List of Tables

S.	Table	Page
No.		No.
1	Table 1.1. Comparison between different feeding technique (Balanis 2016)	6
2	Table 2.1. Patch Antenna Design	33
.3	Table 2.2. Patch Antennas Impedance	33
4	Table 2.3. Patch Antennas RLC Values Shown in Figure 2.8	35
5	Table 2.4. Performance comparison of L-band patch antennas	41
6	Table 2.5. X-band Patch Antennas Design	43
7	Table 2.6. Performance comparison of X-band antennas	47
8	Table 3.1. Values of Lumped Elements of Equivalent Circuit Model	77
9	Table 3.2. Values of Parameters Used in Three Antenna Designs	91
10	Table 4.1. Values of lumped elements of equivalent circuit model of A3	111
	Table 4.2. Calculated values of lumped elements of loop AMC with $p_u = 18.5$	121
11	mm, $s_2 = 5$ mm, $h = 1.5$ mm and $p_u = 18.5$ mm, at $\varepsilon_r = 4.4$, $\varepsilon_{eff} = 2.7$ and $\theta_i = 0$.	
	Table 4.3. Calculated values of lumped elements of loop AMC with $g = 0.5$ mm.	122
_12	$l_u = 18$ mm, $h = 1.5$ mm and $p_u = 18.5$ mm, at $\varepsilon_r = 4.4$, $\varepsilon_{eff} = 2.7$ and $\theta_t = 0$.	
	Table 4.4. Calculated values of lumped elements of loop AMC with $p_u = 18.5$	124
13	mm, $s_I = 1.5$ mm, $h = 1.5$ mm, at $\varepsilon_r = 4.4$, $\varepsilon_{corr} = 2.08$ and $\theta_i = 0^\circ$.	
	Table 4.5. Calculated values of lumped elements of loop AMC with $g = 0.5$ mm,	125
14	$l_u = 18$ mm, $h = 1.5$ mm and $p_u = 18.5$ mm, at $\varepsilon_r = 4.4$, and $\theta_t = 0^\circ$.	
	Table 5.1. Wireless communication systems frequencies covered by the S-band	136
_15	antennas	
_16	Table 5.2. Comparison of f_L of various monopole antenna configuration.	154
	Table 5.3. Comparison of f_t of various monopole antenna configurations using	156
17	modified formula.	1.50
	Table 5.4. Comparison of f_L of proposed probe fed monopole antenna	158
18	configurations using proposed formula.	1.5
19	Table 5.5. Gain comparison of antennas backed by reflectors in reported literature	167_

