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Abstract 

 

Protein structure prediction algorithms are studied to construct accurate models of the 

protein sequences for bridging the ever-increasing gap between the available count of protein 

sequences and the experimentally determined protein structures. Comparative modelling is 

considered as most popular and accurate structure prediction algorithm to model protein 

structure. Template selection is considered as one of the most important steps of a 

comparative modelling algorithm. However, selection of the best set of templates is still a 

major challenge. An effective template ranking algorithm is developed to efficiently select 

only the reliable hits for predicting the accurate protein structures. The algorithm employs the 

pairwise as well as multiple sequence alignments of template hits to respectively capture their 

key sequence and structural information based scores for effectively ranking them, selecting 

their best possible set and constructing an accurate target model. Modelling accuracy of the 

algorithm is tested and evaluated on TBM-HA domain containing CASP8, CASP9 and 

CASP10 targets. In-house C, Python and PERL scripts are used to select the functionally 

similar and structurally complimentary template hits to model the protein sequences. Protein 

models sampled through MODELLER are evaluated through different assessment scores viz. 

MOLPDF, GA341, DOPE Score, Normalized DOPE Score, GDT-TS, GDT-HA and 

TM_Score. TM_Score along with Normalized DOPE score (Z_Score) is lastly selected as the 

best set of model assessment measures and is employed to evaluate the model sampling for 

selecting the accurate target model. The statistical ranking based template selection and 

combination algorithm, further integrated with TM_Score and Z_Score assessed iterative 

sampling strategy, significantly improves the modelling accuracy of the targets. The 

algorithm predicts accurate models with an average GDT-TS, GDT-HA and TM_Score 

improvement of 3.531, 4.814 and 0.022 along with the individual relevant standard deviation 



Page v 
 

of 4.142, 6.353 and 0.037 over the best CASP models. The predicted models are found more 

accurate than the best CASP models not only for the individual domains but also for the 

overall target conformation. Our results suggest that the inclusion of structurally similar 

templates with ample conformational diversity is vital for the modelling algorithm to 

maximally as well as reliably span a target sequence and construct its accurate model. The 

optimal model sampling also holds the key to predict the best possible structure for a target. 
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1.1 Protein 

 Proteins are the major building blocks of cell machinery and are involved in almost 

every cellular function like genetic regulation, metabolism and the cell proliferation 

(Tomkins & Martin 1970). Cellular proteins are produced through ribosomes by the process 

of translation from a set of 20 naturally occurring amino acids with different chemical 

features and properties (Lucas-Lenard 1971). In this process, transcribed gene sequence or 

messenger RNA is translated into a linear chain of amino acids connected by the peptide 

bonds (Wilson 1971). The amino acids of a protein sequence or primary protein structure 

interact with each other and the surrounding environment to produce the stable three 

dimensional conformation,  which is also known as the native state (Hanley et al. 1983). Both 

the protein sequence as well as its functionally-active three-dimensional structure are 

essential to study its cellular activity and are biologically important (Mihaesco et al. 1983). 

 

1.2 Protein sequence  

Protein sequence information or primary structure of a protein is essential to 

understand its function in a cell. Proteins are sequenced through different techniques like the 

Edman degradation (Edman 1949), Sanger sequencing (Sanger & Tuppy 1951) and the high 

throughput sequencing methodology (Metzker 2010). Protein sequence database was created 

as the Atlas of Protein sequence and structure (Dayhoff et al. 1965) in 1965 and was later 

linked with european bioinformatics institute (EBI), swiss institute of bioinformatics (SIB) 

and protein information resource (PIR) databases in 2002 to form a complete Uniprot 

consortium. Recently, secondary databases Swiss-prot and translated european molecular 

biology laboratory (TrEMBL) were also developed from the EBI and SIB databases. 
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Currently (as on January 19
th

, 2015), 547,357 annotated protein sequences exist in the 

swissprot section of universal protein knowledgebase (UniProtKB) database. It is interesting 

to note here that this number is quite small when compared to the 89,451,166 protein 

sequences available in the complete translated european molecular biology laboratory 

(TrEMBL) repository of UniProtKB (http://www.ebi.ac.uk/uniprot/TrEMBLstats). The TrEMBL 

database also includes the computationally translated copies of all coding segments present in 

the nucleotide sequences available in the UniProtKB and is substantially larger than 

UniProtKB database. Moreover, many of these database sequences are homologous to each 

other and share a substantial (30%) sequence similarity. Even after excluding these 

homologous sequences from the sequence databases, the remaining 67,265,680 protein 

sequences existing in the TrEMBL database also significantly exceed the number of 

experimentally solved protein structures. 

Although the protein sequence information is important to understand its function, its 

three dimensional structure play important functional role in a cell. As a protein sequence can 

adopt different structures in different chemical environments due to altered folding kinetics, 

the three-dimensional conformation of a protein sequence is more informative than its 

primary sequence (Anfinsen 1973; Hellberg et al. 1987; Petrey et al. 2015). 

 

1.3 Protein structure 

 Proteins are involved in every aspect of biological activity and their detailed structural 

study is important to understand the mechanism of their biological activity or to interfere with 

it, as for example in the case of drug design and folding related diseases. Structural details of 

a protein assist us to identify the key residues that are primarily responsible for its biological 

http://www.ebi.ac.uk/uniprot/TrEMBLstats
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function, i.e. if a protein sequence is mutated to delete such key residues through a knockout 

and site-directed mutagenesis experiment, its biological function is completely lost in a cell 

system (Filippis et al. 1994; Iverson et al. 2002; Goyal et al. 2015). The structural properties 

of a protein sequence like superficial surface, conformational topology, loop flexibility and 

residue accessibility help us in understanding its biological function. Further, the conserved 

domain that is functionally important for a protein sequence is also studied through its 

structure (Matsui et al. 2004; Chapple et al. 2015). Moreover, the recombinant proteins 

cloned in a cell sometimes aggregate into misfolded conformations which lead to the 

formation of inclusion bodies or abnormal assemblies and loss of its functional role(s) in a 

cell (McCallus et al. 1992). Such functionally defective protein aggregations lead to several 

diseases like amyloidosis (Chiti & Dobson 2006), cystic fibrosis (Luheshi et al. 2008) and 

Alzheimer's disease (Gadad et al. 2011). Certain specific chemical interactions and structural 

constraints between the solvent-exposed hydrophobic residue stretches usually drive the in-

vitro aggregation of partially folded recombinant proteins into functionally abnormal 

aggregates (Carrio et al. 2005). Studying the biophysical reasons for this abnormal 

aggregation of a recombinant protein allows us to identify and substitute the key residues 

responsible for the aggregation with the structurally tolerable residues, and it further 

empowers us to prevent its excruciating cellular aggregation and result in its increased in-

vitro expression rate (Carrio et al. 2005). Detailed knowledge of protein structures further 

helps us to map their functionally active cross-talks in a cell (Wolf et al. 1998; Kevin et al. 

2011). As protein structures are more conserved than sequences, the evolutionary relationship 

among two distantly related proteins is studied by assessing their structural similarity (Kim 

1998; Montelione & Anderson 1999; Marti-Renom et al. 2000; Pentony et al. 2012). 
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Proteins contain a well-defined pattern of secondary structures and a complex three-

dimensional conformation. The secondary structure of a protein is usually defined as the local 

hydrogen-bonded configuration which is formed while the protein is folding into its native 

conformation. Apart from this hydrogen bonding pattern, the key signature of the backbone 

of a protein secondary structure is its specific set of right-handed phi (Φ) and psi (ψ) torsion 

angles that describe the rotation of polypeptide backbone around the N-Cα and Cα-C bonds 

respectively. Sterically favourable combination of these torsion angles formed by a set of 

consecutive amino acids provides the flexibility required to fold this stretch into a specific 

secondary structure since the third possible torsion angle (ω) around the peptide bond within 

the protein backbone is planar and almost invariably fixed at 180° due to its double bond 

character. Thus the phi and psi angles form the conformational basis of a protein secondary 

structure that majorly contains α-helices, β-sheets and turns. 

Depending on the set of encoded secondary structures, the protein conformations are 

categorized into four structural classes viz. all-α, all-β, α/β and α+β. The all-α and all-β 

proteins respectively contain only the α-helices and β-strands. However, the α/β and α+β 

protein structures encode the mixed sets of α-helices and β-strands, where the former consists 

of alternating α-helices and β-strands (mostly parallel) along its main-chain and the latter 

consists of α-helices and β-strands (mostly anti-parallel) that occur separately across the 

main-chain (Murzin et al. 1995). Several such super-secondary structures interact together to 

form a compact tertiary structure for a protein and the further alliance of these tertiary 

structures through non-covalent and disulphide bonds results in the formation of a multi-

subunit or quaternary structure (Rossmann & Argos 1981). 
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The protein structures including the ones that form a complex with nucleic acids (NA) 

are solved through several experimental techniques like X-ray crystallography, nuclear 

magnetic resonance (NMR) and electron microscopy techniques, as shown in Table 1.1. 

Protein structures are also experimentally determined with some other techniques viz. Solid-

state NMR, Electron crystallography, Neutron diffraction, Fiber diffraction, Solution 

scattering, Infrared spectroscopy, Powder diffraction and their hybrid set (shown as Other in 

Table 1.1).  

Myoglobin was the first protein that was experimentally solved through X-ray 

crystallography in 1962. This 153 residue protein structure of the Physeter catodon (sperm 

whale) was solved at 2Ǻ resolution. Currently all the experimentally solved protein structures 

are deposited in a single database as protein data bank (PDB, Berman et al. 2000) which was 

founded in 1971. Presently (as on January 19
th

, 2015), 102994 experimentally solved protein 

structures have been released by the PDB, as listed in Table 1.1. 

Table 1.1 Current PDB Holdings (January 19
th

, 2015, http://www.rcsb.org). 

                            Molecule Type 

 Proteins Protein/NA 

Complexes 
Other Total 

X-RAY 88026 4332 4 92362 

NMR 9466 222 7 9695 

ELECTRON MICROSCOPY 522 164 0 686 

HYBRID 68 2 1 71 

Other 161 6 13 180 

Total 98243 4726 25 102994 

 

As it is well noticed (Number of protein sequences is 89,451,166 and number of 

experimentally solved protein structures is 102994), the protein sequencing rates are 

significantly higher than the rate at which their structures are getting experimentally solved, 

E
x
p
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T
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n
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u
es 

http://www.rcsb.org/
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and this gap between the number of experimentally solved protein structures and the count of 

protein sequences is constantly increasing. Although the structure determination 

methodologies have been developed to a great extent through the high throughput 

experimental approaches, the sequence-structure gap is constantly increasing due to several 

technical and resource limitations. It is because the X-Ray analysis requires an extremely 

pure protein crystal and many proteins do not crystallize. NMR analysis on the other hand is 

just limited to small, soluble proteins only, with slightly lower accuracy of approximately 

2.5Ǻ. Cryo-electron microscopy also suffers from the problems that the electron-microscopy 

maps are not unambiguous for a protein and its resolution is also much lower than that of the 

X-ray and NMR techniques (Baker & Johnson 1996; Rossman MG. 2000). Moreover, all 

these experimentally determined structures require conformational refinement through costly 

and time consuming experimental steps. Protein structure prediction methods or protein 

modelling algorithms are thus being developed to build a protein structure simply from its 

primary sequence information (Lushington 2015). Currently, it seems to be a complete 

realistic objective as it promises to quickly construct near-native protein models (Battey et al. 

2007; Das et al. 2007; Kryshtafovych et al. 2007; Kryshtafovych et al. 2009; Li et al. 2015). 

 

1.4 Protein structure prediction 

The count of experimentally determined protein structures is substantially smaller 

than the number of known protein sequences, as shown in Fig. 1.1. Due to the development 

of high throughput sequencing methodologies, the number of protein sequences is 

exponentially increasing, as shown in Figure 1.1 (a). The yearly growth and an overall 

increase in the number of experimentally solved protein structures, existing in the PDB 

database, are diagrammatically represented in Fig. 1.1 (b). Hence, an experimentally solved 
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structure is unavailable for majority of the protein sequences and this gap has widened over 

the last decade despite the development of high-throughput dedicated crystallography 

pipelines (Berman et al. 2000; Metzker 2010). Protein structure prediction is thus a major 

research objective to bridge this sequence-structure gap. 

(a) 

 
(b) 

 
Fig. 1.1 Yearly growth of (a) total number of protein sequences in the UniprotKB/ TrEMBL 

database (http://www.ebi.ac.uk/uniprot/TrEMBLstats) (b) total number of protein structures 

in the PDB database (http://www.rcsb.org/pdb/statistics/holdings.do). 

 

 

 

http://www.rcsb.org/pdb/statistics/holdings.do
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1.5 Protein structure prediction algorithms 

The protein structure prediction methodologies have been categorized in two broad 

categories namely free modelling (FM) and the template based modelling (TBM) 

(Kryshtafovych et al. 2005; Cheng 2007). TBM encompasses the comparative modelling and 

threading algorithms that predict a protein structure on the basis of its similarity with the 

available set of experimentally solved structures (templates). Conversely, FM includes the 

ab-initio modelling methodologies which predict a protein structure solely from its sequence 

information, as further detailed below. As TBM algorithm employs the best homologous set 

of templates to reliably cover the target sequence, it is able to escape the extensive 

conformational search problem of a FM algorithm (Tress et al. 2005; Zhang 2007). By 

employing an optimally scoring target-template alignment, a TBM algorithm is thus able to 

quickly construct the accurate target models (Tress et al. 2007; Tong et al. 2015) than the FM 

methodologies which involve several computationally complicated steps (Tress et al. 2009). 

The TBM and FM algorithms have different degree of modelling accuracy, computational 

and algorithmic complexity, as shown below with a flowchart in the Fig. 1.2. 

 

Fig. 1.2 Schematic representation of different protein modelling categories  

and their accuracy as well as complexity orders. 
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1.5.1 Free Modelling 

 The ab-initio or de-novo prediction algorithms attempt to build a protein model 

simply from its sequence information without employing the available set of experimentally 

solved structures and are extremely helpful in the construction of novel structural folds. The 

FM methodology is considered as the “Holy Grail” of modelling algorithms as its solution 

would ultimately solve all the modelling problems (Zhang 2008). This FM methodology is 

based on the core physical principles of energy and geometry and it assumes that the actual 

native state of a protein sequence exists at the lowest free energy conformation. 

Mathematically, it means that the native state conformation of a target sequence is a model 

existing at the global minima of its energy landscape. The FM algorithm thus searches the 

entire possible conformational space of a target protein sequence to identify and construct its 

native conformation. The FM algorithms basically include the molecular dynamics (MD, 

Robson & Platt 1987), molecular mechanics (MM, Schiffer et al. 1990) and monte carlo 

(MC, Higo et al. 1992) methodologies. However, the FM methodology has been developed 

through several other improved algorithms like genetic algorithms (GA, Ring et al. 1993), 

multiple copy simultaneous search (Miranker & Karplus 1991), neural networks (Holley & 

Karplus 1991), field optimization (Koehl & Delarue 1995) and graph theory (Samudrala & 

Moult 1998) to predict the accurate protein model (Moult & Melamud 2000). 

Considering that the conformational space of an amino acid is reasonably 

approximated with only three discrete torsion angles (Φ and Ψ for the protein backbone and 

χ1 for the side-chain), a conformational space of 3
n
 structures is theoretically possible for a 

target protein sequence with n amino acids (Chakrabarti & Pal 2001). The FM algorithm is 
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therefore expected to maximally search these 3
n
 structures for constructing the accurate target 

conformation. The FM algorithm considers protein structure prediction problem as two sub-

problems, i.e. (a) development of an extremely accurate energy function to score and select 

the accurate conformation among all the generated model decoys and (b) development of a 

very efficient search protocol to quickly screen the energy landscape possible for a target 

sequence (Bonneau & Baker 2001) and find its global minima with minimum number of 

steps. Theoretically, an ab-initio approach can model any protein sequence. However, as the 

possible count of conformations increases exponentially with the total number of atoms in the 

protein sequence, the computation process becomes prohibitively expensive (Lu & Skolnick 

2003) and usually results into relatively less accurate protein model. The ultimate objective of 

such an algorithm is to reach the global minima conformation for a target sequence (Fiser 

2004; Kolinski 2004). Ab-initio approaches mainly use geometric optimization algorithms, 

like Newton-Raphson, Steepest Descent, Conjugated Gradient and Adopted basis Conjugated 

Gradient to explore the energy landscape. 

 A protein structure can be represented by two ways, a) an all atom representation of 

amino acids or b) a reduced representation of amino acids. An all-atom representation 

considers all the atoms of an amino acid to represent a protein structure and it greatly 

increases the conformational space of a target sequence. Reduced representation of protein 

structure only includes Cα atom, Cβ atom, C and N atoms of the peptide bond and the center 

of mass of the side-chain (Herzyk & Hubbard 1993). However, a different reduced 

representation of a protein model symbolizes every amino acid with its Cα coordinates and as 

a single center of interaction (Rotkiewicz & Skolnick 2008) which is sometimes also 

positioned at the side-chain center of mass (Zhou et al. 2007). Construction of the protein 
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models by these two different representations of an amino acid uses two different energy 

functions (Sun 1993). The reduced amino-acid representation greatly decreases the 

computational complexity required to efficiently sample the conformational space of a target 

sequence. It consequently allows us to easily construct the fine-detailed all-atom target 

protein model after sampling the target conformational space and constructing its best 

possible minimal energy structure. 

The reduced representation approach has even been considered to chemically 

represent the behavior of solvent condition that is physically present in a cell system. It is 

termed as a solvent model and is traditionally categorized as explicit and implicit model 

(Cramer & Truhlar 1999). The implicit solvent model replaces physical solvent molecules 

surrounding a protein model with a continuous medium (Roux & Simonson 1999; Tomasi et 

al. 2005) to equivalently represent the solvent molecules with a reasonable accuracy through 

a few specific physical parameters like the surface tension, pH and the dielectric constant 

(García-Moreno & Fitch 2004; Marenich et al. 2009). However, the explicit solvent model 

overtly considers the solvent molecules to understand their interaction with a protein model 

and it also spontaneously considers the interactions among the solvent molecules (Borjesson 

& Hunenberger 2001; Borjesson & Hunenberger 2004; Goh et al. 2014). These solvent 

models are usually employed for the MM (Still et al. 1990), MC (Burgi et al. 2002) and MD 

(Ferrara et al. 2002) simulations of a protein structure to accurately predict, simulate and 

analyze its folding mechanism (Zhou 2003; Xu et al. 2012; Masuda 2015). The MD 

simulation trajectory has even been employed to assess the conformational stability of a 

protein model (Cunha et al. 2015). 
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Recently, Beveridge protocol has combined united residue (UNIRES) empirical 

energy function of assisted model building with energy refinement (AMBER; Cornell et al. 

1995) with an implicit solvent model i.e. generalized born surface area (GBSA; Weiser et al. 

1999) to construct a more realistic protein model in an appropriate solvent continuum (Liu & 

Beveridge 2002). This method includes dielectric polarization of solvent, van der waals 

(VDW) interaction and cavitation effects (evacuation of the solvent molecules from the 

intervening space between the hydrophobic residues of a protein structure), mostly observed 

at the protein structural pockets. MD forms the basis of all the energy functions that are 

employed to energetically refine the protein models and is the core of ab-initio modelling as 

well as sampling algorithms (van Vlijmen & Karplus 1997; Das et al. 2007). Yet another 

methodology i.e. replica exchange molecular dynamics (REMD) iteratively includes the 

predicted models with each energy minimization step to efficiently sample the 

conformational landscape of a target sequence and further improve the modelling accuracy 

(Sugita & Okamoto 1999). It energetically relaxes the protein model in a set of multiple non-

interacting replicas at different temperatures and at definite step, it exchanges the considered 

conformation of the initial model with the most stable conformation constructed among the 

sampled replica decoys. REMD has been found to be extremely successful with the 

cooperative formation of correct secondary structures when the folding transitions are 

successfully employed (English & Garcia 2014). Even the implicit solvent based energy 

minimization protocol has been employed to construct the complete protein model from its 

reduced-representation structure with only the Cα backbone and the side-chain centre-of-

mass (Feig et al. 2000). 
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The implicit solvent methodology has long been employed to construct and analyze a 

protein structure that is subjected to a specific solvent (Baysal & Meirovitch 2000). It has 

even been supplemented with the force field energy equations to evaluate the structural 

flexibility of a model for selecting the lowest energy as well as topologically correct 

conformation among the sampled set of target protein structures (Lazaridis & Karplus 2000; 

Hsieh & Luo 2004; Rodriguez et al. 2011). The implicit solvent models have even been 

tested to explore the energetic landscape of a protein model (Steinbach 2004; Yelena et al. 

2009) and to add the side-chains to a protein backbone model (Lopes et al. 2007) for 

constructing an accurate protein model. 

Altogether, both the explicit and implicit solvent models have been really handy to 

predict an accurate protein structure and to investigate the stability of a protein conformation 

(Razzokov et al. 2014). However, even after considering the appropriate solvent continuum 

for energetic refinements, the target protein model is not always structurally improved with a 

topology that is closer to the actual global minima of the target sequence. Hence, several 

optimization techniques are employed to efficiently sample the conformational landscape of 

the target sequence. 

