 Iris localization hardware method with CHT (m=2, n=4) for 

pupillary boundary and adaptive CHT (m=2, n=4) for limbic 

boundary detection 

98.7 97.4 

 



    

 

110 
 

 The accuracy results are shown in Table 5.20, which shows that the accuracy of iris 

localization hardware reduces a bit as compared to the proposed method described in chapter 4. 

This reduction in accuracy is the impact of modifying CHT and edge-map generation techniques 

for hardware implementation of iris localization. The Table 5.20 shows that use of adaptive CHT 

for limbic boundary detection improves the accuracy of iris localization hardware for CILV3 

database.  

5.6 Concluding Remarks  

A) CHT Architecture 

The proposed CHT architecture can provide a large memory reduction but with little or no 

accuracy degradation; therefore, depending on the application, the priority can be given to either 

accuracy or memory resources usage. The proposed CHT hardware architecture gives a 250× 

speedup as compared to its equivalent MATLAB code execution on today’s high speed general 

purpose CPUs. Hence, the proposed CHT can be used as a hardware accelerator for ‘iris 

localization’ in the iris recognition’ systems to get real-time performance in the embedded 

applications where low speed CPUs are used and the resources are limited. The comparison with 

previous [Ngo et al., 2014] work on FPGA based iris-boundary detection shows that the proposed 

architecture is not only more accurate, but also utilizes less FPGA’s embedded memory (block 

RAMs). Moreover, the previous work can detect outer iris-boundary only, whereas the proposed 

CHT hardware detects both inner and outer iris-boundaries.  

B) Edge-Map Generation Hardware for Pupillary Boundary 

The technique used for edge-map generation reduces the false edge-points significantly in the 

final edge-map due to logical AND operation on two different edge-maps. The two different 

edge-maps are generated in parallel and are combined into a single (final) edge-map 

simultaneously, which makes the proposed hardware architecture faster. The complete edge-map 

generation hardware is made up of sliding window, Gaussian filter, Sobel edge detection and 

image binarization modules. This is a parallel and pipelined architecture, which produces the 

output image pixels at a rate of one pixel per clock cycle while the input image pixels are also 

coming at the rate of one pixel per clock cycle. The edge-map generation hardware takes 390.465 

µsec to generate the final edge-map for an input image of size 320×240 pixels. The edge-map 



    

 

111 
 

generation hardware for pupillary boundary gives a 2100× speedup as compared to its equivalent 

MATLAB code execution on today’s high speed general purpose CPUs. The edge-map 

generation hardware is the resource efficient FPGA implementation as it takes negligible slices 

(almost 0% resource utilization) of Xilinx’s Zynq FPGA device. The edge-map generated using 

the proposed edge-map generation hardware is exactly same as the edge-map generated by its 

equivalent MATLAB implementation with or without using built-in functions of MATLAB. 

C) Edge-Map Generation Hardware for Limbic Boundary 

The edge-map is generated using median filtering followed by vertical Sobel edge detection. The 

edge-map generation hardware consists of a 5×5 median filter and vertical Sobel edge detection 

modules. The 5×5 and 3×3 sliding window architectures were implemented for median and Sobel 

edge detection filters respectively. This is a parallel and pipelined architecture, which produces 

the output image pixels at a rate of one pixel per clock cycle while the input image pixels are also 

coming at the rate of one pixel per clock cycle. The edge-map generation hardware takes 393.675 

µsec to generate the final edge-map for an input image of size 320×240 pixels. This gives a huge 

14047× speedup for edge-map generation as compared to its equivalent MATLAB code 

execution on today’s high speed general purpose CPUs. The edge-map generation hardware is 

the resource efficient FPGA implementation as it takes negligible slices (almost 4% resource 

utilization) of Xilinx’s Zynq FPGA device. The edge-maps of iris image generated using the 

proposed edge-map generation hardware and its equivalent MATLAB implementation are 

exactly same.   

