
Chapter 3

Time Synchronization for SRS and

MRS

3.1 Introduction

Time synchronization is a critical process in any distributed system, as the information collected

over a distributed network has significance only when associated with a timestamp and a location

stamp. Real-time wireless control, co-operative data collection and navigation, task allocation, and

task migration in a robotic network can be effectively performed only if the robots are synchronized

to a common notion of time. Interestingly, swarm robotic systems and wireless sensor networks

(WSNs) share several common characteristics such as use of large number of robots/nodes, lim-

ited individual capabilities of robots/nodes, distributed computing, co-operative behaviour among

robots/nodes to achieve system goals, etc. Both domains can operate complementary to each

other such that the swarm robots can utilize WSN for communication and co-ordination, while

WSNs can take advantage of the mobility provided by swarm robots to improve its sensing range,

thus forming a self-healing network. Time synchronization have been a major focus of study

for more than a decade in sensornet community. Although few time synchronization protocols

proposed over the last few years in the field of WSN’s claim to provide an accuracy in the order

of few microseconds as mentioned in Section 2.1.2, most of these protocols incur unreasonably

high communication overheads (mainly due to short resynchronization interval), high convergence

44

Chapter 3. Time Synchronization for Swarm of Robots 45

time or computational complexity which make them unsuitable for practical applications. Improv-

ing the resynchronization interval, accurate time synchronization under varying environmental

conditions, limiting synchronization errors within a deterministic bound in multi-hop scenarios

etc are open problems of research even for static WSNs. Time synchronization error can be a

within a few hundreds of milliseconds for most of the static WSN applications, whereas swarm

robotic applications require higher synchronization precision (lesser error bound, in the order of

few tenths or hundredths of microseconds) because mobile robots, in addition to monitoring or

controlling the environment in which they are deployed, may utilize timing information for their

localization, cooperative path planning, navigation, aggregation, dispersion etc. Although several

works are reported in the field of routing and Medium Access Control (MAC) for mobile wireless

sensor networks, or for navigation in a collaborative swarm, prior time synchronization is stated

as one of the assumptions when time dependency is involved [34–36]. Time synchronization is

a prerequisite for other layers of the network protocol stack such as routing and MAC and thus

most of the research in mobile wireless sensor networks (MWSNs) and swarm robotics is still

limited to simulation based study. With the constraints such as limited communication bandwidth,

limited battery power, limited processing power, etc. time synchronization for dynamic and low

cost multi-robotic and swarm robot systems is a challenging problem to solve.

In this chapter, in addition to robots in SRS, robots in low-cost MRS systems are also referred to as

swarm of robots. In this chapter, the problem of time synchronization for swarm of robots, which

makes use of wireless network for communication among members of the swarm is addressed.

The rest of the chapter is organized as follows. Section 3.2 describes the desired characteristics

of time synchronization for swarm of robots. In Section 3.3 an analysis on the errors in popular

time synchronization algorithms is presented, which highlight the necessity to develop a new time

synchronization technique. In Section 3.4, a novel time synchronization framework refereed as

"Swarm-Sync" for dynamic networks like SRS and low-cost MRS is presented. The section also

presents the experimental analysis for single, multi-hop and for dynamic environmental conditions.

The section also provides a brief overview of the swarm robot designed and utilized by us for the

experimental testing and validation of time synchronization protocol is presented. In Section 3.5, a

fair comparison of “Swarm-Sync” framework the two major class of synchronization protocols, i.e

the predictive techniques (e.g. Linear Regression (LR), Linear Prediction (LP) and Kalman Filter

(KF)) and consensus based techniques (Cluster based Maximum consensus Time Synchronization

Chapter 3. Time Synchronization for Swarm of Robots 46

(CMTS), Clustered Consensus Time Synchronization (CCTS)) proposed for synchronization in

WSNs is presented.

3.2 Time Synchronization for Swarm of Robots- Desired Char-

acteristics

The desired characteristics of a time synchronization framework/protocol for swarm of robots is

presented in this section. For scalable networks, cluster based network architecture is preferred

for efficient control and data dissemination. To maximize the utilization of robots, they should be

allowed to move seamlessly across clusters without necessitating resynchronization or introducing

overheads in synchronization. Designing a time synchronization protocol for scalable networks

like swarm of robots is challenging as the protocol should minimize the variance of local (among

the members of cluster or hop) and global (across clusters or hops) synchronization errors simulta-

neously to support seamless mobility. Hence a topology independent time synchronization scheme

is desired.

A global time-synchronization framework which synchronize the swarm of robots to the reference

robot/node in a swarm network such that all robots/nodes of swarm have approximately the same

time value at any instant is desired. The nodes are considered to be globally synchronized when

the instantaneous offset among any two nodes i, j in the network can be represented as

|θi(t) − θ j(t)| ≤ δ (3.1)

where ‘δ’ is the synchronization error bound. An ideal synchronization protocol should free of

cumulative error over multiple hops or clusters. The synchronization error should be bounded

for a given resynchronization interval, irrespective of the distance of the robot from the reference

node, or number of hops in the network. Although perfect synchronization is difficult to achieve

in practice, a deterministic and bounded global synchronization error will facilitate easier design

of other layers of protocol such as localization of robots, medium access control and routing.

Swarm robots wirelessly communicate with each other for several functionalities like task alloca-

tion, path planning, data routing, localization, etc. Time synchronization is a critical service or a

system maintenance task which has critical influence on the other layers of the protocol stack. On

Chapter 3. Time Synchronization for Swarm of Robots 47

the other hand, being a background task, the synchronization technique should be computationally

efficient and should incur lesser communication overhead ensuring the availability of hardware

and communication bandwidth for other foreground tasks. Taking this into consideration, the

resynchronization interval i.e, the interval at which the nodes should communicate to derive in-

formation about the reference node should be maximized- preferably to an order of atleast few

minutes. The convergence time i.e, the interval between the starting of time synchronization by

a node to the time taken to achieve the required level of global synchronization accuracy should

be minimized. Likewise, the execution time of the synchronization protocol should be minimized.

A tunable protocol, which provides on-demand synchronization or continuous synchronization

depending upon the application requirements is desired to optimize energy efficiency. The novel

time synchronization framework "Swarm-Sync" presented in this chapter is designed to cater to

these desired characteristics.

3.3 Sources of Errors in Time Synchronization Algorithms- An

Analysis

Timestamping is a critical step of the time synchronization process. MAC level timestamping

can eliminate the send time, access time and receiver/reception time uncertainties associated with

timestamping over a wireless medium [48]. Hence, the development of radio modules with MAC

level timestamping gave impetus to the development of multitude of time synchronization proto-

cols in the last decade. The radio modules which support MAC level timestamping (e.g. CC1100,

CC2420 etc) assert one of their output pins when the ‘sync’ word (or Start of Frame Delimiter

specified in 802.15.4) is transmitted or received. The radio module deasserts the output pin at the

transmission or reception of End of Packet (EOP). The output pin of radio module is generally

interfaced to an interrupt input pin of the node’s microcontroller and the RTC timestamp is recorded

as a part of interrupt handling. The transmitter and receiver timestamp at a common reference

point, e.g. transmission/reception of ‘sync’ or ‘EOP’ and the time difference between the pair of

timestamps will provide the approximate instantaneous offset between the transmitter and receiver

nodes. The nodes are then time synchronized based on the timestamps. Although MAC level

timestamping will eliminate the send time, access time and receiver/reception time uncertainities,

Chapter 3. Time Synchronization for Swarm of Robots 48

the same cannot eliminate the error due to propagation delay, interrupt latency and jitter [48].

Various protocols synchronize the nodes by applying different synchronization techniques on the

timestamps.

In this section, an analysis on the sources of synchronization errors in the different techniques uti-

lized by prominent synchronization protocols which employMAC level timestamping is presented.

The probable reasons for their reduced synchronization accuracy resulting in smaller resynchro-

nization intervals are identified. The presented analysis in this section also justifies the requirement

of developing a new time synchronization technique. The prominent synchronization protocols

are categorized into two, i.e the prediction based protocols and consensus based protocols and the

sources of error in these two categories are presented in this section.

Category 1-Prediction Based Protocols: Flooding Time Synchronization Protocol (FTSP) [48],

PulseSync [33], Adaptive Linear Prediction Synchronization (ALPS) [49] and Interacting Multi-

model (IMM) [50] predict the reference clock value based on the previous measurements of

reference and slave node timestamps taken at uniform intervals of time called as resynchronization

interval. Our analysis on the possible errors in timestamping as given below, indicate that when

MAC timestamping is done periodically, the uncertainties like send time, access time, receive time

are reintroduced into the timestamp measurements resulting in recording of timestamps at non-

uniform intervals of time. This will adversely affect the synchronization accuracy necessitating

shorter resynchronization intervals.

Figure 3.1 shows a generic scheme for maintaining the time in a node and the possible source

of uncertainties and delays in wireless timestamping. As mentioned in Section 2.1.1, notion of

time in a node can be maintained in software or hardware. A Real Time Clock (RTC) peripheral

which provides a granularity of microseconds, which can be both set and read by software is not

available in most of the micro-controllers. Hence a software based RTC can be maintained in

the format hours : minutes : seconds : milliseconds : microseconds. As shown in Figure

3.1, a timer peripheral (T_RTC) of the node generates an interrupt every microsecond based on

which the software RTC is updated. To transmit the messages periodically at Tresync, another timer

peripheral (T_resync in Figure 3.1) can be maintained which raises interrupt when the configured

resynchronization period elapses. Following are the delays and uncertainties in timestamps while

attempting to perform periodic timestamping at an interval of Tresync.

Chapter 3. Time Synchronization for Swarm of Robots 49

Figure 3.1. Uncertainties and delays in wireless timestamping.

1. Interrupt handling delay (T_int1): An interrupt is raised at Tresync interval by the T_resync

timer. As a part of interrupt handling, a request to transmit amessage is sent to the application

layer. The jitter in interrupt latency can be in the order of several clock cycles depending on

the priority of the timer interrupt, current task performed by robot, level of task switching etc.

Mobile robots perform frequent localization, image processing, wireless message exchanges

for co-ordinated navigation, etc. In a multitasking system susceptible to priority inversions,

the interrupt jitter (variation in interrupt latency) is indeterministic and thus emerge as a

major source of error in timestamping.

2. Send time (Tsend): Time incurred in constructing the packet at the application layer to the

time the packet takes to reach the data link/MAC layer (Figure 3.1). This delay can be highly

variable in a multitasking robot.

3. Access time (Taccess): The time for which the packets reaching data link layer will have to

wait before it gets transmitted through the wireless channel. Delay varies according to the

type of medium access protocol used in the application. The medium access protocols based

on channel sensing can lead to an unpredictable delay in transmission.

Chapter 3. Time Synchronization for Swarm of Robots 50

4. Transmission time (Tt xt): Time incurred to transmit a packet bitwise at the physical layer over

the wireless medium. This delay is deterministic and can be estimated if the transmission

packet size is known.

5. Propagation time (Tprop): Time taken (< 1µs for distances less than 300m) by the packet to

traverse through the wireless media from sender to the receiver.

6. Reception Time (Trecp): Deterministic time incurred in receiving the bits and passing it to

the data link layer.

7. Interrupt handling delay (T_int2): The output pin of radio is asserted on transmission/re-

ception of ‘sync’ packet and deasserted at the transmission/reception of ‘EOP’. At the

transmission/reception of ‘sync’ or ‘EOP’, interrupt is raised to the micro-controller and

RTC timestamps are recorded as a part of interrupt handler.

MAC level timestamping for time synchronization was proposed for the first time in FTSP

protocol. FTSP protocol was tested on nodes which utilize CC2420 radio module which

allows timestamping at every byte boundary in-addition to the timestamping at ‘sync’ or

‘EOP’. FTSP uses a single message/node for synchronization, but the timestamps are taken

at each byte boundary as they are transmitted or received to minimize the timestamping error

due to the interrupt jitter. The final timestamp in FTSP is obtained from the average of the

normalized timestamps. However, even with 6 timestamps, the time-stamping precision was

improved to only 4.5µs on mica2 nodes [48]. Byte level timestamping feature is not available

in all radio modules. In microcontroller based nodes, skew is in the order of few µs/s and

hence it can be noted that with interrupt based one-way MAC timestamping, the error due

to interrupt jitter can be comparable to the relative skew of nodes.

