ACKNOWLEDGEMENTS

I wish to express sincere gratitude to my supervisor Prof. Y. Yoganandam for his help and valuable guidance, without which this work would not have been accomplished. I am extremely grateful to my co supervisors Prof S.K. Sahoo and Prof C. Hota without them this work would not have been completed. I especially thank Prof S.K. Sahoo for his unwavering support throughout the journey which has been a constant source of encouragement. I am indebted to all three for their intense guidance and encouragement.

I am grateful to Prof.V.S.Rao, former Director BITS-Pilani, Hyderabad Campus, Prof.G. Sundar, Director BITS-Pilani, Hyderabad Campus for providing all the necessary facilities required to conduct my research.

I would also like to thank my Doctoral Advisory Committee (DAC) members, Prof. Prabhakar Rao and Dr.Runa Kumari for their valuable comments and suggestions. I would like to express my sincere thanks to Prof.Sanket Goel, Head of the Department of Electrical Engineering, for his constant support and encouragement. I am thankful to Dr.Prasant Kumar Pattnaik, DRC Convenor, Department of Electrical Engineering, for overseeing all the research procedures to carry out work in the department. I am very grateful to all the faculty of Dept EEE for their encouragement and support to carry out my research work.

My sincere thanks to all my friends: Mr. Bala Subramanian, Ms. Spandana, Ms. U. Poorna Laxmi, Mr. Goutham Makkena Mr. M Sai Phaneendra Parlapalli and Ms. P.

Sandhya, for their cooperation and helping me to overcome difficult phases and not letting me give up.

I would like to thank my parents, late Shri M. Krishna Mohan and Late Smt M. Bharathi for giving me life, educating me and their support throughout my research work. I especially thank my brother Mr. M.K. Rajeev Ranga for his support in difficult phases of life. Their blessings and love helped me to reach goal.

Words are not enough to thank my Wife M. Anusha for her continuous encouragement, sacrifices, love, patience and support.

ABSTRACT

Data Communication Networks find their extensive utility in national security, commerce, education sector, social media interactions, voice telephony, Internet usage and multimedia streaming. Further, in recent times there has been an exponential growth in the number of its users and their demands. On the other side, with extensive developments in the field of microelectronics, wireless transmitters and receivers have become very popular and hence increased demand for electromagnetic spectrum usage. Since much of the spectrum has been licensed to wireless networks, spectrum scarcity is an unavoidable consequence. However, a recent survey of licensed networks [1] shows that a large portion of spectrum is underutilized. If only one can have a mechanism to identify the underutilized spectral bands and utilize them effectively, there is a large free electromagnetic spectrum out there for future applications. Cognitive Radio (CR) technology addresses the issues and techniques of utilizing the otherwise underutilized spectral bands and the networks based on cognitive radio concepts are inevitable consequences.

To have efficient communications over cognitive radio based networks, cognitive radios must have low probability of false alarms and missed detections, and they also must avoid interference among themselves and more importantly with the licensed or primary users. In this thesis enhanced spectrum sensing scheme was proposed and incorporated in cognitive cell radio environment for increasing the capacity and to minimize the interference. Conventional spectrum sensing methods have the problem of missed detections and false alarms if there is little variation in the environment. As the secondary user has to sense the spectrum all the time, it has the past spectrum information with it. In the proposed enhanced spectrum sensing with the help of past spectrum information the

decision is made about primary users presence or absence and applied it in different traffic scenarios to check for improved throughput. We also investigated on Hybrid spectrum sharing scheme which will improve the throughput of both primary and secondary users.

To administer cognitive radio network operations, a cognitive cell radio environment is considered. To increase the capacity and to minimize the interference in the network our first contribution [T4], enhanced spectrum sensing was proposed and incorporated. Then, to evaluate the performance of the proposed enhanced spectrum sensing in real world scenarios, easily available spectrum analyser was used for sensing the spectrum. Performance of spectrum sensing was characterised by both accuracy and efficiency, and more importantly the time taken to make a decision and also the complexity involved in doing so. We also proposed a simple detection technique based on a peak excursion threshold. The results show that proposed method works well and is amenable for practical implementation [T6].