MC sampling guided lattice-based parallel hyperbolic sampling (PHS) algorithm 

(Zhang et al. 2002) has even been tried in this category and it considers logarithmic flattening 

of the local high energy barriers prevailing in the conformational landscape of a target 

sequence by an inverse hyperbolic sine function to quickly bypass the local minima. It spans 

a considerable conformational space of a target sequence and successfully models the lower 

energy target models (Zhang et al. 2002). A multiple-copy conformational space annealing 

(CSA) approach that represents a protein structure with an array of atomic interaction 
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potentials has even been used (Hardin et al. 2002). While progressing towards global minima, 

it considers interactions between the conformational sites located at Cα atom, Cβ atom and 

the peptide bond or at the center of mass of the side-chains. A global optimization algorithm 

has even been attempted through a modified UNRES force field with CSA global 

optimization approach (Liu & Beveridge 2002). This UNIRES force field has also been 

employed along with TBM methodologies to improve the modelling accuracy (Krupa et al. 

2015). Meanwhile, MC program employing the correct topology of hydrogen bonds and 

hydrophobic interactions has also been developed to estimate the atomic violations of a 

protein model for energetically refining it (Srinivasan & Rose 2002). Some other algorithms 

first construct only the alpha carbon model of all the target residues before adding the 

backbone and side-chain atoms to build the complete target model (Iwata et al. 2002; 

Pokarowski et al. 2003; Kolinski 2004; Gront et al. 2007; Zhang et al. 2010; Lyons et al. 

2014). Even the modelling methodologies considering the protein model on a cubic or 

tetrahedral lattice have been developed and this approach has also considered the interactions 

between the hydrophobic residues and the orientation dependent repulsive interactions 

existing between the polar and non-polar charged moieties (Jacobsen 2008). 

 Stochastic and minimum perturbation (Fine et al. 1986) and accurate, hybrid protein 

domain prediction (DOMAC) methodology (Ginalski 2006) have even been developed in this 

category. DOMAC aligned the target sequence with the selected set of top-ranked templates 

to construct the target model through the TBM algorithm. Moreover, it also employed the FM 

methodology of the protein domain predictor (DOMPRO; Tress et al. 2007) to construct the 

target segments that were uncovered by the selected templates for building the complete 

target structure. As the DOMAC algorithm employed both FM as well as TBM 
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methodologies to construct a target model, it was termed as a hybrid modelling algorithm and 

subsequently the ab-initio methodology is termed as FM modelling approach (Cheng 2007). 

DOMAC also respectively predicted secondary structure and relative solvent accessibility 

through secondary structure prediction of a protein (SSPRO) and solvent accessibility 

prediction of a protein (ACCpro) module of its complete SCRATCH suite. But despite these 

many efforts, domain boundary specificity and sensitivity was found to be just 27% and 14% 

respectively for the ab-initio prediction of the unaligned target segments, as compared to 50% 

and 76.5% respectively for the aligned target segments modelled with MODELLER through 

the selected templates (Jauch et al. 2007). The modelling accuracy of this method is too low 

and still an improved algorithm is needed for practical usage (Jauch et al. 2007). 

 Although the FM based protein structure prediction algorithms have been developed 

to a great extent, the predicted structures are still not closer to their actual experimental 

conformations. Several different algorithms categorized as TBM methodologies employing 

the already available set of templates are being developed to construct accurate protein 

models, as discussed below. 

 

1.5.2 Template Based Modelling 

TBM modelling methodology includes the comparative modelling and the threading 

algorithms. Comparative modelling algorithm aligns a target sequence with the template 

sequences and employs the experimentally solved templates that share a statistically 

significant sequence similarity with the target sequence to predict its structure (Sali & 

Blundell 1993; Schoonman et al. 1998). 

In between the ab-initio and comparative modelling methodologies, there is threading 
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or the fold recognition method that attempts to construct a protein model from several known 

protein structures which may not share a significant sequence similarity with target. It is 

based on the observation that nature reuses existing folds for accommodating new protein 

sequences and functions during evolution (Bray et al. 2000; Moult & Melamud 2000). Very 

few novel protein folds with unique topologies are experimentally found every year, as 

graphically represented in the Fig. 1.3 for the data released by class architecture topology 

homology (CATH; http://www.cathdb.info/wiki/doku/?id=release_notes) database (Orengo et 

al. 1997). As represented, the total number of available protein folds slowly increase as the 

nature reuses the existing protein folds in different combinations and topological orientations 

across all the protein structures. Numerous protein sequences are structurally encoded 

through a unique and limited set of folds (Pearl et al. 2003; Andreeva et al. 2004). 

 

Fig. 1.3 Limited set of novel protein folds exists in the nature 

(http://www.cathdb.info/wiki/doku/?id=release_notes). 

1.6 TBM algorithms 

A single point mutation in a gene sequence has been shown to have a deleterious 

effect on the structure as well as function of its encoded protein(s). It has been shown that a 

http://www.cathdb.info/wiki/doku/?id=release_notes
http://www.cathdb.info/wiki/doku/?id=release_notes
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missense mutation altering the sixth codon GAG to GUG in the β-hemoglobin gene results in 

a substitution of glutamic acid to valine in its protein and it deforms the red blood cells, 

makes them sickle-shaped and decreases their oxygen carrying capacity (Moo-Penn et al. 

1977). Further, the point mutation in the Neurofibromin1 gene has also been shown to cause 

the Neurofibromatosis disease (Serra et al. 2001). A few missense mutations in the tumor 

suppressor gene APC have even been shown to cause a cancer (Minde et al. 2011) and the 

hereditary disorders (Sarig et al. 2012; George et al. 2014). However, it has also been shown 

that the proteins are structurally too robust over most of these mutations and it has been 

shown that a minor residue substitution in a protein sequence normally results in a negligible 

structural change in its protein (Chothia & Lesk 1986; Martinez & Serrano 1999; Sinha & 

Nussinov 2001; Berrondo & Gray 2011). It has been also observed that evolutionarily related 

proteins sequences share similar three dimensional structures and the protein structures 

belonging to the same family are much more conserved than their sequences (Lesk & Chothia 

1980). Hence, if an appreciable sequence similarity among two proteins is detected, their 

structural similarity can be assumed and this relationship forms the basis of TBM algorithm 

that includes both the comparative or homology modelling, and the threading methodologies. 

While the comparative modelling is helpful to construct the model of a target protein 

sequence that is maximally spanned by the reliable template(s), the threading algorithm is 

extremely handy for constructing the model when the target sequence shares a distant 

homology with the templates and can be spanned with the set of conserved structural folds. 

The availability of statistically significant templates maximally covering the target sequence 

and also having a substantially higher sequence similarity with it is the key constraint to 

differentiate between these two modelling algorithms (Tress et al. 2005). The comparative 
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modelling methodology constructs accurate models and is routinely employed to build 

protein structures (Zhang & Skolnick 2005). However, estimating the accuracy of a predicted 

model is of prime importance for a biologist intending to employ it for further analysis. A 

direct correlation between the sequence identity of a pair of proteins and the topological 

similarity of their common core has already been observed (Chothia & Lesk 1986, Rost 

1999), as shown in the Fig. 1.4 (a). The target-template sequence identity has thus usually 

been considered as a first indicator for the expected accuracy of a protein model (Chothia & 

Lesk 1986; Kopp and Schwede 2004), as shown in the Fig. 1.4 (b). The Fig. 1.4 (a) highlights 

the sequence identity percentage of the 8 sets of homologous proteins with the proportion of 

residues structurally conserved in their hydrophobic core and Fig. 1.4 (b) represents RMSD 

scores of the mutually compared structures for each of these 8 sets (Chothia & Lesk 1986).  

  

(A) (B) 

Fig. 1.4 Sequence identity percentage between a pair of proteins indicates (a) an 

equivalent proportion of residues conserved in their structural core (b) their minimal 

structural variation computed in terms of RMSD scores (adapted from Chothia & Lesk 1986). 

It has been shown that the templates with 30% identity to a target approximate the 

structural core of its model to around 1.5-2Ǻ against its native structure and the modelling 
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accuracy may improve to less than 1Ǻ RMSD when the target-template sequence identity is 

more than 50% (Chothia & Lesk 1986; Cozzetto and Tramontano, 2005; Wishart et al. 2008). 

However, when the target sequence shares only a statistically insignificant similarity against 

several templates, the threading algorithm is helpful to predict its structure. If the boundary, 

location and conformation of each of the folds in a target sequence are precisely marked, then 

its structure can be very well predicted by the threading algorithm. For its simplicity and 

reliability, TBM is currently the most widely employed methodology to predict accurate 

protein structures. A TBM algorithm usually involves several steps, namely, template search, 

target-template alignment, model building, loop modelling, modelling of side-chains, model 

assessment and model refinement, as shown in the Fig. 1.5 and the tools and servers normally 

employed for each of these steps are enlisted in the Table 1.2. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5 Schematic representation of protein structure prediction algorithms. 



 Chapter I 

 

Page 21 

 

 

 

1.6.1 Identification of suitable templates 

The reliable templates are normally screened through their sequence identity and 

sequence similarity scores against a target sequence. Although the sequence identity score 

computes the fraction of target residues that are identical and aligned to the corresponding 

residues of the template sequence, it is not beneficial to optimally align the protein sequences. 

It is because a protein structure robustly tolerates a mutation in its sequence when its amino 

acid is substituted with a chemically equivalent residue sharing the similar charge or 

hydrophobicity and the sequence similarity score comes handy to align the protein sequences. 

Thus the algorithms screening the correct templates for a target sequence routinely employ 

several amino acid substitution matrices like PAM (point accepted mutation, Dayhoff et al. 

1978), BLOSUM (blocks substituion matrix, Henikoff & Henikoff 1992) and Gonnet 

(Gonnet et al. 1994), gap penalty schemes like the one employed by PSI-BLAST (Altschul & 

Erickson 1986), Bayesian penalty (Lathrop et al. 1998) and the variable gap penalty scheme 

(Madhusdhan et al. 2006) and sequence identity. The best set of these high-scoring templates 

maximally spanning the target sequence is used to construct its model. It has already been 

shown that a target protein sequence sharing atleast 40% sequence identity with the available 

template(s) can predict model structure with accuracy comparable to a medium accuracy 

NMR structure or a low resolution X-ray structure (Tramontano & Morea 2003). 

Moreover, it is also observed that some templates are promiscuous enough to show 

false positive sequence similarity with several targets and it becomes a major problem 

especially when the target contains structurally conserved segments (Jauch et al. 2007). A 
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mutated template residue can be aligned with a target residue to show a biologically 

irrelevant sequence similarity score which is termed as false positive sequence similarity. 

However, a single template that shares a significantly high sequence similarity with several 

target sequences and can be easily employed to construct several different target models is 

not always available (Battey et al. 2007; Kryshtafovych et al. 2007; Kryshtafovych et al. 

2009; Mariani et al. 2011). Hence, it is always required to search the best possible template 

for a target sequence and construct its accurate structure. 

The template search algorithms are categorized in two groups. The first category 

includes the pairwise sequence comparison methods like basic local alignment search tool 

(BLAST, Altschul et al. 1990) and fast alignment (FASTA, Pearson 1990) which construct 

pairwise alignment of a target against the templates (Brenner et al. 1998). Pairwise sequence 

alignment slithers the two considered protein sequences on one-another to identify the 

segments that may share an evolutionary relationship with substantial functional, structural 

and conformational similarity. The second category includes the methods that evaluate the 

target-template sequence profiles to search the correct templates for a target sequence. 

Sequence profile is a powerful sequence comparison methodology that is competent enough 

to find even the distantly related templates. For a target sequence profile, computed as per the 

considered template scoring parameters through the sequence database, this methodology 

scans the PDB database to find the reliable hits and further iteratively employs each of these 

resultant hits to search all the significant templates by employing the position specific scoring 

matrix (PSSM; Henikoff & Henikoff 1997). The PSSM represents the amino acid frequency 

at each position in the target-template sequence profile and it estimates the conservation 

probability of every single target residue at every single profile position (Rychlewski et al. 
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2000). PSSM significantly improves the sensitivity of such sequence profile based template 

search algorithms (Teichmann et al. 2000) like position specific iterative BLAST (PSI-

BLAST, (Altschul & Koonin 1998), HMMER (Eddy 1998), intermediate sequence search 

(ISS, Teichmann et al. 2000), HHPred or HHSearch (Söding 2005), comparison of multiple 

alignments (COMA, Margelevicius and Venclovas 2010) and domain enhanced lookup time 

accelerated BLAST (DELTA-BLAST, Boratyn et al. 2012). 

Although the sequence profile based methodologies like PSI-BLAST are more 

accurate than BLAST, the remotely related homologues are not effectively screened 

(Gonzalez & Pearson 2010) for a target sequence. In contrary, the profile-profile alignment 

(PPA) method compares the sequence profile of target with that of template to compute the 

PSSM or position-specific degree of conservation for each of the target residue against the 

templates. As this method compares the target-template sequence profiles, it is more powerful 

than BLAST or PSI-BLAST (Jaroszewski et al. 2000; Roland 2006). HHPred further 

increases the efficiency of these profile based template search algorithms (Söding 2005). 

To construct an optimal target-template alignment (Knudsen & Miyamoto 2003; 

Marko et al. 2007; Wohlers et al. 2010; Kuziemko et al. 2011; Barbato et al. 2012; Yoon 

2014), protein secondary structure prediction tools like PSI-BLAST based secondary 

structure prediction (PSIPRED; Jones 1999) are employed (Pirovano et al. 2007). However, 

assignment of an incorrect secondary structure to a target segment results in the erroneous 

template screening and it further leads to incorrect placement of gaps in the target-template 

alignment which can even dissect the secondary structure segments of a target sequence and 

result in a biologically futile target-template alignment. 
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1.6.2 Template selection 

 Among the templates screened for a target, the reliable structures are selected to 

construct accurate target models (Greer 1980; Murphy et al. 1988; Ruan et al. 1994; Lewis et 

al. 2002; Tress et al. 2005; Tress et al. 2007; Tress et al. 2009; Taylor et al. 2014) through 

many parameters like the presence of a specific ligand, specific microenvironment of source 

organism of the template, phylogeny relationship among the target and template sequences, 

resolution and reliability factor (R-factor), E-value and sequence identity (Srinivasan et al. 

1993; Sanchez & Sali 1997; Navaratnam et al. 1998; Reva et al. 2002; Nguyen et al. 2011). 

Template resolution is a criterion to preferentially select the high resolution templates 

among all the available hits for constructing the target models (Srinivasan et al. 1993). R 

factor or the Reliability factor is another such criterion to define the accuracy of a template 

and it estimates the structural agreement between the template and its experimentally solved 

diffraction data. As it quantifies the structural deviation between the template and its ideal 

conformation expected for its crystallographic diffraction data, its lower value ideally implies 

the better quality of a protein structure solved through the X-ray crystallography. However, 

for the NMR structural ensemble of a protein, the degree of topological convergence or 

precision is computed through their RMSD after superimposition and a NMR structure does 

not have any direct measure of the resolution (Snyder et al. 2005; Montelione et al. 2013). It 

is often suggested that the accuracy of a NMR structure corresponds to a 2 - 3Ǻ resolution X-

ray crystal structure (Mao et al. 2011; Mao et al. 2014). 

E-value is a factor to estimate the number of hits one can expect to occur only by 

chance for a target sequence (Sanchez & Sali 1997). It may also be considered as the random 

background noise existing between sequence matches while searching the database of a 
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particular size. Although the template with the lowest E-value is mathematically the best 

possible match for a target, consideration of similar analogy to select other good templates on 

the orderly basis of their E-value scores is purely a coincidence. 

Presence of a specific ligand or a microenvironment in the source organism of a 

template is an important criterion to be considered for predicting the target protein structure 

(Navaratnam et al. 1998). If the objective of model prediction is to study the active sites 

responsible for its biological function, it is often advised to consider the templates that have 

similar pH, solvent environment, ligand(s), and quaternary interactions as probably present in 

the source organism of a considered target sequence. For example, if we want to study a 

sodium ion receptor in a cell, then it is advised to consider the templates that perform similar 

function in similar solvent conditions for constructing its best possible model. However, if 

the predicted target model is required to study its docking with a specific ligand, then such a 

constraint need not be considered. 

Phylogeny relationship of the templates is also screened against the target sequence 

for selecting the best structures as it is always advised that the evolutionarily related 

templates justify the biological significance and evolutionarily conserved nature of every 

single target residue in its predicted structure (Reva et al. 2002). 

Sequence identity is an unreliable measure to select the correct templates for a target 

sequence (Nguyen et al. 2011), as its score is correct only when the considered target-

template alignment is biologically meaningful. A considerably higher target-template 

sequence identity is an indicator of a good template. However, when two templates have 

almost equivalent as well as lower sequence identity scores for a target sequence, selecting 

the best template becomes difficult. Such seemingly equivalent sequence identity among 
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different templates is normally the result of homoplasy (The case of evolutionarily distinct 

sequences that have different random mutations, although it appears to be parallel or 

convergent in evolution on the basis of their sequence identity). 

 

1.6.3 Constructing a target-template alignment 

 An alignment making the best use of complete biological information encrypted in 

templates is mandatory to build the best model for a target sequence. Many alignment 

algorithms based on Smith-Waterman (Local alignment) and Needleman-Wunsch (Global 

alignment) are currently available and employing the best of these methodologies is essential 

to accurately align the target-template sequences for constructing the best possible target 

model. All these alignments are normally evaluated for the number, length and location of 

gaps to improve its accuracy as the incorrectly placed gaps dissecting the conserved core of 

templates can sometimes be manually corrected by employing the conserved structural 

information of templates available in the dictionary of protein secondary structure (DSSP, 

Kabsch & Sander 1983). Constructing the target-template alignment is easy when their 

sequence identity is above 40% (Moult 2005), although alternative alignments constructed 

with different scoring schemes (Topf et al. 2006) are also employed to compute the best-

scoring and biologically significant target-template alignment (Cozzetto et al. 2008). 

However if pairwise target-template identity is comparatively lower, an optimal alignment 

can result in a better model topology. A misalignment of just a single residue can result in an 

almost 4Ǻ structural deviation in the predicted model. Several algorithms like CLUSTALW 

(Jeanmougin et al. 1998), PRALINE (Heringa 1999), multiple sequence comparison by log- 
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expectation (MUSCLE, Edgar 2004) and TCOFFEE (O'Sullivan et al. 2004) have been 

traditionally employed to construct the best possible target-template alignment. 

 

1.6.4 Model building 

 TBM algorithm employs the target-template alignment file to extract the structural 

information of the template residues for the corresponding target residues and to construct the 

target protein model. The model building algorithms have been grouped into several 

categories viz. Rigid-body assembly that constructs the target model from the structural 

framework of aligned segments of the selected templates through the alignment file (Blundell 

et al. 1987; Sutcliffe et al. 1987; Topham et al. 1993; Guex & Peitsch 1997; Schwede et al. 

2003; Kopp & Schwede 2004), Segment matching that considers a target sequence as 

continuous sequence of hexapeptides and constructs its Cα backbone model by concatenating 

the best set of hexapeptide structural segments of the templates (Jones & Thirup 1986; Unger 

et al. 1989; Bruccoleri & Karplus 1990; Levitt 1992) and the optimal satisfaction of the 

structural restraints that models the target through the distance map of template(s) on the 

basis of their alignment (Sali & Blundell 1993). 

Protein modelling methodologies are also categorized as Cα backbone, loop and side-

chain construction algorithms. The Cα backbone construction methodology copies backbone 

topology of the template residues for the equivalent target residues as per their alignment to 

further add the backbone atoms through algorithms like Maxsprout (Holm & Sander 1991), 

powerful chain restoration algorithm (PULCHRA, Rotkiewicz & Skolnick 2008) and 

reconstruct atomic model (REMO, Li & Zhang 2009), and add side-chain atoms by using the 

algorithms like side-chains with a rotamer library (SCWRL, Canutescu et al. 2003). Loop 
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modelling algorithms consider the loop segments as insertion or deletion (INDEL, Fiser & 

Sali 2003) and model them through the ab-initio methods (Moult & James 1986; Bruccoleri 

& Karplus 1987; Fidelis et al. 1994; Fiser et al. 2002; Xiang et al. 2002; Fiser & Sali 2003; 

Zhang et al. 2003; Park et al. 2011; Park & Seok, 2012; Tyka et al. 2012) and the database 

search methods (Lee et al. 2010; Subramani & Floudas 2012; Bonet et al. 2014). 

Side-chain modelling algorithms add side-chains to a protein backbone model while 

keeping it devoid of any atomic clash. Side-chains are added by simply replacing the target 

residue in its structure with the corresponding residue of the selected templates (Chothia & 

Lesk 1986; Sutcliffe et al. 1987) or by substituting the side-chain conformers (rotamers) to 

structurally satisfy the stereo-chemical and energetic constraints (Smith et al. 2007) through 

the VDW exclusion test (Ponder & Richards 1987; Xiang & Honig 2001). This algorithm is 

especially helpful for adding side-chains to the Cα backbone target model that is constructed 

by integrating the structural information of several different templates (Bower et al. 1997). 