8. Receive time (Trec): Time incurred by the packet to reach the application layer in the receiver.

Even though the periodic timestamping is attempted from the application layer at an interval of

Tresync, the actual message transmission and subsequent timestamping at transmitter will be affected

by the following delays and uncertainties. The delay (Tt x_delay) and uncertainty (Tt x_uncertainty) in

timestamping at transmitter is as follows.

Tt x_delay = T_int1 + Tsend + Taccess + Tt xt + T_int2 (3.2)

Chapter 3. Time Synchronization for Swarm of Robots 51

Tt x_uncertainty = T_int1 + Tsend + Taccess + T_int2 (3.3)

Hence period at which timestamps are recorded at transmitter will be

Tactual = Tresync + Tt x_delay (3.4)

Similarly the delay (Tr x_delay) and uncertainty (Tr x_uncertainty) in timestamping at receiver is

Tr x_delay = Trecp + T_int2 + trec (3.5)

Tr x_uncertainty = T_int2 + trec (3.6)

As explained in Section 2.2.1, Linear Regression (LR), Linear Prediction (LP) and Kalman Filter

(KF) based protocols such as FTSP, PulseSync, ALPS, IMM, etc., requires time stamping at fixed

intervals for synchronization [33, 48–50]. In the presence of uncertainties as mentioned in equa-

tions (3.3) and (3.6) timestamping interval will vary and the linear model of clock may not hold

true leading to synchronization errors and subsequent reduction in resynchronization interval in

LR, LP and KF based predictions even for single hop synchronization.

Category 2-Consensus Based Protocols: Consensus based synchronization approaches are gain-

ing popularity owing to their distributed nature and computational lightness. In Average Time Sync

(ATS) and Maximum Time Synchronization (MTS) protocols, each node which receives broadcast

synchronization messages from its neighbour nodes will attempt to adjust its logical clock with

the average and maximum logical clock respectively of its neighbour nodes [51, 52]. Clustered

Consensus Time Synchronization (CCTS) and Cluster based Maximum consensus Time Synchro-

nization (CMTS) protocols proposed for scalable and clustered networks are based on average and

maximum consensus respectively [53, 54]. In CCTS and CMTS, the cluster heads initiate synchro-

nization with a broadcast message. The cluster members record their timestamps on the message

reception and transmit the timestamp back to the cluster head. In CMTS, cluster head selects the

node with maximum logical clock among its cluster members based on the received timestamps

and then adjusts its logical clock to the node with the maximum logical clock. Subsequently, the

cluster head requests the cluster members to adjust its logical clock with the cluster head. Hence,

other nodes in the network can be treated as two hops away from the node with the highest clock,

except in the case where cluster head itself has the maximum clock.

Chapter 3. Time Synchronization for Swarm of Robots 52

Suppose, in a network which utilize CMTS for synchronization, node ‘A’ and ‘B’ are the cluster

members and node ‘R’ is the cluster head. If ‘A’ is the node with maximum clock, then node

‘R’ first synchronizes its clock to ‘A’, after which ‘B’ adjusts its clock by synchronizing to ‘R’.

Error in timestamping can lead to error in time offset and skew measurements represented as ∆θ,i

and ∆α,i respectively for a node ‘i’. To keep the analysis simple, it is assumed that the error in

measurements of skew and offset are independent of each other and if the synchronization between

node ‘R’ and ‘A’ occurs shortly before synchronization of node ‘B’ with node ‘R’, then the time

offset between node ‘A’ and ‘B’ because of skew can be ignored. Therefore, the error in offset

measurement between node ‘A’ and ‘B’s clock is (∆θ,A+∆θ,B). Suppose the frequency of node ‘A’s

clock is (αA+∆α,A) times node ‘R’s clock and node ‘R’s clock is (αB+∆α,B) times node ‘B’s clock,

then the clock frequency of node ‘B’ can be expressed as ((αR + ∆α,R)(αB + ∆α,B))
−1 times node

‘A’s clock. The ∆α,A or ∆α,B can be positive or negative value. In general, for a node ‘n’ hops away

from the node with maximum clock, the measured time offset θn and skew αn can be expressed as

follows:

θn =

n∑

i=1

(θi + ∆θ,i) (3.7)

αn = Π
n
i=1(αi + ∆α,i)

−1 (3.8)

As per equation (3.8), error in skew estimation multiplies in case of consensus algorithm with each

iteration. The error will thus substantially increase after inter-cluster synchronization. Cluster

head rotation is recommended even for clustered static networks for improving energy efficiency

and increasing life time of networks. In mobile networks, new clusters, cluster heads and cluster

members may emerge based on the dispersion of the network in the field of interest. Hence the

skew measurement error as in equation (3.8) will lead to substantial cumulative error in a mobile

network. Similar analysis can be extended for CCTS, however a detailed analysis is not provided

in this thesis as [54] suggest that, CMTS is superior to CCTS in terms of communication overhead

and convergence time. The analysis presented in this section indicate that new techniques are to be

developed for time synchronization.

Chapter 3. Time Synchronization for Swarm of Robots 53

3.4 Swarm-Sync Framework

The novel time synchronization framework "Swarm-Sync", presented in this section, aims to

synchronize the swarm of robots such that all robots/nodes of swarm represent approximately the

same time at any instant, irrespective of their distance from the reference robot/node. Nodes in

a network can be globally synchronized using the framework, such that the instantaneous time

offset between any two nodes in the network is limited to a deterministic bound, ‘δ’ for a given

resynchronization interval. The key principles adopted for the design of Swarm-Sync framework

are described as follows.

1. The framework should synchronize each robot/node in the network such that the synchro-

nization error (Terror) between the reference node and any given node is ≤ δ µs for a given

resynchronization interval, irrespective of the number of robots in the system. This approach

will ensure that Terror between any two nodes in the network is ≤ δµs, thus minimizing both

local and global synchronization error simultaneously.

2. The robots should be allowed to move seamlessly in the deployment area across different

hops or clusters without necessitating resynchronization. Hence, the dependency of a node

on cluster head (for clustered architecture) or intermediate reference node (for a multi-hop

network) for synchronization should be minimal. This approach will reduce the cumulative

synchronization error in a typical multi-hop/clustered network. Since cumulatice synchro-

nization errors over multiple hops/clusters can lead to large variance in clock values of nodes

across the network, reduction of cumulative error is one of our major design focus.

The framework is designed to be scalable such that the addition or removal of nodes in the system

will not lead to synchronization overheads or failures affecting the whole network. The framework

is designed to be tunable, to support demand based or periodic synchronization to suit different

application scenarios.

From Section 2.1.2, it can be understood that the synchronization protocols like TPSN and RBS

perform frequent time offset compensation and do not implement frequency offset compensation.

The protocols which utilize LR, LP and KF techniques predict the reference node clock from

timestamps obtained from reference and slave nodes at an interval of resynchronization interval (in

Chapter 3. Time Synchronization for Swarm of Robots 54

the order of few seconds) without performing initial time offset compensation. Our experimental

analysis on the existing time synchronization protocols as is explained in Section 3.5, indicate that

the resynchronization interval can be significantly improved if initial time offset compensation

is performed on the nodes. However, the techniques for time offset compensation available in

literature utilize pair-wise, two-way message exchanges leading to higher convergence time and

hence are not suitable for scalable and dynamic networks. Swarm-Sync framework recommend

time offset compensation followed by frequency offset compensation at resynchronization intervals

for time synchronization.

The Swarm-Sync framework completely avoid the use of two-way message exchanges and propose

low-complexity one-way message based, time and frequency offset compensation. Swarm-Sync

framework includes two components, one for the implementation of time offset compensation and

other for the implementation of frequency offset compensation. The framework propose time

synchronization in two phases-

1. Time offset compensation and

2. Relative skew fingerprinting based frequency offset compensation.

Each phase is implemented by the corresponding component of the framework. Frequency offset

compensation is performed in two steps- frequency offset calibration (also referred as relative

skew calibration, which is an optional step) and reference clock estimation. Nodes are required

to communicate for synchronization, only during time offset compensation and frequency offset

calibration. Time offset compensation and frequency offset calibration of slave nodes are achieved

by transmission of a control frame followed by data frames from the reference node. The common

format of control and data frames is as shown in Figure 3.2. ‘Message_type’ bits of the command

field indicate the type or purpose of the message. Reference node broadcast a control frame to

slave nodes with the corresponding ‘Message_type’ requesting them to participate in time offset

compensation or frequency offset calibration process. The slave nodes on reception of control

frame may switch to the corresponding operational mode depending upon the control message

received. The different message types, operational modes and number of data frames required

for time offset compensation and frequency offset calibration are summarized in Table 3.1. After

time offset compensation, the nodes will remain in frequency offset compensation mode until the

next resynchronization interval. The nodes may temporarily switch to frequency offset calibration

Chapter 3. Time Synchronization for Swarm of Robots 55

Preamble
(8 x n bits)

 Sync bits
(16/32 bits)

Length
(8 bits)

Address
(8 bits)

 CRC
 (16 bits)

Command Sender
 Address

Receiver
 Address Hours Minutes Seconds

 Milli-
seconds

 Micro-
seconds

Data
(8 x 9 bits)

Count

Figure 3.2. CC2500 packet and payload format.

mode after time offset compensation, if the slave node receives a control message to participate in

frequency offset calibration.

Section 3.4 is organized as follows. The hardware utilized in this work for testing Swarm-Sync

framework is described in Section 3.4.1. Sections 3.4.2 and 3.4.3 provide the description of time

offset compensation and frequency offset compensation respectively. The performance analysis of

the Swarm-Sync framework in indoor as well as outdoor environments is also presented in this

section.

3.4.1 Hardware Architecture

Wheeled, differential drive, miniature robotic platform using Commercial off-the-shelf products

(COTS) suitable for swarm robotic applications was designed, and is utilized as cost effective solu-

tion, which facilitates validation of algorithms/protocols pertaining to distributed wireless control

of swarm of robots, navigation, time synchronization and localization techniques mentioned in

this thesis. The robot architecture is modularized into two. The modules- 1) Mobility module

Table 3.1. Swarm-Sync framework- Summary of message types and operational modes

‘Message_type’ of Control frame Operational Mode Number of Data frames

time_o f f set_sync Time offset compensation mode 3

f requency_o f f set_sync Frequency offset calibration mode 9

- Frequency offset compensation mode -

Chapter 3. Time Synchronization for Swarm of Robots 56

STM32F407VGT6

D
C
M
I

I2C

SPI

ATMEGA 16A

UART

OV9655

CC2500

MicroSD card DC motors

With

Optical Encoders

IR & Ultrasonic

sensors

Compass

Module

XBee

Module

Mobility Module

SDIO

Perception Module

Figure 3.3. Overview of Robot Hardware Architecure Overview.

and 2) Perception module are independently controlled by different microcontrollers as shown in

Figure 3.3. The mobility module (controlled by ATMEGA16A, 8-bit microcontroller) houses the

required sensors for obstacle detection, motor driver and control circuitry for robot navigation.

This module manages the motion control of the robot. Two DC geared motors in differential drive

configuration along with a castor wheel for support is used for navigation. The module has several

on board sensors, i.e HMC6532 Compass module with 0.5 degree resolution, ultrasonic sensor for

obstacle detection (Maxbotix sensor with range 254 inches and resolution of 1 inch), four infrared

proximity sensors-one on each side of robot for near obstacle detection for facilitating navigation

of robot. Optical encoder (MOC7811) on each wheel for precise control of wheel (upto 12.92 mm

and 12.85 degrees) for facilitating navigation of robot.

The perception module is designed with the following COTS components. It has STM32F4 discov-

ery board (with STM32F407VGT6, 32-bit microcontroller based on ARM Cortex M4 architecture

as processing unit), CC2500 radio (as communication unit) and OV9655 (camera module). Per-

ception module fuses the wireless and processed image information to provide supplementary path

planning inputs to mobility module. The perception and mobility modules communicate with each

other using Universal Asynchronous Receiver/Transmitter (UART) protocol. Modularity in the

Chapter 3. Time Synchronization for Swarm of Robots 57

design ensures that the navigation activities and networking activities can be performed simultane-

ously, co-operatively or independent of each other. Any specific hardware for localization or time

synchronization or wireless control of robots will be introduced to the perception module. Hence

if the time synchronization, localization or task allocation has to be implemented for a different

robot or terrain, the perception module can be resused as it is, however the mobility module will

change according to the requirement of the application. This also ensures that the protocol stack

developed for SRS including time synchronization can be used for different types of robot in land (

walking, crawling or wheeled robots) or air without modification to the perception module. Hard-

ware changes are required only in the mobility module to match different terrains. The robot is

referred as BSwarm robot Detailed explanation on the modularized design of the BSwarm robot

and choice of components is mentioned in [84] and brief description of the same is provided in

Appendix A. This robot is henceforth referred as node in this thesis.