In our second contribution, analysis was done on how a mobile Cognitive user can relay the packets with good probability of detection and without causing interference to primary user to benefit the wireless infrastructure. The scenario considered in this work is as follows: The cognitive user who is away from base station has to decide whether to connect to a base station directly or to form a two hop connection via cognitive user relays. Enhanced spectrum sensing which is proposed in our first contribution is used to get ideal vacant bands and two important performance metrics are derived. Investigations were carried out on the probability of establishing a route and the expected duration that a route or connection can be sustained. The results were published in [T7]. In our third contribution, studies were made on the advantage of having collaboration between cognitive enabled small cell network and primary macro-cell. Different from the existing works, at spectrum sensing stage enhanced spectrum sensing is applied to avoid probability of false alarms and missed detections which has impact on spectral efficiency. Later power control optimization for secondary users known as Hybrid spectrum sharing is used for further improvement of spectral efficiency. Furthermore, the failed packets of Primary users are taken care by high ranked relays so as to decrease the average Primary user packet delay by 20% when compared between assisted Secondary user method and non-assisted Secondary user method [T1].

In our fourth contribution, we have applied all the algorithms and studies which we made in our previous contributions in the IoT application and we have developed an efficient routing algorithm for Cognitive radio enabled IoT applications. With the recent emergence and its wide spread applicability, Internet of Things (IoT) is placing pressure on network resources and most importantly on availability of spectrum. Spectrum scarcity is the issue to be addressed in networking within IoT. Equipping the IoT devices with cognitive radio capability will lead to a new dimension called cognitive radio enabled IoT devices. To achieve ON-demand IoT solutions and interference free communications cognitive radio enabled IoT devices will become an effective platform for many applications. The results were published in [T2].

Table of Contents

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI		
CERTIFI	CATE	I
ACKNOV	VLEDGEMENTS	II
ABSTRA	СТ	IV
СНАРТЕ	R 1: INTRODUCTION	1
1.1	Cognitive Radio	1
1.2	COGNITIVE RADIO NETWORKS	3
1.3	APPLICATIONS OF CRN	5
1.4	QUALITY OF SERVICE IN CRNs	6
1.5	ESSENTIAL COMPONENTS OF CRNs FROM QOS PERSPECTIVE	
1.	Spectrum Sensing	
2.	Spectrum Decision	
3. 4.	Spectrum Sharing Spectrum Mobility	
4. 1.6	OBJECTIVE OF THE THESIS	
1.0	THESIS ORGANIZATION.	
СНАРТЕ	R 2: ENHANCED SPECTRUM SENSING	11
2.1	SPECTRUM SENSING (SS)	11
2.1.1	Energy Detection Based Spectrum Sensing	12
2.1.2	Waveform- based sensing	15
2.1.3	Cyclostationarity- based Sensing	16
2.1.4	Radio- Identification based sensing	
2.1.5	Matched Filtering	
2.1.6	0 Other sensing methods	19
2.2	ENHANCED SPECTRUM SENSING	20
2.3	SIMULATION RESULTS	
2.4	APPLICATION OF ENHANCED SPECTRUM SENSING ON SPECTRUM ANALYSER (AGILENT N9320B)	
2.5	DETECTION BASED ON PEAK EXCURSION	-
2.6	Selection of the threshold $R'ex$	31
2.7	RESULTS AND DISCUSSIONS	
2.8	CONCLUSIONS	
	R 3: ROUTE AND CONNECTION SUSTENANCE IN COGNITIVE MOBILE	
SECOND	ARY USER NETWORKS	
3.1	BACKGROUND	
3.2	System Model	
3.3	COVERAGE EXTENSION	40
3.3.1	Analysis	41
3.3.2	2 Outage Probability	
3.3.3	Route Sustenance Period	
3.3.4	Connection Sustenance Period	
3.4	SYSTEM SIMULATION	-
3.5	RESULTS AND DISCUSSION	46
3.6	CONCLUSIONS	51
СНАРТЕ	R 4: HYBRID SPECTRUM SHARING SCHEMES FOR COGNITIVE RADIO	
NETWO	RKS	53
4.1	System Model	
4.2	Hybrid Spectrum Sharing	