List of Figures

S.	Figure	Page
No.		No.
1	Figure 2.1. (a) Geometry of the proposed pentagonal-shaped patch antenna with	27
	the feed points indicated (b) Side view.	
2	Figure 2.2. (a) Geometry of the proposed hexagonal-shaped patch antenna with	28
	the feed points indicated (b) Side view.	
3	Figure 2.3. Simulated reflection coefficient with different probe feeding	29
	positions for pentagonal-shaped patch.	
4	Figure 2.4. Simulated reflection coefficient with different probe feeding	29
,	positions for hexagonal-shaped patch.	
5	Figure 2.5. Simulated impedance matrix with different polygonal patch.	30
6	Figure 2.6. Simulated Gain (in dB) with different polygonal patch.	30
7	Figure 2.7. Schematic of (a) Antenna:A ₁ (b) Antenna:A ₂ (c) Antenna:A ₃ (d)	32
	Antenna:A ₄ (e) Antenna:A ₅	
8	Figure 2.8. Equivalent Circuit model of the antennas at $f = 1.5$ GHz for (a) A_1	34
	(b) A_2 (c) A_3 (d) A_4 (e) A_5 .	
9	Figure 2.9. SC of A1 compared with the results of A_2 , A_3 , A_4 and A_5 using	36
· 	Equivalent circuit model.	
10	Figure 2.10. The S_{11} (in dB) of A_1 compared with the S_{11} of A_2 , A_3 , A_4 and A_5 .	37
11	Figure 2.11. The Z_{11} of A_1 compared with the Z_{11} of A_2 , A_3 , A_4 and A_5 .	38
12	Figure 2.12. The SC of A ₁ compared with the SC of A ₂ , A ₃ , A ₄ and A ₅ .	39
13	Figure 2.13. The farfield gain of A_1 compared with the gain of A_2 , A_3 , A_4 and	40
	A ₅ .	<u> </u>
14	Figure 2.14. The farfield directivity of A_1 compared with the results of A_2 , A_3 ,	41
1.5	A_4, A_5 .	42
15	Figure 2.15. Schematic of (a) Antenna: A ₁ (b) Antenna: A ₂ (c) Antenna: A ₃ (d)	42
16	Antenna: A ₄ (e) Antenna: A ₅	43
16	Figure 2.16. The S_{11} (in dB) of A_1 compared with the S_{11} of A_2 , A_3 , A_4 and A_5 .	44
17	Figure 2.17. The Z_{11} of A_1 compared with the Z_{11} of A_2 , A_3 , A_4 and A_5 .	45
18	Figure 2.18. The SC of A ₁ compared with the SC of A ₂ , A ₃ , A ₄ and A ₅ .	45
19	Figure 2.19. The farfield gain of A_1 compared with the gain of A_2 , A_3 , A_4 and	43
20	A_5 . Figure 2.20. The farfield radiation pattern of A_1 compared with the results of	46
20		1 40
21	A ₂ , A ₃ , A ₄ and A ₅ . Figure 2.21. Pentagon to pentagram schematic.	48
22	Figure 2.22. Hexagon to hexagram schematic.	49
23	Figure 2.23. Simulated reflection coefficient (in dB) for pentagon to pentagram.	52
24	Figure 2.24. Simulated reflection coefficient (in dB) for hexagon to hexagram.	50
25	Figure 2.25. Simulated impedance vs. frequency matrix.	51
26	Figure 2.26. Simulated farfield Gain vs. frequency.	52
27	Figure 2.27. Simulated farfield Gain at 17 GHz for pentagon to pentagram.	53
28	Figure 2.28. Schematic of (a) Pentagonal shaped patch antenna with pentagonal	55
20	slot (Antenna: A1) (b) Hexagonal shaped patch	
29	Figure 2.29. Simulated reflection coefficient (in dB) for antennas with different	57
27	values of R2 (a) A_1 (b) A_2 .	
30	Figure 2.30. Simulated impedance vs. frequency matrix for antennas with	58
	different values of R2.	