Time synchronization is implemented on perception module as communication with other robots

in the system is achieved via this module. Perception module maintains the time of the robot/node.

The STM32F407VGT6 microcontroller is clocked by a 8MHz quartz crystal (HC-49S-C20QSA)

and using the internal PLL, the CPU clock is configured to 100MHz [85]. The crystal exhibits

a frequency stability of +/-20ppm over a temperature range of -10◦C to +70◦C. Microcontrollers

including STM32F407VGT6 do not provide a RTC peripheral with a microsecond level granularity

which can be both read and set by software. Hence a software RTC with a granularity of 1µs is

maintained using ‘Systick’, a precise timer peripheral supported by ARM Cortex M4 architecture.

Systick is configured as the highest priority interrupt in perception module. The format of RTC is

hours : minutes : seconds : milliseconds : microseconds.

The perception module utilizes CC2500 radio module for communication among other nodes and

a Xbee S1 class radio module for transferring the timestamp values and any debug information

recorded on the nodes to a base station laptop which maintains the data log. CC2500 radio module

support timestamping via two of its output pins GD01 and GD02 which can be configured for

various functionalities as mentioned in [86]. For our application, CC2500 is configured such that

GD02 pin is asserted when ‘sync’ word is sent/received by the radio module and de-asserted at the

transmission or reception of EOP. GD01 pin is asserted when the receive FIFO of radio module

is filled with data above a configurable threshold. GD01 gets de-asserted when the receive FIFO

is emptied below the threshold i.e. when data in FIFO is read by the microcontroller. The work

Chapter 3. Time Synchronization for Swarm of Robots 58

presented in this chapter can be replicated on any node hardware by including a radio module

which supports MAC level timestamping.

For experimental validation of the framework, 6 identical robots/nodes, N1 − N6 are utilized. N1

is the reference node. Nodes which are supposed to be synchronized with the reference node are

henceforth referred as slave nodes. Nodes N2 − N5 are slave nodes and N6 is the poller. Due to

limited availability of robots the experiments are conducted on 6 nodes, however the framework is

scalable in terms of size of the network.

3.4.2 Swarm-Sync Framework - Time Offset Compensation

An accurate one-way time offset compensation scheme, which account for the deterministic delays

(transmission time, propagation time, reception time) and eliminates the uncertainties introduced

by the non-deterministic delays (send time, access time, receive time and interrupt delay) during

wireless timestamping is presented in this section. Time synchronization is desired to be performed

via one-way messages instead of pairwise message exchanges between reference and slave nodes

in a scalable network. Although one-way message based frequency offset or skew compensation

is reported in literature, researchers have reported [32, 87] that one-way time offset compensation

is not feasible, based on their observation that time offset and propagation delay cannot be distin-

guished with one-way messages.

An accurate one-way time offset compensation scheme is presented in this section and through

experimental analysis it is established that through one-way messages, time offset can be accu-

rately measured and compensated. Proposed time offset compensation scheme can be utilized for

periodic or demand based time synchronization depending on the application requirements. Time

offset compensation of all nodes at a single hop distance is achieved by transmission of a single

control frame followed by three broadcast data (tsync) frames from the reference node. Time

offset compensation is intiated by the broadcast transmission of a control frame by the reference

node. The ‘Message_type’ field during the control and data frame transmissions for time offset

compensation is configured as “time_o f f set_sync” by the reference node. ‘C/D’ bit of command

field indicate whether the transmitted frame is a control or data frame (C/D=1 for control frame

and C/D=0 for data frame). The mandatory or ‘M’ bit of the command field is ‘set’, if the operation

corresponding to control frame is enforced on the slave nodes by the reference node. If ‘M’ bit of

Chapter 3. Time Synchronization for Swarm of Robots 59

command field is ‘reset’ the participation of slave node in the time offset compensation is optional.

When the reference node initiates an event based time synchronization, (eg: resynchronization

to compensate for drastic topological or environmental changes) the ‘M’ bit is ‘set’ to enforce

resynchronization on slave nodes and for periodic resynchronization, the ‘M’ bit is ‘reset’.

After transmission of the control frame, the reference node along with the slave nodes which

receive the “time_o f f set_sync” control frame switch to ‘time offset compensation mode’ to par-

ticpate in time offset compensation process by receiving data frames. If ‘M’ bit of command field

is set, participation of slave nodes in time offset compensation is mandatory whereas when ‘M’

bit is reset, then the participation of slave nodes in time offset compensation is optional. After

switching to ‘time offset compensation mode’ the nodes disable all maskable interrupts including

systick for perception module, disable the systick timer, reset RTC and poll for any activity on

GD02 pin. GD01 and GD02 pins of the radio modules of all nodes are configured as mentioned

in Section 3.4.1. After the transmission of “time_o f f set_sync” control message, the reference

node transmits three ‘tsync’ messages (Figure 3.4a). The ‘message_type’ field of the tsync payload

is configured as “time_o f f set_sync” and C/D bit is ‘reset’ by the reference node indicating that

the broadcast message is a data frame. Reference node will set ‘Count’ field to ‘1’ for the first

‘tsync’ transmission and ‘Count’ will be incremented on every ‘tsync’ transmission. If the ‘Sender

address’ field received during the “time_o f f set_sync” control and data frames do not match

then the ‘tsync’ message is ignored by the slave node. For broadcast transmissions, the ‘Receiver

address’ field is set to ‘zero’ by the transmitter. Figure 3.4.b depicts the timestamp trace captured

on a logical analyzer indicating GD02 signals of reference node N1, slave node N2 and GD01

signal of N2 indicating the three ‘tsync’ message transmission and reception during time offset

t1 t3 t5

t0 t2

t40

Reference Node

Receiver

(1) (2) (3)

msg msg msg

Figure 3.4. a) ‘tsync’ messages and associated timestamps during time offset compensation. b)

GD01, GD02 signals captured on logic analyzer during tsync message transmissions (GD02_N1)

and receptions (GD01_N2, GD02_N2).

Chapter 3. Time Synchronization for Swarm of Robots 60

compensation.

The timestamping of data frames during time offset compensation is performed as follows. On

the transmission of first ‘tsync’ message, timestamp t0 is recorded by the reference node at

the falling edge of GD02 (Figure 3.4b). Falling edge of GD02 during transmission, signifies

EOP_transmission, i.e. the time at which complete packet is transmitted by the radio. The systick

timer of slave node is started on falling edge of GD02 during the first ‘tsync’ message reception,

effectively starting the RTC. Falling edge of GD02 during reception signifies EOP_reception, i.e.

the time at which complete packet is received by the slave’s radio module. t0 timestamp is broadcast

to slave nodes during the second ‘tsync’ message transmission and t2 (EOP_transmission) and t3

(EOP_reception) timestamps are recorded at reference and slave node respectively. t2 is broadcast

to slave nodes during third ‘tsync’ message. The timestamps t0 and t2 recorded by the reference

node in the format ‘hours : minutes : seconds : milliseconds : microseconds’ is incorporated

in the payload of ‘tsync’ messages as indicated in Figure 3.2.

The slave nodes estimate their offset with reference node using the timestamps as follows. From

Figure 3.4.a it can be observed that

t0 + d = t1 − φ; (3.9)

t2 + d = t3; (3.10)

where ‘d’ is the delay comprising of propagation delay between the nodes and reception delay of

the slave node. ‘φ’ is the deterministic time taken to start the systick timer. From equation (3.9)

and (3.10),

t0 + t2 + 2d = t1 + t3 − φ; (3.11)

As slave node’s RTC is reset as soon as the node is in time offset compensation mode and RTC is

started only on the reception of the first ‘tsync’ message, t1 = 0. From equation (3.11), ‘d’ can be

expressed as

d =
t3 − (t2 − t0) − φ

2
(3.12)

where t0 + φ+d is the time offset. After determining initial offset, RTC of slave node can be

adjusted to the reference node as

t̂5 = t5 + d + t0 + φ; (3.13)

Chapter 3. Time Synchronization for Swarm of Robots 61

where t5 is the current time of the slave and t̂5 is the time offset compensated value corresponding

to t5. Thus, each slave node can update its RTC based on its measured offset with the reference

node.

One of the key benefits of the the proposed one-way time offset compensation is that the offset

compensation of all nodes at a single hop distance can be completedwith only 4 broadcastmessages.

Hence, the communication overhead for time offset compensation is independent of the number of

nodes in the system, unlike the two-waymessage exchange based time offset compensation schemes

where the number of messages required is proportional to the number of nodes. Two-way message

exchange based offset compensation cause “inter-sync” error leading to variance in time values

among nodes even within the same hop. The proposed offset compensation scheme is accurate,

as the possible transmitter and receiver uncertainties in wireless timestamping during time offset

compensation as described in equations (3.3) and (3.6) is completely eliminated as described

below. The major source of error in MAC level time stamping is the jitter in interrupt latency.

After receiving the broadcast “time_o f f set_sync” control message, timestamping is performed by

polling rather than interrupt mechanism to eliminate the uncertainties introduced by interrupt jitter

in transmitter and receiver timestamps. Since MAC level timestamping is implemented, send time,

access time and receive time will not affect timestamping accuracy. The propagation delay and the

reception delay is estimated and accounted for in the offset compensation as explained in equation

(3.13). Offset compensation is completed within few milliseconds, hence disabling maskable

interrupts and task switching in perception module will not affect the performance of the network,

whereas the same along with MAC level timestamping ensures accurate offset compensation.

Modular design of robot ensures that the robot can perform navigation autonomously under the

control of mobility module while the perception module performs the offset compensation.

3.4.2.1 Experimental Validation of Time Offset Compensation

To validate time offset compensation, nodes N1-N5 were deployed at one hop distance from each

other. The nodes were switched-on one by one after random intervals of time, varying from few

seconds to 10 minutes to introduce initial offset among the nodes. Poller node N6 was programmed

to periodically transmit wireless polling messages approximately at an interval of 1.5s. Time

offset compensation was performed on nodes as mentioned in Section 3.4.2. Nodes N1-N5 were

Chapter 3. Time Synchronization for Swarm of Robots 62

configured to record their RTC timestamps on the rising edges of GD02 (on reception of polling

messages) after time offset compensation. The timestamps from nodes were then forwarded to

the basestation using Xbee network for logging of data. The timestamp log of the reference node

and one of the slave node is shown in Figure 3.5. It can be observed from Figure 3.5, that the

nodes were set to a common time after offset compensation, however their time drifts apart due to

inherent skew of the nodes. The proposed offset compensation scheme was tested exhaustively on

nodes under the following conditions, 1) reference node and slave nodes stationary, 2) reference

node N1 stationary and N2 − N5 moving randomly at velocities varying between 50-80cm/sec, 3)

reference and slave nodes moving at velocities varying between 50-80cm/sec.

Experiment was repeated 45 times (15 trials under each condition) for validating the proposed time

offset compensation scheme. For 82% of the trials, all nodes in the network were synchronized

within +/- 2µs, for 14% of trials, nodes were synchronized within +/-3µs and the worst-case time

offset measured was +/- 4µs. It was observed that mobility has negligible effect on timestamping

accuracy for node speeds ranging from 50-80cm/sec. On careful analysis of timestamps using

logical analyzer, it was observed that the reported time offset of 2-4µs (based on the first timestamps

captured from the nodes after time offset compensation) was not due to the inaccuracy in time

offset compensation. The polling of nodes was done at an interval of 1.5 seconds and hence the

nodes exhibit skew even before the first timestamps were recorded after time offset compensation.

The worse case error was reported for node N4, which exhibit maximum relative skew among

the set of nodes. The worst case error reported for nodes N3 and N5 was +/- 2µs. The results

validate that the proposed scheme can achieve precise time offset compensation. From Figure

3.5, it can also be observed that as time elapses, the time offset between nodes increase due to

Figure 3.5. Reference node (COM2) and slave node (COM1) timestamps recorded at base station

after time offset compensation.

Chapter 3. Time Synchronization for Swarm of Robots 63

frequency offset (skew) among nodes, thus necessiating implementation of appropriate frequency

offset compensation mechanism. The proposed frequency offset compensation is elaborated in

Section 3.4.3.

