I am grateful to the almighty for giving me the confidence, faith, and guidance through various people and situations, which has helped me to produce this research work.

I wish to express a deep sense of gratitude and sincere thanks to my supervisor, Prof. Ajit Pratap Singh, Dean, Academic-Undergraduate Studies (AUGS), BITS Pilani, for his valuable guidance, encouragement, suggestions, and moral support throughout the period of this research work. He helped me learn different ways to achieve the research objectives and taught me the importance of being persistent to accomplish any task I undertake. He also helped me realize my career goals through his advice and recommendations. I consider it a privilege to have been his student and to have worked under his valuable guidance. No matter whatever I accomplish, he will always be my core of inspiration. I could not have imagined having a better advisor and mentor other than him.

I would equally express my gratitude and sincere thanks to my co-supervisor, Prof. Anshuman, Associate Professor and Head of the Department, Civil Engineering Department, BITS Pilani, for his support, encouragement, suggestions and invaluable guidance throughout the period of this research work. It has been a privilege for me to work under his valuable guidance. I deeply acknowledge his continuous assistance throughout my research work. I would like to take this opportunity to express my gratefulness to Dr. S. N. Patel and Dr. Prasanta Kumar Sahu, who are the members of Doctoral Advisory Committee (DAC), for their kind suggestions, moral support and assistance. I also take this opportunity to thank Prof. A. K. Sarkar, Visiting Professor, IIT Jammu, and all the faculty members of the Civil Engineering Department for their encouragement and support. I deeply express my gratitude to Aimil Ltd., New Delhi, and Lea Associates, New Delhi, for supporting to carry out the research objectives. I would like to thank Mr. Anurag Chauhan for his continuous support in providing all the relevant information required for the research work. I convey my honest thanks to Mr. Naresh Kumar and Mr. Ajay Singh, for their support during data collection.

I deeply express my much appreciations to Birla Institute of Technology and Science (BITS), Pilani for providing me all the necessary facilities to complete the research work. I am extremely grateful to Prof. Souvik Bhattacharyya, Vice Chancellor, BITS Pilani for giving me an opportunity to peruse my research work successfully at this very reputed Institute. I also express my gratitude to Prof. Srinivas Krishnaswamy, Dean, Academic-Graduate Studies and Research and Prof. Jitendra Panwar, Associate Dean, Academic-Graduate Studies and Research, for their valuable support throughout my Ph.D. program. I also wish to acknowledge all the non-teaching staff members for their cooperation during the preparation of my thesis. I also express my thanks to fellow research scholars and friends, Dr. Makrand Wagale, Ms. Soumya Kar, Dr. Himanshu Chawla, Dr. Dewal Mishra, Dr. Pankaj Munjal, Ms. Somya Agrawal and Mr. Vishal Singh for their encouragement and support throughout the work. Also to Mr. Vedant Patil and Mr. Nishit Joseph for their help during data collection.

I am grateful to my beloved parents Dr. Ved Prakash Vyas and Mrs. Usha Vyas, and brother Mr. Vedant Vyas, for their unconditional love, affection, encouragement and support over the years, for being my core and sacrificing their personal comforts to shape my future. Finally, I am so very fortunate having blessed with my beloved master Dr. Kamlesh D. Patel for his constant guidance and love, without whom it was impossible for me to achieve this level.

(**Vidhi Vyas**) ID. No. 2013PH300065P To ensure the economic development of a country, preservation of the existing assets is recognized as an important attribute, in addition to the development of new infrastructure. Highways and bridges constitute a major portion of the widely spread network of transportation infrastructure across the globe. For long-lasting performance of these assets, their systematic management including performance assessment, determination of Maintenance and Rehabilitation (M&R) needs, prioritization of pavements, and optimization of resources is required which collectively create Pavement Management Systems (PMS). On similar grounds, Bridge Management Systems (BMS) have been devised to facilitate necessities encountered in bridges. However, the prerequisite to the efficacious implementation of each of these activities is a quick and reliable condition assessment, over regular durations. Non-destructive Testing (NDT) methods offer a key means to the condition evaluation in a fast, efficient, and accurate manner with no harm to the structure. Undoubtedly there is growing recognition for the use of NDT methods in condition evaluation of pavements as well as bridge decks, however, their usage is not widespread in developing countries like India. Challenges faced in widespread usage of NDT technologies like high equipment cost, lack of technical expertise, complex data analysis procedures, etc., pose a major limitation in regularly monitoring structural health of pavements. Accordingly, the present framework of PMS is largely dependent on subjective assessment procedures for M&R decisionmaking activities which may contain ambiguity, vagueness and uncertainty due to varying opinions of decision-makers.