4.3	FORMULATION OF INTERFERENCE AND TRANSMIT POWER CONSTRAINTS:	
4.4	Results and Analysis	60
4.5	CONCLUSIONS	65
CHAPTE	ER 5: COGNITIVE RADIO ENABLED IOT NETWORKS	66
5.1	INTRODUCTION	67
5.2	Related Works	69
5.2.2	1 Routing on Demand in CDNs	69
5.2.2	2 Opportunistic Routing in CDNs	
5.3	System Model of Cognitive Radio Based IoT Networks	71
5.4	ROUTING METRICS	72
5.4.2	1 When Instant Information is not Considered	
5.4.2	2 Proposed Routing Metrics	74
5.5	PROBLEM FORMULATION	77
5.6	PROPOSED ROUTING ALGORITHM	77
5.6.2	1 Success Transmission Probability (Maximization)	
5.6.2	2 Average Delay in Transmission (Minimization)	
5.6.3	3 Pu's Reclaim, Node Mobility and Failure	
5.6.4	4 Updation of Route	
5.7	RESULTS AND DISCUSSION	81
5.8	CONCLUSIONS	
CHAPTER 6: CONCLUSIONS AND FUTURE WORK		
THESIS	RELATED PUBLICATIONS BY AUTHOR	92
BIBILIOGRAPHY94		
BIOGRAPHY OF THE CANDIDATE		
BIOGRAPHY OF THE SUPERVISOR120		
BIOGRA	APHY OF CO-SUPERVISORS	