 The 5×5 median filter is the main module of the edge-map generation hardware for limbic 

boundary. The proposed median filter architecture has clock cycle latency of 4, which is much 

better than the previous median filter architectures in the literature. The maximum frequency of 

operation is also improved as compared to previous architectures. We also implemented 3×3 

median filter, which has a clock cycle latency of 3.  
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Chapter 6                                             

Preliminary Work towards Hardware 

Implementation of Iris Localization for VW 

Images 
 

 

The previous chapters have discussed about iris localization algorithms for near infrared (NIR) 

images and the hardware implementation of a CHT based method. The hardware implementation 

discusses the implementation of individual stages of iris localization that is circular Hough 

transform (CHT) and edge-map generation techniques for pupillary and limbic boundaries on 

field programmable gate array (FPGA). The previous chapters do not discuss iris localization for 

visible wavelength (VW) images, which is also important as iris recognition with VW images is 

also becoming popular nowadays as discussed in subsection 2.1.3. In this chapter, we propose an 

accurate iris localization algorithm for VW images and characteristic of this algorithm is that it is 

suitable for hardware implementation. The proposed algorithm uses the same CHT that was used 

for NIR images, but difference lies in the image preprocessing techniques. This proposed 

algorithm for VW images is described in this chapter and its hardware implementation will 

require mostly the hardware modules that have already been discussed in chapter 5 for NIR 

images.   

6.1 Proposed Iris Localization Method for VW Images 

The proposed method is based on CHT. The CHT based method is chosen for VW images as it is 

more suitable for parallel implementation on FPGA as discussed in the previous chapter. 

Moreover, we already have developed CHT and edge detection hardware modules in the previous 

chapter for NIR images, which can be used for VW image also. In the iris localization methods 

of VW images, the limbic boundary is detected prior to the pupillary boundary, unlike the iris 

localization methods of NIR images, because the gray difference between iris and sclera is much 
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higher than the gray difference between pupil and iris in the VW images [Radman et al., 2012], 

[Proenca, 2010]. The proposed algorithm uses the same CHT that was used for NIR images, but 

difference lies in the edge-map generation techniques.   

6.1.1 Limbic Boundary Detection 

The process of limbic boundary detection is illustrated in Figure 6.1. The edge-map of iris image 

is generated using median filtering and Sobel edge detection. The image preprocessing using the 

median filter is done to remove the eyelashes and eyebrow hair threads, which are rapid gray-

level variations in the image. The median filter [Gonzalez et al., 2009] also smoothens the image 

by reducing the minute details in the image, but preserves the edge information in the image, 

which reduces the false edges in the edge-map of the image. The size of the median filter kernel 

taken is [5×5], which was determined experimentally.  

Next, the Sobel edge detection is applied on the filtered image to find the vertical edges 

as the horizontal iris edges may not be visible in the image due to occlusions by eyelids and 

eyelashes. The Sobel kernel used for vertical edge detection is given in [Gonzalez et al., 2009], 

which computes image gradient magnitude using x-derivative component only. For Sobel edge 

detection method, a threshold value is used to threshold the computed gradient magnitude for an 

edge pixel. The initial value of threshold was determined by ‘edge ( )’ function of MATLAB, 

which was then adjusted by experiments on database images. The higher threshold gives a fewer 

edge pixels and lower threshold gives more edge pixels. The threshold value was set at 0.035 in 

the ‘edge ( )’ function. 

 

Figure 6.1. Limbic boundary detection for VW images: (a) Original Image; (b) Smoothed image of (a) 

obtained using 5×5 median filter; (c) Edge-map for limbic boundary detection, obtained by applying 

vertical Sobel edge detector on (b) without thinning operation; (d) Limbic boundary detected image 

obtained on applying adaptive CHT on (c).   