Based on the facts mentioned above, the present study identifies Infrared Thermography (IRT) as one of the rapid assessment NDT technology, capable of covering large areas with great ease of use. However, due to the lack of quantitative analysis approaches for IRT, the study attempts to develop novel and robust IRT data analysis procedures for both asphalt pavements and bridge decks. Decision-support model frameworks using various Multi-Criteria Decision-Making (MCDM) techniques and computational intelligence tools have also been devised to upgrade current PMS. A conscious attempt is made to develop model frameworks, which are demonstrated using actual field data and inculcate parameters from different domains, viz., structural performance, functional performance, subgrade soil, and environment-related. The frameworks also utilizes the quantification of experience-based knowledge of decision-makers gained over several years.

The study primarily focuses on: (i) demonstrating and developing systematic approach for utilizing IRT for delamination detection and Ground-Penetrating Radar (GPR) for anomaly detection in asphalt pavements; (ii) demonstrating and developing systematic approach for utilizing IRT for delamination detection in concrete bridge decks and emphasizing the need for combination of methods by demonstrating application of GPR adding merits and complimenting IRT testing; (iii) devising approaches to support decision-making on M&R expenditures and sustainability prospects; and (iv) offering easy and intelligent approach for structural performance prediction modeling of pavements.

For exploring the potential of IRT and GPR in delamination, anomaly, and internal flaw detection under asphalt pavements, and bridge decks; two in-situ testing facilities: asphalt pavement test section and concrete bridge deck slab, are developed and simulated with artificial defects; as discussed in Chapter 3. The NDT testing details, novel data analysis approaches developed using MATLAB, presentation of results, and estimation of ideal testing durations for Indian conditions along with summary of their performance are discussed in Chapters 4 and 5, for asphalt pavement test section and concrete bridge deck slab, respectively.

Field investigations conducted under uncontrolled conditions using Heavy Weight Deflectometer (HWD), GPR, and visual surveys for demonstration of various model frameworks are presented in Chapter 6. This real field data is used to demonstrate the development of various data-driven model frameworks for decision-support system utilizing MCDM techniques namely, analytic hierarchy process, fuzzy inference system, Buckley's analytic hierarchy process, and Cheng's entropy-based fuzzy analytic hierarchy process; in addition to integrated SWOT-fuzzy analytic hierarchy process and discussed in Chapter 7. The approaches discuss the development of composite condition indicator and method to prioritize the pavement sections for M&R to optimally allocate resources. The superiority of fuzzy-based techniques is evident from the results. The SWOT-fuzzy based approach tries to assess the potential implications of pavement M&R activities and assists in holistic decision-making exercises while consideration of sustainability prospects. The formulation of structural condition prediction models based on computationally

intelligent artificial neural networks are presented in Chapter 8, which also validates the superiority of intelligent approaches over non-intelligent models.

The IRT tests conducted in this thesis explores their potential to detect delamination in asphalt pavements and bridge decks, and derives the field inspection time zones for Indian conditions using this particular NDT technology. The proposed data analysis methodologies offer quantitative interpretation of thermal images rather than purely judging them on subjective basis. These attempts would be greatly beneficial to the transportation agencies of developing countries like India, to reaffirm the practical adequateness of using IRT inspections for quick and economical delamination detection. The additional NDT tests conducted using GPR corroborate the expediency of performing combination of tests, particularly on bridge decks.

The decision-support methodologies proposed in this work which incorporate advanced fuzzy MCDM techniques and SWOT model frameworks, enable the concerned decision-makers to objectively justify budget requirements for M&R and obtain the funding from agencies. With the introduction of prioritization approaches, engineers and managers are enabled to identify those pavement sections that need attention and hence allocate resources judiciously. Especially in developing countries where budgetary constraints do not allow highway agencies to preserve entire network of pavements using optimal preservation strategy, the management system strives to achieve the maximum benefits through prioritization. Applicability and effectiveness along with uniqueness of the proposed methodological frameworks is demonstrated by employing a case study of airfield pavements at an international airport. The results from the case study clearly indicate that all the developed models are practical, robust, time and cost-effective, easily understandable by the stakeholders (policy makers and concerned authorities involved in decisionmaking), and gives importance to sustainability aspects of M&R activities as well. They are also able to very well incorporate the randomness and uncertainty associated with pavement M&R decision-making processes. These aspects received less attention in earlier studies available in the literature.