 

1.6.5 Model evaluation 

It is usually observed that the models predicted through any of the modelling 

algorithms have several atomic clashes. This step assesses all the predicted models for the 

stereo-chemical and topological errors to select the accurate structure. Two types of model 

evaluation schemes are commonly employed. While the first scheme includes the assessment 

measures like RMSD (Martin et al. 1997), longest continuous segments (LCS, Zemla 2003), 

global displacement test (GDT, Zemla 2003) and TM_Score (Xu & Zhang 2010) to screen 

the predicted model that is structurally closest to the considered template(s), the second 

methodology evaluates a protein model on the basis of its alignment with the considered 
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template(s) through the local global alignment (LGA) analysis (Zemla 2003). This second 

category also includes several other assessment measures like Main-chain reality score (Engh 

& Huber 1991), VERIFY3D (Luthy et al. 1992), ERRAT (Colovos & Yeates 1993), protein 

structure check (PROCHECK, Laskowski et al. 1993), protein structure analysis (PROSA, 

Sippl 1993), atomic non-local environment assessment (ANOLEA, Melo & Feytmans 1998), 

evaluation of protein structure (EVA, Koh et al. 2003), correct structural localization of 

hydrogen bonds and side-chain rotamers (Chakrabarti & Pal 2001), MolProbity (Davis et al. 

2007), distance-scaled, finite ideal-gas reference (DFIRE) and disorder prediction 

(DISOPRED, Jonathan et al. 2004) to evaluate the core biophysical properties and structural 

topology of a protein model (Kryshtafovych & Fidelis 2008). Even the assessment scores viz. 

molecular probability density function (MOLPDF), discrete optimized potential energy 

(DOPE) score, GA341 and normalized DOPE score (Z_Score) employed by MODELLER 

also fall in this second category (Shen & Sali 2006). All these model evaluation schemes 

have been frequently employed by several protein modelling algorithms like LEE, rapid 

protein threading by operation research (RAPTOR), ZICO, FAIS@HGC, FIEG, DOMFOLD, 

DISOCLUST, GS-META model quality assessment program (MQAP), threading assembly 

refinement (TASSER), ZHOU-SPARX-, 3D-JIGSAW, MUFOLD, PLATO and PRECORS. 

Even the model clustering algorithms like structure picker (SPICKER) and CIRCLE, 

mutually comparing all the predicted models, have been employed to select the representative 

model that is structurally most similar to all the other constructed models (Zhang & Skolnick 

2004). Although these measures are designed to evaluate different structural features of the 

generated set of protein models (Xu & Zhang 2010; Cao et al. 2015), the accurate model is 

not consistently selected (Manavalan et al. 2014). Moreover, majority of these measures do 
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not unanimously select a single target model as the accurate structure for any of its individual 

domains or for its overall correct topology. An increased sampling becomes yet another 

confusing step especially when the target sequence contains multiple structural domains 

wherein the linker segments connecting these domains are even independently constructed 

(Shatnawi & Zaki 2015). 

 

1.6.6 Model refinement 

Several unfavorable and local steric clashes are often found even in the top-scoring 

model predicted for a target sequence (Arendall et al. 2005). These atomic clashes are 

strongly correlated to the incorrect local topology of the protein folds and are normally absent 

in an accurate model. To improve the structural topology, the top-scoring target model is 

energetically refined or relaxed through the increased model sampling (Zhang 2008) to 

remove all the energetically unfavorable atomic contacts (Hao et al. 2012). As the native 

conformation of a protein sequence exists at its lowest energy conformation, the energetic 

refinement methods attempt to search the global minima of the energetic landscape for a 

target sequence. Though being equivalent to the ab-initio modelling methodologies, the 

energetic refinement step is used by the TBM algorithms to extensively sample the target 

model for further improving its structural topology. 

Although MC based energetic refinement algorithms have been improved several 

times, the simulation is not steered towards the global minima and is perplexed in the 

sampling landscape (Liang & Grishin 2002; Qian et al. 2004). It allows complete model to 

relax in a physically realistic all-atom force field and improves the target conformation both 

in terms of backbone topology and side-chain placement (Qian et al. 2007). However, it 
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usually does not drive the target model away from the selected template(s) towards its native 

structure and fails to consistently improve its topology (Chen & Brooks 2007; Moult et al. 

2007). Hence, several different algorithms viz. simulated annealing (SA, Holak et al. 1988), 

genetic algorithms (Tuffery et al. 1991), a combination of MC and SA (Holm & Sanders 

1992), MC simulation (Eisenmenger et al. 1993), mean field optimization (Koehl and 

Delarue 1994), neural network with SA (Hwang & Liao 1995), combinatorial search 

algorithms (Subbiah & Harrison 1989), a combination of SA and GA as SAGA (Bayley et al. 

1998; Standley et al. 1998) and dead-end elimination theorem (Looger & Hellinga 2001) 

have been developed for efficiently searching the conformational space of a target sequence 

and constructing its accurate model. All these refinement algorithms are found to have 

diligent conformational search protocol and their modelling accuracy is limited only due to 

their inaccurate energy function (Jacobson et al. 2002). 

The model refinement step has been improved to a great extent although it is still 

obstructed by some logical problems. It is usually observed that an energetically refined 

model is not structurally closer to its native conformation or the refinement step is unable to 

consistently improve topological accuracy of the predicted target models. Though many 

refinement methodologies have been developed including the ones that only sample the side-

chains of a protein model (Wallner 2014), the cellular in-vivo protein folding process is still 

not correctly implemented computationally in our structural refinement algorithms (Huang et 

al. 2015). The single long model sampling perturbs a target model for the specified number of 

steps. However, if a structurally incorrect model is constructed during this sampling, the 

further sampling path becomes completely erroneous and does not lead to structurally 

improved target model in comparison to the initial target structure. 
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Table 1.2 Mostly used protein modelling servers and tools (Brooks et al. 1983; Russell & 

Barton 1992; Sali & Blundell 1993; Pearlman et al. 1995; Altschul et al. 1997; Eddy 1998; 

MacKerell et al. 1998; Shindyalov & Bourne 1998; Scott et al. 1999; Notredame et al. 2000; 

Melo et al. 2002; Fiser & Sali 2003; Kosinski et al. 2003; Schwede et al. 2003; Bateman et al. 

2004; Edgar 2004; Edgar & Sjolander 2004; Jonathan et al. 2004; Söding 2005;  

Biegert & Soding 2009; Lawrence & Michael 2009). 

Usage S. 

No. 

TOOL Website Link 

 

Template 

Search 

1. PSI-BLAST 

 

 

http://www.ncbi.nlm.nih.gov/BLAST/ 

 
2. TOPITS http://www.embl-heidelberg.de/ 

predictprotein/submit_adv.html 

 
3. HMMER http://bio.ifom-firc.it/HMMSEARCH/ 

 
4. CS-BLAST http://toolkit.tuebingen.mpg.de/cs_blast 

5. HHPred / 

HHSearch 

http://toolkit.tuebingen.mpg.de/hhpred 

6. FUGUE http://www-cryst.bioc.cam.ac.uk/ 

~fugue/prfsearch.html 

7. Threader http://bioinf.cs.ucl.ac.uk/threader/ 

 
8. 3D-PSSM http://www.sbg.bio.ic.ac.uk/~3dpssm/ 

 

 

9. PFAM http://www.sanger.ac.uk/Software/Pfam/ 

 
10. PHYLIP http://evolution.genetics.washington.edu/phylip.htm 

 
11. DALI http://www2.ebi.ac.uk/dali/ 

 
    

 

Target-

Template 

Alignment 

1. CLUSTALW http://www.ebi.ac.uk/clustalw/ 

 
2. HMMER http://bio.ifom-firc.it/HMMSEARCH/ 

3. STAMP http://bioinfo.ucr.edu/pise/stamp.html 

 
4. CE http://cl.sdsc.edu 

 5. DSSP http://bioweb.pasteur.fr/seqanal/ 

interfaces/dssp-simple.html  

6. COMPASS ftp://iole.swmed.edu/pub/compass/ 

 
7. MUSCLE http://www.drive5.com/muscle 

 
8. SALIGN http://www.salilab.org/modeller 

 
9. TCOFFEE http://www.ch.embnet.org/software/TCoffee.html 

 
    

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.embl-heidelberg.de/%0Bpredictprotein/submit_adv.html
http://www.embl-heidelberg.de/%0Bpredictprotein/submit_adv.html
http://bio.ifom-firc.it/HMMSEARCH/
http://toolkit.tuebingen.mpg.de/cs_blast
http://toolkit.tuebingen.mpg.de/hhpred
http://www-cryst.bioc.cam.ac.uk/%0B~fugue/prfsearch.html
http://www-cryst.bioc.cam.ac.uk/%0B~fugue/prfsearch.html
http://bioinf.cs.ucl.ac.uk/threader/
http://www.sbg.bio.ic.ac.uk/~3dpssm/
http://www.sanger.ac.uk/Software/Pfam/
http://evolution.genetics.washington.edu/phylip.htm
http://www2.ebi.ac.uk/dali/
http://www.ebi.ac.uk/clustalw/
http://bio.ifom-firc.it/HMMSEARCH/
http://bioinfo.ucr.edu/pise/stamp.html
http://cl.sdsc.edu/
http://bioweb.pasteur.fr/seqanal/%0Binterfaces/dssp-simple.html%20
http://bioweb.pasteur.fr/seqanal/%0Binterfaces/dssp-simple.html%20
ftp://iole.swmed.edu/pub/compass/
http://www.drive5.com/muscle
http://www.salilab.org/modeller
http://www.ch.embnet.org/software/TCoffee.html
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Model 

Building 

1. COMPOSER http://www-cryst.bioc.cam.ac.uk 

 
2. SwissModel http://swissmodel.expasy.org/ 

 
3. 3D-JIGSAW http://www.bmm.icnet.uk/servers/3djigsaw/ 

 
4. MODELLER http://salilab.org/modeller/ 

 
5. ICM http://www.molsoft.com/bioinfomatics/ 

 6. CONGEN http://www.congenomics.com/congen/ 

congen_toc.html 

 
    

Loop 

Modelling 

1. MODLOOP http://alto.compbio.ucsf.edu/modloop//modloop.html 

 
2. ARCHDB http://sbi.imim.es/cgi-bin/archdb/loops.pl 

 
3. Sloop http://www-cryst.bioc.cam.ac.uk/ 

~sloop/Browse.html 

 
    

Modelling 

of Side-

chains 

1. WHAT IF http://swift.cmbi.kun.nl/whatif/ 

 2. SCWRL http://dunbrack.fccc.edu/SCWRL3.php 

 
    

 

 

 

Model 

Assessment 

1. PROCHECK http://www.biochem.ucl.ac.uk/~roman/ 

procheck/procheck.html 

 

 

2. PROSA II http://www.came.sbg.ac.at/ 

 
3. ANOLEA http://protein.bio.puc.cl/cardex/servers/ 

 
4. AQUA http://nmr.chem.uu.nl/users/jurgen/Aqua/server 

 
5. BIOTECH http://biotech.embl-heidelberg.de:8400 

 
6. ERRAT http://www.doe-mbi.ucla.edu/Services/ERRAT/ 

 
7. VERIFY3D http://www.doe-mbi.ucla.edu/Services/Verify_3D/ 

 
8. EVA http://cubic.bioc.columbia.edu/eva/ 

 9. DFIRE http://sparks.informatics.iupui.edu/ 

yueyang/server/dDFIRE/ 

10. DISOPRED http://bioinf.cs.ucl.ac.uk/disopred/ 

    

Model 

Refinement 

1. AMBER www.amber.scripps.edu 

 

 

2. GROMOS http://www.igc.ethz.ch/gromos/ 

 
3. CHARMM http://www.charmm.org/ 

 
 

1.7 CASP 

For assessing the significant progress and accuracy of protein structure prediction 

algorithms, a community wide blind test entitled critical assessment of structure prediction 

http://www-cryst.bioc.cam.ac.uk/
http://swissmodel.expasy.org/
http://www.bmm.icnet.uk/servers/3djigsaw/
http://salilab.org/modeller/
http://www.molsoft.com/bioinfomatics/
http://www.congenomics.com/congen/%0Bcongen_toc.html
http://www.congenomics.com/congen/%0Bcongen_toc.html
http://alto.compbio.ucsf.edu/modloop/modloop.html
http://sbi.imim.es/cgi-bin/archdb/loops.pl
http://www-cryst.bioc.cam.ac.uk/%0B~sloop/Browse.html
http://www-cryst.bioc.cam.ac.uk/%0B~sloop/Browse.html
http://swift.cmbi.kun.nl/whatif/
http://dunbrack.fccc.edu/SCWRL3.php
http://www.biochem.ucl.ac.uk/~roman/%0Bprocheck/procheck.html
http://www.biochem.ucl.ac.uk/~roman/%0Bprocheck/procheck.html
http://www.came.sbg.ac.at/
http://protein.bio.puc.cl/cardex/servers/
http://nmr.chem.uu.nl/users/jurgen/Aqua/server
http://biotech.embl-heidelberg.de:8400/
http://www.doe-mbi.ucla.edu/Services/ERRAT/
http://www.doe-mbi.ucla.edu/Services/Verify_3D/
http://cubic.bioc.columbia.edu/eva/
http://sparks.informatics.iupui.edu/%0Byueyang/server/dDFIRE/
http://sparks.informatics.iupui.edu/%0Byueyang/server/dDFIRE/
http://bioinf.cs.ucl.ac.uk/disopred/
http://www.amber.scripps.edu/
http://www.igc.ethz.ch/gromos/
http://www.charmm.org/
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(CASP) is organized every two years since 1994 (Dunbrack et al. 1997; Mariani et al. 2011). 

CASP assesses the modelling accuracy of all the structures predicted by the participants for 

the target protein sequences whose structures are experimentally solved and kept frozen till 

the end of the test. Target protein sequences with cloning artifacts, protein chains with 

significant structural deviations (>3.5A°) or the structures majorly influenced by the 

physically unreasonable crystal packing are not considered as the CASP targets (Clarke et al. 

2007). Further, the target sequence segments are considered as sequence or structural 

domains only if they are covered by the existing templates with a significantly high alignment 

score (Tress et al. 2009). Moreover, the target sequences are also categorized as FM, 

FM/TBM overlap, TBM and High Accuracy (Tress et al. 2009; Kinch et al. 2011; Moult et al. 

2014). While the FM category includes only the target domains that are not homologous or 

share a minimal homology to any existing template that is not considered as the current 

CASP target, the TBM group solely includes the targets that share a significant homology 

with the existing templates which are also not the current CASP targets. Further in the 

intermediate difficulty group FM/TBM group comprises the targets that have sequence 

segments individually assigned to each of the FM and TBM assessment categories (Li et al. 

2015). Lastly, the High Accuracy category includes only the target domains for which the 

top-scoring and reliable templates with significantly high coverage are easily available and 

which can be readily modelled with GDT-TS score higher than 80 through the available 

templates (Tress et al. 2009). Since its first round, CASP has been considering a diverse set 

of target sequences (www.predictioncenter.org), as enlisted below in Table 1.3.  

 

 

file:///D:/BITS_Google%20Drive/1_Thesis_Ashish%20Runthala/__Thesis_Done%2012_05_2015/www.predictioncenter.org
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Table 1.3 Evolution Statistics of CASP, Targets and its Domains. NF: New Fold (ab-initio 

prediction), CM: Comparative Modeling, FR: Fold Recognition (Murzin & Hubbard 2001; 

Lisa et al. 2003; Moult et al. 2005; Moult et al. 2007; Moshe et al. 2009;  

Leaver-Fay et al. 2011; Taylor et al. 2014). 

CASP# 

(YEAR) 

NUMBER OF 

TARGETS 

(DOMAINS) 

AB-INITIO/ 

THREADING 

PREDICTIONS 

COMPARATIVE 

MODELING 

1 (1994) 31 - - 

2 (1996) 42 22 15 

3 (1998) 43 15 28 

4 (2000) 40 (56) 16 NF and 36 FR Domains 18 Domains 

5 (2002) 55 (80) 5 NF and 24 FR Domains 29 CM and 22 

CM/FR Domains 

6 (2004) 64 (90) 37 FR and 10 NF Domains 46 Domains 

7 (2006) 95 (123) 15 Domains 108 Domains 

8 (2008) 121 (165) 11 FR and 3 NF Domains 151 Domains 

9 (2010) 116 (142) 27 Domains 115 Domains 

10 (2012) 97 (128) 16 Domains 112 Domains 

11 (2014) 93 (126) 45 Domains 81 Domains 

 

As per the Table 1.3, various CASP rounds have successively evolved a lot in 

comparison to CASP1 in terms of the nature of the considered protein sequences. The 

number of CASP target proteins has constantly increased over the years, although the number 

of novel fold protein targets (supposed to be modelled through the ab-initio algorithm in 

CASP) has not greatly increased. However, as it is well understood that the accuracy of TBM 

algorithm is significantly higher than that of FM methodology, the proportion of TBM target 

domains has significantly increased in the number of CASP targets. As clear from the table 

1.3, more and more targets are now being considered as sequential or structural TBM 

domains. The exquisite CASP development over the years is actually an indicator of the 
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successful development of protein structure prediction algorithms (Moult 2005; Guo et al. 

2008). Recently, the blind protein structure prediction tests CASP8, CASP9 and CASP10 

were held in the years 2008, 2010 and 2012 respectively and here also the target domains 

have been mostly assigned under the TBM category. 

Although the researchers have developed several TBM algorithms, most of the 

predicted models are still too divergent from their native structures. Among all the discussed 

protein modelling problems, the ones caused due to incorrect selection and combination of 

templates, and inaccurate assessment guided increased model sampling are the major hurdles 

to develop robust modelling methodologies. Considering the fact that protein structure 

prediction algorithms can successfully bridge the sequence-structure gap, the quest for an 

improved protein structure prediction methodology is further strengthened. 

 

1.8 Objectives of the current research 

Although every step of a TBM algorithm has some logical limitations, the protein 

modelling errors are mainly caused due to the consideration of inaccurate templates and the 

employment of inefficient sampling algorithm. Thus the objective of the present work was: 

 To study the template selection measures and to identify the scoring schemes for 

selecting the best set of templates for a target sequence. 

 To develop the model sampling strategy through consideration of best set of model 

assessment measures for constructing the optimal target structure. 



 

 

 

 

Chapter II 

Materials and Methods 
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2.1 Overview 

This chapter describes the methods used in this study. The objective of the study is to 

develop a protein structure prediction algorithm that selects the best set of templates for a 

target sequence and optimally searches the conformational space of a target sequence to 

construct its accurate structure. We develop template selection and ranking algorithm, and 

apply it to construct the protein models for the recent CASP targets. HHPred is employed to 

screen the template structures available for a target sequence. 

To estimate and evaluate the plausible modelling accuracy of a template for a target 

sequence, the pairwise alignments and multiple sequence alignment (MSA) of the screened 

templates are constructed. Robust set of diverse template scoring parameters is developed and 

then employed to assess all these alignments for selecting the best combination of templates. 

Through the selected template set, the target conformation is constructed with 

MODELLER9.9 (Sali & Blundell 1993). Model sampling is further employed to minimize 

the number of atomic clashes that are normally present in a predicted structure (Fiser & Sali 

2003; Topf et al. 2006). All the sampled decoy structures are then assessed through the best 

set of model assessment measures and the top-scoring target conformation is selected as the 

best predicted structure. The generated model is further evaluated against the actual native 

target conformation in comparison to the best predicted CASP structure. 

 

2.2 Target selection 

 To develop and test the accuracy of a modelling algorithm, the CASP TBM targets 

with at least one high accuracy (TBM-HA) domain are selected for the study. CASP, a 
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community wide blind test, assesses the accuracy of these predicted TBM-HA domain 

structures to evaluate the modelling accuracy of a TBM algorithm. CASP considers a target 

as a TBM-HA domain if it can be successfully modelled with a GDT-TS accuracy of 80.00 

through the available set of templates. Altogether, 21 CASP8 targets with 33 domains, 35 

CASP9 targets with 52 domains and 22 CASP10 targets with 31 domains are considered, as 

enlisted in the following Tables 2.1, 2.2 and 2.3 respectively. 

 

Table 2.1 CASP8 target proteins along with the length and source organism. 

Target Length Source Organism 

T0388 174 Homo sapiens 

T0390 126 Homo sapiens 

T0396 102 African swine fever virus BA71V 

T0398 292 Bacillus Halodurans 

T0400 162 Staphylococcus aureus 

T0402 139 Listeria Innocua 

T0404 110 Anabaena variabilis 

T0418 222 Bacteroides fragilis 

T0422 357 Homo sapiens 

T0423 110 Agrobacterium tumefaciens C58 

T0426 283 Homo sapiens 

T0428 267 Cryptosporidium parvum 

T0432 130 Homo sapiens 

T0435 151 Homo sapiens 

T0438 439 Porphyromonas Gingivalis 

T0442 269 Agrobacterium tumefaciens 

T0444 326 Homo sapiens 

T0447 542 Thermotoga maritima 

T0458 107 Streptomyces avermitilis 

T0470 223 Bacillus thuringiensis 

T0499 56 Escherichia coli 
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Table 2.2 CASP9 target proteins along with the length and source organism. 

