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ABSTRACT

Thisthesis presentsthe investigations of acylindrical dielectric resonator antenna(CDRA) with
respect to the cross-polarization and the gain of the CDRA, that leads to invention of smple
design techniques for reducing the cross-polari zation and enhancing the gain. Theinvestigation
starts with the antenna characterization of a CDRA to study the dependence of the resonant
(input impedance, resonant frequency, bandwidth etc.) and the radiation performance (co-polar
gain, cross-polar gain, pattern symmetry, directivity etc.) on the feed-point of the CDRA for
three standard feed mechanisms namely the microstrip line, the microstrip s ot (or aperture) and
the coaxia probe. The above study also provides a functional comparison amongst the three
feeds, in exciting the dominant broadsde mode of the CDRA - the HEM11s mode.
Investigations reveal that the quality or the purity of the radiation from the DRA is deteriorated
by the perturbation of the operating mode by the feed mechanism. The coaxia feed isidentified
to cause the highest level of feed perturbation, but due to its fabrication, impedance matching
and measurement difficulties (on account of its non-planar nature) this feed is opted out. The
microstrip feed being a planar version of the coaxid feed is thus selected due to its obvious
advantage over the coaxid probe that the feed perturbation effect can be experimentdly
demonstrated ssmply by changing the CDRA position on the microstrip. To quantify the
radiation deterioration, two indices are specified — symmetry of the radiation pattern and the
cross-polarized radiation level. After detailed analysis, it is concluded that for a microstrip fed
DRA, the feed perturbation introduces higher order moda fields of the HEM215 mode (with
partial excitation of TMo1s mode) of the DRA, that disturbs the HEM 115 mode radiation. This
study suggests that the DRA designs should minimize the feed perturbation effects also, in
addition to optimizing the impedance matching. Among the two indices specified above, the
cross-polarization is relatively easier to measure than the pattern symmetry due to the
limitations imposed by the experimental methods. Thus, further focusis on reducing the cross-
polarization of amicrostrip fed CDRA, for which the higher order HEM 215 modeis investigated
in detail. A dual-dot feed mechanism is opted as it excites the higher order HEM 215 mode
dominantly by suppressing the fundamental HEM11s mode. This mode is numericaly and

experimentally characterized to have aresonant frequency ~ 1.5 timesthat of the HEM 115 mode,



and gain ~2 dB lower than that of the HEM11s mode. From the knowledge of the relative
orientations of the electric field of the HEM215 mode and the HEM 115 mode in the CDRA, a
parasitic metal strip made form an adhesive copper tape, isloaded on the CDRA that suppresses
the HEM 215 radiation. Once the technique is vaidated experimentally, it is applied to the basic
HEM 115 mode CDRA fed with amicrostrip line, and with some modifications. Resulting DRA
exhibits, a cross-polarization of 8 dB lower than that in the conventional design. However, this
technique has been found very sensitive to the strip dimensions and its alignment on the DRA.
Therefore, a better and smpler technique of optimizing the ground plane size for reducing the
cross-polarization is investigated in the next phase. Analysis show that at the operating
frequency of the DRA, when the latera dimension of the substrate is dightly higher than haf a
free-space wavelength (~ 0.58ko) the cross-polarization becomes a global minimum. By this
method, the cross-polarization is reduced by ~ 7-10 dB in measurement. In addition, it is
reveded the above optimum substrate size is independent of the substrate shape (square or
circle) or the properties of the DRA (dielectric constant and aspect ratio) for a given substrate
type. And most importantly, this technique is relatively insensitive to fabrication errors of the
substrate size to within ~ £15 mm of the optimum, for an isolation of ~ 30 dB between the co

and the cross-pol arizations.

Though the fundamenta HEM 115 mode of the CDRA gives moderate gain of ~ 5-6 dBi so
suitable higher order modes of the CDRA are investigated for high gain. For thefirst time, the
high gan HEM13s mode is excited dominantly with a standard microstrip dot feed. The
microstrip slot is chosen based on the initial investigations presented above that it isinherently
alow cross-polarization feed and provides a near-perfect ground plane boundary for the CDRA.
Simulations show that the HEM 135 mode is supported by CDRAS with aspect ratio (radius to
height ratio or a/h) > 1, and it resonates at a frequency which is approximately 2.2 timesthat of
the fundamental HEM 115 mode. This mode radiates in the broadside direction with gain in the
range of 8-10 dBi. The smulations are verified through prototype fabrication and

measurement.

Throughout the thesis, the following common attributes are maintained. Thework is carried out
entirely in the EEE Department, BITS Pilani, Pilani campus. All the simulations are conducted
on commercid EM simulation tool ANSY S HFSS, and a few are cross-verified with CST

vi



Microwave Studio. For all experimental results, an available CDRA with dielectric constant &r
= 24, tand = 0.002, diameter 2a = 19.43 mm and height h = 7.3 mm (a’/h = 1.33) is used. To
fabricate the feed mechanism, readily available and cost effective FR4 substrate (& = 4, tand =
0.02, thickness = 1.6 mm) isused as it maintains good contrast with the & of the CDRA to help
good coupling. Antenna characterizations are conducted by using Keysight vector network
analyzer (N9928A), Keysight signal generator (N5173B), and Agilent power meter (E4418B)

in acompact anechoic chamber.

Keywords. Cylindrica dielectric resonator antenna, Higher order mode, M agnetic quadrupole
mode, Radiation pattern symmetry, Asymmetric structures, High gain broadside mode, Sot
feed, microstrip feed, Coaxial probe feed, Feed perturbation, Cross polarization, Linear

polarization, Ground size optimization.
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