3.4.3 Swarm-Sync framework - Frequency Offset Compensation

The proposed frequency offset compensation is a low complexity scheme based on relative skew

fingerprinting technique. Clock skew fingerprinting based sybil and wormhole attack detection

has been reported in the field of computer networks [88]. [89]demonstrates that it is possible to

fingerprint a hardware device on the basis of the microscopic variations in skew of their clocks.

The concept of clock skew fingerprinting is utilized to achieve frequency offset compensation,

ultimately leading to network wide time synchronization of swarm of robots over the wireless

medium. Our analysis, as is explained in this section, imply that two nodes cannot accurately

skew fingerprint each other over a wireless medium. It is proposed that a third node (poller) can

initiate the relative skew measurement among nodes and the average relative skew thus measured

can serve as the fingerprint of the nodes. In Section 3.4.3.1, the feasibility of utilizing average

relative skew as the fingerprints of nodes is demonstrated. Frequency offset compensation based

on relative skew fingerprints is elaborated in Section 3.4.3.2

3.4.3.1 Feasibility Analysis of Relative Skew Fingerprinting

Following experiments were conducted to measure the relative skew of nodes and to validate the

feasibility of utilizing the average relative skew as the unique fingerprint of nodes.

Relative skew between reference node and slave nodes was measured using wired polling to ensure

that the measurements were free of any inaccuracies introduced by the wireless medium. Nodes,

N2 − N6 were kept stationary, close to reference node N1. Initial time offset compensation was

performed on N2 − N5 as described in Section 3.4.2. Periodic pulse of 1 second, generated by

poller node N6 was applied to N1- N5 via a wired connection. After time offset compensation, the

timestamps recorded by nodes N1 − N5 on the rising edge of pulse from N6 were transferred to the

base station for analysis. If xi is the RTC value of the reference node and yi the corresponding

value of slave node (y ∈ N2, ...N5) at ith instant (on the rising edge of pulse from N6), then their

Chapter 3. Time Synchronization for Swarm of Robots 64

instantaneous offset is given by,

θi = xi − yi; (3.14)

Figure 3.6, depict the instantaneous offset of nodes N2 − N5 with reference node N1 observed

during one of the experiments, after the initial time offset compensation. The experiment was

repeated several times, for a duration of one hour each and it was observed that the instantaneous

offset among nodes increase to an order of few milliseconds within few minutes, even after the

initial time offset compensation. Average instantaneous offset reported for N2 − N5 during 10 such

experiments conducted at different times of the same day is tabulated in Table 3.2. From Table 3.2

, it can be inferred that skew compensation has to be performed to maintain the instantaneous offset

among nodes within a deterministic bound. Since the initial time offset among nodes is already

compensated and the timestamps were taken at an interval of 1 second, relative skew among nodes

can be obtained as.

α′i = θi+1 − θi; (3.15)

The relative skew of nodes N2 − N5 with respect to the reference node N1, measured during one

of the representative experiments is depicted in Figure 3.7. From the relative skew of nodes,

N2 − N5 measured with respect to N1 during repeated experiments (50 experiments, each of one

hour duration) over three months in indoor uncontrolled environment, it was observed that the

nodes exhibit unique relative skew. It is validated through repeated experimental observations that

the relative skew of nodes can be modelled as a constant - with random gaussian noise for stable

environments. The average relative skew α′avg can be calculated using the ‘n’ pair of timestamps

Table 3.2. Average Time offset (in µs) between slave nodes and reference node N1, after initial

time offset compensation

Slave Elapsed Time (in µs)

Node 10 60 300 480 600

N2 74.6 451.6 2202.8 3556.4 4516.8

N3 34.4 203 1108 1808.8 2341.2

N4 86.2 497.8 2525.2 4040.8 5040

N5 -56.6 -301.8 -1566.6 -2517.8 -3147.6

Chapter 3. Time Synchronization for Swarm of Robots 65

� � � � � � � � � � � � � � � � � � �� � 	
 � �
� � � � �� � � � � �� � � �� � � �� � � �
�� ����� ���� �� � �� �� �� �

Figure 3.6. Time offset of slave nodes N2 − N5 with respect to reference node N1, after initial time

offset compensation.

from nodes as follows.

α′avg =

∑n
i=1(θi+1 − θi)

n
(3.16)

α′avg for the given set of nodes, (for n = 600) never exhibited a variation (∆α′avg) greater than ‘0.5’

during the three month long experiments in indoor conditions, which indicate that the average

relative skew is bounded and can be utilized as the fingerprint of nodes.

Influence of Varying Temperature on Relative Skew: The most predominant environmental

factor which affects clock skew is temperature [50]. [89] report that the change in clock frequency

of a Mica2 node is no greater than 1µs/s when temperature changes by 5◦C. To estimate the effect

of temperature on relative skew fingerprinting, experiments were conducted in indoor- temperature

controlled environment as well as outdoor environments as follows.

� � � � � � ! � � " � � # � � $ � �% & ' () * +, � ��
� � �

- ./ 012 3.45 .6 7 87 9
: ; : : < : : = : : > : : ? : : @ : :A B C D E F GH ; : :; :< :

I JK LMN OJPQ JR S TS U

Figure 3.7. Relative skew measured for nodes N2 − N5 with respect to reference node N1.

Chapter 3. Time Synchronization for Swarm of Robots 66

Scenario 1: Indoor Temperature Controlled Environment: Representative slave nodes N2

(exhibiting positive relative skewwith N1), N5 (exhibiting negative relative skewwith N1), reference

node N1 and poller node N6 were kept in a temperature controlled chamber maintained at 23
◦C and

time offset compensation was performed on the slave nodes as in Section 3.4.2. After 10 minutes,

temperature of the room was increased and maintained at 27◦C for 80 minutes, after which the

temperature was again switched back to 23◦C. Timestamps of N1, N2 and N5 were recorded at an

interval of 1 second after the time offset compensation using poller node N6. Figure 3.8 provides

the relative skew of N2 and N5 measured with respect to N1 during one of the experiments. The

variation in relative skew is evident at the temperature switching points around 600 and 5400

seconds. Most microcontrollers including STM32F407VGT6 used in our experiments are clocked

using AT-quartz crystals which exhibit cubic variation of skew with temperature. For AT-cut

crystals, the change in frequency due to variation of temperature can be expressed as

∆ f / f0 = a0(T − T0) + b0(T − T0)
2
+ c0(T − T0)

3 (3.17)

‘T’ is the current temperature and ‘T0’ is the inflection temperature, which is approximately 25°C

for AT-cut crystals [89]. The coefficients a0, b0, and c0 are the first, second, and third order

temperature coefficients of frequency, and are constants that depend on quartz properties and the

angle of cut. Nodes (which have crystals belonging to the AT-cut) subjected to a given temperature

exhibit similar variation in frequency with temperature as in equation (3.17). The increase or

decrease in temperature will lead to increase or decrease in the clock frequency depending on the

temperature coefficient. However, the reported variation in relative skew as in Figure 3.8 is owing

to the fact that poller node is also exposed to temperature changes.

Scenario 2: Indoor Temperature Controlled Environment: The experiment was repeated as in

scenario 1, with the poller node N6 kept in a temperature insulated case and N1, N2, N5 exposed

to temperature changes. The measured relative skew of slave nodes is depicted in Figure 3.9,

which indicate that the relative skew is nearly constant without significant variation around the

temperature switching points, despite of the temperature changes. It can be concluded that when

the relative skew between the reference node and slave node is measured by the poller node which

is not exposed to temperature changes, the variation in average relative skew is negligible as both

reference and slave nodes are subjected to similar variation in frequency as in equation (3.17).

Repeated experiments validated our observation.

Chapter 3. Time Synchronization for Swarm of Robots 67

V W V V V X V V V Y V V VZ [\] ^ _ `a b ca b Va c V
d ef ghi jekl em n o p q r s t o u v o w x y z {| } | | | ~ | | | � | | ||�� |� �
� �� ��� ���� � � � � � � � � � � � � � � � � � �

� � � � � � � ¡ � � � � ¢ £ � ¢ £ � ¤ � ¥ ¦¤ � § � � � ¨
� � � � � � � ¡ � � � � ¢ £ � ¢ £ � ¤ � ¥ ¦¤ � § � � � ¨

Figure 3.8. Analysis of relative skew with

temperature. For t≤600 and t≥5400, temper-

ature is maintained at 23◦C.

© ª © © © « © © © ¬ © © ©­ ® ¯ ° ± ² ³´ µ ¶´ µ ©´ ¶© · ¸ ¹ º » ¼ ½ ¸ ¾ ¿ ¸ À Á Â Ã Ä© ª © © © « © © © ¬ © © ©©¶µ ©µ ¶
Å ÆÇ ÈÉÊ ËÆÌÍ ÆÎ Ï Ð Ñ Ò Ó Ô Õ Ð Ö × Ð Ø Ù Ú Û ÜÝ Þ ß à Þ á â ã ä á Þ ß â å æ ã â å æ Þ ç â ã è éç Þ ê á Þ Þ ë

Ý Þ ß à Þ á â ã ä á Þ ß â å æ ã â å æ Þ ç â ã è éç Þ ê á Þ Þ ë
Figure 3.9. Analysis of relative skew with

temperature. Poller node is kept in insulated

case. For t≤600 and t≥5400, temperature is

maintained at 23◦C.

Scenario 3: Outdoor Environment: Nodes N2, N5, reference node N1 and poller node N6 were

kept in outdoors, for a period of 8 hours from 6am to 2 pm. As in scenario 2, the poller node

was kept in a temperature insulated case. Nodes N1, N2 and N5 were kept close to each other,

exposed to sunlight. On-board temperature sensors on N1, N2 and N5 reported a gradual increase of

temperature from 26◦C to 37◦C during the course of experiment. Using poller node N6, timestamps

of N1, N2 and N5 were recorded at an interval of 1 second, after the time offset compensation. The

distribution of relative skew of slave nodes measured for a duration of 8 hours is depicted in Figure

3.10. Moving average of relative skew with window size of ‘8’ for N2 and N5 was calculated and

the distribution of average relative skew for the duration is depicted in Figure 3.11 as box diagram.

It can be observed that even when only 8 timestamps are considered for measuring average relative

skew, ∆α′avg is restricted to +/- .5 for the entire duration. It can be observed from Figure 3.11,

that despite the wide temperature changes, average relative skew of nodes resembles the average

relative skew observed in Figure 3.7.

Based on these experimental results, it can be inferred that a third node (poller) can accurately

measure the relative skew between two nodes. From the experimental analysis, it can be concluded

that the average relative skewfingerprints estimated at a given temperature can be used for frequency

Chapter 3. Time Synchronization for Swarm of Robots 68

offset compensation, even in dynamic environmental conditions, if the poller node is stable for

variations in temperature. To this effect, the poller node can be designed with a temperature

controlled crystal oscillator (TCXO) or oven controlled crystal oscillator (OCXO) as clock source.

TCXO and OCXO incur higher cost when compared to the typical crystal oscillators used in

microcontroller boards, however their clock frequencies are stabilized for variation in temperature

[89]. If the temperature profile of the deployment area is prone to wide variations, or nodes in

the system use crystals belonging to different ‘cuts’, then use of TCXO or OCXO for all nodes

is recommended. TCXO or OCXO generated clocks exhibit unique relative skew which can be

fingerprinted. However, the variation of frequency with temperature will be negligible. The

observations from these experiments indicate that the average relative skew can be utilized as the

fingerprint of the nodes.

3.4.3.2 Frequency Offset Compensation

Having experimentally validated that the average relative skew can serve as the fingerprint of a

node, a relative skew fingerprinting based frequency offset compensation scheme is proposed. For

a network in which nodes can be dynamically introduced or removed, the nodes should be able

to estimate and calibrate their average relative skew, post the network deployment. Frequency

offset compensation is achieved in two phases, frequency offset calibration and reference clock

estimation. It is demonstrated that with the relative skew fingerprinting based frequency offset

compensation the resynchronization interval can be improved significantly to an order of few

Figure 3.10. Distribution of relative skew

with temperature.

Figure 3.11. Distribution of average relative

skew with temperature.

Chapter 3. Time Synchronization for Swarm of Robots 69

minutes. As the nodes are required to communicate only at an interval of few minutes, the time

synchronization is energy efficient and permits the wireless bandwidth to be free for other primary

activities of the robot like task allocation, navigation, data routing etc.