Target Length Source Organism 

T0521 179 Plasmodium falciparum 

T0522 134 Sinorhizobium meliloti 1021 

T0523 120 Burkholderia thailandensis 

T0528 388 Rhodopseudomonas palustris CGA009 

T0530 115 Bacillus subtilis 

T0538 54 Nostoc sp. PCC 7120 

T0541 106 Methanosarcina acetivorans 

T0559 69 Bacteroides vulgatus ATCC 8482 

T0560 74 Bacteroides thetaiotaomicron 

T0563 279 Shewanella oneidensis MR-1 

T0566 156 Plasmodium falciparum 

T0567 145 Escherichia coli CFT073 

T0570 258 Parabacteroides distasonis atcc 8503 

T0580 105 Streptococcus pneumoniae TIGR4 

T0586 125 Listeria innocua Clip11262 

T0589 465 Nostoc sp. PCC 7120 

T0594 140 Plasmodium falciparum 

T0596 213 Nitrosomonas europaea ATCC 19718 

T0599 399 Bacillus anthracis str. Ames 

T0600 125 Chromobacterium violaceum ATCC 12472 

T0601 449 Pseudomonas aeruginosa 

T0602 123 Yersinia enterocolitica 

T0605 72 Homo sapiens 

T0611 227 Marinobacter aquaeolei vt8 

T0613 287 Rhodopseudomonas palustris Cga009 

T0614 135 Homo sapiens 

T0619 111 Haloarcula marismortui 

T0620 312 Homo sapiens 

T0626 283 Pseudomonas syringae pv. tomato str. DC3000 

T0629 216 Enterobacteria phage T4 

T0632 168 Bacillus halodurans 

T0634 140 Pelobacter carbinolicus  

T0635 191 Legionella pneumophila subsp. pneumophila str. 

T0636 336 Burkholderia pseudomallei 

T0640 250 Bacteroides thetaiotaomicron 
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Table 2.3 CASP10 target proteins along with the length and source organism. 

Target Length Source Organism 

T0645 537 Bacteroides vulgatus ATCC 8482 

T0650 346 Listeria monocytogenes serotype 4b str. F2365 

T0657 154 Homo sapiens 

T0659 85 Ruminococcus gnavus  

T0662 79 Pseudomonas aeruginosa 2192 

T0663 205 Peptoclostridium difficile 630 

T0664 540 Bacteroides ovatus ATCC 8483 

T0674 340 Staphylococcus aureus subsp. aureus Mu50 

T0675 75 Homo sapiens 

T0689 234 Parabacteroides distasonis ATCC 8503 

T0692 473 Anabaena variabilis ATCC 29413 

T0708 196 Pseudomonas putida KT2440 

T0712 223 Bacteroides fragilis NCTC 9343 

T0714 88 Homo sapiens 

T0716 71 Homo sapiens 

T0721 301 Bacillus anthracis str. 'Ames Ancestor' 

T0726 597 Idiomarina loihiensis L2TR 

T0731 79 Homo sapiens 

T0747 121 Bacteroides thetaiotaomicron VPI-5482 

T0749 449 Bacteroides uniformis ATCC 8492 

T0752 156 Kribbella flavida DSM 17836 

T0757 247 Spirosoma linguale DSM 74 

 

2.3 Template search 

 HMM based template search algorithm HHPred is employed to screen the reliable hits 

for the selected target sequences. HHPred uses several sequence and structural databases like 

PDB, structural classification of proteins (SCOP), InterPro, clusters of orthologous groups 

(COG) and PFAM to construct the target and template Hidden Markov Model (HMM) 

profiles through PSI-BLAST or HHblits (Remmert et al. 2012). It constructs the HMM 

profile of the target sequence and evaluates it against the pre-computed HMM profile of the 

templates. By comparing the target-template HMM profiles, it estimates the probability of 
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conserved nature of an amino acid at every profile position by considering the entire local 

alignment ensemble and not only the top-scoring alignment (Hildebrand et al. 2009). HHPred 

also probabilistically estimates the correctness of every single amino acid pair aligned in the 

target-template HMM profiles to screen all the biologically significant templates for a target 

sequence (Sadowski & Jones 2007; Hildebrand et al. 2009; Peng & Xu 2010; Meier & 

Söding 2014). It considers the mutation probability of all the amino acids for insertions or 

deletions at specific locations (Söding 2005) as per the structural context (Meier & Söding 

2015) and is accurate at screening even the distantly related templates for a target (Smith et 

al. 1997; Jones 1999; Gough et al. 2001; Meier & Söding 2015). 

 

2.4 Template selection 

 The templates screened through HHPred are evaluated through their pairwise 

alignment against the considered target sequence. The MODELLER (Sali & Blundell 1993) 

align2d module (Madhusudhan et al. 2006) is employed to construct the pairwise alignments 

of all the selected templates against the target sequence. Although it is based on the dynamic 

programming algorithm, it also uses structural information of the template to construct its 

alignment with the target sequence. It employs a variable gap penalty function (Madhusudhan 

et al. 2006) that tends to place the gaps in the solvent exposed segments, in between two 

spatially close residues, in the curved segments of the main-chain and avoid gaps within the 

secondary structure segments to optimally align the target sequence with the considered 

template through the BLOSUM62 scoring matrix. It employs the dynamic programming 

matrix along with a variable gap penalty option to inset the minimal possible gap length at 
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any location on the basis of the structural context of an insertion or deletion to construct the 

optimal target-template alignment. 

The BLOSUM matrices are tailored to detect the significant similarity among the 

protein sequences with different levels of evolutionary divergence. While, the BLOSUM80 

matrix is derived from the alignments of sequences that have no more than 80% identity, the 

BLOSUM45 matrix is computed from the alignments of sequences with no more than 45% 

identity. These matrices are employed for estimating the similarity of closely related and 

evolutionarily divergent protein sequences respectively (Henikoff & Henikoff 1992). 

However, the BLOSUM62 ideally implies an average of these matrices and is constructed 

from the alignments of sequences with no more than 62% identity. It is reasonably efficient 

over a relatively broad range of evolutionary substitutions and is used in this study to 

sensitively detect the weakest as well as meaningful similarity among the target-template 

protein sequences (Henikoff & Henikoff 1993; Styczynski et al. 2008; Pearson 2013). This 

BLOSUM62 residue substitution score is therefore employed along with several other 

scoring parameters viz. average proportion of mismatched hydrophobic, hydrophilic and 

identical residues, sequence coverage span, an average gap length available in an alignment 

considering all of its insertions or deletions (INDELs), proportion of gaps existing in the 

alignment, affine gap penalty score and the proportion of mismatched residues existing in a 

target-template alignment to assess all the pairwise alignments constructed for a target 

sequence. All these sequence similarity based template scoring parameters assess the 

biological credibility of every single target residue with the corresponding template residue in 

the target-template alignment. 
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The MSA of the selected templates is constructed through Salign_multiple_struc 

module (Marti-Renom et al. 2004; Madhusudhan et al. 2009) of the MODELLER (Sali & 

Blundell 1993). This module mutually superimposes the templates under a defined RMSD 

threshold of 3.5Ǻ which is the constraint to decide the maximal absolute distance deviation 

between the corresponding residues of the two templates so that these residues can be 

considered as the correctly aligned set of amino acids. Minimal such average distance 

deviation between any two templates implies the extent of their evolutionary relatedness and 

the correctness of their alignment. Aligned blocks of template residues are iteratively aligned 

until all the template motifs are structurally aligned within a predefined RMSD threshold 

cutoff and it shows the presence of structurally conserved motifs (Yang & Honig 1999; 

Jaroszewski et al. 2000; Al-Lazikani et al. 2001; Reddy et al. 2001). MODELLER employs 

these structural segments (sharing a minimal RMSD deviation) of the selected templates to 

construct their dendrogram for further computing their progressive MSA alignment. The 

MODELLER progressive alignment strategy constructs the template MSA through a 

combination of pairwise alignments. It starts with the most similar template to the target 

sequence and then progressively adds the distant templates without altering the sub-

alignments of the considered template folds sharing a minimal RMSD deviation. The 

MODELLER align2d_mult module (Madhusudhan et al. 2006) is then used to append the 

considered target sequence to the computed MSA alignment. It considers the structural 

topology of the aligned templates to optimally align the target sequence. As it also employs 

the structural constraints and the variable gap penalty function (Madhusudhan et al. 2006) 

employed by the Salign module (Marti-Renom et al. 2004; Madhusudhan et al. 2009) and the 
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dynamic programming methodology used by the align2d module, it also tends to optimally 

incorporate the gaps on basis of the structural context of the aligned template segments. 

To select the best set of top-ranked templates that maximally cover the target 

sequence, the MSA is assessed through several scoring parameters viz. unique residues that 

are available only in a single template and not encoded in the other ones, average proportion 

of the mismatched hydrophobic residues, mismatched hydrophilic and the sequence identity, 

BLOSUM62 score of a hit against the target sequence with the seed template, additional 

target coverage over the seed template and structural topology of a hit against the seed 

template assessed in terms of TM_Score, GDT-TS, Cα backbone RMSD and the count of 

residues that are confined within 8Ǻ distance deviation. 

 Pairwise alignments of all the selected templates are evaluated against the selected 

templates through our in-house computer scripts written in “C” and “PERL” programming 

languages. These automated scripts rank the templates on basis of their pairwise alignments 

and then further rank their MSA alignment to select their best set for maximally covering the 

target sequence. The detailed methodology of these automated template ranking, selection 

and a combination script is further discussed later in Chapter III. 

 

2.5 Model building 

 The target model is constructed through the MODELLER9.9 software that is a python 

based comparative modelling tool (Sali & Blundell 1993; Marti-Renom et al. 2000; Fiser & 

Sali, 2003). MODELLER technique structurally satisfies the spatial restraints of a target 

sequence on the basis of its alignment information with the selected templates (Havel & 
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Snow 1991). MODELLER (Sali & Blundell 1993) algorithm derives all the mutual distance 

and dihedral angle restraints of all the atoms of the target sequence residues through their 

alignment positions against the corresponding residues of the template sequence. 

MODELLER assumes that the distance and angle based restraints extracted from the selected 

templates are similarly applicable for the corresponding target sequence residues. For the 

unaligned target residues, MODELLER algorithm employs the ab-initio modelling protocol 

to fit these loop segments the best possible way so that the topology extracted from the 

template for the corresponding aligned target residues is not disturbed. For assessing the 

constructed target model, it quantifies the correlations between the equivalent Cα-Cα 

distances and the equivalent main-chain dihedral angles of the predicted model with the 

employed template by integrating them together for all the aligned and unaligned target 

segments into a molecular probability density function (MOLPDF). MOLPDF compares the 

structural features of the predicted target model with the spatial restraints extracted from the 

alignment and the template structure to estimate the atomic violations incurred in the target 

model. MOLPDF quantifies the degree of violating atomic distance restraints (both bonded 

and non-bonded) and dihedral angle restraints by considering the standardized thresholds of 

each of these restraints and its lower score implies the accuracy of a predicted model. 

 

2.6 Model refinement 

The predicted target model is subjected to an optimization procedure to refine its 

geometry and stereo-chemistry by increased MODELLER sampling. MODELLER samples 

the potential energy surface defined by a molecular mechanics force field for a target 
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sequence to construct its minimal energy conformation (Shen & Sali 2006). MODELLER 

sampling structurally optimizes the first constructed target model as per its MOLPDF 

function in a way that the model minimally defies the employed set of distance restraints 

extracted from the selected template(s) (Braun & Go 1985) and the target-template 

alignment. MODELLER employs MD and conjugated gradient (CG) methodology along 

with simulated annealing (SA; Clore et al. 1986) to improve the topology of the first 

constructed target model by optimizing the DOPE energy function to construct an optimal 

structure through an increased model sampling. DOPE is an atomic distance-dependent 

statistical potential that is computed from a standard set of native protein conformations 

(Shen & Sali, 2006). DOPE employs the standard MODELLER energy function to estimate 

potential energy of a predicted model and is designed to select the best model from the decoy 

structures sampled for a target sequence. 

 

2.7 Model evaluation 

 The generated set of protein models is lastly evaluated to select the best predicted 

structure. For the considered TBM targets of CASP dataset, the sampled set of target models 

are assessed against the considered template(s) to select the top-scoring conformation that 

accurately retains the template topology intact, as per their considered alignment. Several 

different model assessment methodologies viz. RMSD, GDT, LCS and TM_Score are 

employed for the study to select the correct near-native target conformation, as explained 

below in this section. 
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2.7.1 Root Mean Square Deviation (RMSD) 

It is the average score of the squared distance differences between X, Y and Z 

coordinates of the model and the native structure (Martin et al. 1997). Its optimal value is 

calculated by structural superimposition of the templates through Kabsch algorithm (Kabsch 

1978). It can be calculated only for the Cα atoms (for assessing the model accuracy only for 

the Cα backbone) or for all the atoms (for assessing the overall model accuracy of the 

complete model). It is computed through the following formula. 

 

 

Where, L is the number of residues encoded in a protein model and di is distance between the 

corresponding i
th
 pair of Cα atoms of the two structures. As two functionally as well as 

structurally different proteins can be superimposed to yield a lower RMSD score, its 

biological reliability is always doubtful. It is usually insensitive to evaluate the global 

topology as it equally weighs and considers all the model atoms (Carugo & Pongor 2001). So 

the topological mis-orientation at some local segments or the incorrect topology of a few 

residue chunks like loop regions in a model can result in its abruptly higher RMSD score 

(Zhang & Skolnick 2005; Zhang et al. 2005; Xu & Zhang 2010) and here the RMSD score 

cannot identify the topologically correct substructures of a model (Zhang & Skolnick 2004). 

 

2.7.2 Global Displacement Test (GDT) 

GDT measures the average percentage of the Cα residues of a predicted protein model 

that are present within the maximum pre-defined distance cutoff from the corresponding 
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residues of its actual native conformation or the employed template through sequence-

dependent or sequence-independent optimal superimposition of these structures (Zemla 2003; 

Jauch et al. 2007). The consideration of this number of model Cα residues as well as the 

individual distance deviation between each corresponding residue pair of the model and its 

template or the native structure empowers the Maxsub and TM_Score measures to efficiently 

evaluate the local as well as global structural similarity of a protein model (Zhang & Skolnick 

2004). The GDT-Total Score (GDT-TS) and GDT- High Accuracy (GDT-HA) scores along 

with the maxcluster tool (Siew et al. 2000) are based on these Maxsub and TM_Score 

measures. However, the Maxsub score does not penalize the over-prediction or it does not 

penalize the residue pairs that are incorrectly superimposed and is not considered in our study 

(Söding 2005). The GDT-TS and GDT-HA scores are defined as: 

 GDT_TS:   (Cα1 + Cα2 + Cα4 + Cα8)/4 

   GDT_HA:   (Cα0.5 + Cα1 + Cα2 + Cα4)/4 

Where, Cαx refers to the percentage of a model’s Cα atoms that are structurally localized 

within the maximum distance cutoff of xǺ from its actual experimental structure or the 

employed template (as per the considered target-template alignment) in one-to-one 

equivalent residue correspondence. 

GDT_TS allows maximum distance deviation of 8Ǻ and is useful to distinguish the 

best predicted structure from the set of models generated for a difficult target for which the 

maximally covering templates are not easily available. For a simple target sequence (where 

the correct templates are easily available), the predicted model is normally found to be more 

accurate and the 4Ǻ distance deviation is used as the maximal allowed distance deviation 
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between the Cα atoms of corresponding residues. GDT_HA score is found to significantly 

differentiate between the close model structures that have almost equivalent GDT-TS scores. 

 

2.7.3 Longest Continuous Segment (LCS) 

It is used to compute the longest continuous segments of a model structure that fall 

under the specified Cα RMSD cutoff to its actual native structure. Through LGA (Zemla 

2003), this methodology computes standard RMSD, superimposed RMSD and GDT scores. 

As RMSD score may not be a reliable scoring parameter, GDT scoring becomes vital as it 

does not penalize the score of the complete target model for a few topologically incorrect 

target residues. 

 

2.7.4 TM_Score 

TM_Score is employed to estimate the conformational similarity of two structures as 

per their alignment, for the aligned as well as the paired residues. Based on the alignment, 

TM_Score rotation matrix is calculated for optimal superimposition of the two structures. 

Here, the scoring matrix is based on the features extracted from Voronoi tessellation. The 

best possible target model shows a TM_Score of 1.00 against its actual experimental structure 

and a structure with TM_Score greater than 0.5 is considered as a good model (Xu & Zhang 

2010). It is calculated as:  
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Where, LM is the target sequence length, LA is the alignment length, dist
i
 is the Cartesian 

distance between the i
th

 pair of aligned target-template residues and dist
0 

is the normalizing 

parameter. The dist
0
 parameter is calculated as and it makes 

the TM_Score assessment independent of the target sequence length. TM_Score parameter is 

considered to assess the modelling accuracy of two target protein models (with different 

lengths) constructed through two different templates with varying lengths. It is the correct 

mathematical score that efficiently distinguishes between the correct and the bad models, 

unlike the other discussed model assessment scores that unanimously do not justify a single 

model as the accurate structure. 

31.24 15 1 .8L M − −
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3.1 Introduction 

Template selection is considered as one of the most important steps of TBM 

algorithm as it is noticed that a model constructed through incorrect templates cannot be 

refined later and most of the modelling errors occur because of incorrect selection of 

templates for a target sequence. No template selection algorithm consistently screens the 

reliable hits for the targets. Even the modelling algorithms use different threading and TBM 

techniques together to construct protein models. However, most of these algorithms employ 

the correct templates along with the incorrect and unrelated structures and it leads to an 

incorrect target model. To construct accurate models, we try to develop an improved template 

selection and combination technique. We have screened the scoring schemes that are usually 

used to evaluate a template and we have standardized the process of template selection by a 

ranking scheme to select the correct set for a target sequence. 

 

3.2 Developing the template ranking methodology 

The developed template-ranking algorithm to rank and select the best set of templates 

for a target sequence is diagrammatically represented as a flowchart in the Fig. 3.1. T0388 

target of the CASP8 TBM-HA dataset is considered for developing this algorithm. The HMM 

based template search algorithm, HHPred, with 8 successive MSA construction iterations and 

all the other default parameters, is employed to screen the top 100 templates for the 

considered target sequence. We select the top-ranked hit with the lowest E-value (available 

during the CASP) as the seed template. Through the functional details of this template,  
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harnessed through PDB and HMMPFAM (Finn et al. 2011) databases, the other hits sharing a 

functional similarity with it and spanning atleast 75% of the target are selected as the 

candidate additional templates. To assess the reliability, the selected hits are ranked through 

their pairwise alignment information with the target, as explained below.  

 

Fig. 3.1 Flowchart representing the template selection and combination algorithm. 
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3.2.1 Pairwise sequence alignment based template ranking 

 All the selected templates are individually aligned against the target sequence using 

MODELLER9v9 (Sali & Blundell 1993) to construct their pairwise alignments. Through 

these alignments, the selected templates are evaluated against the considered target sequence. 

For the target-template residues aligned in a pairwise alignment, an average 

BLOSUM_score (Sc1) is computed through the BLOSUM62 residue substitution matrix 

(Henikoff & Henikoff 1992). The Sc1 score is calculated as decimal logarithm of the total 

BLOSUM62 score (BLS) of all the aligned target-template residues divided with the total 

number of residues (TR) encoded in the target and template sequences, as shown in the 

equation 1 below. Here, if a template shows a negative score, decimal logarithm of the 

modulus value is employed to compute its overall negative Sc1 score. 

                                                                                                                                                                 - (1) 

 

Further the IDENT_score (Sc2), an average fraction of mismatched hydrophobic 

residues, hydrophilic residues and sequence identity, is computed for an alignment, as shown 

in equation 2 below. Among a total of TR residues and as per the alignment, fraction of non-

identical or mismatched hydrophobic residues and mismatched hydrophilic residues are 

orderly computed as AHR and AHYR scores. The rightly aligned hydrophobic and 

hydrophilic residues are important to define the accuracy of an alignment (Jefferys et al. 

2010; Radzicka & Wolfenden 1988). Phe, Ala, Gly, Leu, Ile, Met and Val, and Ser, Thr, Gln, 

Asn, Asp, Glu and Arg are respectively considered as hydrophobic and hydrophilic residues 

after excluding the Cys, Trp, His, Tyr and Lys residues common in both these residue sets 
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(Radzicka & Wolfenden 1988). Sequence identity (ASID) score is computed as fraction of 

the TR residues that are identical in the alignment. 

                                      - (2) 

 

 Coverage_span score (Sc3), is computed as the proportion of continuous segment of 

target residues spanned by the considered template. Sc3 score is the maximal target sequence 

length, including all the gaps, spanned by a template. 