The reliable correlations developed using the tools of computational intelligence are expected to popularize the implications of structural adequacy factors in pavement M&R decision-making and ease the work of transportation agencies in obtaining structural condition data. The neural network

models are favorable to be used in developing countries since they are flexible with the addition/modification of data and work well even with the limited data availability that can be easily collected during routine inspection practices.

Considering the fact that the Government of India is spending tremendous funds on development and improvement of pavement infrastructure, the work undertaken in this thesis finds wide applicability in judicious and optimal utilization of funds and resources. The overall conclusions presented in Chapter 9 with correspondence to the aim of the study as discussed in Chapter 1, highlight the need of employing scientific approach in pavement evaluation, monitoring and management studies. The work also assists concerned policy makers for formulating sustainable policies to enhance overall benefits of maintenance projects. Thus, it is expected that, the study performed herein can be considered as a crucial step in improvising present-day management systems of developing countries amidst limited resources and provide basis to deepen the research work in this direction.

Keywords: Pavement condition assessment, Pavement management systems, Non-destructive testing, Infrared thermography, Falling weight deflectometer, Fuzzy AHP, SWOT, Artificial neural networks

Table of contents

Chapters	Titles	S	Page No.		
	Ackn	ii			
	Abstr	iv			
	Table	Table of contents			
	List o	List of tables			
	List o	of figures	XV		
	List o	of abbreviations	xviii		
	List o	of notations	XX		
Chapter 1	Intro	oduction	1-11		
	1.1.	Introduction	1		
	1.2.	Research objectives	6		
	1.3.	Scope of the present study	7		
	1.4.	Organisation of the thesis	9		
	1.5.	Bibliographical note	10		
Chapter 2	Liter	ature review	12-42		
	2.1.	Introduction	12		
	2.2.	Pavement management systems	13		
		2.2.1 PMS components	14		
	2.3.	Condition assessment of asphalt pavements	15		
		2.3.1. Serviceability	15		
		2.3.2. Surface distress	16		
		2.3.3. Safety	16		
		2.3.4. Structural capacity	17		
		2.3.4.1. Delamination between HMA layers	17		
	2.4.	Methods to identify delamination between HMA layers	18		
		2.4.1. Destructive testing methods	18		
		2.4.2. Non-destructive testing methods	19		
		2.4.2.1. Deflection basin methods	19		
		2.4.2.2. Wave propagation methods	20		
	2.5.	NDT methods for delamination detection between HMA layers:	20		
		theory and practice			
		2.5.1. Falling weight deflectometer and other deflection-basin methods	20		
		2.5.2. Impulse response	22		
		2.5.3. Impact echo	22		
		2.5.4. Spectral analysis of surface waves	23		
		2.5.5. Ground-penetrating radar	24		

