Chapter - 4

Impedance Matching and Bandwidth Enhancement in Hexagonal Planar

Antennas

4.1. Introduction

mode as it can be concluded

Vertex |
ex fed hov: )
X fed hexagon planar antenna does not excite the lower

rr()n‘] , - . )
analysis presented in chapter 2 and chapter 3. In this chapter. the parallel plate capacitor

(PPC) s . ‘
C) is used to match the impedance. 10 excite the lowest mode of hexagonal patch. The

bandw . . . |
dwidth of the hexagonal planar antenna at lowest mode 1s also enhanced by using a thick

dicle ety
ctric substrate integrated with AMC.

fundamental mode radiation are always in demand

Economic and efficient antennas with
for Modern wireless communication systems: Hexagonal patch antennas provide similar
Performance a¢ rectangular and circular patches with an optimized feed point but with a
lower patch arca and a comparable gain (Joshi 2016a). Poor impedance matching is observed
for lower order mode resonating near M4 when the feeding probe is in proximity to vertex of
the hexagon, It is essential to identify a technique 10 excite lower order mode in hexagonal
Patch antenng for 4 uniform radiation patterm: probe-fed hexagonal patch antennas have been
Carlier reported (Honggang 2016) (Wang 2016) and hexagonal geometries have been
s, fractal and annular geometries (Joozdani 2016)

ored ip f; . .
In frequency selective surface
enna Wwas

| microstrip patch ant

d hexagonal

Si
"ghal 2016) (Saxena 2017). A perturbe
o at 3.5 and 5.2 GHz. The

band applicatio

11) for dual

Present
ed by Qian et al. (Qian 20 el
MTS application (Bl otti

ol e for U
Ygonal patch antenna with reactive impedance ground plan

2006
) was proposed by Bilotti et al-
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Hex:
xagonal pq
S atch antennas
nnas ge e L an sy .
generally excite higher modes those resonat 3
ates at 32/20 or |
it ower

\\d\ (‘l“n(,[l .. . . ~ . -
< d ( ' /. ¢ C ¢ a
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v X (J()ﬂl I )
Shi 20]()h ‘hi ) )
) (Joshi 2015b) (Sawant 20135) (Ghatak 2013). For a iform e
trie b ) . uniform and broader

l'adiat' n
10 pa[h r o
b n. l[ l\ n(‘{'
b A ¢ IOWe ln()dC‘ Ob‘
Ssal I s. Probe reactance may be ¢
Lompensated

l“]ul(.“ U ‘) r ')l) » ~ b 2y ~

tegh ()
& 2009) (Kovwi
s 2 " i Thi
7 2014) respectively. This chapter utilizes one of the techniq
ues

highl;
Ighted |
< in (Kovitz 2
7 20 .
14) to compensate probe reactance when fed at vertex of hexagonal

Paich
to exCl
Xcnte fund:
ament » - .
yal mode at 2.4 GHz. PPC compensation is chosen over annular gap

be
¢ Inst
stead of ri
ring. an arc is [ ’
g, an arc is formed around a vertex-fed probe. Due 10 this limitation of

anp
ular
£ap at
< the vertex. it wi
cx , , v e . g . . - .
. it will appear as 1f proximity feed is chosen over direct feeding.

Fr
Cque
Y selective surfac .
surfaces (FFSS) are used as high pass. low pass. band pass and band
e also known as high

Sop
Surfaceg |
S for elee
or electromagnetic shiclding (Celozzi 2008). FSS ar
(Munk 2000). AMC with difterent

im
Peda
Nce ¢ S
c . P g .
s and artificial magnctic conductor
s such as ; ' '
as loop, jerusalem crosses. meander lin¢ based and spiral shaped has

bee
N o
pIOer b
y many rescarchers (Mittra 1988) . The loop AM

POpUlyy shap
¢
C with square geometry are

Na
lyzeq and
pre applicaliOnS and spurious rejection (Mittra 1988) (Lu

sented for band stop
are loop AMC s

2()0
9 (1.
(Liu 5
0
I7) (Barrera 2017) (Nasrollahi 2017) (Liu

2018). The sq4

netic scattering (Mittra 1988),

). electromag

Na]
ySed
£ numer;j
umerical method (Gombor 2015
d easy to

equ:
qlh\,

alenl .
A CiIrcuit mode . . i Lircui delling 1s fast an
Naly,, odel (Varkani 2018) out of which the circuit mo g
qUar

¢ loop AMC. The band reject frequency response of the square AMC depends
proposed numerical

Op lhe
17). Ferreira et

menslo
%del ns and dielectric us¢
e loop A AMC (Barrera 20
p and slot

e effective
refully calculate the

Y
ave incidence (Ferreira 2
. The physical

di
rie o
ic constant for TE and



parameter of the square loop AMC with different inner widths are chosen in order to check its

band stop frequency response at two scparate frequency at TE and TM incidence wave. The

effective dielectric constant is calculated for TE and TM wave incidence with expressions

suggested in literatures. This rescarch is useful where separation between two near bands is

required. AMC are utilized for separation of two closely spaced GSM bands (Kartal 2017).