31	Figure 2.31. Simulated farfield gain vs. frequency for antennas with different values of R2.	59
32	Figure 2.32. Simulated surface current distribution of A1 with radial distance of	60
	15 mm for the frequency (a) 18 GHz (b) 19 GHz (c) 20 GHz	
33	Figure 2.33. Simulated surface current distribution of A2 with radial distance of	60
	16 mm for the frequency (a) 18 GHz (b) 19 GHz (c) 20 GHz	
34	Figure 2.34. Simulated farfield directivity at frequencies 18 GHz, 19 GHz and	61
	20 GHz for (a) A1 of 15 mm radial distance (b) A2 of 15 mm radial distance	
35	Figure 3.1. Schematic of the proposed hexagonal shaped patch antenna with	67
	hexagonal slot and reduced ground.	
36	Figure 3.2. Effect of varying r_{cut} and G_p .	68
37	Figure 3.3. Equivalent Circuit model of the proposed antenna.	69
38	Figure 3.4. Photograph of the fabricated antenna (a) Front (b) Back.	71
39	Figure 3.5. Measured Reflection coefficient (in dB) (S ₁₁).	72
4()	Figure 3.6. Measured Impedance Real and Imaginary part (Z_{11}) .	73
41	Figure 3.7. Smith Chart for proposed antenna using (a) CST (b) Equivalent	74
	Circuit Model (c) VNA.	
42	Figure 3.8. Hexagonal patch antenna structure (a) Layout with dimension (b)	75
'-	Side view.	
43	Figure 3.9. Equivalent circuit model of the designed antenna.	76
44	Figure 3.10. Picture of the designed antenna (a) Front (b) Back.	78
45	Figure 3.11. Scattering parameter, $ S_{11} $ (in dB)	79
46	Figure 3.12. Variation of the input impedance of the proposed antenna on	80
40	Smith Chart.	
47	Figure 3.13. Surface current density of the designed antenna at 5 GHz at	88
4/	different phase of excitation signal (a) 0° (b) 90° (c) 180° (d) 270°	
48	Figure 3.14. Schematic of the proposed hexagonal shaped patch antenna with	82
70		
49	reduced ground. Figure 3.15. Simulated Reflection coefficients (S_{II}) for different values of G_p	83
77	when feed point is at 10 mm.	
50	Figure 3.16. Simulated Re(Z_{II}) for different values of G_p when feed point is at	83
30		
51	10 mm. Figure 3.17. Simulated $Im(Z_{II})$ for different values of G_p when feed point is at	84
51		
52	10 mm. Figure 3.18. Equivalent Circuit model of the hexagonal shaped patch antenna	85
32	with its probe feeding network.	
53	Figure 3.19. Photograph of the fabricated hexagonal shaped patch antenna with	86
) 3	reduced ground (a) Front (b) Back	
54	Figure 3.20. Measured Reflection coefficient (in dB) (S ₁₁).	87
	Figure 3.20. Measured Impedance Real and Imaginary part (Z_{11}) .	88
55	Figure 3.21. Measured impedance recai and imaginary part (211). Figure 3.22. Smith Chart for Hexagonal patch antenna using (a) CST (b)	89
56	Equivalent circuit model (c) VNA.	
67	Figure 3.23. Proposed vertex fed hexagonal antenna with reduced ground (a)	90
57	Schematic (b) Cross sectional view.	
-	Figure 3.24. Antenna 1 Reflection coefficient, S ₁₁ (dB)	92
58	Figure 3.24. Antenna 1 Reflection coefficient, S ₁₁ (dB) Figure 3.25. Antenna 2 Reflection coefficient, S ₁₁ (dB)	93
59	Figure 3.25. Antenna 2 Reflection coefficient, S ₁₁ (dB) Figure 3.26. Antenna 3 Reflection coefficient, S ₁₁ (dB)	93
60	Figure 3.26. Antenna 3 Reflection coefficient, 517 (db) Figure 3.27. Magnetic mode field of the antennas.	94
61	Figure 3.28. Antenna 1- 3 prototypes (a) Front (b) Back.	95
62	Figure 3.28. Antenna 1- 3 prototypes (a) From (b) Back.	