		2.5.6.	Infrared t	hermography	26
	2.6.	Bridge	manageme	ent systems	29
		2.6.1.	Condition	n assessment of concrete bridge decks	30
			2.6.1.1.	Corrosion	30
			2.6.1.2.	Deck delamination	30
			2.6.1.3.	Vertical cracking	31
			2.6.1.4.	Concrete deterioration	31
		2.6.2.	NDT met	thods for delamination detection in bridge decks	31
	2.7.	Paveme	ent prioritiz	zation techniques	35
	2.8.	Paveme	nt conditi	on prediction models	38
	2.9.	Researc	h gaps		40
	2.10.	Conclue	ding remai	rks	42
Chapter 3	Devel	opment o	of in-situ a	asphalt pavement and concrete bridge deck	43-62
	testin	g facility	for contr	olled field investigations	
	3.1.	Introduc	ction		43
	3.2.	Mobiliz	ation of th	ne construction activity	44
	3.3.	Develop	pment of i	n-situ asphalt pavement test section	45
		3.3.1.	Location	and geometry of the test section	45
		3.3.2.	Construc	tion process	47
	3.4.	Develop	pment of i	n-situ concrete bridge deck slab	55
		3.4.1.	Location	and geometry of the slab	55
		3.4.2.	Construc	tion process	59
	3.5.	Conclue	ding remai	rks	62
Chapter 4	Cont	olled fiel	ld evaluat	ion on asphalt pavement test section using NDT	63-98
	techn	iques			
	4.1.	Introduc	ction		63
	4.2.	Evaluat	ion of asp	halt pavement test section using IRT method	64
		4.2.1.	Instrumer	nt	65
		4.2.2.	Data acqu	uisition	67
		4.2.3.	Data proc	cessing	68
			4.2.3.1.	Imaging basics	69
			4.2.3.2.	Post-calibration using FLIR QuickReport tool	70
			4.2.3.3.	Thermal image processing using MATLAB	70
		4.2.4.	Results a	nd discussion	71
	4.3.	Evaluat	ion of asp	halt pavement test section using GPR method	83
		4.3.1.	Instrumer	nt	83
		4.3.2.	Data acqu	uisition and processing	84
			4.3.2.1.	Time zero	84
			4.3.2.2.	Background removal horizontal filter	85
			4.3.2.3.	Range gain	85

		4.3.3.	Results and discussion	85
			4.3.3.1. Detection of various bonding conditions	86
			4.3.3.2. Detection of underground anomalies	87
			4.3.3.3. 3D depth slice	92
	4.4.	Evalua	tion of asphalt pavement test section using LWD met	hod 94
		4.4.1.	Instrument	94
		4.4.2.	Data acquisition	95
	4.5.	Conclu	ding remarks	96
Chapter 5	Cont	rolled fie	ld evaluation on concrete bridge deck slab using N	NDT 99-119
	techn	iques		
	5.1.	Introdu	ction	99
	5.2.	Evalua	tion of concrete bridge deck slab using IRT	100
		5.2.1.	Effect of data collection time of the day	102
		5.2.2.	Effect of lateral dimensions and thickness of delami	ination 103
		5.2.3.	Effect of the depth of delamination	104
		5.2.4.	Data analysis approach	109
	5.3.	Evalua	tion of concrete bridge deck slab using GPR	111
		5.3.1.	GPR data analysis and interpretation	112
	5.4.	Conclu	ding remarks	116
Chapter 6	Unco	ntrolled	field evaluation using NDT techniques	120-145
	6.1.	Introdu	ction	120
	6.2.	Study a	rea	121
	6.3.	Visual	surveys	122
		6.3.1.	Runway pavement	122
		6.3.2.	Taxiway	123
			6.3.2.1. Parallel taxiway	123
			6.3.2.2. Exit taxiway ET2	124
			6.3.2.3. Exit taxiway ET3	124
			6.3.2.4. Exit taxiway ET5	124
	6.4.	HWD	esting	126
		6.4.1.	Instrument	126
		6.4.2.	Data collection and methodology	127
		6.4.3.	Data processing	128
		6.4.4.	Results and discussion	129
			6.4.4.1. Deflection measurements	129
			6.4.4.2. Layer moduli estimation	131
			6.4.4.3. ACN-PCN classification	132
	6.5.	GPR te	sting	135
		6.5.1.	Results and discussion	135
			6.5.1.1. Layer thickness measurements	135