List of Figures

FIGURE 1-1: COGNITIVE RADIO ARCHITECTURE	4
FIGURE 1-2: TRANSCEIVER BLOCK DIAGRAM OF COGNITIVE RADIO NETWORKS	5
FIGURE 1-3: COGNITIVE RADIO CYCLE	7
FIGURE 2-1: TEST STATISTIC 1-DETECTION OF FREE SPECTRUM BY MOVING AVERAGE METHOD	25
FIGURE 2-2: TEST STATISTIC 2-DETECTION OF FREE SPECTRUM BY MOVING AVERAGE METHOD	26
FIGURE 2-3: TEST STATISTIC 3-DETECTION OF FREE SPECTRUM BY MOVING AVERAGE METHOD	26
FIGURE 2-4: CURRENT SENSED SPECTRUM	27
FIGURE 2-5: COMPARISON OF THE CURRENT SPECTRUM WITH THE PAST RECENT STATISTIC	27
FIGURE 2-6: AVERAGE OF ALL THE TEST STATISTICS	28
FIGURE 2-7 COMPARISON OF CURRENT SENSED SPECTRUM WITH THE AVERAGE OF ALL THE PAST STATISTICS	28
FIGURE 2-8 PROBABILITY OF FALSE ALARMS COMPARISON	29
FIGURE 2-9 SPECTRUM AS SENSED BY THE SPECTRUM ANALYSER	32
FIGURE 2-10 THE FORMULATED REFERENCE SIGNAL AFTER PASSING THROUGH THE ENHANCED SPECTRUM SENSING	33
FIGURE 2-11 PEAK EXCURSION THRESHOLD VS. NUMBER OF FALSE ALARMS	33
FIGURE 2-12 EXPONENTIAL CURVE FITTED FOR THE RECORDED DATA FROM SPECTRUM ANALYSER	35
FIGURE 2-13 PEAKS DETECTED BY USING PARAMETERS ($R'ex = 6.7$ dBm and $Tsw = 100$ ms) from derived model	36
FIGURE 3-1 TRIANGLE FORMATION OF END USER, MOBILE RELAY AND BASE STATION	40
FIGURE 3-2 FIRST SCENARIO OF SOURCE COMMUNICATING WITH DESTINATION VIA CU RELAY	43
FIGURE 3-3 SECOND SCENARIO OF SOURCE COMMUNICATING WITH DESTINATION VIA CU RELAY	44
FIGURE 3-4 FLOW CHART	46
FIGURE 3-5 PROBABILITY OF FINDING A FEASIBLE CU RELAY WITH PATH LOSS EXPONENT A=3 AND Y1=Y2= 3 DB	47
FIGURE 3-6 THE PROBABILITY OF FINDING A FEASIBLE RELAY AS A FUNCTION OF RELAY SNR AT UNIT DISTANCE Y2, WITH F	PATH
LOSS EXPONENT A=3 AND R=1.1	48
FIGURE 3-7 THE AVERAGE ROUTE SUSTEMANCE TIME FOR RELAYS MOVING AT PEDESTRIAN AND VEHICULAR SPEED, WITH F	
LOSS EXPONENT A=3 AND Y1= Y2=3DB	
FIGURE 3-8 CURRENT NUMBER OF FEASIBLE RELAYS VS AVERAGE CONNECTION SUSTAINING TIME WHEN R=1.1	50
FIGURE 3-9 CURRENT NUMBER OF FEASIBLE RELAYS VS. AVERAGE CONNECTION SUSTAINING TIME WHEN R=1.2	-
FIGURE 4-1 GENERIC BLOCK DIAGRAM OF COGNITIVE OFDM NETWORK	
FIGURE 4-2 FRAME STRUCTURE OF CSC NETWORK	57
FIGURE 4-3 COMPARISON OF AVERAGE NUMBER OF RELAYS AND ITS IMPACT ON PU SPECTRAL EFFICIENCY BETWEEN DIFFERENT METHODS	62
FIGURE 4-4 COMPARISON OF AVERAGE NUMBER OF RELAYS AND ITS IMPACT ON SU SPECTRAL EFFICIENCY BETWEEN	
DIFFERENT METHODS	63
FIGURE 4-5 SPECTRAL EFFICIENCY VS. PMAX (*10DBM) IN BOTH PRIMARY MACROCELL AND COGNITIVE SMALL CELL	
FIGURE 4-6 AVERAGE DELAY OF PU PACKETS WITH RESPECT TO TIME WITH AND WITHOUT ASSISTANCE OF COGNITIVE SM	
CELL RELAYS	
FIGURE 5-1 BER VS. SNR OF VARYING DEPLOYMENTS WITH LOCAL AND GLOBAL SPECTRUM INFORMATION	83
FIGURE 5-2 BER VS. SNR WITH CED AND ESS AT EACH AND EVERY NODE	84
FIGURE 5-3 SINR VS. SNR OF VARYING DEPLOYMENTS WITH LOCAL AND GLOBAL INFORMATION	85
FIGURE 5-4 THROUGHPUT VS. CHANNEL AVAILABILITY PROBABILITY OF VARYING DEPLOYMENTS	

List of Symbols

x(n)	Input signal
w(n)	Additive white Gaussian noise (AWGN)
y(n)	Received Signal
n	Index for number of samples
Ν	Number of samples
М	Energy detector output/Decision metric
H ₀	Primary user is not present
H_1	Primary user is present
P _D	Probability of detection
\mathbf{P}_{md}	Probability of missed detection
$P_{\rm F}/P_{\rm fa}$	Probability of False alarms
λ	Threshold
σ^2_w	Signal Variance
σ^2_w	Noise Variance
$\chi^2 N_2$	chi square distribution with $2N$ degrees of freedom
x*(n)	Conjugate of input signal
$S(f,\alpha)$	Cyclic spectral density
α	Cyclic frequency
$R_y^{\alpha}(\tau)$	Cyclic autocorrelation function
$T_i(Y_i)$	Test statistic of ith sensing event
Р	Power ratio
R _{ex}	Peak excursion
T_{sw}	Sweep time
R'_{ex}	Threshold
N _{fa}	False alarms
\overline{R}_s	Average Signal power ratio
\overline{R}_n	Average Noise power ratio
ΔR	Difference of average signal and noise strengths
y _n	n th sample in the spectrum
(r, 0)	Location Coordinates
Υ_1	SNR of base station
Υ_2	SNR of relay station
T_{2h}	Time required for two hop transmission