63	Figure 3.29. Measured Return loss, S ₁₁ (in dB)	96
64	Figure 3.30. Variation of the input impedance of the proposed antennas (a) Real	97
,	part (b) Imaginary part.	
65	Figure 3.31. Experimental measurement setup [BITS-Pilani].	98
66	Figure 3.32. Measured Co- and Cross-polar patterns.	100
$-\frac{67}{67}$	Figure 4.1. Structure of Proposed slotted hexagonal antenna with PPC (a)	106
()	Layout with dimension (b) Side view.	
. 68	Figure 4.2. Measured Reflection coefficient (in dB) (S_{11}) of different antenna	108
()()	(A1 - A3) configurations.	
69	Figure 4.3. Measured Impedance (Z_{11}) of different antenna ($A_1 - A_3$)	109
() /	configurations (a) Real Impedance (Re(Z_{11})) (b) Imaginary Impedance	
	$(\operatorname{Im}(Z_{11})).$	
70	Figure 4.4. Picture of the developed antenna, A3 (a) Front (b) Back.	110
71	Figure 4.5. Equivalent circuit model of antenna radiating at fn, A3 (where n =	110
. / 1	1, 2, 3)	
72	Figure 4.6. Measured Reflection coefficient (in dB) (S ₁₁) of antenna with and	113
/ -	without PPC compared with equivalent circuit model.	
73	Figure 4.7. Measured Impedance (Z_{11}) of antenna with and without PPC	114
/ 3	compared with equivalent circuit model (a) Real Impedance (Re($Z_{\rm H}$)) (b)	
74	Imaginary Impedance (Im(Z_{11})). Figure 4.8. Calculated Reflection coefficient (magnitude) (S_{11}) of the	115
/4	compensation capacitor (C_p) , where he varies from 1.5 to 0.5 mm.	
75	Figure 4.9. Magnetic mode field of the proposed antenna (A3) at three	116
13	frequencies 2.4 GHz, 4.2 GHz and 5.4 GHz at two different phase of excitation	
76	signal 90 and 270. Figure 4.10. Measurement Setup [Transmitting and Receiving Antenna in	117
70	Inset].	
77	Figure 4.11. Antenna gain (dB) (Co- and Cross-polar) at 2.4 GHz (a) E-plane	118
,,		ļ
78	(b) H-plane. Figure 4.12. Loop AMC (a) Design with dimension (b) CM.	119
79	Figure 4.13. Influence of l_u parameter on loop AMC unit cell frequency	121
19	response, with $s_2 = 5$ mm, and $p_u = 18.5$ mm at $\theta_i = 0^\circ$.	
80	Figure 4.14. Influence of s2 parameter on loop AMC unit cell frequency	122
60	response, with $l_u = 18$ mm and $g = 0.5$ mm at $\theta_i = 0^\circ$.	
81	Figure 4.15. Comparison of loop AMC unit cell S_{21} (dB) CM result with CST	123
01	results.	
82	Figure 4.16. Influence of l_u parameter on loop AMC unit cell frequency	124
υZ	response with $s_1 = 1.5$ mm, and $p_0 = 18.5$ mm at $\theta_0 = 0^\circ$.	<u> </u>
83	Eigure 4.17 Influence of sl parameter on loop AMC unit cell frequency	125
0.0	regreened with $t=18$ mm and $g=0.5$ mm at $\theta_i=0^\circ$.	
84	Figure 4.18. Comparison of loop AMC unit cell S ₂₁ (dB) CM result with CST	126
04	maguita	
85	Figure 4.10 (a) Assembly of probe compensated AMC integrated hexagonal	127
ره	antenna and photograph in Inset. (b) Cross sectional view of AMC integrated	
	hevagonal antenna	
86	Eigure 4.20 Reflection phase versus frequency of the AMC.	128
87	Figure 4.21. Measured results of the antenna 1 with AMC array and air as	129
0/	A:=A=A=A=A=A $A:=A=A=A=A=A=A=A=A=A=A=A=A=A=A=A=A=A=A=$	
00	Figure 4.22. Measured results of the antenna 2 without AMC array and FR-4 as	131
88	Figure 4.22. Measured results of the antenna 2 without AMC array and FR-4 as	13

*	dielectric ($h = 7.5 \text{ mm}$) (a) S_{11} (dB) (b) Z_{11} (Ω).	
89	Figure 4.23. Measured results of the antenna 3 with AMC array and FR-4 as dielectric ($h = 4.5 \text{ mm}$) (a) S_{11} (dB) (b) Z_{11} (Ω).	132
9()	Figure 4.24. Measured Farfield Gain (dB) (Co and Cross Polar) of the antenna integrated with AMC at 2.4 GHz (a) E-plane (b) H-plane.	134
91	Figure 5.1. Evolution of the Proposed Design (a) Hexagon (b) Slotted Hexagon	141
71	(c) Ground used for (a) and (b) (d) Reduced Ground with (b) (e) Reduced ground with half ellipse (f) Proposed modified ground.	
92	Figure 5.2. S ₁₁ (dB) analysis of Evolution of the proposed design.	142
93	Figure 5.3. Gain analysis of Evolution of the proposed design (a) Boresight Gain (b) Peak Gain.	143
94	Figure 5.4. Reflection coefficients (S_{11}) for different values of hfr.	144
95	Figure 5.5. S _{11.} (dB) performance of S-Band antenna versus er.	145
96	Figure 5.6. Gain performance of S-Band antenna versus er (a) Boresight Gain (b) Peak Gain.	145
. 97	Figure 5.7. St. (dB) performance of S-band antenna versus slotgl and slotgw.	146
98	Figure 5.8. Gain performance of S-Band antenna versus slotgl and slotgw (a) Boresight Gain (b) Peak Gain.	147
99	Figure 5.9. Scattering Parameter, S ₁₁ (in dB) for probe fed hexagonal UWB antenna.	148
100	Figure 5.10. Reflection coefficients (S_{11}) for different values of G_p when feed point is at 17.5 mm and reut is 3 mm.	149
101	Figure 5.11. Reflection coefficients (S_{11}) for different values of slotwidth ($slot_{gw}$) when slot length ($slot_{gl}$) is 2 mm, feed point (f_r) is at 17 mm and r_{cut} is 3	150
102	Figure 5.12. Proposed UWB Hexagonal antenna (a) Layout with dimension (b)	150
103	Figure 5.13. Scattering Parameter, S ₁₁ (in dB) for probe fed hexagonal monopole UWB antenna. inset [Picture of the designed antenna (a) Front (b) Back]	151
104	Figure 5.14 Measured farfield gains (dB) for proposed antenna.	153
105	Figure 5.15. Scattering Parameter, S ₁₁ (in dB) of different monopole antenna	159
106	Figure 5.16. Scattering Parameter, S ₁₁ (in dB) for probe fed hexagonal monopole antenna [Inset: Picture of the fabricated probe fed hexagonal monopole antenna]	160
107	Figure 5.17. Proposed multilayered antenna structure with dimensions (a) Sectional view, zoomed out view of AMC unit cell in the inset, (b) Side view.	161
108	Figure 5.18. Comparison of loop AMC unit cell S ₁₁ (dB) and S ₂₁ (dB) CM	162
100	result with CST results. Figure 5.19. Images of the developed antenna with AMC.	163
109	Figure 5.20. Scattering Parameter, S ₁₁ (in dB) for probe-fed hexagonal	164
111	monopole UWB antenna. Figure 5.21. Measured Boresight gain, Gain (in dB) for probe-fed hexagonal	165
112	monopole UWB antenna. Figure 5.22. Measured Peak Gain (in dB) for probe-fed hexagonal monopole	166
112	UWB antenna. Figure 5.23. Antenna with AMC and without AMC in anechoic environment.	168
113	Figure 5.23. Afterna with 7 Me assured radiation patterns of antenna in XOZ-plane and YOZ-	170