Frequency offset calibration: An accurate method of error free relative skewmeasurement, over a

wirelessmedium is described in this section. Themethod accounts for any uncertainities introduced

in timestamping as explained in Section 3.3. The proceedure for estimating the average relative

skew fingerprint is as follows. After time offset compensation, reference node broadcast a control

frame of the ‘Message_type’- “frequency_offset_sync” to initiate frequency offset or relative skew

calibration. The format of the control and data frame utilized for relative skew calibration is same

as in Figure 3.2. The relative skew calibration is optional. If ‘M’ bit in the command field of

control frame is set, relative skew calibration is mandatory for nodes. If ‘M’ bit is reset the slave

nodes can optionally participate in the skew calibration process or utilize the past estimate of α′avg

or α′avg obtained aprior to network deployment for reference clock estimation. The reference node,

along with the poller node and the slave node which receives the “frequency_offset_sync” control

frame switch to “frequency offset calibration mode” based on the control message. In frequency

offset calibration mode, the nodes disable interrupts other than systick, disable task switching and

poll on GD02. Poller node transmits 8 polling messages 1 at an interval of 1 second as depicted in

Figure 3.12. Reference and slave nodes on reception of polling messages record their timestamps

at rising edges of GD02. The recorded timestamps of the reference node are then transmitted to

the slave node as a single broadcast message to the slave node. The broadcast ‘Message_type’ is

configured as ‘frequency_offset_sync’ and the ‘C/D’ bit of command field is ‘reset’ to indicate that

payload carries ‘data’. The eight timestamps (40 bytes) in the format, hours : minutes : seconds

: milliseconds : microseconds are embedded in the payload and broadcast to slave nodes by the

reference node. Slave nodes on reception of the reference node timestamps, calculate their α′avg

with the 8 pairs of timestamps as per equation (3.16) after the removal of outliers if any.

The proposed wireless relative skew calibration scheme completely eliminates the receiver and

transmitter uncertainties in periodic timestamping as mentioned in Section 3.3 as follows. The

timestamping of reference node and slave node is initiated by a poller node, hence the uncertainties

in the transmitter timestamping as mentioned in equation (3.6) is completely eliminated. Propaga-

tion delay for distances less than 300 meters is ≤ 1µs and since the granularity of RTC is 1µs, error

1The reason for selecting ‘8’ timestamps for wireless relative skew fingerprinting is elaborated later in this section.

Chapter 3. Time Synchronization for Swarm of Robots 70

due to variation in propagation delay is negligible. The receiver uncertainty is caused by two factors,

the interrupt jitter and the receive time as in equation (3.6). Since polling based timestamping is

implemented, the receiver interrupt jitter is eliminated. As task switching is eliminated (interrupts

Figure 3.12. Overall Swarm-Sync Framework. (Dotted lines indicate control frames, solid lines

indicate the data frames, Bulleted line ends indicate the timestamping instants)

other than systick are disabled) during relative skew calibration, the receive time is deterministic.

Since the timestamping for relative skew calibration is initiated by the poller node, the reference

and slave nodes are receivers of the polling messages and the reception time delay will be the same

for all receiver nodes. Thus, the uncertainty in the receiver timestamping as represented in equation

(3.6) is eliminated and the timestamps recorded at the receivers (reference and slave nodes) during

relative skew calibration can be considered to be recorded simultaneously. If timestamping was

initiated by the reference node, then the slave node should eliminate the transmitter and receiver

uncertainties from the timestamps. When relative skew of nodes is in the order of less than 10µs/s

as indicated in Figure 3.7, the timestamping errors can be very critical. Hence if the relative skew

calibration of slave nodes is initiated by the reference node without using the poller, relative skew

estimation and calibration will not be accurate. As the proposed relative skew calibration scheme is

error free, the same proceedure can be utilized for wirelessly fingerprinting the robots/nodes prior

to their dispersion or deployment,as in Section 3.4.3.1 instead of using wired timestamping. It is

recommended that nodes are fingerprinted prior to deployment either wirelessly or through wired

Chapter 3. Time Synchronization for Swarm of Robots 71

connection and the relative skew may later be optionally re-calibrated post their deployment if

necessary. The relative skew calibration is essential when which new reference node is introduced

in the system.

ReferenceClock Estimation: After time offset compensation, the nodes switch to frequency offset

compensation mode. If nodes receive a “frequency_offset_sync” message, then the slave nodes

may temporarily switch to frequency offset calibration mode and measure the average relative skew

using wireless messages. In frequency offset compensation mode, nodes enable interrupts, enable

task switching and perform reference clock estimation as is explained in Algorithm 1. The slave

nodes utilize the α′avg measured prior to deployment or the value measured during the relative skew

calibration phase for reference clock estimation between reference node and slave node till the next

resynchronization interval as follows. The default value of the resynchronization interval, Tresync

is set to ‘1’ minute for the slave nodes. ‘Count’ field in the paylod during “time_o f f set_sync”

control packet can be used by the reference node to configure the resynchronization interval. De-

pending upon the desired synchronization accuracy, the resynchronization interval of slave node

can be adaptively configured as Count ∗ Tresync.

Depending upon whether the application demands continuous synchronization or post-facto syn-

chronization, slave nodes can estimate the reference node time as follows. For continuous syn-

chronization, the slave node which has the average relative skew α′avg with respect to the reference

node can estimate the reference clock time after every second as

T̂re f = Tslave + α
′
avg (3.18)

where Tslave is the RTC time of the slave and T̂re f is the estimated reference node time. If

continuous synchronization is not required for the application, then post-facto synchronization can

be implemented on the offset compensated nodes as follows. For any event, at time Tslave, a slave

node which has α′avg with respect to the reference node can estimate T̂re f as

T̂re f = Tslave + S ∗ (α′avg) (3.19)

where ‘S’ is the number of seconds elapsed after the last offset compensation. ‘S’ is derived from

the RTC. T̂re f is utilized by the slave node when time information of node is required. Since ∆α
′
avg

is bounded, as is explained in Section 3.4.3.1, for a given resynchronization interval the maximum

Chapter 3. Time Synchronization for Swarm of Robots 72

ì í ì ì î ì ì ï ì ì ð ì ì ñ ì ì ò ì ìó ô õ ö ÷ ø ùú û ì ìú ò ì ìú ð ì ìú î ì ì ìî ì ì
üý þÿ��� �ÿ�� �� � � �� � 	�
� �� 	

Figure 3.13. Synchronization error (time offset) for different values of ‘n’

error in reference clock estimation is bounded and can be estimated as

max{T̂re f − Tre f } = Tresync ∗ max{∆α′avg}µs. (3.20)

where Tresync is the resynchronization interval in seconds, Tre f is the reference node clock and

∆α′avg is the maximum variation in average relative skew for the given set of nodes.

To calculate an appropriate number of timestamps ‘n’ required for relative skew fingerprinting,

synchronization of one of the slave nodes with reference node using equation (3.18) was attempted.

The α′avg calculated using different values of ‘n’ through wireless relative skew fingerprinting was

utilized for reference clock estimation. The time offset of the slave node with reference node

after reference clock estimation according to equation (3.18) is shown in Figure 3.13. It can be

observed that as ‘n’ increases, the time offset decreases. However, as a trade-off between accuracy

and incurred communication overhead, the value of n=8 was chosen. This was validated through

repeated experiments.

For the given set of nodes N1-N5, the maximummax{∆α′avg}wasmeasured to be .5, as explained in

Section 3.4.3.1. The resynchronization interval can be configured according to the required bound

of synchronization error as follows. For example, if the synchronization error, max{T̂re f − Tre f }

has to be bounded to 300 µs, the resynchronization interval can be as high as ≈ 10 minutes. Since

the maximum change is clock frequency of a crystal is bounded it can be assured that for any set

of nodes, max{∆α′avg} is also bounded if accurate timestamping is implemented .

The overall Swarm-Sync framework is depicted in Figure 3.12. Only 4 broadcast messages are

required for synchronization of nodes in a hop, if relative skew calibration is not required. If

Chapter 3. Time Synchronization for Swarm of Robots 73

relative skew calibration is required, then additional 9 broadcast messages are required per hop for

synchronization within a given resynchronization interval. The proposed framework is appropriate

for scalable networks as the number of messages required for synchronization is independent of

the number of nodes in the network. In Swarm-Sync framework, once a control frame is received

by the slave nodes, the nodes switch to the corresponding operational mode and wait for the data

frames from reference node. However to accommodate for the possible issues which can occur due

to loss of packets due to collision or due to the fact that nodes are mobile and have moved out of

the coverage zone, it is advisable to use a timer to monitor the wait period of node. If data frames

are not received within the wait period, the node continues the reference clock estimation with the

previous estimate of average relative skew available with the node.

3.4.4 Experimental Validation of Swarm-Sync Framework

3.4.4.1 Validation for Single-hop Networks

To evaluate the accuracy of proposed Swarm-Sync framework for single-hop networks, two test

scenarios were designed. For both scenarios, nodes N2 − N5 were programmed to navigate

randomly within one-hop distance with a velocity of 50-80cm/sec. For the first scenario, frequency

offset compensation was performed on nodes after time offset compensation using α′avg measured

offline prior to deployment (wired timestamping, n=600) using equation (3.18). For second

scenario, frequency offset compensation was performed after time offset compensation using α′avg

2 calculated from wireless timestamping (n=8) post deployment on mobile nodes. Tresync is

configured as 10 minutes for both scenarios. 40 rounds of experiments were conducted for both

scenarios- spread over a duration of 1 month in uncontrolled indoor environmental conditions.

The maximum error in synchronization measured during 40 rounds of experiments and the error

bound obtained for 90% of the trials for Scenario 1 and Scenario 2 is indicated in Table 3.3. The

representative results obtained during one of the experiments for Scenario 1 and Scenario 2 is

depicted in Figure 3.14 and Figure 3.15 respectively which indicate that the synchronization error

and the variance in synchronization error among nodes is bounded. It can be observed that even

2α′avg with precision of 2 decimal digits is used for skew compensation. T̂re f is rounded off to the nearest integer.

Chapter 3. Time Synchronization for Swarm of Robots 74

with wireless relative skew fingerprinting, the synchronization error is bounded (≤ 300µs) for a

resynchronization interval of 10 minutes.

3.4.4.2 Validation for Multi-hop Networks

For a multihop scenario, the components of Swarm-Sync framework can be utilized in three

different ways for synchronization, depending on the characteristics of the network.

Option 1: Hop-wise time offset compensation of the network, followed by frequency offset

compensation with average relative skew fingerprints calculated prior to network deployment.

Option 2: Time offset compensation, immediately followed by frequency offset compensation

with relative skew calibration, repeated one hop after the other.

Option 3: Hop-wise time offset compensation of the network, followed by frequency offset

compensation with relative skew calibration.

Swarm-Sync framework was tested in a 4-hop scenario with node deployment as shown in Figure

3.16. Nodes were configured to move at a velocity of 80 cm/second within each zone. For

Option 1 and 2, once the time offset compensation of nodes at one-hop level is completed, selected

offset compensated nodes serve as the reference node for the time offset compensation of the

next hop nodes. The selection of intermediate reference node is not covered within the scope

of this work as the selection criteria will vary based on the application and its constraints. In

our deployment scenario, N2, N3, N4 serve as the reference node for the next hop nodes during

time offset compensation. N2 compensate its time offset with respect to N1 after which it serves

Figure 3.14. Time offset between reference

and slave nodes post synchronization, α′avg
calculated prior to deployment using wired

relative skew fingerprinting.

Figure 3.15. Time offset between reference

and slave nodes post synchronization, α′avg
calculated using wireless relative skew fin-

gerprinting post the deployment.