T _{ref}	Time required for direct transmission
A	Area of feasible region
L	Length of the perimeter of feasible region
f(k)	Feasible region decision
f'(k)	Derivative of f(k)
ρΑ	Mean
$\mathbb{E}[\nu]$	Average speed of the CU relays
$\mathbb{E}[\mathcal{M}]$	Average number of relays move out of region / unit time
$\mathbb{E}[N]$	Average number of CU relays in the feasible region
$\mathbb{E}[au]$	Average relay sustenance time
$P^{v}_{s,n}$	CSC can transmit with high power
P ^o _{s,n}	CSC can transmit with low power
$R_{v,n}/R_{o,n}$	$R_{v,n}/R_{o,n}$ The feasible capacity of sub channel n when sensing outcome is idle and when it is active in small cell
g _{ss,n}	Where $g_{ss,n}$ is the channel gain of sub channel <i>n</i> between small cell user and Cognitive small cell base station
g _{ms,n}	Where $g_{ms,n}$ is the channel gain of sub channel n between macro cell base station and Cognitive small cell base station
$p^0_{m,n}$	Transmit power of macrocell basestation on sub channel n
p_{av}	Maximum average transmit power of CSC Users
Г	Maximum average interference power
g and h	Instantaneous channel gains
σ_n^2/σ_p^2	Variance of noise and signal
$L(p,\nu,\mu)$	Supremum of lagrangian
g(ν,μ)	Lagrange dual function
λ, μ	Lagrangian multipliers
$\lambda_{i,k}$ and $\mu_{i,k}$	Rate of PU i using k and PU i not using k Respectively
N_0	Thermal Noise
V_k	Transmission rate

В	Channel bandwidth
S	Packet size
TTD_P	Transmission time delay over path P
TSP _P	Delivery success probability

