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So
training and testing of network for all

. 1‘0”() 1
wing Dell'c Hers S 1
[ l]dn]LlL].\ Were ..‘Cl dll 1”!1 IhL‘

conditions of
ns of beari T
aring. » def i ’
| g. The default setting of paramelers are as follows: =1
. . =1, Mnenron™
20,25, Irate- 1.0, maxi
. maximum epochs=1000 and activation function of the hidden laye i
er s

sigmoid fi
gmoid function.

(a)

ata (a) OR-IR, and

(b)
y Vibration d

- the ¢l

igure 5.4 ANN Architecture fo

he training process

Combined defect (b) Al defect
A mean square error of 10+ and!1 minimum £° -adient of 100 were used. T
of network would stop if anY one of the condition is m Her¢ MATLAB neural network
W0olbox was used to train the MLP neural net ork. Thes€ netw rks have been trained using
Iogisc transfer function petween input and output lay and hard limit transfer lﬁmc:(m

|s is ev@ pated 1M
between hidden layer and output layer The perform nce £ ANN mode
st e regreSSiO“ Value(R-value)' ptain the best ANN architectur®
The number of hidden peurons was used as @ procedwe 0° _fault class of

odels for al] three€
Mode| for each conditions af pearing: perform
129



Artificial Neural Network
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the bearing are illustrated in Figure 5.4, The ANN models in Figure 5.4 represents the best
ANN model among the number of hidden neurons used for training and testing.
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From the Figure 5.4, f Sl s .
R (Tr first imd second fault class, |5 number of hidden neurons provide
| in the form of least MSE and R-value close to 1, whereas for third fault
class .20 number of hidden neurons providcs the best result in the form of MSE and R-value
Parame : |
arameters, training and test performances are given in Table 5.2. From Table 5.2, it is
clearly observed, that the significant faults of the bearing (outer race fault, inner race fault,
gle hidden layer in ANN

of ANN

and combined fault) can casily distinguished bY using Sin
architecture for the proposcd {ault location. Figure5.5 shows the regression plot
output and target valucs for cach classification cases. From FigureS.S, it is inferred that
indicate that ANN model

lose to 1 and least MSE, as well target values 1
presents

re ITCS .Y
fault whereas 1re

ssfully. In Fig
where 0 represents

Cla et a .
ssifies the fault succe

IR
fault. Figure 5. 5 (b), presents th

0] S

R fault and 1 represents ball fault-

Sim“a”y, in Figure5.5(c), 0 represents R and [R fault whereas 1 represents combined
pserved for third fault class compared t© other fault classes

fa .
ult. High performance being ©

i
N terms of better MSE and R-value.

5.4.2 KNN implementation.
In KNN, we consider each of the characteristics in the training getas @ different dimension
tion has for this cha ractenstlc to be its €0
onsider the

in

some space and tak
ordinate in that dimension so getting as
S. . . .
Imilarity of two points to

Mmetric. The distance D€ (ween the

various distance
this work Euclid

between data poin
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advant: :
antage ot using ae ides 3 satlar
o Luclidean distance as <imilarity measure, is that many data points with

the same ¢l

| ¢ same class are close to cach other according to distance measure in many \ocal areas.
ere the training data used by the classifier provides decision boundaries for fault classes as

sl .

shown in Figure5.6. As can be seen from the figure outer race faults and inner race faults ar¢

very close to cach other. Henee. a3 per the principul of KNN, these faults are easily classified

In one class, whereas the comhincd fault featurcs are largely scparaled from kernel

bo .
undarie e . e ;

aries. therefore it cannot be classified Mo one class.
(orcomhincd faults) is better

Thus

us, perfor : . o e e
. performance of the ANNIN classitymg the multiple faults

aken as effective classification technique o classify

ANN can be t

th:
an the KNN. Therefore,

Multiple faults.
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Figure 5.6 KNN Classiﬁcation of faults-
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extracting tl i
g the sensitive e -
ensitive time domatn parameters. ANN and KNN is used to classify the fault
by S aults
uccessiu
lly training and testing the data obtained from wavelet transform. Five
nd KNN model. ANN model provides 99%

significant f
gnificant featurcs were used a8 i
success

ess for classifying OR-

clas
sifiers proves 10 be ¢

effective |
live in classifying the multiple £

o accuracy 0
effective in

d to be highly
such h ANN model

low :
MSE values proved th

corres i
sponding target fault. The propos¢

cl
assifying the multiple {%
C:
an be used for diagnosing multiple raults and can b€ used a8
diagnostic problem-
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i hus 1ose€s the accuraté
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