Chapter 3. Time Synchronization for Swarm of Robots 75

Algorithm 1: Swarm-Sync Algorithm

Output

:

Estimated reference clock T̂re f by slave node

1: start:

2: if ((Message_type ==

time_o f f set_sync) & (C/D == 1)) then

3: T_resync = Count;

4: RNAddress = Sender Address;

5: mode =

time o f f set compensation mode

6: end if

7: while

(time o f f set compensation mode ==

true) do

8: disable interrupts ();

9: disable task switching ();

10: reset RTC();

11: start polling GDO2 ();

12: for i = 0 to 2 do

13: if (EOP detected at GDO2) then

14: if (i == 0) then

15: enable systick timer() and

systick interrupt();

16: enable RTC();

17: end if

18: i = i + 1;

19: ti+1 = record time stamp ();

20: if (Sender Address! = RNAddress)

then

21: discard time stamp ;

22: decrement i;

23: else if (Count <=

2)&(Sender Address ==

RNAddress)) then

24:

obtain ti−1 f rom received message

25: end if

26: end if

27: end for

28: if (Count >= 2) then

29: i = 0;

30: per f orm time o f f set

compensation using equation(3.13);

31: end if

32: end while

33: if ((Message_type ==

f requency_o f f set_sync) & (C/D ==

1)) then

34: RNAddress = Sender Address;

35: mode =

f requency o f f set calibration mode

36: end if

37: while

(f requency o f f set calibration mode ==

true) do

38: disable interrupts except systick();

39: disable task switching ();

40: start polling GDO2 ();

41: for j = 0 to 7 do

42: if (‘sync′ detected at GD02) then

43: t j = record time stamp ();

44: end if

45: end for

46: enable all interrupts();

47: enable task switching ();

48: for (j == 8) do

49: l = 0;

50: if (GD01 == 1) then

51: for k = 0 to 7 do

52: tk =

obtain time stamp o f re f erence

node f rom received messages();

53: θl = tk − t j, l = l + 1;

54: end for

55: end if

56: end for

57: remove outliers i f any

58: n = (8 − number o f outliers)

59: Calculate α′avg f rom equation (3.16)

60: mode =

f requency o f f set compensation mode

61: end while

62: if

((f requency o f f set compensation mode ==

true)) then

63: j = 0;

64: enable all interrupts();

65: enable task switching ();

66: per f orm skew compensation

with last updated α′avg
as per equation (3.19) or equation (3.20)

;

67: end if

68: repeat from start

Chapter 3. Time Synchronization for Swarm of Robots 76

Table 3.3. Synchronization error between slave nodes and reference node N1 utilizing - Swarm-

Sync framework

Synchronization Error (in µs)

Wired, relative skew Wireless relative skew Wireless relative skew

fingerprinting fingerprinting fingerprinting

(scenario 1) (scenario 2) (4-hop scenario)

Error Bound

for 90% trials 110 175 210

Maximum Error 127 192 243

as the reference node for offset compensation of N3. After time offset compensation of N3,

N2 switches to ‘frequency offset compensation mode’. Similarly, N4 and N5 correct their time

offsets and switch to ‘frequency offset compensation mode’. After switching to frequency offset

compensation mode, nodes enable interrupts, enable task switching and compute reference clock

T̂re f with the α
′
avg calculated prior to node deployment for option 1 or wait for the relative skew

calibration message from the reference node for option 3. Mobility of reference and poller node

is utilized to ensure that the frequency offset or relative skew estimation/calibration is achieved

with reasonable accuracy in option 3. Poller node and reference node will move to each zone/hop

to facilitate the average relative skew estimation of time offset compensated nodes. When poller

node and reference node are available for relative skew estimation, the reference node broadcast

“frequency_offset_sync” control message. When poller node receives the control message, 8

polling messages are transmitted by poller. Once the 8 timestamps from reference nodes are

transmitted to the slave nodes, the reference and the poller nodes move to the next hop to facilitate

the relative skew estimation of the next hop nodes. Option 1 is ideal for large scale networks

whereas option 3 is suitable only if the coverage area of the network is limited. In Option 3, after

time offset compensation, frequency offset compensation is performed on the availability of the

reference and poller node. Hence even before the frequency offset caibration is initiated by the

reference node, significant time offset may manifest after the time offset compensation due to the

skew exhibited by the nodes. Hence even if frequency offset compensation is performed, time

represented by the slave nodes may deviate significatly for the first global synchronization cycle,

if the coverage area is large. However once relative skew calibration is performed, for subsequent

Chapter 3. Time Synchronization for Swarm of Robots 77

N3
N4

N5

Zone2 Zone3 Zone4

N1

Zone1

N2

Base

Station

Figure 3.16. Deployment of nodes in multi-hop scenario.

synchronization cycles, the robots can utilize the average relative skew estimated in previous cycle

for frequency compensation till the reference and poller node are in vicinity. In applications like

land mine detection, airborne robots can be utilized as reference and poller nodes and hence, the

synchronization can be completed quickly using option 3. The airborne robots can also be utilized

for surveillance and be used to provide supplemetary path planning inputs to the other swarm

robots. In Option 2, time and frequency offset compensation of each hop is repeated one hop

after the another. The poller node and reference node will move to each hop perform time offset

compensation, followed by frequency compensation with relative skew calibration. Option 2 is

suitable for small and medium sized networks.

The error distribution for multi-hop network deployment is as follows. The framework utilizes

intermediate reference nodes only for time offset compensation. Intermediate reference nodes are

not utilized for frequency offset compensation. The accuracy of proposed time offset compensation

is elaborated in Section 3.4.2.1. However, time offset compensation of n+1th hop should be initiated

as soon as the time offset compensation of nth hop is complete, to avoid any cumulative error

propagation due to skew. WSN nodes are typically clocked using crystals which exhibit a skew of

1- 50ppm (e.g. 50ppm implies a maximum variation of 50µs per second from ideal value). In the

presented work, once the time offset compensation of nth hop is complete, the control frame for

time offset compensation of next hop nodes is transmitted by the intermediate reference node after

a delay as follows

Delayt x ≈ Tr x−t x + Tmicro_w + Ttansmit (3.21)

where Tr x−t x is the time required for CC2500 to switch from receive to transmit mode (≈ 21µs

[33]), Tmicro_w is the time taken by microcontroller to write payload data on to CC2500 register

Chapter 3. Time Synchronization for Swarm of Robots 78

(SPI communication between CC2500 and STM32F407VGT6microcontroller is at 10Mhz. Hence

≈ 7.2 µs is incurred for writing data according to format mentioned in Figure 3.2), Ttransmit is the

time taken by CC2500 for transmitting a packet of format as mentioned in Figure 3.2. (≈ 650µs

when CC2500 is configured for data rate of 250Kbps [86]). Similarly, the delay after which a node

at n + 1th hop receive the control message can be determined as

Delayr x ≈ Tprop + Trecp + Tmicro_r (3.22)

where Tprop is the propagation delay (which is << 1µs), Trecp is the time for receiving a packet

bit-bit at the physcial layer (Trecp ≈ Ttransmit) and Tmicro_r is the time taken by the microcontroller

to read data from CC2500 registers (Tmicro_r = Tmicro_w= 7.2µs). The time for transmitting and

receiving 4 messages required for the time offset compensation is

Delaytotal ≈ Tmicro_w ∗ 4 + Tr x−t x + Ttransmit ∗ 4 + Treceive ∗ 4 + Tmicro_r ∗ 4 (3.23)

which is ≈ 6ms (for a node with 50 ppm , skew developed during this time is negligible). The skew

in the transmitter node and receiver node during time offset compensation is negligible, leading

to minimal cumulative error propagation during time offset compensation. It has to be noted that

time offset compensation of nodes at one hop distance is completed using broadcast messages

unlike pairwise two-way message exchanges as utilized in TPSN or RBS protocol. Hence errors

due to accumulation of skew during time offset compensation is negligible. Frequency offset

compensation is achieved using relative skew fingerprinting technique and is non-cumulative as

n + 1th hop node does not communicate with nth hop node for frequency offset compensation.

For option 1, the performance of synchronization is similar to that obtained for single-hop net-

works as relative skew fingerprints are calculated a priori and there is no communication between

neighbour nodes for frequency offset compensation. Time offset compensation will cause neg-

ligible cumulative error as explained above. For Option 2 also, the performance is same as that

of single-hop networks as relative skew calibration is performed immediately after time offset

compensation in each hop. It can be analyzed that option 3 may lead to higher synchronization

error over multiple hops when compared to other two options for the first synchronization cycle

due to time difference between time offset compensation and relative skew calibration. To examine

the performance of Swarm-Sync network for multi-hop scenarios, experiments were repeated for

Chapter 3. Time Synchronization for Swarm of Robots 79

40 times, spread over a period of 1 month for Option 3. The reference and poller nodes move to the

next hop (in ≈ 3 seconds for our deployment) to facilitate the frequency offset calibration as soon as

the calibration of previous hop is complete. The nodes after synchronization (time and frequency

offset compensation) were polled for 10 minutes. The time offset after synchronization for one

of the experiments is depicted in Figure 3.17. The representative result shown in Figure 3.17

indicates that even in a 4-hop network all nodes can remain synchronized within an error bound of

300µs. The worst-case synchronization error for a 4-hop scenario (for 40 attempts) with wireless

relative skew fingerprinting was 243µs. The maximum error in synchronization measured during

40 rounds of experiments and the error bound obtained for 90% of the trials for 4-hop scenario is

indicated in Table 3.3

Swarm robots mostly utilize local communication strategies instead of global communication and

since the cumulative error over neighbouring hops is negligible, the robots can move across hop

or clusters without restriction on its mobility. This also leads to easier implementation of other

layers of the protocol stack like medium access control or routing. The proposed scheme is energy

efficient as the resynchronization interval can be increased to an order of several minutes. The

protocol is scalable as the number of robots required for the synchronization is independent of the

number of nodes in the system. Framework can not only provide a bounded synchronization error

but also provide a lower variance in the error among nodes even for multi-hop scenarios. This

technique does not impose any restriction on the movement of robots and is also robust to loss of

robots or nodes. The proposed framework eliminates the sender and receiver side uncertainty in

timestamping and at the same time is energy efficient as the number of communication messages

are reduced drastically due to the improvement in resynchronization interval.

Figure 3.17. Time offset between reference and slave nodes for 4-hop deployment, α′avg calculated

using wireless relative skew fingerprinting as in Option 3.

Chapter 3. Time Synchronization for Swarm of Robots 80

3.5 Comparison of Swarm-Sync Framework with LR, LP and

KF and Consensus Based Techniques

Table 3.4 provides a comparison of the popular state-of-the-art time synchronization protocols.

These protocols are based on fundamental techniques such as Linear regression (LR), Linear

prediction (LP), Kalman filter (KF) or consensus theory. In this section, an analysis of these dif-

ferent techniques is experimentally performed and their suitability for synchronization of dynamic

networks like swarm robotic systems is evaluated. These techniques are evaluated based on the

following crucial aspects.

1. Can the resynchronization interval be extended to an order of few minutes?.

2. Can the technique provide reasonable time synchronization accuracy when performed on

nodes with single precision floating point unit (FPU), which is the common type of FPU

available in most of the microcontrollers based nodes?.

3. Can the technique provide synchronization with bounded error over a multi-hop network?.

4. Is the technique scalable and robust to node failures?.

3.5.1 Comparative Analysis with LR, LP, KF Techniques

LR, LP and KF techniques are predictive whereby the slave nodes predict the reference node clock

using the pairwise timestamps obtained from reference and slave nodes at periodic intervals of

time. The protocols based on these techniques recommend resynchronization intervals in the order

of few seconds as indicated in Table 3.4. A common experimental set up was designed with the

objective to estimate the best-case prediction accuracy provided by LR, LP and KF techniques for

a given resynchronization interval on a given set of nodes. Nodes, N1 − N6 were kept stationary at

one hop distance from each other and were switched-on one by one, after random delay to introduce

initial offset among the nodes. A periodic pulse of 1s was generated by the poller node N6 and at

the rising edge of pulse, timestamps were recorded at the reference and slave nodes simultaneously.

Polling was done using a wired connection between poller and other nodes to avoid uncertainties

Chapter 3. Time Synchronization for Swarm of Robots 81

associated with wireless timestamping. Pairwise timestamps from reference node (N1) and slave

nodes (N2 − N5) were fed into MATLAB tool (computations using double precision floating point

data type) and the same set of timestamps were utilized to predict the reference clock using each

of the three techniques. The prediction error (Terror), i.e the difference between the measured and

predicted reference clock was calculated for the three techniques. The pairwise timestamps were

also fed onto robots (computations using single precision floating point data type) and prediction

accuracy of the three techniques when computations were performed on nodes was evaluated.

Linear Regression (LR) FTSP and PulseSync protocols utilize linear regression to estimate the

reference node clock. These protocols do not incorporate explicit initial time offset (θ0) compensa-

tion and recommend the use of most recent, 8 pairwise timestamps obtained at resynchronization

intervals (Tresync) from reference and slave node using one-way wireless timestamping for linear

regression. Frequent updation of regression table at an interval of 30 s and 10 s as recommended

by FTSP and PulseSync respectively is not feasible in mobile networks. Hence, we maintained a

regression table with 8 timestamps obtained at an interval of 1 s and these 8 timestamps were used

to calculate the regression coefficients ‘α’ and ‘β’. The regression coefficients thus obtained were

utilized to predict reference node time for 10 min duration (Tresync =10 min) as in Algorithm 2.