The analysis technigues of loop AMC with different inner width are not much explored for

TE and TM incident wave. The effect of dielectric constant on band stop resonant frequency

is deeply analyzed and appropriatc expression for effective dielectric constant calculation for

[E and TM incident wave is suggested in this chapter. This research will be useful for
researchers (o estimate the transmittance of AMC for both TE and TM wave incidence in a

m A f t .
ore effective and casier way.

th PPC is demonstrated and analysed to study

A vertex-fed slotied hexagonal antenna wi
the effect of PPC on probe reactance and antenna far-field radiation characteristics. A thin
diclectric substrate with thickness less than M10 is used to develop the antenna and analysis
asurements. The chapter demonstrates a method

is

done over the obtained results through me
. try of hexagon and
to IMprove impedance matching for lower mode, suppressed due to geometry g
objective here, in this chapter, is to

foed location, by introducing ppC with probe feed. The
idemify a technique which results in Sl < .10 dB at imperfect feed locations e.g. when
acitive probe compensation using a circular

Probe is fed near to vertex of the hexagon. Cap
found to be 2 suitable choice.

disk of FR-4 sandwiched between two COPPEl discs 15
er widths is demonstrated- The effect of AMC on
nn

A square loop AMC with different i .
he transmittance

.on of the chapter: T
TaNsmitiance is analyzed and studied in the second sectic
n, inner width dimension using

e dimensio
flect of AMC on various parameters such as 100P

wave is in

cident are¢ studied and analysed. The

Circyjy

modellin TE and TM .
g when s dis cussed in third section of the chapter.

em<

mea r
Surement setup for transmittance meast!
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. modelling f
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- A metl
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idth in directl fed
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ucing AMC patch by
g array : ST . -
1y and PPC for applications like Wi-Fiis demonstrated in section 4.4

4.2 L
. O\Ver MOd . N
e Excitation in Vertex-Fed Slotted Hexagonal Antenna

Th
¢ slotted
:d hexagon: i

deg; gonal antenna with circular pPC and a 37 % 37 mm® sized ground plane i
o e is

as shown in Fi 3
" n in Figure 4.1. Glass ¢poxy FR-4 substrate (&7~ 4.3, tan 0 = 0.025) is the
“H0Strate |

material used f i

used for design and development of the antenna with a thickness of 1.5 mm

nal patch antenna is designed using

m>. The hexago

and
an OV .

erall dimension of 50 * 50 m
~ 60 mm at 2.5 GHz. To resonate at

ny

guided wavelength. Az

e further optimiz
.. 35 x 303 mm’ with a

half
WaVeIe ¥
| ngth, A,/2 where, the
ed to 35 mm X 30.3 mm

24
. (IH? .
t} d .y ~
imensions of the hexagonal patch ar

tha hexagonal slot size of 6 % 5.2 mm”.

Circ
Umrad;
adius of
S . wi
of 17.5 mm in all experiments 1
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jeh a SMA connector after applying simulation a1
¢ SMA connector is

Th
€ ve
an 5
of the hexagon is fed throt
in radius of th

Mgy
yS]S as «
suggested in (Joshi 2015d) (Joshi 2016b): The p
n while the 10 mm long outer

.o 2.076 M1

i
hexagonal

0.6
02
[n]n_
: th .
¢ radius of dielectric in connector

anduc

Jue of circumradius of the

e optimum va

). The circular PPC s

lor Ky
as a radjus of 2.565 mm. Th
oshi 2016b

Sl()l .
kB, |
g =3 mm is obtained using technique applicd " ¢
g . . 1 ng
by using a small disc of 4 qmm radius of a double sided coppe! clad with a single
small disc O
hexagonal
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18 again the same antenna arrangement

with radi
ius - ) s
us 4 mm and of height 1.5 mm. Antennd Aj;

> but height of the PPC is now reduced to 0.94 mm.

umradius, Rey can be used to determine the resonant

The effecti
c' LT ey R - M
fective value of hexagonal cire

‘nClQS : > ry a i "‘:]e

Ofa ~1
circular patch : : ;
r patch antenna as given 1n (Ray 2007).

(4.1)

ckmn

fr = —
ZTTRe[f teff

m=0,1,2 3 n=1forfist four modes. The first four values of ku, are ki =

-9

¢ is speed of light, Ry = 18.1 mm is effective

1.84] -
k2= 3.054, ko = 3.832, ku=4.201.
ned in (Ray 2007).

Tadius and ¢, = . . . : ? 1
o = 3.957 is effective dielectric constant as defi

The ¢ . -
¢ frequencies at which the first four modes ar¢ radiating, when calculated for designed
y are found to be 2.422 GHz, 4.018 GHz, 5.0416

heXa
gonal patch antenna using equation (4.1
TMa1, TMo and TM3,

valent modes T™Mi1»

GHz
and 5.52 GHz for circular patch equi
) are confirmed through

fespectivel i i jon. (41
y. The above values obtained using equation (4

re 4.2 and Figure 4.6.

Meag

ure :
ment results presented in Figu

is placed over the probe of

Wi .
th an objective to establish ISul < -10dBat <
h. = 1.5 mmis used with

y. =4 mm with

amen
na, A, to form antenna, A2 A thicker PPC of
N . : .
enna, A, and S,y| = -10 dB is observe purther, when 2 slightly thinnet PPC with A =
2 1= - ’
the objective of Sut less than 10 dB at 24 GHz is

0,94
m .
m is used for antenna A3
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$
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The techniques presented in this chapter of the thesis leads to uniform radiation pattern

due 1o fundamental mode excitation and wide bandwidth due to thick substrate and AMC.
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