The adaptive CHT is applied to detect limbic boundary in the edge-map, which 

essentially looks for a set of two vertical arcs in the edge-map instead of a full circle as discussed 

previously in chapter 4.  
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6.1.2 Pupillary Boundary Detection 

The center of limbic boundary circle is used for detecting the pupil boundary. Using the circle 

center, a subimage of W×W pixels is extracted from the iris image, where W is diameter of 

biggest pupil in the image database chosen by manual inspection of the database images. This 

subimage centered at the limbic boundary center in the image, is used for the pupillary boundary 

detection as shown in Figure 6.2. The process of pupillary boundary detection involves an image 

preprocessing step of reflection removal in the subimage. The light source reflections in the pupil 

region causes problem in pupillary boundary detection because they appear as thick and strong 

white edges in the edge-map obtained after applying Sobel edge detection without thinning 

operation. The reflection has to be removed before the edge detection step as shown in Figure 

6.2. 

 

 

Figure 6.2. Pupillary boundary detection for VW images: (a) Original image after limbic boundary 

detection. The rectangle in blue contains the subimage to be processed for pupil boundary detection; (b) 

The subimage extracted from (a); (c) Reflection map of subimage; (d) Enhanced-reflection map, obtained 

using dilation operation on (c) with circular structuring element of radius two; (e) Reflections free 

subimage; (f) Smoothed image after median filtering on (e); (g) Edge-map, obtained by applying both 

horizontal and vertical Sobel edge detection on (f); (h) Pupillary boundary detected image obtained after 

applying CHT on (g).   

 

 The reflections are first localized using thresholding operation on grayscale images 

[Gonzalez et al., 2009]. The intensity threshold value used in the operation is 130, which was 

chosen based on the histogram of a few images and value once chosen after experiments remains 
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same for whole database images. The localized reflection pixels are shown as black pixels in the 

binary image. The obtained reflection region (map) in the binary image is enhanced through 

morphological dilation operation for black objects. The dilation operation increases the areas of 

localized reflections, so that the reflection map contains the reflections together with glows 

around them. The glows are formed by pixels with intensities intermediate between the high 

reflection intensities and the intensities of surrounding pixels not affected by the reflection. The 

dilation operation uses ‘disk’ type structuring element of radius two. The coordinates of 

reflections in the enhanced reflection map (Figure 6.2(d)) are found and the pixel values at these 

coordinates in the original intensity subimage are replaced by a low pixel value of IL. The 

intensity value, IL should be close to the average intensity of the pupil area not affected by the 

reflections, which we chose heuristically using the histograms of a number of subimages. The 

intensity value, IL chosen is 25, which was kept same for all the database images.   

After reflection removal, the image is passed through a median filter of window size 

[5×5] to smooth the image as shown in Figure 6.2(f). The resulting image is called the 

preprocessed image that is used as input for edge detection step. Both vertical and horizontal 

Sobel edge detection is used to find the pupil boundary edges, as the pupil is mostly available as 

full circle in the images. The threshold value used in the detection remains constant for the whole 

database images. Next, CHT is used to detect the pupil circle in the edge-map of the subimage. 

The CHT implementation is same as discussed in chapter 4. 

 

 

Figure 6.3. Images with wrong pupillary boundary detection. 

 

Figure 6.3 shows a few images in which the limbic boundary was detected correctly, but 

the pupil boundary wrongly. This has happened because of the low intensity difference between 

the pupil and iris regions, the edge detector fails to detect the pupil edges. To resolve this issue 

and improve the accuracy of pupil boundary detection, we used an extra step of image contrast 

enhancement before the reflection removal step as shown in Figure 6.4. Path 1 in Figure 6.4 

shows how the pupil localization fails in the images with less gray difference between pupil and 
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iris and Path 2 shows how it was corrected. To enhance the contrast of the image, the MATLAB 

function, ‘imadjust (I)’ was used, which maps the intensity values in grayscale image I to new 

values in J such that 1% of data is saturated at low and high intensities of I. This increases the 

contrast of the output image J.  

 

 

Figure 6.4. Pupillary boundary detection corrected. Path 1 results in wrong detection of pupillary 

boundary; Path 2 results in correct detection of pupillary boundary by introducing a contrast-enhanced 

image.   