The experiment was also repeated for Tresync=1 min. For Tresync=1 min, the regression table was

updated after every minute, with 8 new timestamps obtained at an interval of 1s. The prediction

error for two representative nodes N2 and N5 obtained during one of the representative experiments,

provided in Figure 3.18.a and Figure 3.18.b indicate that the error is significant for Tresync = 10

min when compared to Tresync = 1 min. It can be observed that even with double precision data

type computations (MATLAB), LR method leads to significant error in prediction due to the initial

offset among nodes.

Pairwise timestamps were obtained from reference and slave nodes after performing time offset

compensation on slave nodes as suggested by Swarm-Sync framework in Section 3.4.2. LR based

reference clock prediction was performed using timestamps for Tresync=10 min on nodes as well

as on MATLAB. The prediction error for representative nodes N2 and N5 when the prediction is

performed offline (MATLAB) and on nodes is depicted in Figure 3.18.

Chapter 3. Time Synchronization for Swarm of Robots 82

T
a
b
le
3
.4
.
C
o
m
p
ar
is
o
n
o
f
S
w
ar
m
-S
y
n
c
w
it
h
o
th
er
ti
m
e
sy
n
ch
ro
n
iz
at
io
n
p
ro
to
co
ls

P
ro
to
co
l

R
es
y
n
c

A
v
er
ag
e

N
o
o
f
M
es
sa
g
es

N
o
o
f

S
y
n
ch
ro
n
iz
at
io
n

C
u
m
u
la
ti
v
e

in
te
rv
al

A
cc
u
ra
cy

p
er
h
o
p
/c
lu
st
er

it
er
at
io
n
s
fo
r

T
ec
h
n
iq
u
e

er
ro
r
o
v
er

(s
)

(µ
s)

w
it
h
‘n
’
n
o
d
es

C
o
n
v
er
g
en
ce

m
u
lt
i-
h
o
p

R
B
S
[9
0
]

-
2
9
.1

n
(n
−

1
)/

2
-

P
ai
rw
is
e
2
-w
ay

H
ig
h

-
m
es
sa
g
in
g

T
P
S
N
[9
1
]

-
1
6
.9

2
(n
−

1
)

-
P
ai
rw
is
e
2
-w
ay

H
ig
h

-
m
es
sa
g
in
g

F
T
S
P
[4
8
]

3
0

1
.4
8

n
-

L
R

H
ig
h

P
u
ls
eS
y
n
c[
3
3
]

1
0

2
.0
6

n
-

L
R

H
ig
h

A
L
P
S
[4
9
]

2
1
9
.3
3

n
-

L
P

H
ig
h

A
M
K
F
[5
0
]

1
0
0
0

1
0
0
0

n
-

K
F

H
ig
h

A
T
S
[5
1
]

3
0

6
0
0

n
1
2
0

C
o
n
se
n
su
s

H
ig
h

M
T
S
[5
2
]

1
1
0
0

n
2
1
2

C
o
n
se
n
su
s

H
ig
h

C
C
T
S
[5
1
]

1
3
0
.2

n
+

3
3
1

C
o
n
se
n
su
s

H
ig
h

C
M
T
S
[5
3
]

1
≈
5

n
+

2
1
2
6

C
o
n
se
n
su
s

H
ig
h

S
y
w
ar
m
-S
y
n
c

6
0
0

1
1
0

1
3

-
S
k
ew

F
in
g
er
p
ri
n
ti
n
g

N
eg
li
g
ib
le

Chapter 3. Time Synchronization for Swarm of Robots 83

�
 � � � � � � � � � � � � � � � � �� � � � � � ��
 � � �
 � �� � �� � �
�� ��� !�"# !$ % & ' () * + , - . / 0 1 , 2% & ' () * + , - . 0 1 , 2

3 4 3 3 5 3 3 6 3 3 7 3 3 8 3 3 9 3 3: ; < = > ? @A 7 3 3A 5 3 3 35 3 3
BC DEFGG HEIJ HK L M N O P Q R S T U V W X S YL M N O P Q R S T U W X S Y

Figure 3.18. Time offset (Prediction error) for LR based reference clock prediction for different

Tresync periods a) Initial offset between between N1 and N2 was 60ms b) Initial offset between N1

and N5 was 10µs

The results indicate that the prediction error has reduced significantly even for Tresync = 10 min

when compared to Figure 3.18.a and Figure 3.18.b. From repeated experiments it was concluded

that frequent resynchronization as pointed out in FTSP or PulseSync can be avoided if time offset

among nodes is compensated. Moreover, it was observed that there is significant difference in

prediction accuracy when prediction is performed offline, when compared to accuracy when the

prediction is performed on nodes as shown in Figure 3.18. STM32F407VGT6microcontroller used

in our experiments has a FPU which supports single precision floating point operations. Hence

the values of α̂ and β̂ (eg: +/- 1.00000865394978 i.e. with 13 or more digits of precision) are

truncated to 7 decimal digitals resulting in error in prediction when compared to the prediction

computed on MATLAB. Commonly used nodes in WSN like TelosB or Micaz do not support FPU

and the LR computations on them will result in significant truncation and error in prediction. LR

technique was also tested for a 4-hop scenario with node deployment as shown in Figure 3.16.

Nodes N2, N3, N4 serve as intermediate reference nodes for LR prediction of the next hop nodes

after time offset compensation. The timestamps were collected from nodes at an interval of 1s

Algorithm 2: Reference clock prediction using Linear Regression

Input : Timestamps from slave node xi−1, xi−2, ..xi−8 and reference node yi−1, yi−2, ..yi−8

obtained at intervals of i = 1 second at the start of resynchronization interval

Output

:

Predicted reference clock ŷi

1 Calculate
∑8

1
xi ,

∑8
1

x2
i
,(
∑8

1
xi)

2,
∑8

1
yi ,

∑8
1

xiyi;

2 n = 8; β =
n
∑

xi yi−(
∑

xi
∑

yi)

n
∑

x2
i
−(
∑

xi)2

3 α =
∑

yi

n
− β

∑
xi

n
;

4 yi = β ∗ xi + α; calculate yi for i ≥9 till end of resynchronization interval;

5 Repeat from step 1 after Tresync with new 8 pair of timestamps

Chapter 3. Time Synchronization for Swarm of Robots 84

using wired timestamping and the reference clock prediction was performed on MATLAB. The

measured prediction error for one of the representative experiment is shown in Figure 3.19. It can

be observed that when Tresyc =10 minutes, the prediction error between the reference and slave

nodes increase to an order of few milliseconds even for a 4 node scenario under ideal conditions.

It can be observed that the LR technique lead to cumulative error over a multi-hop scenario, thus

leading to large variance in the time of nodes throughout the network as is indicated in Figure

3.20. The LR prediction is highly sensitive to the timestamps and prediction error over a multihop

scenario will vary with the deployment pattern of nodes and hence the prediction error is not

deterministic.

In Swarm-Sync framework, the skew compensation by slave nodes is independent of other slave

nodes in the system, thus eliminating cumulative error propagation. The framework also guarantees

a bounded synchronization error irrespective of the number of nodes in the network. From Figure

3.17 and Figure 3.18, it can be observed that the variance of error among nodes is much lesser for

Swarm-Sync framework when compared to LR even in multi-hop scenarios, thus making Swarm-

Sync protocol ideal for situations which are prone to dynamic cluster formations/changes. Our

analysis indicates that LR based technique is not ideal for synchronization of multi-hop, scalable

and dynamic network like swarm of robots.

Linear Prediction (LP) LP is widely applied in signal estimation problems in which the

future values of a signal is predicted based on the past signal samples. ALPS [49], predicts the

instantaneous offset between a reference node and a given node based on past measurements of

their offsets as follows.

θ̂i+1 = a1θi + a2θi−1.... + apθi−p (3.24)

where a j (j = 1, 2, ...p) are the prediction coefficients, ‘p’ is the prediction order, θi.. θi−p are

the measured offset between the reference node and slave node at fixed intervals and θ̂i+1 is the

predicted offset at i + 1th instant. LP is computationally complex (Algorithm 3), Levinson-Durbin

algorithm requires a nested loop with a complexity of O(p2). [49] suggests prediction order of 3

to strike a balance between computational complexity and prediction error. Using wired polling,

timestamps were obtained from representative nodes N2 & N5 after time offset compensation.

LP based prediction (Algorithm 3) was performed with p = 3 as recommended by ALPS. The

prediction coefficients were updated on every iteration by minimizing mean square error between

Chapter 3. Time Synchronization for Swarm of Robots 85

Z [Z Z \ Z Z] Z Z ^ Z Z _ Z Z ` Z Za b c d e f gh] Z Zh \ Z Zh [Z Z Z[Z Z\ Z Z
ij klmnn olpq or s t u v w w x y z { |s t u z v } { |s ~ u v w w x y z { |s ~ u z v } { |

Figure 3.19. Time offset after LR prediction,

when performed on nodes (hardware) Vs of-

fline (MATLAB) for T_resync =10 minutes

� � � � � � � � � � � � � � � � � � �� � � � � � �� � � � �� � � � �� � � � �� � �
�� ����� ���� �� � �� �� �� �

Figure 3.20. Time offset after LR predic-

tion for 4-hop scenario (LR performed offline

(MATLAB).

measured and the predicted offset. It can be observed from Figure 3.21.a, that the average error in

prediction (computed using double precision floating point data type inMATLAB) is approximately

20µs and 5µs for N2 and N5 respectively, for timestamps taken at an interval of 1 second (Tresync).

The prediction error increases drastically (Figure 3.21.b) when timestamps obtained at Tresync

of 30 seconds is used for the prediction. From repeated experiments, it was also observed that

LP technique produces a non-zero steady-state error which increases with the sampling interval

(Figure 3.21.b). When LP is conducted on nodes and with uncertainties introduced by the wireless

timestamping, the prediction error will increase substantially even for smaller resynchronization

intervals in the order of few seconds. Hence LP technique is not suitable for synchronization if the

desired resynchronization interval is greater than few seconds even for single hop scenarios.

Kalman Filter (KF) Researchers [50] have proposed a multi-model Kalman filter for dynamic

environments, where as a constant-skew model is suggested for constant environmental conditions.

A constant skew model based Kalman filter (Algorithm 4) was implemented to evaluate the

performance of clock synchronization under constant environment conditions. Timestamps were

obtained from reference node N1 and the time offset compensated slave nodes N2 and N5 at Tresync

and the instantaneous offset between the reference and slave nodes was input to the Kalman filter.

The process covariance (Q) and noise covariance (R) of input data was estimated at each iteration

using a smoothed version of input data, as a surrogate for the true process state. KF based offset

prediction for Tresync =1 and Tresync =30 s was performed offline on MATLAB and the prediction

Chapter 3. Time Synchronization for Swarm of Robots 86

Algorithm 3: Reference clock prediction using Linear prediction

Input: : Time offset between the reference and slave node θi, θi−1, θi−2, ..θi−p measured from the

corresponding timestamps

Input: : Prediction order p

Output

:

Predicted reference clock offset θ̂i+1

1 Initialize array for storing previous offsets. Array size is equal to the size of prediction order.

2 Update the array with previous ‘p’ offset samples.

3 Calculate autocorrelation function of clock offsets.

4 Compute prediction coefficients a1, a2, ...ap using Levinson-Durbin iterative algorithm.

5 Calculate θ̂i+1 = a1∆Ti + .. + ap∆Ti−p

6 repeat from step 2 after Tresync

� � � � � � � � � ¡ � � ¢ � � £ � �¤ ¥ ¦ § ¨ © ª« � � �� �¡ �
¬­ ®̄°±± ²̄³´ ²µ ¶ ·¶ ¸

¹ º ¹ ¹ » ¹ ¹ ¼ ¹ ¹ ½ ¹ ¹ ¾ ¹ ¹ ¿ ¹ ¹À Á Â Ã Ä Å ÆÇ ¾ ¹ ¹ ¹¾ ¹ ¹º ¹ ¹ ¹
ÈÉ ÊËÌÍÍ ÎËÏÐ ÎÑ Ò ÓÒ Ô

Figure 3.21. a) Prediction error (Measured time offset- Predicted time offset) for LP based

prediction, Tresync = 1second. b) Prediction error for LP based prediction, Tresync = 30seconds.

error (Figure 3.22) was calculated. Similar to LP based prediction, the prediction error increases

when Tresync is 30 s. The magnitude of prediction error is lesser for KF based prediction when

compared to LP. KF technique also produce a non-zero steady state error proportional to the

sampling interval like LP technique. When KF is implemented on nodes, it was observed that

approximately 8 timestamps were required to obtain a converged result (Figure 3.22.b). For Tresync

Õ Ö Õ Õ × Õ Õ Ø Õ Õ Ù Õ Õ Ú Õ Õ Û Õ ÕÜ Ý Þ ß à á âã Ö Õã ÚÕÚÖ ÕÖ Ú
äå æçèéé êçëì êí î ïî ð ñ ò ñ ñ ó ñ ñ ô ñ ñ õ ñ ñö ÷ ø ù ú û üý ó ñ ñý ò ñ ñ ñò ñ ñó ñ ñô ñ ñõ ñ ñ

þÿ ����� ���� �� � 	
 � � �
 � � � �� 	
 � � � � � � �� �
 � � �
 � � � �� �
 � � � � � � �
Figure 3.22. a) Prediction error (Measured time offset- Predicted time offset) for KF based

prediction with Tresync=1 second. b) Prediction error for KF with Tresync=30 seconds.