Average gap length or INDEL_score (Sc4) is computed to score the reliability of a 

target-template alignment. It calculates the sum length of all the INDELs longer than 5 gaps 

(GAP5L) and the INDELs smaller than 5 gaps (GAP5S) to compute their average gap length 

score (Sc4) for the total of TR residues encoded in the target-template alignment, as shown in 

the equation 3 below. Here, the coefficients of 0.5 and 1 are respectively considered for the 

gaps shorter than 5 residues and atleast 5 residues. The INDELs in a target-template 

alignment are built through the ab-initio algorithm to construct an overall target 

conformation. The residue chunk, modelled through an ab-initio algorithm, is expected to be 

topologically more accurate for the shorter gap lengths and the gap length longer than 5 gaps 

is considered as a vital factor in defining the accuracy of an alignment. 

                                                                                              - (3) 

 

To evaluate the reliability of a template, the total number of gaps existing in an 

alignment is further considered. For a pairwise alignment, Average_gaps score (Sc5) of a  
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template is computed as a fraction of the total number of gaps (TOTG) that are employed to 

optimally align the TR residues, as shown in equation 4 below. 

                                                                                                                                                                                                                                 - (4) 

          

 Moreover, the gap segments incurred in the target-template alignment are expected to 

decrease the modelling accuracy of a target sequence and their evaluation through an affine 

gap penalty score becomes essential. As HHPred employs four different probabilities 

(opening as well as extension penalties for the residue insertions and similar two penalties for 

the residue deletions) on the basis of the structural context of a sequence segment to evaluate 

the frequency profile of an INDEL (Wang et al. 2011), the default gap penalties employed by 

the BLAST (11 for insertion and 1 for extension) are simply considered (Altschul et al. 1997; 

Schäffer et al. 2001) to compute an Affine_gap score (Sc6) for a total of TR residues. 

As per the pairwise alignment, count of mismatched residues (TNMMR) is converted 

to a Sc7 score by dividing it with the total number of TR residues, as shown in the equation 5 

below. 

                                                                                                         - (5) 

 The modelling reliability of a template for a target sequence is directly proportional to 

all these scoring schemes. A template with higher Sc1, Sc2 and Sc3 scores and lower Sc4, 

Sc5, Sc6 and Sc7 scores is expected to be a better template. The template similarity score 

(TLS) is computed by considering all these scores to assess the modelling reliability of a 

template for a target, as shown in the equation 6 below. 
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                                                                                                                                               - (6) 

 To estimate statistical reliability of this template score, its standard statistical Z_Score 

(TLS2) is further computed by using the mean (µ) and standard deviation (σ) of the similarity 

scores for all the selected templates, as shown in the equation 7 below. 

                                                                                                      - (7) 

  

 Template ranking on the basis of overall similarity score and Z_Score is enlisted in 

table 3.1 for the CASP8 target. Here, the considered top-ranked HHPred resultant hit with the 

lowest E-value and also available during the CASP is mentioned as SEED and is sequentially 

employed in all the subsequent rankings of all the selected templates. All the considered 

templates are subsequently fed to the sequence/structure alignment (SALIGN) function of 

MODELLER9v9 (Sali & Blundell 1993), as per their pairwise rank order, to construct their 

structural topology guided MSA (MSA1) and to further statistically rank them by their 

structural similarity with the seed template. 

TLS Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7      
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Table 3.1 Pairwise alignment based scoring parameters for representative T0388 target of CASP8. Seven scoring parameters (Sc1-Sc7) are 

shown in different columns. The overall score and the statistical Z score are shown in the last two columns. 

Target 

T0388 (174 

residues) 

LENGTH 

SCORE 

OVERALL 

SIMILARITY 

SCORE 

Z SCORE 

(
X

Z Score





  ) SC1 SC2 SC3 SC4 SC5 SC6 SC7 TEMPLATE 

2P31A 155 0.482 0.247 0.943 0.014 0.027 0.356 0.407 0.868 SEED 

2P5QA 161 0.306 0.217 0.972 0.040 0.054 0.403 0.531 0.467 0.767 

2P5RA 164 0.299 0.219 1.000 0.041 0.059 0.462 0.550 0.405 0.540 

2GS3A 171 0.326 0.207 0.995 0.048 0.064 0.499 0.528 0.389 0.482 

2OBIA 165 0.291 0.199 1.000 0.050 0.068 0.490 0.561 0.321 0.233 

2I3YA 188 0.177 0.175 1.000 0.087 0.099 0.514 0.569 0.083 -0.641 

2R37A 191 0.172 0.186 0.995 0.081 0.093 0.521 0.597 0.061 -0.719 

1GP1A 184 0.154 0.171 0.955 0.084 0.103 0.480 0.564 0.049 -0.766 

2F8AA 186 0.101 0.176 0.974 0.040 0.064 0.525 0.611 0.011 -0.905 

2HE3A 185 0.115 0.176 0.995 0.049 0.078 0.618 0.618 -0.077 -1.226 
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3.2.2 Multiple sequence alignment based template ranking 

Through MSA1, all the selected hits are evaluated against the target and the seed 

template through several sequence as well as structural similarity based scoring schemes. For 

the length of a considered template (LT), the Unique_Residue (S1) score of a template counts 

the fraction of its residues that spans certain specific target residues (STR) which are 

uncovered by all the other hits, as represented in equation 8 below. 

                                                                                                              - (8) 

 

The proportion of mismatched hydrophobic residues (AHR), mismatched hydrophilic 

residues (AHYR) and the sequence identity score (ASID) are further employed to compute 

the Aligned_Charges (S2) score of a hit. As used for the pairwise alignment based template 

ranking, these 3 scores are computed to estimate the S2 score for the target and template 

sequences (Radzicka & Wolfenden 1988), as shown in equation 9 below. 

                                                                                    - (9) 

 

Moreover, the BLOSUM62 score is computed for all the hits against the target 

sequence (S3) and the seed template (S4). The S3 score computes the decimal logarithm of 

the total BLOSUM62 score (BLS1) of all the residues of a hit, aligned against the target 

sequence, divided with their total number of residues encoded in the hit and the target 

sequence (TR1), as shown in equation 10 below. Similarly, the S4 score computes the 

decimal logarithm of the total BLOSUM62 score (BLS2) of all the residues of a hit, aligned  

STR
S1

LT

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against the seed template, divided with their total number of residues encoded in the hit and 

the seed template (TR2), as shown in equation 11 below. 

                                                                                                - (10) 

                                                                                               - (11) 

 

Despite all these sequence similarity based scores, several other structural similarity 

based scores of a template are considered. As per the considered MSA for the aligned 

residues of a hit and the seed template, structural similarity of a hit is assessed against the 

seed template in terms of TM_Score (S5) by employing the count of residues encoded in the 

seed template as the normalization factor. Similarly for all the aligned residues of the hit and 

the seed template, the GDT-TS (S6) score of a hit is computed against the seed template. S6 

score is computed as the average of the residue fractions R1, R2, R3 and R4 of a hit, 

respectively fitting within 1, 2, 4 and 8Ǻ against the equivalent residues of the seed template. 

Moreover, among the total number of residues encoded by a template, the fraction of 

its topological correct residues, fitting within 8Ǻ distance deviation against the equivalent 

residues of the seed template, is computed as S7 score to efficiently evaluate its structural 

relationship with the seed template, as shown in equation 12 below. 

                                                                                                 - (12) 

 

Individually all these seven scores are expected to be linearly proportional to the 

modelling accuracy and reliability of a template and are used to compute its structural 

similarity based credibility score for a target. This reliability score is additionally employed  

BLS1
S3=

TR1
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to statistically rank the templates as per their Z_Score. The MSA1 ranking of all the selected 

hits is shown in table 3.2, where similarity score and Z_Score are shown along with other 

scoring parameters. The MSA based similarity score (TMS) and Z_Score (TMS2) are 

calculated by the following equations 13 and 14. 

                                                                               - (13) 

                                                                                                     - (14) 

  On the basis of MSA1 ranking, the templates with TM_Score lesser than 0.5 or higher 

than 0.975 against the seed template (Zheng et al. 2010), an additional coverage span lesser 

than 5 residues over the target and statistically negative Z_Score are considered as unreliable 

hits. It has been observed that the hits having these unreliable scores (shown as DNC (Do Not 

Consider) by our MSA ranking) are not found to improve the modelling accuracy of the 

target over the seed template and are not considered as reliable structures. Moreover, the 

structurally redundant hits, clustered or culled in the HHPred results, with lower Z_scores are 

also discarded after keeping the top most Z_score hit. However, if a set of all the redundant 

hits fits with our considered DNC constraints, it is completely discarded. The high-scoring 

hits are then employed, as per their MSA1 rank order, to construct another MSA (MSA2) for 

re-ranking them and selecting their best set for a target sequence. The MSA2 alignment with 

the top-ranked representative templates is observed to be a good source to select templates for 

maximally covering the target sequence. This MSA2 script ranks the templates on basis of all 

the parameters that are employed in the MSA1 ranking. It also parses the MSA2 alignment to 

map the target residues that are aligned by the additional hits over the seed template. This 

MSA2 ranking is shown in table 3.3 for the selected CASP8 target T0388. 

2
TMS

TMS







TMS S1 S2 S3 S4 S5 S6 S7      
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Table 3.2 MSA1 based scoring parameters for T0388 target of CASP8. 7 scoring parameters (S1-S7) are shown in different columns. 

Overall score and Z score are also shown for all the hits along with their additional coverage of the target sequence and the respective 

BLOSUM62 score. The templates those are not considered are also mentioned as “DNC”. 

 

TEMP 

LATE 

LEN  

GTH 

SCORE  

CA 

RMSD 

OVERALL 

SIMILARITY 

SCORE 

Z 

SCORE 

ADDITIONAL 

COVERAGE 

S1 S2 S3 S4 S5 S6 S7 
TARGET 

RESIDUES 

BLOSUM62 

SCORE 

2P31A 155 SEED 0.37 0.48 SEED 1.00 1.00 1.00 0.00 SEED SEED SEED SEED 

2P5QA 161 0.00 0.30 0.26 0.26 0.96 0.91 0.96 1.07 3.661 1.846 2.000 -0.301 DNC 

2OBIA 165 0.00 0.27 0.23 0.30 0.94 0.92 0.92 1.52 3.584 1.635 6.000 -0.090 

2GS3A 171 0.00 0.27 0.21 0.27 0.94 0.90 0.89 2.07 3.478 1.344 6.000 -0.090 

2F8AA 186 0.00 0.25 0.15 0.24 0.92 0.88 0.83 1.70 3.278 0.796 3.000 0.544 DNC 

2P5RA 164 0.00 0.29 0.22 0.21 0.85 0.83 0.87 2.35 3.270 0.775 5.000 -0.105 

1GP1A 184 0.00 0.25 0.14 0.21 0.92 0.86 0.84 1.63 3.225 0.653 2.000 0.204 DNC 

2I3YA 188 0.02 0.25 0.13 0.21 0.90 0.83 0.81 2.58 3.154 0.457 10.000 0.176 

2HE3A 185 0.00 0.24 0.13 0.20 0.90 0.83 0.83 1.95 3.134 0.403 4.000 0.352 DNC 

2R37A 191 0.04 0.24 0.09 0.16 0.91 0.84 0.81 1.74 3.091 0.284 11.000 0.019 

              
Redundant Hits 

           
2P5QA 2P5RA 

          
2HE3A 1GP1A 2F8AA 
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Table 3.3 MSA2 based scoring parameters for T0388 target of CASP8. 7 scoring parameters (S1-S7) are shown in different columns. 

Overall score and Z score are also shown for all the hits along with their additional coverage of the target  

sequence and the respective BLOSUM62 score. 

 

 

 Chapter III 

TEMP 

LATE 

LEN  

GTH 

SCORE CA 

RMSD 

OVERALL 

SIMILARITY 

SCORE 

Z 

SCORE 

ADDITIONAL 

COVERAGE 

S1 S2 S3 S4 S5 S6 S7 TARGET 

RESIDUES 

BLOSUM62 

SCORE 

2P31A 155 SEED 0.37 0.47 SEED 1.000 1.00 1.00 0.00 SEED SEED SEED SEED 

2OBIA 165 0.00 0.27 0.24 0.28 0.95 0.93 0.92 1.29 3.61 1.57 6.00 0.81 

2GS3A 171 0.00 0.27 0.22 0.26 0.95 0.93 0.89 1.93 3.51 1.38 6.00 0.11 

2P5RA 164 0.00 0.29 0.21 0.21 0.85 0.82 0.87 2.45 3.25 0.90 7.00 -0.17 

2I3YA 188 0.02 0.25 0.12 0.21 0.89 0.83 0.80 2.68 3.13 0.68 11.00 0.11 

2R37A 191 0.04 0.24 0.09 0.16 0.91 0.84 0.80 1.85 3.08 0.59 12.00 -0.02 
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Second round of MSA analysis is expected to eliminate the templates that are 

structurally dissimilar to the seed template. It is also able to select the other hits for 

additionally covering the target. Moreover, several hits have shown equal additional target 

coverage over the seed template. These templates have also shown equal BLOSUM62 score 

for the target and one representative hit is chosen among these hits. However, for a target that 

is maximally covered by the seed template itself, the seed template is solely employed to 

model the target sequence by curating its pairwise alignment through the PRALINE server 

(Heringa 1999). The selected MSA2 hit(s) maximally covering the target sequence are then 

employed to construct the most reliable conformation of the selected CASP8, CASP9 and 

CASP10 targets, as shown in the tables 3.4, 3.5 and 3.6 respectively. These tables enlist the 

CASP target domains along with their length, residues assessed during the CASP, the 

templates and accuracy scores of the best predicted CASP model in comparison to the GDT-

TS score of our first constructed target model. These TBM-HA targets also encode FM and 

TBM domains and hence these domains are also considered as our modelling targets for this 

study. Moreover, all the target domains are evaluated against their native structure through 

maxcluster (Siew et al. 2000) and not with current scripts as these latter algorithmic tools are 

solely employed by CASP assessors and are not publically available. Therefore, some of 

these target domains show a GDT_TS score lesser than 80, a standard CASP threshold score 

for defining a TBM-HA target. Further, some of these domains (T0470_D2, T0674_D1 and 

T0726_D2) are threading targets and no high-scoring reliable templates are available for 

them. Hence, we have lesser modelling accuracy for them and this is the major reason for the 

large standard deviation of the modelling accuracy scores. 



 

 

Table 3.4 Model assessment scores of the best predicted CASP8 model along with the target length, assessed segment,  

considered residues and its best predicting CASP8 team in comparison to GDT-TS assessment score of our first predicted conformation. 

Target/ 

Domain 
Length 

Assessed 

region 

Assessed 

Residues 

CASP8 Best Model Our First Model 

Best Predictor 

CASP Group 
Templates GDT-TS Templates GDT-TS 

T0388_ D1 174 11-174 164 
pro-SP3-

TASSER 

2P31_A, 2GS3_A, 

2I3Y_A, 2P5Q_A, 

1GP1_A 

91.616 
2P31_A, 

2I3Y_A, 

2R37_A 

91.006 

T0390_ D1 182 29-123, 

130-160 

126 EB_AMU_ 

Physics 

1SHW_A 90.726 1SHW_A 90.726 

T0396_ D1 105 3-104 102 CpHModels 1JRA_D 89.706 1JR8_A 84.314 

T0398 

292 

1-292 292 

MUSTER 

Complete 

Model 

2RIR_G, 2RIR_D, 

2RIR_F, 2RIR_B, 

2RIR_C, 2RIR_A, 

2RIR_E 

87.500 

2RIR_A, 

2CUK_A 

94.010 

T0398_D1 
1-124, 

272-290 
143 

MUSTER_  

D1 Model 

2RIR_G, 2RIR_D, 

2RIR_F, 2RIR_B, 

2RIR_C, 2RIR_A, 

2RIR_E 

96.786 96.071 

T0398_D2 125-271 147 
Zhang-Server_ 

D2 Model 

2RIR_A, 1PJC_A, 

1B0A_A, 1X13_A, 

2RIR_H 

98.980 99.490 
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T0400_D1 162 2-146, 

152-161 
155 PS2-Server 2Q7B_A 88.387 2Q7B_A 86.774 

T0402_D1 139 4-100, 

112-127 
113 McGuffin NA 79.630 2FHQ_A, 

2HQ7_A 
74.769 

T0404_D1 110 2-98, 97 MULTICOM-

REFINE 
NA 89.815 2CZ4_A, 

2J9C_A 
89.506 

T0418 

222 

1-222 222 
MULTICOM-

RANK 

2HSZ_A, 2NYV_A 

2HI0_A, 2AH5_A 

2HDO_A, 2GO7_A 

2HOQ_A, 2FI1_A 

87.976 

2HDO_A, 

2HI0_A, 

82.500 

T0418_D1 2-16,  

86-211 
141 SAMUDRALA NA 90.780 85.816 

T0418_D2 17-85 69 3DShot1 1AAB, 1AAC, 1AAF, 

1AAJ 
86.957 85.145 

T0422 

357 

51-354 304 3D-

JIGSAW_AEP 
NA 71.313 

3B9P_A, 

3CF0_A, 

1IN4_A 

70.683 

T0422_D1 57-250, 

342-357 
210 3D-

JIGSAW_AEP 
NA 79.500 81.625 

T0422_D2 251-340 90 Phyre_de_novo NA 87.500 86.875 

T0423_D1 110 2-98, 97 Zhang-Server 
2OTM_A, 2B33_A, 

1JD1_A, 1JD1_B, 

2UYK_A 

85.870 
2OTM_A, 

1QAH_A 
89.402 

T0426_D1 283 27-283 257 
MULTICOM-

RANK 

1HCB_A, 1AZM_A, 

1LUG_A, 1FLJ_A 

1MOO_A, 1V9E_A 

1Z93_A, 1RJ5_A 

97.860 2FOY_A 94.942 
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T0428_D1 267 20-248 229 3Dpro 1XQ9_B 97.052 
1XQ9_A, 

1T8P_A, 

1FZT_A 

94.978 

T0432_D1 130 1-130 130 MULTICOM NA 87.885 
2DKW_A, 

1E6I_A. 

2YQD_A 

86.923 

T0435_D1 151 15-58, 

73-148 
120 MULTICOM NA 84.091 2QPW_A 84.091 

T0438 
439 

1-439 439 MULTICOM NA 79.716 2OAS_A, 

2G39_A 

78.101 

T0438_D1 2-185 184 MULTICOM NA 87.805 85.366 

T0438_D2 186-430 245 METATASSE

R 

2OAS_A 93.161 91.816 

T0442 

269 

1-269 269 3D-

JIGSAW_AEP 
NA 82.872 

2PIF_A 

81.170 

T0442_D1 
11-124, 

158-166, 

233-266 

157 LEE 2PIF_A,2PIF_B 92.994 93.471 

T0442_D2 
131-157, 

167-213, 

219-232 

88 
EB_AMU_ 

Physics 
2PIF_A 97.603 96.575 

T0444_D1 326 34-317 284 LEE 1JK0_A,2O1Z_A 94.669 1SMQ_A, 

1H0O_A 
94.485 

T0447_D1 542 1-152 152 PSI 1EG7_A 88.330 1EG7_A 88.653 

T0458_D1 107 12-88. 77 FFASstandard 2OKA_A 97.727 2OKA_A 97.728 

T0470 
223 

1-223 223 FEIG NA 82.447 
2QGS_A 

81.516 

T0470_D1 2-125 124 HHpred5 2QGS_A, 3B57_A 85.586 82.883 

T0470_D2 126-214 89 PS2-server 2QGS_A 41.329 81.358 

T0499_D1 56 1-56 56 Xianmingpan 1IGD_A 85.714 2ONQ_A 84.375 



 

 

Table 3.5 Model assessment scores of the best predicted CASP9 model along with the target length, assessed segment,  

considered residues and its best predicting CASP9 team in comparison to GDT-TS assessment score of our first predicted conformation. 