plane with/without AMC at different frequencies (in GHz) (a) 3.3 (b) 4.1 (c) 6.2 (d) 8.4 (e) 9.5.

List of Acronyms

S. No.	Acronyms	Definition
1	AMC	Artificial Magnetic Conductor
·	ANN	Artificial Neural Network
	AR	Axial Ratio
<u>-</u>	· CP	Circularly Polarized
$\begin{array}{c} 2 \\ \hline 3 \\ \hline 4 \\ \hline 5 \end{array}$	CPW	Coplanar Waveguide
6	CSRR	Complementary Split-Ring Resonator
· · · · · · · · · · · · · · · · · · ·	CST MWS	Computer Simulation Technology Microwave Studio
8	C.M.	Continuous Wave
9	DGS	Defected Ground Structure
10	EBG	Electromagnetic Band Gap
11	ECM	Equivalent Circuit Model
12	FCC	Federal Communications Commission
13	FDD	Frequency-Division Duplex
14	FDTD	Finite Difference Time Domain
15	FR-4	Flame Retardant grade 4
16	GPS	Global Positioning System
17	GSM	Global System for Mobile Communications
18	IE3D	Integral Equation Three Dimensional
19	IoT	Internet of Things
20	LCP	Liquid-Crystal Polymer
21	LHCP	Left-Hand Circular Polarization
22	LTE	Long Term Evolution
23	MATLAB	MATrix LABoratory
24	MIMO	Multiple Input Multiple Output
25	MPHA	Multi-Layered Polygonal Helix Antenna
26	PCB	Printed Circuit Board
27	PEC	Perfect Electric Conductor
28	PPC'	Parallel Plate Capacitor
29	PMC	Perfect Magnetic Conductor
30	RF	Radio Frequency
31	RGP	Reduced Ground Plane
32	SC	Smith Chart
33	SMA	Sub Miniature version A
34	SRR	Split-Ring Resonator
35	TD	Time Division
36	TE	Transverse Electric
37	TLM	Transmission Line model
38	TM	Transverse Magnetic
39	UHF	Ultra High Frequency
40	UMTS	Universal Mobile Telecommunications System
41	UNII-1	Unlicensed National Information Infrastructure
42	UWB	Ultra Wide Band

		1 A Landau and Antanaga
43	VHMA	Vertex fed Hexagonal Monopole Antenna
44	VNA	Vector Network Analyzer
45	WiMAX	Worldwide interoperability for microwave access
46	WBAN	Wireless body area network
17	WLAN	Wireless local area network
		Wireless Sensor Network
48	WSN	Wilciem October