			6.5.1.2.	GPR linescans				139
			6.5.1.3.	3D view from C	PR linescans			142
	6.6.	Conclu	ding rema	arks				144
Chapter 7	Devel	opment	of d	ecision-support	approaches	for	pavement	146-185
	prioritization and maintenance projects							
	7.1.	Introdu	ction					146
	7.2.	Analyti	ic hierarch	ny process				148
		7.2.1.	Illustrati	on of AHP approa	ach			149
	7.3.	Fuzzy i	nference	system				151
		7.3.1.	Illustrati	on of FIS approac	h			152
	7.4.	Buckle	y's fuzzy	analytic hierarchy	r process			156
		7.4.1.	Illustrati	on of Buckley's F	AHP			156
	7.5.	Cheng'	s entropy	-based FAHP				162
		7.5.1.	Illustrati	on of Cheng's ent	ropy-based FAI	HP		166
		7.5.2.	Sensitiv	ity analysis				172
	7.6.	Integra	ted SWO	T-FAHP approach	l			173
		7.6.1.	Decisior	n problem				173
		7.6.2.	Formula	tion of SWOT ma	trix			173
		7.6.3.	Deriving	g strategic alternat	ives from hybri	dized S	SWOT	174
			matrix					
		7.6.4.	Inferenc	es from integrated	SWOT-FAHP	approa	ach	175
		7.6.5.	Sensitiv	ity analysis				177
		7.6.6.	Practical	l significance of th	ne SWOT-FAH	P meth	odology	183
	7.7.	Conclu	ding rema	arks				184
Chapter 8	Paver	nent con	dition pr	ediction modelin	g using artificia	al neu	ral	186-207
	netwo	orks						
	8.1.	Introdu	ction					186
	8.2.	Data co	ollection u	ising FWD testing				188
		8.2.1.	Selection	n of decision varia	ibles			190
	8.3.	Develo	pment of	ANN prediction n	nodel			191
		8.3.1.	Selection	n of ANN model p	parameters			192
			8.3.1.1.	Network				192
			8.3.1.2.	Training, valida	tion and testing	datase	t	196
			8.3.1.3.	Network algorit	hm and its asso	ciated	functions	196
		8.3.2.	ANN res	sults				199
		8.3.3.	Discussi	on of results				203
			8.3.3.1.	Selection of the	best network			204
	8.4.	Compa	rison with	n multiple linear re	egression approa	ach		206
	8.5.	Conclu	ding rema	arks				206

Chapter 9	Conc	clusions and future scope	208-217	
	9.1.	Conclusions	208	
	9.2.	Limitations and scope for further work	216	
	References		218-238	
	Appe	endices		
	Appe	ondix 1		
Brief biography of candidate				
	Brief biography of supervisor			
	Brief	biography of co-supervisor		

List of tables

Table No.	Title	Page No.
2.1	Performance summary of deflection-basin methods for delamination	27
	detection in asphalt pavements	
2.2	Performance summary of wave propagation methods for delamination detection in asphalt pavements	28
2.3	Performance summary of NDT technologies for bridge deck evaluation	35
3.1	Details of bonding and anomaly conditions used in asphalt pavement test section	46
3.2	Details of simulated defects in concrete bridge deck slab	58
4.1	Technical specifications of FLIR T250 thermal camera	66
4.2	Environmental conditions at the time of testing	68
4.3	Summary of day heating and night cooling interchange time durations for different bond conditions	78
4.4	Infrared images and histograms at different times of the day for partially bonded and bonded asphalt blocks	79
4.5	Infrared images and histograms at different times of the day for grease debonded and bonded asphalt blocks	80
4.6	Infrared images and histograms at different times of the day for polythene debonded and bonded asphalt blocks	81
4.7	Infrared images and histograms at different times of the day for bentonite slurry debonded and bonded asphalt blocks	82
4.8	Performance summary of NDT technologies on asphalt pavement test section	96
5.1	Performance summary of NDT technologies on fabricated concrete bridge deck slab	117
6.1	Overall condition of various airfield pavements	126
7.1	Saaty's 9-point scale	150
7.2	Weights of decision criteria obtained using AHP	151
7.3	Weights and ranking of alternatives obtained using AHP	151
7.4	Fuzzy inference rules setup in FIS framework	155
7.5	Output score of pavement sections using FIS framework	155
7.6	Pairwise comparison of pavement sections for deflection	157
7.7	Computations of the geometric mean	157
7.8	Performance scores of the pavement sections for deflection	158
7.9	Fuzzy weights of the decision criteria	158
7.10	Fuzzy utility functions for pavement section A1	159
7.11	Interpretation of utility function value for w_1S_{11}	159
7.12	Scores and ranking of runway pavement sections obtained using Buckley's FAHP	162
7.13	Fuzzy conversion scale	163
7.14	Membership functions for the decision criteria	164