Target/ 

Domain 
Length 

Assessed 

region 

Assessed 

Residues 

CASP9 Best Model Our First Model 

Best Predictor 

CASP Group 
Templates GDT-TS Templates GDT-TS 

T0521 

179 

1-179 179 HHpredB 

3K21_A, 3KHE_A, 

2GGM_A, 3LIJ_A, 

2AAO_A, 2MYS_C, 

1EXR_A, 2EHB_A 

45.238 

3KHE_A 

40.030 

T0521_D1 1-34, 

107-179 

107 Jones-UCL N/A 77.806 69.898 

T0521_D2 35-104 60 fams-ace3 N/A 87.143 75.357 

T0522_D1 134 4-134 131 
BAKER-

ROSETTASER

VER 

3I4S_A 94.656 3I4S_A 94.655 

T0523_D1 120 4-114 111 ZHOU-

SPARKS-M 

3LYX_B 88.288 3LYX_A 79.505 

T0528 388 1-388 388 LEE 

1QO0_A, 3I09B 

3I45_A, 3EAF_A, 

3LKB_A, 3LOP_A, 

3H5L_B 

48.315 3I45_A 44.340 
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T0528_D1 
18-138, 

269-351 
204 

MULTICOM-

NOVEL 

3I45_A, 1PEA_A, 

1USG_A, 3I09_A, 

3HUT_A, 2LIV_A, 

3H5L_A, 3EAF_A 

86.275 80.270 

T0528_D2 139-268, 

352-381 

160 United3D N/A 60.000 55.625 

T0530_D1 115 36-115 80 YASARA 2K5Q_A 82.500 2K5Q_A 75.313 

T0538_D1 54 2-54 53 PconsR N/A 91.509 1J7K_A 81.132 

T0541_D1 106 
1-17, 

19-71, 

75-106 

102 YASARA 3IDU_B 80.637 3IDU_A 72.059 

T0559_D1 69 3-69 67 
BAKER-

ROSETTASER

VER 

N/A 92.910 2VXZ_A 73.883 

T0560_D1 74 3-66 64 Splicer N/A 92.188 1R1U_A 81.641 

T0563_D1 279 

1-60,      

66-70,         

86-156, 

169-260 

228 HHpredC 
1GP6_A, 1DCS_A, 

1ODM_A, 1W9Y_A 
76.549 

1OC1_A, 

1UNB_A, 

1GP4_A 

65.819 

T0566_D1 156 10-152 143 fams-ace3 N/A 76.538 1USV_B 71.346 

T0567_D1 145 10-144 135 
BAKER-

ROSETTA 

SERVER 

1NY6_A 79.444 1NY5_A 74.630 

T0570_D1 258 24-256 233 LEEcon N/A 80.687 2PZ0_A, 

3L12_A 
78.433 
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T0580_D1 105 2-105 104 BAKER 
1IIB_A, 1H9C_A, 

1TVM_A, 2R48_A, 

2Q9U_A 

89.663 2WY2D 78.606 

T0586 

125 

1-125 125 Zhang 
3BY6_E, 3BY6_A, 

3BY6_B, 2EK5_C, 

3IC7_A 

75.841 
2DU9_A, 

3BY6_A 

77.941 

T0586_D1 5-84 80 LTB N/A 92.813 88.438 

T0586_D2 85-123 39 Distill N/A 88.462 83.3335 

T0589 

465 

1-465 465 gws N/A 60.035 

1WU7_A 

49.884 

T0589_D1 
24-65,   

96-188, 

271-369 

234 United3D N/A 74.232 71.820 

T0589_D2 189-270 82 Seok-server 1WU7_A, 3LC0_A 77.744 63.110 

T0589_D3 370-464 95 MUFOLD-MD 2EL9_A 93.085 82.714 

T0594_D1 140 1-140 140 LTB N/A 84.643 1X53_A 79.107 

T0596 
213 

1-213 213 FEIG N/A 57.759 
3C07_A 

58.908 

T0596_D1 6-58 53 FEIG N/A 95.755 90.565 

T0596_D2 59-188 130 PconsR N/A 61.364 54.339 

T0599_D1 399 
10-99, 

113-182, 

186-392 

367 LEE 
2FN1_B, 3HWO_B, 

2G5F_D, 2G5F_B, 

1I1Q_A, 3BZN_A 

81.557 
3HWO_A, 

2FN0_A, 

3H9M_A 

81.079 

T0600 

125 

1-125 125 ProQ2 N/A 43.396 

3LYX_A, 

3EEH_A 

42.925 

T0600_D1 17-75 59 PconsD N/A 78.814 75.847 

T0600_D2 76-122 47 
pro-sp3-

TASSER 

3EEH_A, 3H9W_A, 

3LYX_A, 2GJ3_A, 

3ICY_A 

89.894 86.170 
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T0601_D1 449 7-448 442 McGuffin N/A 84.070 1VPB_A, 

1VL4_A 
80.045 

T0602_D1 123 1-55 55 BAKER 3A7M_A, 3H3M_A 89.545 3H3M_A, 

3A7M_A, 

2FUP_A 

84.091 

T0605_D1 72 18-66 49 BAKER 1ZXA_A, 1ZXA_B 93.230 2NPS_A, 

1H89_A 
93.229 

T0611 

227 

1-227 227 YASARA 3G1L_A 51.131 

1UI5_A 

50.377 

T0611_D1 3-55 53 Seok-server 

2G7S_A, 2HKU_A, 

2ID3_A,  3DEW_A, 

3HIM_A, 2HYJ_A, 

3G1L_A, 1T56_A, 

1RKT_A, 3DCF_A, 

1PB6_A, 3F0C_A, 

3KNW_A, 3LHQ_A, 

2EH3_A, 2NX4_A, 

1VI0_A, 3LWJ_A, 

2ZCM_A, 2ID6_A, 

2QTQ_A 

98.078 96.153 

T0611_D2 56-169, 

179-213 
149 LEEcon N/A 48.630 52.055 

T0613_D1 287 5-130, 

137-285 
273 ProfileCRF 3LOU_A 93.937 3LOU_A 92.350 

T0614_D1 135 

2-12,       

23-34, 

51-66, 

74-79, 

86-111 

71 LEEcon N/A 86.972 
2CY5_A, 

1EAZ_A 
84.858 
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T0619_D1 111 1-101 101 FEIG N/A 88.614 3LYS_A 71.535 

T0620_D1 312 3-164, 

179-312 
296 HHpredC 3MTC_A, 1I9Z_A, 

2IMQ_X 
87.456 3MTC_A 85.976 

T0626_D1 283 2-283 282 Jones-UCL N/A 89.628 3LOU_A 83.156 

T0629 

216 

1-216 216 bujnicki-

kolinski 
N/A 27.546 

1OCY_A, 

2FKK_A 

25.579 

T0629_D1 1-49, 

209-216 
57 PconsM N/A 83.333 75.877 

T0629_D2 50-208 159 GSmetaserver 1OCY_A 8.176 10.377 

T0632_D1 168 44-57, 

65-164 
114 Phyre2 N/A 92.544 3DKZ_A, 

1Q4T_A. 

1SC0_A, 

2FS2_A 

90.132 

T0634_D1 140 
3-83,   

95-126 
113 

BAKER-

ROSETTA 

SERVER 

1YS6_A 90.421 
3JTE_A, 

3GT7_A 
85.982 

T0635_D1 191 10-170 161 HHpredA 

3MN1_A, 1K1E_A, 

2P9J_A, 2R8E_A, 

3EWI_A, 3MMZ_A, 

3IJ5_A 

99.068 
3MN1_A, 

3IJ5_A 
97.826 

T0636_D1 336 17-334 318 HHpredB 

3GET_A, 3EUC_A, 

1UU1_A, 3LY1_A, 

3FFH_A, 3CQ5_A, 

3FTB_A 

81.682 

3HDO_A, 

1FG7_A, 

3EZ1_A, 

3CQ5_A 

76.651 

T0640_D1 250 
9-145, 

157-196, 

208-237 

207 Jones-UCL N/A 82.486 
1IY8_A, 

3KVO_A, 

3IOY_A 

77.401 
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Table 3.6 Model assessment scores of the best predicted CASP10 model along with the target length, assessed segment,  

considered residues and its best predicting CASP10 team in comparison to GDT-TS assessment score of our first predicted conformation. 

Target/ 

Domain 
Length 

Assessed 

region 

Assessed 

Residues 

CASP10 Best Model Our First Model 

Best Predictor 

CASP Group 
Templates GDT-TS Templates GDT-TS 

T0645_D1 537 40-537 498 Phyre2_A N/A 78.514 3GZS_A, 

3EHN_A 
72.892 

T0650_D1 346 4-342 339 HHpredAQ 1O6V_A, 1H6U_A, 

3O6N_A, 1M9S_A 
92.478 2OMU_A 81.932 

T0657_D1 154 

4-17, 23-

44, 51-

68, 71-

149 

133 Distill N/A 82.519 
1BWN_A, 

2DHI_A 
83.647 

T0659_D1 85 1-74 74 Phyre2_A N/A 93.581 3LD7_A 90.878 

T0662_D1 79 4-79 76 RBO-MBS N/A 82.896 3GZL_A 76.975 

T0663 205 53-204 152 LEEcon N/A 31.926  

 

 

 

2GU3_A 

35.642 

T0663_D1  53-138 86 LEE N/A 59.821 47.917 

T0663_D2  139-204 66 Baker N/A 87.891 81.253 

T0664_D1 540 43-540 498 PMS N/A 83.368 3CGH_A 79.782 
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T0674 340 1-340 340 MULTICOM-

CONSTRUCT 
N/A 36.293 

3H41_A, 

2K1G_A 

36.379 

T0674_D1  46-206 161 BAKER N/A 63.365 7.862 

T0674_D2  207-340 134 Mufold N/A 82.443 80.534 

T0675 75 1-75 75 Bilab-

ENABLE 
2ELR_A 34.333 

 

2CT1_A 

38.000 

T0675_D1  17-43 27 QUARK 2YT9_A, 1F2I_G, 

2COT_A 
81.481 83.335 

T0675_D2  44-73 30 Phyre2_A N/A 85.000 79.165 

T0689_D1 234 23-130, 

132-234 
211 PconsM N/A 86.178 3FZX_A 85.216 

T0692_D1 473 1-470 470 
MULTICOM-

CLUSTER 

1KY8_A, 

1WND_A, 

1UZB_A, 1BXS_A, 

2JG7_A, 1O9J_A, 

1EUH_A, 2J6L_A 

79.185 
3N83_A, 

3IWK_A 
75.109 

T0708_D1 196 1-196 196 Seok-server N/A 83.995 3IRV_A, 

3OT4_A 

79.101 

T0712_D1 223 38-223 186 Mufold-MD 3U22_B, 3H8T_A 92.319 3U22_A 91.566 

T0714_D1 88 1-88 88 
BAKER-

ROSETTA 

SERVER 

1WAAA_201 89.489 2E6P_A 85.511 

T0716_D1 71 10-60 51 
BAKER-

ROSETTA 

SERVER 

2DMQA_201 93.627 
2CRA_A, 

1SAN_A 
93.137 
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T0721_D1 301 3-301 299 HHpredA 3FBS_A, 1HYU_A 78.912 3FBSA, 

3F8PA 

76.020 

T0726 597 1-597 597 LEE N/A 32.742 

1Z1W_A 

30.536 

T0726_D1  1-447 447 MUFOLD-

Server 

3SE6_B 3Q7J_A 

1Z5H_A 
43.580 39.773 

T0726_D2  484-564 81 Jones-UCL N/A 87.500 20.938 

T0726_D3  448-483, 

565-587 
59 Zhang-IRU N/A 21.552 22.414 

T0731_D1 79 8-62 55 MATRIX 2KZ5_A, 1SKN_P, 

2WT7_B, 3A5T_A 
80.909 1SKN_P 80.000 

T0747_D9 121 24-34, 

43-121 
90 Mufold-MD 3SD2_A 3D33_A 69.382 3D33_A 67.416 

T0749_D1 449 35-446 412 Pcons-net N/A 91.479 3EU8_A, 

3QWT_A 
88.409 

T0752_D1 156 2-149 148 PconsM N/A 88.699 4STD_A, 

3EF8_A 
78.253 

T0757_D1 247 1-247 247 

BAKER-

ROSETTA 

SERVER 

2OWNA_201 82.563 
2ESS_A, 

2OWN_A 
78.676 

 



 

 

3.3 Results and Discussion 

 Conventional template selection algorithms employ either the pairwise alignment or 

the MSA information of templates to select their logical set for a target sequence. However, 

both these pairwise and MSA alignments provide diverse information about a template. A 

template ranking scheme employing both the pairwise and MSA alignment information 

together into a single algorithm is expected to select the best set of templates. 

Compared to the traditional template scoring measures that screen the credibility of a 

template on the basis of a single scoring measure, our pairwise ranking methodology employs 

the diverse set of seven different measures to rank the templates as per their pairwise 

alignments for a target sequence. By statistically ranking the templates through all these 

different reliable attributes, our scoring methodology is expected to sturdily assess the 

modelling credibility of a template for a target sequence. Sc1 score computes the 

BLOSUM62 score of the aligned target-template residues. As it employs the total number of 

residue encoded in the target and template sequences, it makes the BLOSUM62 score 

dependent on the length of the target and template sequences. Higher Sc1 value of a template 

implies its higher BLOSUM62 score for each of its residue against the target and is expected 

to increase its credibility. As sequence identity or similarity scores normally prove to be 

confusing measures for evaluating the credibility of a template, employing an average of the 

sequence identity, mismatched hydrophobic residues and mismatched hydrophilic residues 

for the aligned target-template residues makes the Sc2 score really credible. Consideration of 

coverage span of a template against the target sequence as Sc3 score further increases its 

credibility. Its higher score should certainly affirm that higher scoring value of all the other 
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employed measures is uniformly applicable for the major chunk of the target against a 

template and should confirm its credibility. Besides considering these measures for the 

aligned target-template residues, the gaps are also equally important to define the credibility 

of a template. However, a higher gap length decreases the modelling accuracy of a template 

and evaluating the Sc4 score by considering the coefficients of 0.5 and 1 for all the gap 

lengths, respectively shorter and longer than 5 gaps, is anticipated to affirm the credibility of 

a pairwise alignment. Moreover, to confirm that a lower number of gaps exist in a pairwise 

alignment, the Sc5 proportion score of gaps required to align a total of target and template 

residues should also be computed. Consideration of the benchmarked affine gap penalty 

scheme (Sc6 score) employed by the BLAST algorithm (11 for insertion and 1 for extension) 

and the average proportion of mismatched residues existing in a pairwise alignment (Sc7 

score) should further strengthen the template ranking algorithm to efficiently screen the best 

template(s) for a target sequence. As our statistical ranking algorithm specifically employs 

GDT-TS, TM_Score and the fraction of topologically correct residues of a hit against the 

seed template along with several other sequence and structural scoring parameters, it reliably 

evaluates the structural topology of a hit against the target sequence and the seed template. 

Traditional sequence or structural MSA profile based template selection and 

combination algorithms simply attempt to maximally cover the target sequence through 

minimal possible structures. Contrarily, our MSA based template ranking algorithm assesses 

the sequence as well as structural similarity of the screened set of templates to select the 

statistically top-ranked set of templates. Our algorithm employs S1 score for a template to 

compute the proportion of its unique residues that spans certain specific target residues that 
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are uncovered by all the other hits. Quite similar to pairwise ranking methodology, the S2 

score of the MSA ranking algorithm employs the proportion of mismatched hydrophobic 

residues, mismatched hydrophilic residues and the sequence identity score to compute the 

credibility score of a template. The reliability score of a template is further strengthened by 

the assessment of per residue BLOSUM62 score of a template both against the target 

sequence (S3) and the seed template (S4). In contrast to the normal algorithms that compute 

the BLOSUM62 score of a template against the target, BLOSUM62 based evaluation of a 

template against the seed template efficiently screens their conformational relationship and is 

expected to strengthen our algorithm for selecting the best set of topologically similar 

templates. However, as the functionally similar proteins evolving in different 

microenvironments might still retain the topologically equivalent conformation, all these 

sequence based similarity scores could have failed to efficiently select the best possible 

templates. Evaluation of the structural similarity of these templates circumvents this problem. 

As per the considered MSA, our ranking algorithm evaluating the structural similarity scores, 

in terms of TM_Score (S5), GDT-TS (S6) and the average proportion of topologically correct 

residues fitting within 8Ǻ distance deviation, of all the templates against the top-ranked and 

credible seed template (S7) is expected to efficiently rank the templates. Statistically ranking 

the MSA templates through all these diverse scoring schemes is expected to efficiently 

discriminate their credibility. 

  For the single domain target T0388 having 174 residues, the best predicted CASP8 

model constructed by the Pro-SP3-TASSER group employed 5 templates (2P31_A, 2GS3_A, 

2I3Y_A, 2P5Q_A and 1GP1_A). The GDT-TS, GDT-HA and TM_Score of this model is 
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found to be 91.616, 77.896 and 0.951 in comparison to the respective scores of 95.732,  

82.165 and 0.971 for our model predicted through three templates (2P31_A, 2I3Y_A and 

2R37_A). The best predicting CASP8 group PRO-SP3-TASSER unnecessarily employed 5 

templates for threading this target sequence and it did not assess the structural similarity of 

these templates for selecting their best set. However, our algorithm employed only the top-

ranked set of templates with ample structural similarity to construct the target model and its 

modelling accuracy as well as applicability for the selected CASP TBM-HA targets is 

discussed later in chapter V. Our algorithm is expected to correctly rank the templates for 

selecting their best set to maximally cover the target sequence and construct its accurate 

models consistently. 



 

 

Chapter IV 
Development of protein model 
sampling methodology 
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4.1 Introduction 

A single long model sampling step is traditionally employed to energetically refine 

the predicted target structure for relieving the energetically unstable and erroneous atomic 

contacts that are normally present in a modelled conformation. However, this sampling step 

does not improve the accuracy of a protein model consistently. This sampling inefficiency is 

not only due to inaccuracy of the energy function and inefficient step parameter employed by 

the sampling algorithm, but is also due to the inaccuracy of our assessment measures to select 

the accurate model. The correct evaluation of accuracy of the model sampling step is 

impractical if all the sampled structures are not correctly evaluated to select the best model 

(Siew et al. 2000; Melo et al. 2002; John & Sali 2003; Zhang & Skolnick 2004; Joo et al. 

2010; Trojanowski et al. 2010). The assessment measures employed by the MODELLER 

(MOLPDF, DOPE, Z_Score and GA341) and the other scoring parameters like GDT, 

TM_Score (Melo et al. 2002; John & Sali 2003), DFIRE (Yang & Zhou 2008) and RMSD are 

mutually non-linear and these scoring parameters do not unanimously screen a single 

predicted model as the accurate structure. Selecting the correct structure among the models 

sampled for a target sequence is still a major problem and the model assessment step should 

be improved to consistently predict accurate structures. We have screened the reliable 

assessment measures to guide and assess the optimal sampling of a target sequence.  

The interplay between model sampling and model assessment steps is analyzed for 

increasing the accuracy of protein modelling algorithms. The reliable assessment scores are 

sorted out and streamlined in an iterative algorithm to exploit their consensus scoring criteria 

for selecting a reliable model among the ones sampled for a target sequence. Modelling 

accuracy results of the traditional single long sampling is further evaluated in comparison to 

our developed iterative sampling strategy. 
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4. 2 Methodology 

 A 182 residue CASP8 TBM-HA target (Moult 2005) T0390 is selected and the 

EphB2 / EphrinA5 complex structure (PDB ID: 1SHW_A) is used as the template. The target 

model is constructed and sampled with the MODELLER9.9 package (Sali & Blundell 1993). 

 

4.2.1 Model Assessment and Selection Strategy 

The following model assessment and selection criteria are developed to choose the 

best protein model. The target sequence is used to model 100 decoy structures through 

MODELLER. The constructed model with the highest TM_Score is then employed to further 

build 100 target models. The top 10 models with the highest TM_Scores are then scored 

through the other usually employed assessment measures, viz. MOLPDF, DOPE, GA341 and 

Z_Score, to study the correlation of these different measures with the TM_Score in reliably 

discriminating two close models. The consensus scoring set of assessment measures is 

subsequently employed to score and select the highly accurate models. 

 

4.2.2 Model Sampling Strategy 

In contrary to traditional single long sampling, we employ an iterative model 

sampling strategy. Initially 1000 models are generated for the target sequence. The top 10 

models with the highest TM_Score are then sorted out and the one with the lowest Z_Score 

amongst these structures is selected. The combination of TM_Score and Z_Score criteria for 

selecting the best model is adopted after evaluating the performance of other selected scoring 

schemes in reliably discriminating the two pretty close models. This selected model is then 

used as a template to construct another set of 1000 models. Such 1000 model sampling runs 

are iteratively employed, each time starting with the best model of the current sampling. 



 Chapter IV  
 

Page 84 
 

These iterative runs are employed until the convergence is attained for the selected 

assessment measures for atleast 3 sampling runs. The consensus scoring, optimally sampled 

model with the highest TM_Score and lowest Z_Score is then selected as the best predicted 

structure. To compare our results with the conventional single sampling run, an equivalent 

number of models are further manually constructed with a single sampling run. 

 

4.3 Results and Discussion 

 Conventional sampling algorithms keep perturbing the model structure in an attempt 

to minimize the energy. A single assessment measure is not found to consistently select the 

accurate predicted model from the sampled set of decoys. Hence, if an incorrect model is 

wrongly selected, the sampling accuracy seems to be further decreased. However, both these 

steps are mutually interrelated and iteratively sampling the model through the best set of 

assessment measures is expected to construct and select the best possible sampled model. 