List of Abbreviations

AODVAdhoc on Demand Distance VectorAWGNAdditive White Gaussian NoiseBERBit Error RateBSBase StationCAFCyclic Autocorrelation FunctionCDNsCognitive Device NetworksCEDConventional Energy DetectorCRCognitive RadioCRNsCognitive Radio NetworksCSCCognitive Small CellCSDCorventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorFSSFentocell Base StationsFGCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingFISIInitial Mode IdentificationHMMInitial Adoe IdentificationHMMMacrocell Base StationsFMIMultipale Signal Classification	AMM	Alternative Mode Monitoring
BERBit Error RateBSBase StationCAFCyclic Autocorrelation FunctionCDNsCognitive Device NetworksCEDConventional Energy DetectorCRNCognitive RadioCRNsCognitive Radio NetworksCSCCognitive Small CellCSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorFSSFentocell Base StationsFCCGobal System for Mobile CommunicationFTGobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingFISInitial Mode IdentificationISMInitial Mode IdentificationKMSMacrocell Base StationsFMMMitchanel Mitti Radio	AODV	Adhoc on Demand Distance Vector
BSBase StationCAFCyclic Autocorrelation FunctionCDNsCognitive Device NetworksCEDConventional Energy DetectorCRCognitive RadioCRNsCognitive Radio NetworksCSCCognitive Small CellCSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorFBSsFemtocell Base StationsFCCFederal Communications CommissionFTTFast Fourier TransformGSMHidden Markov ModelHMMHidden Markov ModelHSSInternet Of ThingsISMInternet Of ThingsIMBSMacrocell Base StationFMSMacrocell Base Station	AWGN	Additive White Gaussian Noise
CAFCyclic Autocorrelation FunctionCDNsCognitive Device NetworksCEDConventional Energy DetectorCRCognitive RadioCRNsCognitive Radio NetworksCSCCognitive Small CellCSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingISIInternet Of ThingsISMIndustrial Scientific &MedicineMBSMacrocell Base Station	BER	Bit Error Rate
CDNsCognitive Device NetworksCEDConventional Energy DetectorCRCognitive RadioCRNsCognitive Radio NetworksCSCCognitive Small CellCSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingISINInitial Mode IdentificationIMIInitial Mode IdentificationIMSMacrocell Base StationsSMMacrocell Base Station	BS	Base Station
CEDConventional Energy DetectorCRCognitive RadioCRNsCognitive Radio NetworksCSCCognitive Small CellCSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationISMMacrocell Base Stations	CAF	Cyclic Autocorrelation Function
CRCognitive RadioCRNsCognitive Radio NetworksCSCCognitive Small CellCSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSFentocell Base StationsFGCFederal Communications CommissionFTSat Fourier TransformFMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationsMBSMacrocell Base Station	CDNs	Cognitive Device Networks
CRNsCognitive Radio NetworksCSCCognitive Small CellCSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMacrocell Base Station	CED	Conventional Energy Detector
CSCCognitive Small CellCSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTGlobal System for Mobile CommunicationGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMacrocell Base Station	CR	Cognitive Radio
CSDCyclic Spectral DensityCSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMultichannel Multi Radio	CRNs	Cognitive Radio Networks
CSSConventional Spectrum SensingCUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMacrocell Base Station	CSC	Cognitive Small Cell
CUCognitive UsersDSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMultichannel Multi Radio	CSD	Cyclic Spectral Density
DSDVDestination Segmented Distance VectorEEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMacrocell Base StationMC-MRMultichannel Multi Radio	CSS	Conventional Spectrum Sensing
EEDEnchanced Energy DetectorESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMacrocell Base StationMC-MRMultichannel Multi Radio	CU	Cognitive Users
ESSEnhanced Spectrum SensingFBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMacrocell Base StationMC-MRMultichannel Multi Radio	DSDV	Destination Segmented Distance Vector
FBSsFemtocell Base StationsFCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMMacrocell Base StationMBSMacrocell Base StationMC-MRMultichannel Multi Radio	EED	Enchanced Energy Detector
FCCFederal Communications CommissionFFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMIndustrial Scientific &MedicineMBSMacrocell Base StationMC-MRMultichannel Multi Radio	ESS	Enhanced Spectrum Sensing
FFTFast Fourier TransformGSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMIndustrial Scientific & MedicineMBSMacrocell Base StationMC-MRMultichannel Multi Radio	FBSs	Femtocell Base Stations
GSMGlobal System for Mobile CommunicationHMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMIndustrial Scientific & MedicineMBSMacrocell Base StationMC-MRMultichannel Multi Radio	FCC	Federal Communications Commission
HMMHidden Markov ModelHSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMIndustrial Scientific &MedicineMBSMacrocell Base StationMC-MRMultichannel Multi Radio	FFT	Fast Fourier Transform
HSSHybrid Spectrum SensingIMIInitial Mode IdentificationIOTInternet Of ThingsISMIndustrial Scientific &MedicineMBSMacrocell Base StationMC-MRMultichannel Multi Radio	GSM	Global System for Mobile Communication
IMIInitial Mode IdentificationIOTInternet Of ThingsISMIndustrial Scientific &MedicineMBSMacrocell Base StationMC-MRMultichannel Multi Radio	НММ	Hidden Markov Model
IOTInternet Of ThingsISMIndustrial Scientific & MedicineMBSMacrocell Base StationMC-MRMultichannel Multi Radio	HSS	Hybrid Spectrum Sensing
ISMIndustrial Scientific & MedicineMBSMacrocell Base StationMC-MRMultichannel Multi Radio	IMI	Initial Mode Identification
MBSMacrocell Base StationMC-MRMultichannel Multi Radio	ΙΟΤ	Internet Of Things
MC-MR Multichannel Multi Radio	ISM	Industrial Scientific & Medicine
	MBS	Macrocell Base Station
MUSIC Multiple Signal Classification	MC-MR	Multichannel Multi Radio
	MUSIC	Multiple Signal Classification