7.15	Fuzzy judgement matrix of the alternatives	167
7.16	Fuzzy weight vector for each criterion	167
7.17	Total fuzzy judgement matrix of the alternatives	168
7.18	Total fuzzy judgement matrix for $\alpha = 0.80$	169
7.19	Precise judgement matrix of the alternatives	170
7.20	Relative frequency matrix of the alternatives	170
7.21	Final entropy weights and rankings of the alternatives for $\alpha = 0.80$ and $\lambda = 0.50$	171
7.22	Final entropy weights and rankings of the alternatives for different values of confidence interval and index of optimism	172
7.23	SWOT matrix developed based on the opinion of field experts	178
7.24	Hybrid mechanisms from SWOT matrix and corresponding alternatives	181
7.25	Results of sensitivity analysis for the SWOT model	183
8.1	Threshold ranges of layer condition for SCI and BCI	187
8.2	A sample of laboratory testing results on subgrade soil	190
8.3	Performance results of different ANN models	201
8.4	Comparison of results from artificial neural networks and multiple linear regression approaches	206

List of figures

Figure No.	Title	Page No.
3.1	Location of the test section at BITS Pilani – Pilani campus	45
3.2	Design of asphalt pavement test section constructed at BITS Pilani – Pilani campus	46
3.3	Initial demarcation of blocks on existing asphalt pavement before laying of bonding/anomaly conditions	49
3.4	Coring operations and cores obtained from existing asphalt pavement	50
3.5	Different bonding conditions introduced to various blocks of in-situ asphalt pavement test section	51
3.6	PVC pipes at the cored locations	52
3.7	Different anomaly conditions introduced to various blocks of in-situ asphalt pavement test section	52
3.8	Placement of different bonding and anomaly conditions along row-2	52
3.9	Placement of different bonding and anomaly conditions along row-1	53
3.10	Compaction of constructed test section using smooth wheel roller	53
3.11	Preparation and application of seal coat	53
3.12	Various stages of test section construction	54
3.13	Constructed in-situ asphalt pavement test section	55
3.14	Location of concrete bridge deck slab at BITS Pilani – Pilani campus	56
3.15	Design of concrete bridge deck slab at BITS Pilani – Pilani campus and defect distribution	57
3.16	Reinforcement mats laid for the construction of concrete bridge deck slab	60
3.17	Shuttering with induced defects before casting slab	61
3.18	On-site preparation of concrete mix in tilting drum type concrete mixer	61
3.19	Placing of foams to induce delaminations while concreting	61
3.20	Final finishing while casting slab	62
3.21	Casted bridge deck slab	62
4.1	Schematic of constructed in-situ asphalt pavement test section showing different conditions of the interlayer bond	65
4.2	FLIR T250 thermal camera	66
4.3	Variation in environmental parameters at the time of infrared thermography testing	68
4.4	Hourly thermal contrast variation due to different interlayer bond conditions in the test section	72
4.5	Comparison of coloured and grayscale infrared images at 02:30 hours	73
4.6	Histograms for sand and asphalt block at 02:30 hours	73
4.7	Comparison of coloured and grayscale infrared images at 10:00 hours	74
4.8	Histograms for sand and asphalt block at 10:00 hours	74
4.9	Comparison of coloured and grayscale infrared images at 11:00 hours	75

4.10	Histograms for sand and asphalt block at 11:00 hours	75
4.11	Comparison of coloured and grayscale infrared images at 15:00 hours	75
4.12	Histograms for sand and asphalt block at 15:00 hours	76
4.13	Comparison of coloured and grayscale infrared images at 17:00 hours	76
4.14	Histograms for sand and asphalt block at 17:00 hours	77
4.15	StructureScan Mini	84
4.16	Asphalt layers at 50 mm, 100 mm, and 150 mm depth in sectional profile	86
4.17	Sectional profile showing debonding in asphalt layers at 100 mm	87
4.18	Sectional profile showing reflections of PVC pipes buried under the existing pavement	88
4.19	Sectional profile showing reflection of CL	88
4.20	Sectional profile showing reflection of A-2	89
4.21	Sectional profile showing reflection of CI-2 and SP-2	89
4.22	Sectional profile showing reflection of W-2	90
4.23	Sectional profile showing reflection of A-3	90
4.24	Sectional profile showing reflection of CI-3 and SP-3	91
4.25	Sectional profile showing reflection of PVC-3	91
4.26	Sectional profile showing reflection of C	92
4.27	Sectional profile showing reflection of W-3	92
4.28	Depth slices of GPR data at various depths	93
4.29	Dynatest LWD	94
4.30	Time-history plot of LWD data	95
5.1	Delamination occurring as cool spot in raw thermal image during night- time cooling cycle	103
5.2	Raw thermal images showing fully detectable delaminations as hot spots taken during 11:00 am to 1:00 pm	105
5.3	Raw thermal images showing partially detectable delaminations as hot spots taken during 11:00 am to 1:00 pm	107
5.4	Raw thermal images of undetectable delaminations	108
5.5	Processed thermal images of partially detectable delaminations	111
5.6	Sectional profile showing reflection of DL-1/20/B	113
5.7	Sectional profile showing reflection of DL-2/10/A	113
5.8	Sectional profile showing reflection of DL-2/20/B	114
5.9	Sectional profile showing voids V_1 and V_2	114
5.10	Sectional profile showing void V ₁	114
5.11	Sectional profile indicating DL-1/15/B and DL-2/15/B	115
5.12	Sectional profile indicating DL-1/10/B and DL-2/10/B	115
5.13	Upper and lower rebars of top reinforcement mat	116
6.1	Study area showing runway and taxiways at an international airport	121
6.2	Observations from visual inspection of runway	123