  

4.3.1 Model Assessment and Selection 

It is observed that scores of different model assessment measures keep fluctuating 

during the model sampling and it becomes difficult to select the accurate model from the 

generated decoys. Assessment scores do not justify a single model as the single most reliable 

structure. Evaluating all the selected assessment measures viz. TM_Score, MOLPDF, DOPE, 

GA341, Z_Score, GDT-TS, GDT-HA and RMSD for the short 100 model sampling run, we 

observe significant deviations in all the other scoring measures except the TM_Score, as 

shown in the following Fig. 4.1. 
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 Fig. 4.1 Assessment scoring undulations of the 100 models sampled for the target T0390. 
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Selecting a reliable model from the generated decoys is a complicated step and to 

make it simpler, we screen the scoring measures which consistently rank and select the most 

accurate models. We observe that TM_Score measure (Sadreyev et al. 2009) selects the 

utmost reliable and accurate model. It effectively evaluates both the Cα distance deviations 

between the equivalent residues of the two protein structures and also considers the count of 

such residues fitting within a minimal distance of 3.5Ǻ to calculate an overall structural 

similarity score for a protein model (Siew et al. 2000). Hence, the TM_Score could reliably 

discriminate an accurate model topology from the generated decoy structures and it should 

thus be considered as the initial evaluation criterion. However, when models show fairly 

equivalent TM_Score, selecting an accurate one becomes difficult. Hence all other selected 

measures viz. MOLPDF, DOPE, GA341, Z_Score, GDT-TS, GDT-HA and RMSD are used 

to evaluate the top 10 models with the highest TM_Score, as enlisted in the Table 4.1. 

 

Table 4.1 Assessment details MOLPDF, DOPE, GA341, Z_Score, GDT-TS, GDT-HA and 

RMSD for the top 10 models with the highest TM_Score. 

Model 
TM_ 

Score 

MOL 

PDF 
DOPE 

GA 

341 

Z_ 

Score 

GDT-

TS 

GDT-

HA 
RMSD 

Model6 0.933 889.00 -14187.18 1 0.3441 91.734 78.427 1.041 

Model14 0.933 1171.95 -13712.27 1 0.5289 91.331 78.226 1.049 

Model9 0.932 918.82 -14143.62 1 0.3610 91.532 78.024 1.055 

Model17 0.932 1014.07 -13953.83 1 0.4349 91.532 78.427 0.99 

Model28 0.932 942.70 -14080.99 1 0.3854 91.331 78.024 0.986 

Model38 0.932 957.79 -14170.31 1 0.3507 90.927 77.218 1.052 

Model44 0.932 1012.26 -14171.64 1 0.3501 91.532 78.226 1.052 

Model52 0.932 965.55 -14068.48 1 0.3903 91.734 78.629 1.055 

Model54 0.932 992.71 -14204.79 1 0.3372 91.935 78.629 1.057 

Model64 0.932 888.58 -14138.81 1 0.3629 91.734 78.427 1.055 

 

MOLPDF and GA341 scoring seems to be ineffective as MOLPDF shows too much 

deviations across these models. As per Table 4.1, GA341 score stands equal for all the 
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models and it thus does not differentiate among the close and structurally correct, near-native 

models. Models with high GA341score are good structures but GA341 fails to discriminate 

between the good models that are structurally too close. It does not unanimously rank the best 

model and is not correlated with the TM_Score ranking. Similarly from Table 4.1, MOLPDF, 

GDT-TS, GDT-HA and RMSD do not correlate with TM_Score and these scores are only 

found to be effective in simply discriminating between a good and a bad model. 

Quite interestingly, compared to all the other selected scoring measures, Z_Score is 

found to be much more minimally deviant with the TM_Score measure across these 10 

models. As the energy of a good biologically meaningful as well as topologically correct 

protein model should be statistically as low as possible and, as also quite clear from the 

scoring values of these parameters for the models 9 and 64, the normal DOPE score or 

energetic assessment is found to be quite unreliable in contrast to the statistically significant 

Z_Score. Proportional alteration of DOPE score for these models is hereby found to be 

negligible in comparison to the significant alteration of their energetic Z_Score. Further as 

per Table 4.1, Model54 has the best energetic score, but its TM_Score is not the highest 

among the selected models. Hence, the usual DOPE or Z_Score itself does not select the 

accurate predicted model. To make the assessment measure more robust and effective at 

selecting the best model conformations, we therefore employ the TM_Score along with the 

best of the other selected scoring measures i.e. Z_Score together as a single model assessment 

measure. Here for each model sampling, we have sorted the top 5 models with the highest 

TM_Score and then finally selected the model with the lowest Z_Score as the best 

conformation. We further find this sampling methodology very effective. It is important to 

understand here that we have used only these measures to score our model predictions 

because when the experimental structure of the considered target sequence is not available, 

we cannot use the other scoring measures like GDT-TS, GDT-HA and RMSD. 
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4.3.2 Model Sampling 

During model sampling, we iteratively generate one thousand models with the help of 

MODELLER and select the best model on the basis of TM_Score and Z_Score. This iterative 

sampling is continued until the employed scoring measures get saturated for a minimum of 3 

sampling runs. 

It took altogether 12 sampling runs in our iterative sampling strategy and the 

assessment scores of each of the chosen high scoring and intermittent sampling conformation 

is enlisted in Table 4.2. Here, the TM_Score and Z_Score guided best model predicted in 

each iteration cycle along with the first model and the finally predicted models are evaluated 

as per the CASP defined domain boundary information (Tress et al. 2009) and assessed both 

against the actual native structure of the target sequence and the employed template. The 

TM_Score of model computed against its native structure is normalized by 126 residues 

(Assessed domain length) and is termed as TM_Score_answer. The TM_Score normalized by 

the length of the selected template (138 residues) for the same domain boundary information 

is referred as TM_Score. 

The iterative sampling strategy yields a model with GDT_TS, GDT_HA, TM_Score 

and RMSD score of 93.548, 82.863, 0.945 and 0.919 respectively, as highlighted with bold 

characters in Table 4.2. This model is more accurate than the first target structure predicted 

through the templates. Hence, in contrast to the single long model sampling step, the iterative 

sampling strategy optimally samples the conformational space of the target sequence through 

the best set of model assessment measures to construct a more accurate structure. 
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Table 4.2 Iterative sampling results of the considered assessment measures for top model of 

each iterative run along with the best CASP8 and the best single long sampling model. 

Model 

Assessment 

against the 

template 

(TM_Score) 

Z_ 

Score 

Assessment against the solved structure 

GDT-TS GDT-HA TM_Score

_Answer 

 

RMSD_

Answer 

First Model 0.98439 0.370 90.726 77.621 0.931 1.075 

1 0.98032 0.504 90.726 76.613 0.937 1.014 

2 0.97501 0.571 91.935 78.427 0.937 0.990 

3 0.97155 0.509 92.137 79.234 0.939 0.979 

4 0.96655 0.493 92.137 80.040 0.940 0.961 

5 0.96518 0.505 92.137 80.847 0.942 0.949 

6 0.96482 0.496 92.742 81.250 0.943 0.933 

7 0.9594 0.481 92.540 81.452 0.944 0.918 

8 0.95139 0.477 92.742 82.056 0.945 0.902 

9 0.94876 0.467 93.548 82.863 0.945 0.919 

10 0.9478 0.546 92.944 81.250 0.943 0.943 

11 0.951 0.568 93.347 80.645 0.942 0.942 

12 0.94936 0.566 92.742 79.839 0.942 0.952 

Best single 

long 

sampling 

model 

0.98159 0.376 91.129 78.226 0.933 0.988 

Best 

CASP8 

Model 

0.90066 -1.012 90.726 78.831 0.929 0.990 

 

In comparison to iterative sampling result, a single long increased sampling of 12000 

models (equivalent to our set of iterative sampling models) has produced interesting results. 

TM_Score of the top model is marginally improved over the TM_Score of first constructed 

model (0.933 vs 0.931). Similarly, the GDT-TS scores of these two models remain same and 

it indicates that the single long sampling technique does not improve the structure quality. 

Increased sampling however improves the model quality and accuracy compared to the first 

built conformation for a target sequence, only when it is carefully employed and assessed.  

In comparison with iterative sampling, we obtained best TM_Score of 0.933 from 

single long run sampling. Upon long single sampling, the initial model GDT-TS score of 
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90.726 marginally improves to 91.129. Even if the best model is correctly selected, the GDT-

TS score is improved by 1.106 after sampling of 12000 models. On the other hand, our 

proposed iterative sampling reliably predicts near-native target conformation with GDT-TS, 

GDT-HA, TM_Score and RMSD score of 93.548, 82.863, 0.945 and 0.919 respectively, as 

shown in Table 4.2. As per the closeness of these assessment score values, it is really difficult 

to blindly select only this particular model and it is even more difficult to select it for every 

single sampling step for each of the considered target sequences consistently. So probably we 

might have also missed a more accurate target model that was correctly constructed by our 

sampling strategy and which could not be selected for every single iterative sampling step. 

However, in contrast to this target model, the GDT-TS, GDT-HA, TM_Score and RMSD 

scores of the best CASP8 Model are 90.726, 78.831, 0.929 and 0.990 respectively. 

The usually employed sampling measures do not keep a track of the sampling path to 

improve the accuracy of model prediction towards its native conformation. Despite this 

lacuna, it often gets stuck in some wrong local minima prevailing in an energetic landscape. 

Here if a wrong topology is incurred during sampling, it is sequentially maintained till the 

end and if we could track this sampling path through the reliable assessment measures, we 

would be logically sampling the protein conformation on the correct path. We realize that 

employing a correct set of assessment measures together significantly and consistently 

predicts more accurate conformation for a protein sequence. 

Our sampling methodology improves the model accuracy by 2.822 GDT_TS score in 

comparison to the first constructed model. The TM and Z score guided iterative sampling 

methodology yields a better model topology than the conventional single sampling run for the 

considered target sequence. This iterative sampling methodology pushes the topology of the 

predicted model structure towards its native conformation. Quite interestingly, GDT-TS 
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improvement rate per model is almost negligible in the conventional sampling run. However, 

in our methodology the model accuracy is significantly improved. 

Further as shown in Fig. 4.2, TM_Score of the model against the selected template 

marginally decreases in the sampling iterations despite the fact that it still retains the 

structural topology harnessed from the template and the alignment file. It indicates that all 

these models still have the same count of the topologically correct Cα residues localized 

within 5Å distance deviation against the equivalent template residues, as assessed by the TM-

align tool (Zhang & Skolnick 2005). Attaining almost the similar structural decoys with 

almost equivalent TM_Score for at-least 3 successive and iterative sampling runs implies the 

saturation of TM_Score measure during this iterative sampling methodology. It further 

implies that our sampling strategy optimally constructs the target model with exactly the 

similar topology harnessed from the template(s), but simultaneously the model is also not 

exactly like the employed template(s) as the TM_Score against the template decreases in each 

of the successive iterations, as represented in Fig. 4.2. Quite interestingly, as represented in 

Fig. 4.3(a), our iterative sampling predicts an accurate near-native conformation. It is because 

TM_Score evaluates the correctness of the overall model topology with the considered 

templates as per the considered target-template alignment and the normalized DOPE score 

further allows us to select the model with the statistically minimal energy. Hence, the 

TM_Score_Answer increases in each of the successive iterations. Here in Fig. 4.3(b), the 

RMSD_answer decreases in each of the successive iteration, i.e. the modelling strategy 

slowly leaps towards the actual native target conformation and is not biased towards the 

template. The model, where the TM_Score and Z_Score parameters scores almost 

equivalently during the iterative sampling strategy with no further significant TM_Score 

alterations, seems to be the best sampled model and should be finally selected. It is observed 

that Z_Score along with TM_Score properly discriminates between the correct and bad 
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models. Increased single sampling run with no switching and selection of the better 

intermediary structures does not improve the model quality, as shown by the Table 4.2 data. 

 

 

 

 

 

 

 

Fig. 4.2 TM_Score and TM_Score_Answer delineating the correct converging nature of our 

model sampling methodology. 

 

(a)   
 

 

 

 

(b)  

 

 

 

 

 

Fig. 4.3 Assessment results of (a) GDT-TS and GDT-HA & (b) RMSD, TM_Score and 

Z_Score in iterative optimal model sampling run. 
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Our sampling strategy optimally relaxes the predicted model to relieve its atomic clashes 

significantly faster than the conventional sampling algorithms. It is considerably better than 

the normal single long sampling to predict accurate models. This sampling strategy 

efficiently bypasses several intermittent saddle points to predict an improved model 

conformation (Onuchic et al. 2000). However, we still need more efficient energy functions 

to reliably screen the correctly modelled structures and for their sampling, we also need an 

improved algorithm that is extremely competent at tackling the extremely large 

conformational space of the target sequence. The development of an efficient model 

clustering method may further improve the accuracy of predicted protein models. 

With the results obtained we conclude that the TM_Score and Z_Score guided 

sampling measure significantly improves the sampling accuracy of predicted protein models. 

The predicted model conformation is found to be accurate for its individual structural 

domains and for its overall structure with the correct mutual orientation of these domains. 

Our sampling-cum-assessment strategy substantially improves the accuracy of predicted 

protein models in comparison to their first constructed target model and is employed to build 

the accurate structures for all the selected CASP targets. The details of these results are 

discussed in Chapter V. 



 

 

 

 

Chapter V 
Accuracy and robustness of the 
template ranking, selection and 

iterative sampling algorithm 
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5.1 Introduction 

The protein modelling problems are mainly caused due to the consideration of 

incorrect templates or inaccurate sampling algorithm. We have developed the template 

selection as well as combination algorithm and the iterative sampling strategy, as respectively 

reported in the chapters III and IV. The developed algorithms are employed to model the 

selected CASP targets. Altogether 33 domains of 21 CASP8 targets, 52 domains of 35 

CASP9 targets and 31 domains of 22 CASP10 targets are considered to test our algorithm. 

We compare the accuracy of our models with the best predicted CASP models by assessing 

them against their actual native conformations. We assess the accuracy of our sampling 

methodology and evaluate the reliability of our employed set of assessment measures. 

 

5.2 Comparison between our predicted models and the CASP results 

The constructed target models are assessed against the employed template(s) for 

selecting the most accurate model which is finally evaluated for all of its encoded domains 

through GDT-TS, GDT-HA, RMSD and TM score against its experimentally solved native 

structure. However, for targets encoding multiple domains, the domains are individually 

assessed along with the evaluation of their topological orientation in the overall target model. 

Among all the modelled target domains, we have excluded the ones that are not 

enlisted in the TBM-HA dataset of the CASP. Amongst the selected CASP8 target domains 

we could model 31, 26 and 27 target domains with improved GDT-TS score, GDT-HA score 

and TM_Score respectively. Out of these 31 target domains, the best predicted CASP models  
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have shown the employed templates for 21 domains. For predicting these 21 domain 

structures, we have employed a different set of templates for 15 domains. All the predicted 

CASP8 models show an average GDT-TS, GDT-HA and TM_Score improvement of 2.958, 

3.936 and 0.017 respectively along with the individual standard deviation of 2.917, 4.917 and 

0.020. For the selected CASP9 target domains, we have successfully modelled 43, 42 and 43 

domains with improved GDT-TS, GDT-HA and TM_Score respectively. For these target 

domains, the best predicted CASP models have shown the employed templates for 25 

domains, out of which we have employed a different set of templates for 21 domains. All the 

predicted CASP9 models show an average GDT-TS, GDT-HA and TM_Score improvement 

of 3.641, 4.938 and 0.020 respectively along with the individual standard deviation of 5.126, 

6.832 and 0.041. Similarly, for CASP10 targets, we have modelled 25, 22 and 22 target 

domains with improved GDT-TS, GDT-HA and TM_Score respectively. Among these target 

domains, the best predicted CASP models have shown the employed templates for 12 

domains, out of which we have employed a different set of templates for all the 12 domains. 

All the predicted CASP10 models show an average GDT-TS, GDT-HA and TM_Score 

improvement of 3.995, 5.568 and 0.029 respectively along with the individual standard 

deviation of 4.382, 7.309 and 0.051. Overall for all the selected targets, our models have 

shown an average respective GDT-TS, GDT-HA and TM_Score improvement of 3.531, 

4.814 and 0.022 along with the individual respective standard deviation of 4.142, 6.353 and 

0.037. Tables 5.1, 5.2 and 5.3 respectively enlist the modelling accuracy of our predicted 

protein models against their experimentally solved native structures in comparison to their 

most accurate CASP models, as discussed further. As RMSD score does not evaluate the 
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topologically correct substructures of a protein model (Zhang & Skolnick 2004), it is not 

officially employed by the CASP assessors to rank the target protein models predicted by the 

CASP participants (www.predictioncenter.org/CASP10/results.cgi) and is thus not enlisted 

here in these tables. For some of the models,  

Moreover, we have not evaluated our template-ranking methodology with similar 

strategies employed by the I-TASSER, SWISSMODEL and MODELLER algorithms for the 

following two reasons. Firstly, as the objective of our template-ranking methodology is 

simply to choose the best set of templates for a target sequence, we have not compared the 

modelling accuracy of the selected templates with their computed rank-order. Secondly, as 

enlisted in the Tables 4, 5 and 6, we have simply restricted our discussion to only the 

evaluation of modelling accuracy of our predicted target structures with the most accurate 

CASP algorithms for all the selected target domains. Hence we have not compared the 

template-ranking scores of our method with the similar scores employed by all the other 

modelling methodologies used in the CASP test. 

www.predictioncenter.org/CASP10/results.cgi


 

 

Table 5.1 Model assessment results in terms of GDT-TS, GDT-HA and TM_Score of the best predicted models against the best CASP8 

models. The last three columns show differences in GDT-TS, GDT-HA, TM_Score of best CASP8 model and our  

best predicted model. A negative value indicates superior CASP model. 

 
Our Best Model Modelling accuracy better than the 

best predicted CASP model 

Target/ Domain Templates GDT-TS GDT-HA TM_Score GDT-TS GDT-HA TM_Score 

T0388_D1 2P31_A, 2I3Y_A, 2R37_A 95.732 82.165 0.971 4.116 4.269 0.020 

T0390_D1 1SHW_A 93.548 82.863 0.945 2.822 4.032 0.016 

T0396_D1 1JR8_A 91.667 76.225 0.925 1.961 5.147 0.026 

T0398  

2RIR_A, 2CUK_A 

96.788 81.076 0.985 9.288 15.364 0.019 

T0398_D1 97.500 85.536 0.976 0.714 0.715 0.001 

T0398_D2 100.000 90.476 0.986 1.020 2.381 0.000 

T0400_D1 2Q7B_A 92.742 73.387 0.955 4.355 6.774 0.018 

T0402_D1 2FHQ_A, 2HQ7_A 84.028 64.815 0.864 4.398 2.546 0.027 

T0404_D1 2CZ4_A, 2J9C_A 97.840 85.185 0.951 8.025 16.975 0.061 

T0418  

2HDO_A, 2HI0_A, 

88.333 67.143 0.953 0.357 -2.500 0.008 

T0418_D1 91.312 71.986 0.945 0.532 -2.482 -0.006 

T0418_D2 88.043 67.029 0.870 1.086 -0.725 0.011 

T0422  

3B9P_A, 3CF0_A, 1IN4_A 

79.856 58.094 0.924 8.543 9.982 0.035 

T0422_D1 82.125 61.375 0.906 2.625 1.875 0.024 

T0422_D2 91.563 70.938 0.890 4.063 5.000 0.014 
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T0423_D1 2OTM_A, 1QAH_A 93.207 77.717 0.933 7.337 9.510 0.060 

T0426_D1 2FOY_A 97.957 85.895 0.988 0.097 -2.821 -0.002 

T0428_D1 1XQ9_A, 1T8P_A, 1FZT_A 98.035 87.118 0.988 0.983 4.258 0.005 

T0432_D1 2DKW_A, 1E6I_A, 2YQD_A 94.231 79.038 0.953 6.346 6.730 0.033 

T0435_D1 2QPW_A 88.864 72.273 0.919 4.773 5.909 0.035 

T0438  

2OAS_A, 2G39_A 

80.879 58.204 0.952 1.163 1.873 0.000 

T0438_D1 85.671 66.768 0.923 -2.134 -2.287 -0.017 

T0438_D2 93.834 77.803 0.970 0.673 1.121 0.001 

T0442  

2PIF_A 

83.085 61.915 0.940 0.213 2.128 0.007 

T0442_D1 94.268 75.478 0.955 1.274 -2.547 -0.003 

T0442_D2 97.603 81.507 0.944 0.000 1.028 -0.001 

T0444_D1 1SMQ_A, 1H0O_A 95.404 83.180 0.982 0.735 1.562 0.001 

T0447_D1 1EG7_A 91.697 76.245 0.980 3.367 5.212 0.009 

T0458_D1 2OKA_A 99.675 93.182 0.976 1.948 8.442 0.022 

T0470  

2QGS_A 

88.165 68.617 0.932 5.718 6.649 0.022 

T0470_D1 86.712 67.793 0.900 1.126 0.000 0.013 

T0470_D2 88.584 69.364 0.927 47.255 32.514 0.508 

T0499_D1 2ONQ_A 92.857 74.107 0.887 7.143 9.821 0.070 

    
Average 2.958 3.936 0.017 

    

Standard 

Deviation 
2.917 4.917 0.020 
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Table 5.2 Model assessment results in terms of GDT-TS, GDT-HA and TM_Score of the best predicted models against the best CASP9 

models. The last three columns show differences in GDT-TS, GDT-HA, TM_Score of best CASP9 model and our best 

predicted model. A negative value indicates superior CASP model. 