Chapter 3. Time Synchronization for Swarm of Robots 87

= 30 s, converged result was obtained only after 4 minutes when the prediction was computed on

nodes (Figure 3.22.b). When implemented on nodes without FPU, the convergence time can be in

the order of several minutes even for single hop scenarios. Hence KF based techniques cannot be

used for multi-hop, mobile networks where the convergence time is expected to be minimal.

Having experimentally verified the LR, LP and KF based prediction techniques it can be concluded

Algorithm 4: Reference clock prediction using Kalman Filter

Input: : Time offset between the reference and slave node, θi−1 measured from the

corresponding timestamps

Output

:

Predicted reference clock offset θ̂i

1 θpredicted = A ∗ θi−1; A = [1 0; 0 0].

2 Ppredicted = A ∗ Pn−1 ∗ AT
+Q

3 Innovation ỹ = Zn − H ∗ θpredicted; H = 1; Zn is the observation measurement;

4 Innovation Co-variance S = H ∗ Ppredicted ∗ HT
+ R

5 Kalman Gain K = Ppredicted ∗ HT ∗ S−1

6 Update θ̂i =θpredicted + K ∗ ỹ

7 Covariance update Pi = (I − K ∗ H)Ppredicted

8 repeat from step 1 after Tresync

that these techniques cannot be utilized for global synchronization, if the resynchronization interval

is higher than few tenths of seconds even for static, single hop environments. With errors introduced

by the wireless timestamping, the prediction error can be very significant. For the prediction, these

techniques require timestamps at fixed intervals and hence the robustness of LP, KF algorithms

to loss of timestamps needs to be further investigated. Moreover, the three techniques are prone

to cumulative error in a multi-hop network and not suitable for a scalable mobile network. The

variance in the prediction error is also higher for LR, LP and KF techniques (Figure 3.20, 3.21 and

3.22) when compared to the Swarm-Sync Framework (Figure 3.14). The convergence time of LP

and KF techniques when implemented on nodes can be in the order of several minutes which is not

appropriate for a mobile network.

3.5.2 Comparison with Consensus Based Algorithms

Popular consensus based synchronization algorithms are summarized in Table 3.4. CCTS and

CMTS protocols are adaptations of ATS and MTS protocols respectively for clustered networks

[51, 52]. CMTS protocol proposed in 2017 is based on maximum consistency theory. [54]

Chapter 3. Time Synchronization for Swarm of Robots 88

suggest that CMTS protocol is superior to CCTS in terms of accuracy, convergence speed and

communication overhead. Hence, CMTS protocol is compared with Swarm-Sync framework in

this section. In CMTS, the cluster heads initiate synchronization with a broadcast message. Cluster

members respond to the cluster head with their clock compensation parameters and the recorded

timestamps on the message reception. The cluster head, then adjusts its logical clock to the node

with maximum skew compensation parameter as in Algorithm 5 and then broadcast its updated

logical clock and clock compensation parameters to its cluster members. The cluster members,

then update their logical clocks as in Algorithm 5. The cluster member nodes in general, can be

considered as two-hops away from the node with maximum skew compensation parameter. The

associated synchronization error for intra-cluster and inter-cluster synchronization is discussed in

Section 3.3.

To verify the suitability of CMTS protocol for dynamic networks like swarm of robots, a test case

was designed and simulated in MATLAB. Dispersion is a fundamental activity to be performed

by robots in applications like mine detection, precision agriculture etc. A swarm of 30 robots

were assigned the task of uniformly dispersing in an area of 10m x 20m starting from an initial

position of (x=0, y=0). Each robot is randomly assigned a skew ranging from 1-10ppm and offset

of 1-100µs. It is assumed that the robots can perform accurate MAC level timestamping. To

manage the communication traffic, clustering is implemented. The network is divided into four

clusters such that each cluster encompass the robots in an area of 5m x 10m. The number of

robots in each cluster, the cluster heads and the overlapping nodes will vary from time to time

untill uniform dispersion is achieved. For e.g., Figure 3.23.a depicts the scenario in which the

dispersion is in progress whereas, Figure 3.23.b depicts the scenario in which the robots have

reached their destination. At the start of dispersion, when all nodes belong to the same cluster,

perfect synchronization is achieved for both CMTS and Swarm-Sync under the ideal simulation

conditions presented above. Resynchronization of network is performed using CMTS and Swarm-

Sync at an interval of 100 s. In Swarm-Sync, the frequency offset compensation is independent

of other slave nodes or the network topology. Hence, for the ideal simulation conditions presented

here, perfect synchronization is maintained even after several iterations of resynchronization and

topological changes in network using Swarm-Sync framework. For CMTS, the variance in time

represented by nodes increase with each iteration, even for ideal simulation conditions. The logical

time represented by nodes for CMTS and Swarm-Sync after fourth and eighth iteration is depicted

Chapter 3. Time Synchronization for Swarm of Robots 89

Algorithm 5: Reference clock prediction using CMTS

Input: : Current (τ(t)), and previous (τ(t − 1)) clock reading of nodes ‘l’ and ‘j’ of which one is

cluster head and other is cluster member, skew α̂(tk) and offset β̂(tk) compenation

parameter

Output

:

Skew α̂l(tk+1) and Offset β̂l(tk+1) compensation parameter

1 ∆τj = τj(tk) − τj(tk−1); ∆τl = τl(tk) − τl(tk−1).

2 if (α̂ j∆τj > α̂l∆τl) then

3 α̂l(tk+1) =
α̂j (tk)∗∆Sj

∆Sl

4 β̂l(tk+1) = α̂ j(tk)τj(tk) + β̂ j(tk) − α̂l(tk+1)τl(tk)

5 else if (α̂ j∆Sj = α̂l∆Sl) then

6 β̂l(tk+1) = maxi=l, j(α̂ j(tk)τj(tk) + β̂ j(tk))−α̂l(tk+1)τl(tk)

7 Update logical clock based on β̂l(tk+1) and α̂l(tk+1)

in Figure 3.24. The communication overhead for CMTS for intra-cluster synchronization with

‘n’ cluster members is presented in Table 3.4. Our studies indicate that despite large number

of message exchanges, CMTS cannot provide accurate synchronization of mobile networks, even

under ideal scenarios due to following reasons. Initially, when all nodes belong to the same cluster,

the cluster head selects the node with maximum logical clock and adjust its logical clock with

the node with maximum logical clock. Cluster members, then adjust their logical clock with the

cluster head. As the dispersion progress, the nodes move out of communication range of initial

cluster head and hence new clusters and cluster heads are formed. The node which had maximum

skew with respect to initial cluster head may not be the one with maximum skew, when skew is

measured with respect to new cluster head. This results in emergence of variance in time leading to

cumulative error across several iterations. CMTS utilize two-way message exchanges and hence,

the time taken for intra-cluster synchronization is dependent on the number of nodes in each cluster.

� � � � � � � ����
��� � � � � � � � �

! " # $ %& ' () * + * *! " ! , * $ * % * - * .! (*) / + / * / / / #/ $/ % / - / . / 0 /)# +
1 2 3 1 3 2 4 1145 673 1 8 9 : 8 ; 8 < =

> ? @ A BC D E F > G > >> ? > @ > A > B > C > D> E > F ? G ? > ? ?? @? A ? B ? C ? D ? E ? F@ G
Figure 3.23. a)Robot dispersion- Intermediate Stage. b)Robots at their destination after dispersion.

Chapter 3. Time Synchronization for Swarm of Robots 90

H I J H J I K H K I L HM N O N P Q R S O T UL V IW H HW H IW J HW J IW K H
XY Z[\]^ _ ` a bb c d e f g b h i j

k l m k m l n k n l o kp q r q s t u v r w xy z ky { k{ k k{ n k{ | k
}~ ��� �� � � � �� � � � � � � � � �

Figure 3.24. a) Time reported by robots after 4th synchronization iteration. b) Time reported by

robots after 8th synchronization iteration.

In addition to this, in CMTS, convergence time of entire network depends upon the relative position

of the cluster with maximum clock and other clusters in the network. Moreover, implementation of

techniques to detect the cluster head changes, addition and removal of cluster members is required

if CMTS protocol has to be utilized for mobile networks.

In Swarm-Sync protocol, each node in the network perform frequency offset compensation with

respect to the reference node of the whole network, independent of the other slave or intermediate

reference nodes. Slave nodes depend on intermediate reference nodes only for time offset com-

pensation. The analysis on the accuracy of the proposed time offset compensation in Section 3.4.2

indicate that the time offset compensation is accurate. Hence the cumulative error is negligible or

the time synchronization in Swarm-Sync framework can be considered as non-cumulative. The

framework is flexible as it supports periodic or event based synchronization. Swarm-Sync frame-

work can be utilized for continuous or post-facto synchronization with adaptive resynchronization

intervals depending upon the application requirements. Since all nodes perform skew compensa-

tion with respect to a global reference node, loss of slave nodes in network will have negligible

effect on the performance of time synchronization.

3.6 Conclusions

In this chapter, major desired characteristics of a time synchronization framework for scalable

and dynamic networks such as swarm robotic systems or multi-robot systems is presented. The

Chapter 3. Time Synchronization for Swarm of Robots 91

sources of error in popular time synchronization techniques which utilize MAC level timestamping

are identified, which justifies the need and significance of developing a new technique for time

synchronization. A novel global time synchronization framework- ‘Swarm-Sync’ which utilizes

the wireless network for communication among members of the swarm is presented. Important

characteristics of the Swarm-Sync framework are as follows.

• Swarm-Sync framework implements time synchronization in two phases, 1) One-way time

offset compensation and 2) Relative skew fingerprinting based frequency offset compensa-

tion. A unique characteristic of the proposed framework is that the framework utilizes only

one-way messages for time and frequency offset compensation, as is desired for a scalable

network.

• The synchronization framework can provide a bounded synchronization error throughout the

network, thus leading to the easier design of other layers of the protocol stack like medium

access control, routing, localization and task allocation.

• The Swarm-Sync framework is decentralized and topology independent, hence the robots

can navigate freely across clusters or hops without necessitating resynchronization of the

network. The framework does not impose any restrictions on the movement of the robots.

• One of the unique and the important feature of the Swarm-Sync framework is that it can

provide a synchronization accuracy in the order of few hundreds of microseconds, for a

resynchronization interval in the order of several minutes (average synchronization error

of 110µs for resynchronization interval of 10 minutes) whereas the time synchronization

protocols available in literature support a resynchronization interval in the order of few

seconds only. The increase of resynchronization interval improves the energy efficiency of

the system drastically and the communication bandwidth can be utilized for other robotic

activities.

• The protocol is scalable as the number ofmessage exchanges required/hop for synchronization

is independent of the number of robots in the hop.

• The framework is experimentally validated on robots for single hop, multi-hop and for

dynamic environments.

Chapter 3. Time Synchronization for Swarm of Robots 92

Comparison of Swarm-Sync framework with other two major class of protocols- consensus and

prediction based protocols is presented in Section 3.5 and Table 3.4. The results obtained dur-

ing experimental validation of Swarm-Sync framework as presented in Section 3.4.4 show that

the framework is appropriate for the synchronization of swarm robotic systems and multi-robot

systems.