6.3	Observations from visual inspection of taxiways	124
6.4	Area-wise distribution of pavement surface condition rating	125
6.5	The working principle of HWD	127
6.6	Variation of pavement surface deflections along the runway	129
6.7	Variation of pavement layer moduli along the runway	131
6.8	Variation of ACN and PCN value along the runway	133
6.9	Variation of pavement layer thicknesses of the runway	136
6.10	Sectional profile showing settlement of pavement layers	138
6.11	Sectional profile of runway showing asphalt layer and its settlement	139
6.12	Sectional profile of runway showing inconsistent reflections indicative of deterioration	139
6.13	Sectional profile of runway showing settlement of base layer	140
6.14	Sectional profile of runway showing settlement of layers and their deterioration	140
6.15	Inconsistent reflections in sectional profile of runway due to settlement of layers and their deterioration	141
6.16	Sectional profile of runway showing settlement of layers	141
6.17	Sectional profile of ET1 showing layer settlement	142
6.18	Color intensity scale used in 3D views	142
6.19	Depth slice of runway at various depths	142
7.1	Hierarchy tree for objectives, criteria and decision alternatives to the decision problem	149
7.2	Membership functions of input parameters	153
7.3	Membership functions of output parameter (pavement condition)	154
7.4	Utility function values for runway pavement sections	159
7.5	Hierarchy of the decision problem	163
8.1	A typical FWD deflection basin and geophone spacing used in this study	189
8.2	Illustration of ANN structure and its neuron	193
8.3	ANN architectures with one hidden layer	194
8.4	ANN architectures with two hidden layers	195
8.5	Flow chart showing ANN model development in the study	198
8.6	Regression results and error histograms for SCI using 8-8-1 and 8-8-8-1 network structures	199
8.7	Regression results and error histograms for BCI using 8-8-1 and 8-8-8-1 network structures	200
8.8	Variation in regression and mean square error results for different ANN architectures	205

Abbreviation	Description
2D	Two-Dimensional
3D	Three-Dimensional
ACN	Aircraft Classification Number
AHP	Analytic Hierarchy Process
AI	Artificial Intelligence
ANN	Artificial Neural Networks
ASTM	American Society for Testing and Materials
BCI	Base Curvature Index
BMS	Bridge Management System
BP	Back-Propagation
BW	Body Waves
CBR	California Bearing Ratio
DBP	Deflection Basin Parameters
ER	Electrical Resistivity
EM	Electromagnetic
ET	Exit taxiways
FAA	Federal Aviation Administration
FAHP	Fuzzy Analytic Hierarchy Process
FIS	Fuzzy Inference System
FWA	Fuzzy Weighted Average
FWD	Falling Weight Deflectometer
GA	Genetic Algorithms
GoI	Government of India
GPM	Galvanometric Pulse Measurement
GPS	Global Positioning System
GPR	Ground-Penetrating Radar
HCP	Half-Cell Potential
HDM	Highway Development and Management
HMA	Hot-Mix Asphalt
HWD	Heavy Weight Deflectometer
ICAO	International Civil Aviation Organization
IE	Impact Echo
IR	Impulse Response
IRI	International Roughness Index
IRT	Infrared Thermography
LWD	Light Weight Deflectometer
MAE	Mean Absolute Error