6.1.3 Performance Evaluation 

The datasets used for evaluating the proposed method were taken from UBIRIS.v1 database 

[Proença and Alexandre, 2005] that contains the visible spectral range iris images. This database 

contains the images that were collected in two separate sessions. The first session contains 1214 

images, whereas the second session contains 662 images. We did experimentations with all the 

images of session-1, which contains less unconstrained images as compared to session-2. 

However, the session-1 images contain non-ideal issues such as reflection, low contrast between 

pupil and iris, poor focus and occlusion by eyelids and eyelashes. The example images of the 

correct iris localization are shown in Figure 6.5 and Figure 6.6 by the proposed method along 

with the edge-maps for limbic and pupillary boundary detection. The example images with 

wrong iris localization by the proposed method are shown in Figure 6.7. 

The experiments on the datasets were done using a computer with Intel i5 CPU @ 2.40 

GHz, 8 GB RAM and Windows 7 operating system. The proposed algorithm is implemented and 

tested with MATLAB (version 8.4) tool. 
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Figure 6.5. Iris localization in 200×150 pixel images from UBIRIS.v1: (a) Original image; (b) Edge-map 

for limbic boundary detection; (c) Edge-map for pupillary boundary detection; (d) Iris localized image. 

 

Figure 6.6. Iris localization in 640×480 pixel images from UBIRIS.v1: (a) Original image; (b) Edge-map 

for limbic boundary detection; (c) Edge-map for pupillary boundary detection; (d) Iris localized image. 
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Figure 6.7. Images with wrong iris localization by the proposed method. 

 

For limbic boundary detection, the proposed method uses vertical (V) Sobel edge 

detection plus adaptive CHT after having preprocessed the image with median filter; but we also 

tried other alternatives before reaching to the proposed method. For example, we observed a 

methodology that uses both vertical and horizontal (H) Sobel edge detection for edge-map 

generation; and uses CHT for circle detection in the edge-map. This method resulted in more 

computation time and degradation in the accuracy of limbic boundary detection. The reasons for 

this reduced performance are more number of false edges and full circle lengths drawn in the 

CHT. The different combinations of edge detection and CHT techniques for limbic boundary 

detection are mentioned in Table 6.1. The input image to all these combinations (methods) is a 

preprocessed image obtained after applying median filter on the original image. The Table 6.1 

shows that the 4th method (the proposed method) in the table gives the best accuracy and time 

performance.  

 

Table 6.1. Variants of edge detection plus CHT based iris localization 

 

Method* 

Limbic boundary detection Pupillary boundary detection Iris localization results 

Sobel edge 

detection 

Circle 

detection 

Sobel edge 

detection 

Circle 

detection 

Accuracy 

(%) 

Av. time 

per image 

(sec) 

1 V+H CHT V+H CHT 95 2.8 

2 V CHT V+H CHT 97.5 2.1 

3 V Adaptive CHT V+H CHT 98.4 0.83 

4 V Adaptive 

CHT 

Contrast enhancement 

plus (V+H) 
CHT 

 

99.17 0.87 

*All methods use image preprocessing: Median filter for limbic boundary; Reflection removal for 

pupillary boundary. 

 

For pupillary boundary detection, enhancing the contrast of image results in improved 

accuracy as shown in the Table 6.1. The Sobel edge detection for pupillary boundary detection is 

applied on the reflection free preprocessed image in all the methods of Table 6.1.     
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Table 6.1 shows that use of adaptive CHT instead of CHT for limbic boundary detection 

gives more time benefit than accuracy benefit in iris localization.  

6.1.4 Comparison with Other Methods 

The proposed method is compared with the existing methods to verify its effectiveness. Table 6.2 

shows that the accuracy of the proposed method is better than some of the methods in the table. 

