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Abstract

Due to the significance of rolling element bearings as one of the most largely used
industrial machinery component, development of fault-diagnosis scheme to prevent its
failure during the industrial operation is necessary. One of the significant modes of failure
of rolling bearing is contact fatigue, which initiates subsurface and surface fatigue spalling,
and thus reduces the remaining uscful life of the rolling bearing. Such type of spalling is
mainly known as localized faults. One of the conventional methods of monitoring the
localized faults is the vibration analysis. But some drawbacks are always pertaining to the
vibration analysis in terms of inaccuracy of results. In recent years, major research being
found in dcveloping automated fault diagnosis systems for performing condition
monitoring. Mathematical modelling of bearing for fault diagnosis proved to be efficient
tool in understanding dynamics of faulty bearing upon rotor-bearing systems. Application
of machine learning techniques such as Artificial neural network (ANN), Support vector
machine (SVM) in conjunction with advanced signal processing techniques like wavelet
transform (WT), enabled expert diagnosis of rolling bearing. This technique provided the

basis for prognosis of rolling bearing.

Apart from diagnosis the bearing with one sensor, which may be redundant in diagnosing

all possible faults, techniques like sensor-fusion helped in classifying all the available faults

of bearing,

In this thesis, a systematic approach is followed with an objective ot developing a reliable
fault diagnosis scheme of rolling element bearing with multiple localized defects in it. The
scheme is developed with the help of work present in various chapters of thesis. These
chapters include a general introduction about the rolling element bearing defects and its
condition monitoring. Then a detailed literature review about various techniques of fault
diagnosis of rolling element bearings and literature gap for pursuing the research in this
area was carried out. Then mathematical modelling of rolling element bearing for fault

severity analysis was developed along with incorporation of advanced signal processing
techniques in the form of fault signal analysis.
Then statistical approach being performed for establishing the relation between fault

severity with rotor speed. Response surface Methodology (RSM) technique is presented to

discuss the relation between fault severity and rotor speed.



Abstract

Afier successtul development of statistical approach fault diagnosis was carried out using
artificial neural network. 1t mainly focuses upon automated system of fault diagnosis.
Then sensor fusion of two different monitoring techniques (Vibro-Acoustic) was carried
out. It gives the detail insights about fault predicting capability of cach technique in terms
of fault classification.

After developing various techniques of fault diagnosis of rolling element bearing pertaining
to objectives of thesis, work was concluded in the form of proposed fault diagnosis scheme

and future scope of research work is defined in this arca.
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Nomenclature

Yy - Dual Functions.
a,: - Expansion Co-cfticient.

Cy: - Depth of local fault on surface of inner and outer races.
Cqi: - Maximum depth the inner race will reach.

Cao: - Maximum depth outer race will reach.

Cy4y: - Slot upon rolling clement-moving upwards.

C,: - Internal radial clearance.

Dy: - Rolling element diameter.

Dy: - Bearing Pitch diameter.

Cis Co »Cri- Damping of inner raceway, outer raceway and unit resonator.
fopric - Ball pass frequency inner raceway.

fopro: - Ball pass frequency outer raceway.

foss: - Ball spin frequency.

fm: - Modulation frequency (Hz).

fs: - Shaft rotating frequency.

) .. i T.
kis kg k,:- Stiffness of inner raceway, outer raceway and unit resonato

™;: - Mass of Inner raceway and Shaft.

M,: - Mass of the Quter raceway and bearing support structure.
Myq, My, :- Mass of the unit resonator.

Np: - Number of balls.

7t - Inner race radius.

Xi » ¥i:- Inner raceway Displacement.



Nomenclature

X, « Yo:- Outer raceway Displacement.
Xy . ¥r:- Measured Vibration response.
B: - Fault switch function.
§;: - Contact deformation.

®n: - Synthesis Function.
®n - - Analytic Function.

wc: - Nominal cage speed.

ws: - Rotating angular speed.
Wspin: - Ball spin frequency.
$q: - Defined angular position.

®ao: - Initial starting location of spall.

®;: - Angular position of jth rolling element.

®siip: - Maximum Phase deviation (rad).

A,: - Angular Distance.
Af: - Maximum frequency deviation (Hz).

BDIR: - Ball defect and inner race defect.
BDOR: - Ball defect and outer race defect.
CD: - Combined defect.

CWT: - Continuous wavelet transform.

Jx. /i - Non-linear contact force.

IR: - Inner race
OR: - Outer race.
s: - Continuous variable.

WT: - Wavelet transform.

Agdi: - Angular width of the fault sensed by inner race.




Nomenclature

Agdo: - Angular width of the fault sensed by outer race.
Ft: - Applied radial load.

K: - Time-Varying non-lincar contact stiffness.

a : - Scale parameter.

b : - Position parameter.,

n: - Load deflection parameter.

r: - radius of curvature of raccways.
x: - Half the spall width.

a: - Contact angle.

p: - Curvature.

Y: - Mother wavelet.

Y: - Space function.
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