MAPE	Mean Absolute Percentage Error
MASW	Multichannel Analysis of Surface Waves
MCDM	Multi-Criteria Decision-Making
MDD	Maximum Dry Density
MoRTH	Ministry of Road Transport and Highways
M&R	Maintenance and Rehabilitation
MR&R	Maintenance, Rehabilitation and Replacement
MSE	Mean Square Error
NDT	Non-Destructive Testing
OT	Opportunity-Threat
OTW	Opportunity-Threat-Weakness
PCC	Plain Cement Concrete
PCI	Pavement Condition Index
PCN	Pavement Classification Number
PMGSY	Pradhan Mantri Gram Sadak Yojana
PMS	Pavement Management Systems
PSI	Present Serviceability Index
PSPA	Portable Seismic Property Analyzer
PSR	Present Serviceability Rating
RAP	Reclaimed Asphalt Pavement
RAS	Reclaimed Asphalt Shingles
RCA	Reclaimed Concrete Aggregates
RCC	Reinforced Cement Concrete
RMSE	Root Mean Squared Error
RN	Ride Number
SASW	Spectral Analysis of Surface Waves
SCI	Surface Curvature Index
SO	Strength-Opportunity
SOWT	Strength-Opportunity-Weakness-Threat
SSE	Sum Square Error
SW	Surface Waves
SWOT	Strength-Weakness-Opportunity-Threat
UPE	Ultrasonic Pulse Echo
USW	Ultrasonic Surface Waves
WO	Weakness-Opportunity

Notation	Description
А	Aluminum plate
A_0	Amplitude of surface reflection
Ai	Alternatives
A _p	Amplitude of incident GPR wave
Ã	Fuzzy judgement matrix
α	Confidence interval
В	Bentonite slurry
С	Cast-iron plate
C1,C2,,C5	Number of criteria
CI	Hollow cast-iron pipe
CL	Cast-iron L-section
CR	Corroded rebars
D	Delamination detected
DL	Delamination
Di	Geophone number with reference to centre
DW	Dust along the wheel paths
E _i	Entropy value
FB	Full bond
Fj	Fuzzy utility functions
F(x,y)	Value of each element of binarized image
G	Grease
λ	Index of optimism
i	Number of input nodes in ANN model
L3, L6	Longitudinal profile 3m and 6m to the left of runway centreline
La	Thickness of asphalt layer
L _b	Thickness of base layer
L _t	Total thickness of pavement
$m \sim$	Neurons in the first hidden layer
$\widetilde{\mathbf{m}_{i}}$	Trapezoidal fuzzy number
n	Neurons in the second hidden layer
ND	Delamination not detected
O_i	Observed values of any data point
p D	Neurons in the i^{th} hidden layer
P	Hollow PVC pipe Dradiated values of any data point
P_i	Predicted values of any data point
P_{ij}	Grayscale intensity of the pixel
PB	Partial bond

PD	Delamination partially detected
PO	Polythene
R3, R6	Longitudinal profile 3m and 6m to the right of runway centreline
S	Sand
S1,S2,,S12	250 m long runway pavement sections
S _{ji}	Performance scores
SP	Hollow steel pipe
Δt	Thermal contrast
(t_1, t_2, t_3)	Fuzzy triplet
Ta	Atmospheric temperature
t _d	Temperature of damaged area
T _{del}	Lowest temperature of delaminated area
T_{ij}	Temperature at the point corresponding to the pixel in the i^{th} row and j^{th} column
T_l	Calibrated minimum temperature
T_h	Calibrated maximum temperature
T_{max}	Maximum temperature in the thermal image
T_{min}	Minimum temperature in the thermal image
ts	Temperature of sound area
T _s	Asphalt pavement surface temperature
T(x, y)	Pixel value of temperature
$ ilde{T}$	Total fuzzy judgement matrix
\widehat{T}	Precise judgement matrix
μ	Membership function
V	Voids
VC	Vertical cracks
W	Wood block
\widetilde{W}	Fuzzy subjective weight vector
<i>w</i> _i	Fuzzy weights of criteria
Х	Input decision variables to ANN model
x _i	<i>i</i> th data point of the ANN input dataset
x_{max}	Maximum values of the ANN input dataset
<i>x_{min}</i>	Minimum values of the ANN input dataset
\widetilde{X} , \widetilde{Y}	Fuzzy numbers
У	Net input to the hidden layer neuron
Z	Output from the hidden layer neuron after sigmoid function

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/