The accuracy results of [Daugman, 1993] and [Wildes, 1997] methods listed in the table are 

taken from [Radman et al., 2012], but [Radman et al., 2012] does not provide time cost results, 

which are, therefore, taken from [Proença and Alexandre, 2006]. In [Proença and Alexandre, 

2006], all the algorithms were implemented in C++ following an object-oriented paradigm and 

running in an image processing framework. However, the computation time cannot be compared 

accurately as the algorithms may be running on different machines or computing platforms, but 

[Jan et al., 2012] method is implemented in MATLAB and uses similar PC platform that we have 

used for executing the proposed method. The computation time per image is lowest for the 

proposed method among all the methods in the table.  

 

Table 6.2. Comparison with published results for UBIRIS.v1 database 

Iris localization method Accuracy (%) Time per image (sec) 

[Daugman, 1993] 95.22 2.73 

[Wildes, 1997] 98.68 1.95 

[Proença and Alexandre, 2006] 98.02 2.30 

[Jan et al., 2012]  93.5 1.14 

Proposed  99.17 0.87 

 

6.2 Concluding Remarks  

In this chapter, we have presented an iris localization method for VW images, which can be 

implemented on FPGA using the hardware implementation techniques discussed in chapter 5. 

The proposed iris localization method is tolerant to some of the non-ideal issues and noises in the 

images, such as iris-occlusions by the eyelids and eyelashes, lighting reflections, and low contrast 

etc. The comparison with published results shows that the proposed method has improved time 

performance than the previous methods, but similar accuracy performance.   
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 The preliminary work of algorithm optimization towards the hardware implementation of 

iris localization for VW images is over. This algorithm will require for its hardware 

implementation the same CHT architecture and same edge-map generation hardware for limbic 

boundary detection those were used for NIR images in the previous chapter. The edge-map 

generation hardware for pupillary boundary detection will require two additional filtering 

modules: image dilation for reflection removal and image enhancement. 
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Chapter 7                                                

Conclusion and Future Directions 
 

 

We have discussed two algorithms to make iris localization task faster and accurate: (1) the 

integro-differential operator (IDO) based method; and (2) the circular Hough transform (CHT) 

based method. The CHT based algorithm was chosen for hardware implementation of iris 

localization. This iris localization hardware can be useful to embedded iris recognition systems to 

meet real time performance. Our main contributions in this thesis are summarized below.  

7.1 Summary of Contributions 

A) Improved Iris Localization Based on Daugman’s IDO for Near Infrared (NIR) Images  

The proposed method proposes a technique based on intensity thresholding and morphological 

operation on binary image to reduce the number of pixels on which the IDO is applied for 

detecting pupil, which improves the time and accuracy performance. This technique reduces the 

number of false candidate pixels, which cannot be potential centers of pupil circle. The use of 

adaptive IDO for limbic boundary detection further improves the performance. The proposed 

method was tested with CASIA-iris-thousand, version 4.0 (CITHV4) and Multimedia University, 

version 1.0 (MMUV1) database images. This method is tolerant to the image noises such as 

reflections, low contrast and occlusions by the eyelids, eyelashes and eyebrow hair etc. (Chapter 

3). 

B) An Accurate and Fast Iris Localization Method Using Edge-Map Generation and 

Adaptive CHT for Less Constrained NIR Images  

The two main contributions in this method are an edge-map generation technique for pupillary 

boundary detection and an adaptive CHT algorithm for limbic boundary detection, which make 

the iris localization more accurate and fast. The proposed method is tolerant to the noises such as 
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iris-occlusions by the eyelids and eyelashes, lighting reflections, non-uniform illumination, 

eyeglasses, low contrast and eyebrow hair. However, the method also improves iris localization 

in the images that do not have reflection spots and non-uniform illumination, but have mainly the 

iris-occlusions by the eyelids and eyelashes. The proposed method was tested with CITHV4, 

CASIA-iris-lamp, version 3.0 (CILV3) and MMUV1 database images (Chapter 4). 

C) Design and Hardware Implementation of a Memory-Efficient CHT Architecture on 

Field Programmable Gate Array (FPGA) 

The proposed CHT architecture can provide a large memory reduction between 74% and 93%, 

but with little or no accuracy degradation. The average iris localization time obtained is 6.25 ms 

per image for an image of size 320×240 pixels. The proposed CHT can be used as a hardware 

accelerator for ‘iris localization’ in the iris recognition’ systems to get real-time performance in 

the embedded applications where low speed central processing units (CPUs) are used and the 

resources are limited (Chapter 5). 

D) Hardware Implementation of a Novel Edge-Map Generation Technique for Pupillary 

Boundary Detection in NIR Images 

This is a parallel and pipelined implementation, which produces the output image pixels at a rate 

of one pixel per clock cycle while the input image pixels are also coming at the same rate of one 

pixel per clock cycle, after a small initial latency. The edge-map generation hardware takes 390 

µsec to generate the edge-map for an input image of size 320×240 pixels, when it is clocked at 

200 MHz. This gives a 2100× speedup for edge-map generation as compared to its equivalent 

MATLAB implementation executing sequentially on today’s high speed general purpose CPUs 

(Chapter 5). 

E) Hardware Implementation of Edge-Map Generation for Limbic Boundary Detection in 

NIR Images 

This parallel and pipelined implementation produces the output pixels at a rate of one pixel per 

clock cycle for an input pixel rate of one pixel per clock cycle, after a small initial latency. The 

edge-map generation hardware takes 393.675 µsec to generate the final edge-map for an input 

image of size 320×240 pixels, when it is clocked at 200 MHz. This gives a huge 14047× speedup 
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for edge-map generation as compared to its equivalent MATLAB code execution on today’s high 

speed general purpose processors (Chapter 5). 

F) Architecture Design and Hardware Implementation of 5×5 Median Filter 

The proposed median filter architecture was used in the edge-map generation hardware for limbic 

boundary detection in NIR images. However, the median filter is also used for visible wavelength 

(VW) images to generate edge-map for limbic boundary detection (Chapter 6), and its another 

application in iris recognition is the iris feature extraction based on median filter [Zuo et al., 

2008]. The proposed median filter architecture has clock cycle latency of 4, which is much better 

than the previous median filter architectures in the literature. The maximum frequency of 

operation is also improved as compared to previous architectures. The proposed architecture can 

be extended to the larger size median filter also (Chapter 5). 

G) Iris Localization Algorithm for VW Images Optimized for Hardware Implementation   

The CHT based algorithm is proposed for iris localization in VW images, which is fast, accurate 

and suitable for hardware implementation. This algorithm will require for its hardware 

implementation the same CHT architecture and same edge-map generation hardware for limbic 

boundary detection that were used for NIR images in this thesis. The edge-map generation 

hardware for pupillary boundary detection will require two additional filtering modules: image 

dilation for reflection removal and image enhancement. The edge-map generation hardware for 

pupillary boundary detection is only the difference between hardware implementations of iris 

localization for VW and NIR images, and rests all the other hardware modules are same (Chapter 

6).  

7.2 Future Directions 

The work presented in this thesis is useful for the following systems/ applications: 

A) Real Time Iris Localization in Video Based Biometric System 

The iris region can be localized in video for identifying persons using iris biometrics for security 

applications. For such systems, FPGA based iris localization can be very useful to meet real time 

performance for a video of high frame rate. Face and iris recognition on the move are advanced 
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biometric systems, which require video input instead of the pictures captured with user’s co-

operation.  

B) FPGA Based Iris Recognition System 

A prototype of the complete iris recognition system can be developed using FPGA platform. 

Today’s FPGA chip contains both the CPU core(s) and configurable logic (fabric). The iris 

localization can be implemented on FPGA fabric, as it is slower process when executes on serial 

processor as compared to feature extraction and matching stages.   

C) Application Specific Instruction-Set Processor (ASIP) 

This kind of processor is developed for a particular application and it contains dedicated 

hardware blocks for executing some instructions or functions. For example, to perform edge 

detection in   MATLAB, we use ‘edge ( )’ function, but ASIP will use dedicated hardware to 

perform edge detection. The various hardware modules discussed in this thesis can be used in the 

development of ASIPs for image processing or iris recognition application.  
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