 
Our Best Model Modelling accuracy better than the 

best predicted CASP model 

Target / Domain Templates GDT-TS GDT-HA TM_Score GDT-TS GDT-HA TM_Score 

T0521  

3KHE_A 

47.321 35.417 0.533 2.083 3.423 0.000 

T0521_D1 81.888 61.224 0.842 4.082 3.061 0.016 

T0521_D2 86.428 63.929 0.862 -0.716 -1.785 -0.014 

T0522_D1 3I4S_A 98.282 88.740 0.981 3.625 6.106 0.012 

T0523_D1 3LYX_A 93.019 77.027 0.933 4.731 7.658 0.033 

T0528  

3I45_A 

67.588 45.216 0.867 19.273 19.677 0.081 

T0528_D1 82.108 59.314 0.927 -4.167 -6.617 -0.011 

T0528_D2 58.281 35.000 0.705 -1.719 -0.781 -0.052 

T0530_D1 2K5Q_A 88.125 69.375 0.876 5.625 5.625 0.030 

T0538_D1 1J7K_A 98.585 88.208 0.946 7.076 12.736 0.068 

T0541_D1 3IDU_A 87.255 65.686 0.914 6.618 6.862 0.038 

T0559_D1 2VXZ_A 94.403 73.507 0.915 1.493 -0.374 0.009 

T0560_D1 1R1U_A 94.533 83.203 0.917 2.345 9.375 0.013 

T0563_D1 1OC1_A, 1UNB_A, 1GP4_A 76.438 55.420 0.878 -0.111 -0.332 0.003 
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T0566_D1 1USV_B 79.808 57.885 0.879 3.270 3.462 0.019 

T0567_D1 1NY5_A 84.072 64.630 0.900 4.628 6.667 0.026 

T0570_D1 2PZ0_A, 3L12_A 86.588 66.202 0.942 5.900 9.120 0.011 

T0580_D1 2WY2D 89.904 72.356 0.928 0.241 -0.961 0.009 

T0586  

2DU9_A, 3BY6_A 

90.336 76.261 0.917 14.495 23.530 0.051 

T0586_D1 87.188 75.000 0.869 -5.625 -3.438 -0.061 

T0586_D2 97.437 85.897 0.903 8.974 18.589 0.125 

T0589 
 

1WU7_A 

69.026 46.520 0.898 8.991 9.513 0.042 

T0589_D1 74.781 51.096 0.889 0.549 0.328 -0.005 

T0589_D2 64.939 41.768 0.664 -12.805 -14.939 -0.132 

T0589_D3 87.766 68.085 0.894 -5.319 -7.713 -0.032 

T0594_D1 1X53_A 91.964 75.357 0.953 7.321 11.607 0.051 

T0596  

3C07_A 

70.259 45.977 0.847 12.500 12.500 0.079 

T0596_D1 98.585 82.075 0.925 2.830 1.886 0.010 

T0596_D2 66.322 42.355 0.770 4.958 4.752 0.040 

T0599_D1 3HWO_A, 2FN0_A, 

3H9M_A 

87.158 66.189 0.958 5.601 5.123 0.037 

T0600  

3LYX_A, 3EEH_A 

48.821 34.198 0.507 5.425 4.953 0.016 

T0600_D1 84.746 61.017 0.786 5.932 2.119 0.025 

T0600_D2 93.085 77.128 0.870 3.191 6.915 0.051 

T0601_D1 1VPB_A, 1VL4_A 86.961 66.100 0.966 2.891 4.705 -0.001 

T0602_D1 3H3M_A, 3A7M_A, 2FUP_A 90.000 78.182 0.864 0.455 4.091 0.001 
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T0605_D1 2NPS_A, 1H89_A 98.957 91.665 0.954 5.727 15.623 0.074 

T0611  

1UI5_A 

61.558 38.442 0.778 10.427 9.296 0.087 

T0611_D1 98.558 83.654 0.935 0.480 0.000 0.004 

T0611_D2 56.164 32.877 0.684 7.534 9.247 0.009 

T0613_D1 3LOU_A 95.709 80.504 0.979 1.772 2.426 0.007 

T0614_D1 2CY5_A, 1EAZ_A 93.660 77.817 0.915 6.688 9.155 0.040 

T0619_D1 3LYS_A 90.594 74.010 0.913 1.980 3.465 -0.004 

T0620_D1 3MTC_A 86.760 72.038 0.940 -0.696 -2.614 0.010 

T0626_D1 3LOU_A 90.426 73.138 0.967 0.798 1.329 0.002 

T0629  

1OCY_A, 2FKK_A 

33.218 25.231 0.380 5.672 6.134 0.036 

T0629_D1 92.544 74.561 0.898 9.211 12.719 0.097 

T0629_D2 12.421 7.547 0.157 4.245 3.459 0.013 

T0632_D1 3DKZ_A, 1Q4T_A,  

1SC0_A, 2FS2_A 
96.711 81.578 0.961 4.167 5.262 0.017 

T0634_D1 3JTE_A, 3GT7_A 94.626 83.178 0.951 4.205 10.514 0.019 

T0635_D1 3MN1_A, 3IJ5_A 98.913 89.441 0.987 -0.155 0.311 0.000 

T0636_D1 3HDO_A, 1FG7_A,  

3EZ1_A, 3CQ5_A 
81.918 61.164 0.943 0.236 0.315 0.002 

T0640_D1 1IY8_A, 3KVO_A, 3IOY_A 84.887 65.113 0.925 2.401 2.684 0.018 

    
Average 3.641 4.938 0.020 

    

Standard 

Deviation 
5.126 6.832 0.041 
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Table 5.3 Model assessment results in terms of GDT-TS, GDT-HA and TM_Score of the best predicted models against the best CASP10 

models. The last three columns show differences in GDT-TS, GDT-HA, TM_Score of best CASP10 model and our best 

predicted model. A negative value indicates superior CASP model. 

 
Our Best Model Modelling accuracy better than the 

best predicted CASP model 

Target / Domain Templates GDT-TS GDT-HA TM_Score GDT-TS GDT-HA TM_Score 

T0645_D1 3GZS_A, 3EHN_A 76.958 56.426 0.931 -1.556 -3.464 -0.003 

T0650_D1 2OMU_A 92.848 76.106 0.974 0.370 1.548 0.000 

T0657_D1 1BWN_A, 2DHI_A 89.662 72.744 0.927 7.143 11.842 0.039 

T0659_D1 3LD7_A 99.324 90.203 0.968 5.743 11.487 0.045 

T0662_D1 3GZL_A 91.118 75.000 0.893 8.222 15.461 0.068 

T0663  

2GU3_A 

39.358 29.223 0.450 7.432 8.108 0.042 

T0663_D1 59.524 41.964 0.618 -0.297 2.381 -0.027 

T0663_D2 89.455 70.313 0.860 1.564 -2.734 0.001 

T0664_D1 3CGH_A 82.848 62.526 0.946 -0.520 -3.586 0.007 

T0674  

3H41_A, 2K1G_A 

36.466 29.052 0.411 0.173 0.949 -0.047 

T0674_D1 10.377 3.931 0.174 -52.988 -39.780 -0.556 

T0674_D2 81.298 64.313 0.860 -1.145 -1.718 -0.002 

T0675  

2CT1_A 

42.667 30.333 0.436 8.334 7.000 0.069 

T0675_D1 92.595 76.852 0.693 11.114 13.889 0.168 

T0675_D2 88.333 67.500 0.633 3.333 6.667 0.041 
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T0689_D1 3FZX_A 88.943 70.192 0.951 2.765 4.447 0.011 

T0692_D1 3N83_A, 3IWK_A 81.848 59.457 0.955 2.663 2.174 0.003 

T0708_D1 3IRV_A, 3OT4_A 86.640 67.063 0.931 2.645 0.529 0.036 

T0712_D1 3U22_A 94.127 80.572 0.956 1.808 4.066 0.008 

T0714_D1 2E6P_A 96.307 80.682 0.951 6.818 11.080 0.039 

T0716_D1 2CRA_A, 1SAN_A 99.510 92.647 0.960 5.883 19.608 0.084 

T0721_D1 3FBSA, 3F8PA 80.782 60.374 0.934 1.870 3.486 0.005 

T0726 
 

1Z1W_A 

36.981 20.329 0.645 4.239 4.455 0.020 

T0726_D1 48.182 26.648 0.780 4.602 3.353 0.042 

T0726_D2 20.625 12.500 0.224 -66.875 -56.563 -0.663 

T0726_D3 22.414 15.517 0.180 0.862 -0.431 -0.037 

T0731_D1 1SKN_P 99.545 84.545 0.941 18.636 27.272 0.187 

T0747_D9 3D33_A 77.528 59.551 0.784 8.146 10.955 0.045 

T0749_D1 3EU8_A, 3QWT_A 91.730 76.441 0.971 0.251 -1.754 -0.002 

T0752_D1 4STD_A, 3EF8_A 89.041 70.719 0.920 0.342 -0.856 -0.008 

T0757_D1 2ESS_A, 2OWN_A 86.975 68.277 0.926 4.412 5.252 0.010 

    
Average 3.995 5.568 0.029 

    

Standard 

Deviation 
4.382 7.309 0.051 
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5.3 Targets with improved accuracy 

Unlike conventional template ranking and selection measures, our algorithm employs 

the template information from both the pairwise as well as MSA alignments through multiple 

scoring parameters to robustly rank the templates. On the basis of pairwise alignment 

information for a target sequence, we assessed all the hits on the basis of their BLOSUM62 

score, coverage span, affine gap penalty score, average proportion of mismatched 

hydrophobic residues, hydrophilic residues and sequence identity, average fraction of total 

number of gaps and the residues, average gap length longer than 5 gaps and the proportion of 

mismatched residues. However, the functionally similar protein sequences keep evolving in 

their diverse cellular micro-environments along with the conservation of their overall 

structural topology. While also knowing that incorporation of additional templates could 

actually improve the modelling accuracy over the single best available template, we assessed 

the structural similarity of the selected hits with the top ranked seed template through their 

MSA by using several scoring measures to screen their best complementary set for a target 

sequence. The employed scoring schemes assessed the conformational diversity of the hits 

against the seed template and the target sequence by separately computing the BLOSUM62 

score against the target and the seed template sequence, coverage span, affine gap penalty, 

average proportion of mismatched hydrophobic residues, hydrophilic residues and sequence 

identity and the proportion of unique residues encoded in a template and not encoded in the 

other selected hits. Moreover, MSA based assessment of hits evaluated structural similarity of 

a template in terms of TM_Score, GDT- TS and fraction of the topologically correct residues 

fitting within 8Ǻ distance deviation against the equivalent residues of the seed template. 
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The developed algorithm attempted to solve the modelling problems normally 

incurred due to the consideration of culled PDB dataset. Among structurally similar 

templates, the most alike conformation is normally employed as the representative hit by 

conventional modelling algorithms. However, our algorithm considered all these structurally 

similar HHPred hits to respectively assess their sequence and structural similarity with the 

target sequence and the seed template. It allowed us to properly evaluate the set of redundant 

hits and select the best representative template that is biologically related to a target 

sequence. Our template ranking algorithm consequently allowed us to select the best set of 

structurally similar templates for maximally spanning the target sequence and constructing its 

biologically meaningful model. The algorithm consistently constructed trustworthy protein 

structures and improved the modelling accuracy because it reliably spanned the target 

segment(s) with best set of templates sharing a significant structural as well as sequence 

similarity with the seed template. It has already been observed that consideration of the low-

ranked templates or the template fragments along with the seed-template never improves the 

modelling accuracy over the seed template always (Zheng et al. 2010) and our algorithm 

efficiently resolves such modelling errors. Our template selection algorithm eliminates the 

modelling errors that are usually caused due to incorrect template selection or unreliable 

assembly of structural fragments. For example, our algorithm employed 3 templates 

(2P31_A, 2I3Y_A and 2R37_A) in comparison to the best CASP8 model (pro-SP3-TASSER) 

which employed 5 templates (2P31_A, 2GS3_A, 2I3Y_A, 2P5Q_A and 1GP1_A) to 

construct the domain1 model of the target T0388. Our algorithm efficiently employed 

conformational diversity of three templates to construct a target model. Assessing against its  
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native conformation, our model shows GDT-TS, GDT-HA, TM_Score and RMSD scores of 

91.032, 77.730, 0.936 and 0.889 in comparison to the respective scores of 86.351, 73.420, 

0.898 and 0.970 of the best predicted CASP8 structure. For this T0388 domain1 shown in the 

Figure 5.1, a comparison of the best CASP8 model, our predicted model and the actual 

structure of this target reveals that our template set constructs a better model of the 5 residue 

C-terminal loop segment (KKEDL). 

 

Fig. 5.1 Superimposed 170-174 residue segment of constructed model (Green), best predicted 

CASP8 model (Yellow) and experimental native conformation (Red). The main chain 

backbone conformation is shown by tube representation. TM_Score assessment of this 170-

174 residue segment of the best predicted CASP model against the experimental structure is 

0.36381 and that of our model against the experimental structure is 0.76125. 

For the CASP9 target T0528, our modelling algorithm employed a single template 

3I45_A in comparison to the best predicted CASP9 model (LEE) which used 7 templates 

(1QO0_A, 3I09_B, 3I45_A, 3EAF_A, 3LKB_A, 3LOP_A and 3H5L_B). Our algorithm 

could maximally cover the target with only the seed template and it did not employ additional 
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hits for the reason that these hits did not share a significant structural similarity with the seed 

template. Assessing against the native structure, our model shows GDT-TS, GDT-HA, 

TM_Score and RMSD scores of 67.588, 45.216, 0.867 and 2.459 in comparison to the 

respective scores of 48.315, 25.539, 0.786 and 3.284 of the best predicted CASP9 model. A 

comparison of the best CASP9 model, our model and the native structure reveals that our 

selected set of templates constructs better topology for a 16 residue helical segment 

(GGDPLTKLQDMDPKRY), as shown in the Figure 5.2. 

 

Fig. 5.2 Superimposed 226-241 residue segment of constructed model (Green), best predicted 

CASP9 model (Yellow) and experimental native conformation (Red). The main chain 

backbone conformation is shown by tube representation. TM_Score assessment of this 226-

241 residue segment of the best predicted CASP model against the experimental structure is 

0.36512, and that of our model against the experimental structure is 0.41268. 

 Chapter 
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For the CASP10 T0731 Domain1 target, our algorithm used only the seed template 

1SKN_P to maximally cover the target in comparison to the best CASP10 model (MATRIX) 

which used 4 templates (2KZ5_A, 1SKN_P, 2WT7_B and 3A5T_A). Assessing against the 

native structure, our model shows GDT-TS, GDT-HA, TM_Score and RMSD scores of 

99.545, 84.545, 0.941 and 0.629 in contrast to the respective scores of 80.909, 57.273, 0.754 

and 1.238 of the best predicted CASP10 model. A comparison of the best CASP10 model, 

our model and the native structure reveals that our algorithm constructs a better topology for 

the 10 residue segment (NEMMSKEQFN) which is a 7 residue helix segment (NEMMSKE) 

linked to a 3 residue loop segment (QFN), as shown in the Figure 5.3. 

 

Fig. 5.3 Superimposed 38-47 residue segment of constructed model (Green), best predicted 

CASP10 model (Yellow) and experimental native conformation (Red). The main chain 

backbone conformation is shown by tube representation. TM_Score assessment of this 38-47 

residue segment of the best predicted CASP model against the experimental structure is 

0.48265, and that of our model against the experimental structure is 0.76429. 
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The combination of minimal number of correct, mutually complementary and the top-

ranked templates in a structural topology guided sequence alignment significantly improves 

the modelling accuracy. The notably high modelling accuracy of almost all the CASP TBM-

HA targets has shown that our algorithm is successful in consistently predicting the accurate 

near-native conformations for most of the target sequences, as shown for the CASP8 target 

T0398, CASP9 target T0586 and CASP10 target T0747 in the Figures 5.4, 5.5 and 5.6 

respectively. These snapshots represent an overall topology of the predicted target models in 

comparison to their best predicted CASP structures against their native conformations. 

For the CASP8 target T0398 encoding 292 residues, our algorithm used 2 templates 

(2RIR_A and 2CUK_A) in comparison to the best predicted CASP8 model (MUSTER) 

which employed 7 templates (2RIR_G, 2RIR_D, 2RIR_F, 2RIR_B, 2RIR_C, 2RIR_A and 

2RIR_E). Assessing these predicted models against the native target structure for the 

structural domain (Residue segment 1-292), our predicted model shows the GDT-TS, GDT-

HA, TM_Score and RMSD scores of 96.788, 81.076, 0.985 and 0.774 in comparison to the 

respective scores of 87.500, 65.712, 0.966 and 1.198 for the best predicted CASP8 model. A 

comparison of the best CASP8 model, our model and the experimental structure of this target 

sequence reveals that our set of templates constructs topologically more accurate T0398 

model, as best represented by the violet colored encircled region in Figure 5.4. This region 

shows structural closeness of our model to its native structure in comparison to the best 

predicted CASP8 model. 
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Fig. 5.4 Superimposed constructed model (Green), best CASP8 model (Yellow) and the 

experimental native conformation (Red) for the CASP8 target T0398. The main chain 

backbone conformation is shown by tube representation. 

 

For the CASP9 target T0586 encoding 125 residues, our algorithm employed only 2 

templates (2DU9_A and 3BY6_A) in comparison to the best predicted CASP9 model 

(Zhang) which employed 5 templates (3BY6_E, 3BY6_A, 3BY6_B, 2EK5_C and 3IC7_A). 

Assessing these predicted models against the native target structure for the structural domain 

(Residue segment 1-125), our predicted model shows the GDT-TS, GDT-HA, TM_Score and 

RMSD scores of 90.336, 76.261, 0.917 and 0.852 in comparison to the respective scores of 

 Chapter 
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75.841, 52.731, 0.866 and 1.671 for the best predicted CASP model. A comparison of best 

CASP model, our model and the native target structure reveals that our set of templates 

constructs topologically more accurate T0586 model, as best represented by the violet 

colored encircle region in Figure 5.5. This region shows structural closeness of our model to 

its experimental structure in comparison to the best CASP model. 

 

Fig. 5.5 Superimposed constructed model (Green), best CASP9 model (Yellow) and the 

experimental native conformation (Red) for the CASP9 target T0586. The main chain 

backbone conformation is shown by tube representation. 

 

For the CASP10 target T0747 model encoding 121 residues, our algorithm used only 

a single template (3D33_A) in comparison to the best CASP10 model (Mufold-MD) which 
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employed 2 templates (3SD2_A and 3D33_A). Assessing these models against the native 

target structure for the structural domain (Residue segment 24-34 and 43- 121), our predicted 

model shows the GDT-TS, GDT-HA, TM_Score and RMSD scores of 77.528, 59.551, 0.784 

and 1.119 in comparison to the respective scores of 69.382, 48.596, 0.739 and 1.414 for the 

best predicted CASP model. A comparison of best CASP model, our model and the actual 

target structure reveals that our set of templates constructs topologically more accurate T0747 

model, as best represented by the violet colored encircle region in Figure 5.6. This region 

shows the structural closeness of our predicted model with its experimental structure in 

comparison to the best predicted CASP10 model. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 Superimposed constructed model (Green), best CASP10 model (Yellow) and the 

experimental native conformation (Red) for the CASP10 target T0747. The main chain 

backbone conformation is shown by tube representation. 
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5.4 Domains without improved modelling accuracy 

Our algorithm could not predict more accurate models for five CASP8, nine CASP9 

and nine CASP10 domains. It has been noticed that a few of these domains are modelled 

through non-comparative modelling algorithm and are not discussed here. For example LEE 

and SAMUDRALA in CASP8, fams-ace3, United3D and McGuffin in CASP9 and LEE and 

Mufold in CASP10 did not employ the true comparative modelling algorithm to model the 

target sequence. Moreover, certain algorithms viz. EB_AMU_Physics of CASP8 and LTB of 

CASP9 are not available in the official CASP abstract booklet and are also not discussed in 

the following passage that briefly summarizes the major CASP algorithmic steps which are 

not employed by our modelling algorithm. These algorithms are streamlined to explain their 

conceptual methodology in a better way. 

 MULTICOM-RANK algorithm similarly employed the significant templates (E-value 

lesser than 10-20 and target coverage span more than 75%) along with the statistically 

insignificant ones to maximally cover the target sequence. Phyre2_A and Jones-UCL 

however compared the HMM profiles (Eddy 2011) of the target and template sequences to 

estimate their residue contact maps through PSICOV (Jones et al. 2012) and to construct their 

reliable alignment for selecting the best set of template fragments and constructing the 

threading based target model with the FRAGFOLD (Kosciolek & Jones 2014) as well as 

simulated annealing based algorithms. Seok-Server algorithm in CASP9 employed the 

HHPred to search the reliable hits for constructing their MSA through PROMALS3D (Pei et 

al. 2008). It further constructed the target models on the basis of the selected top-ranked 

templates through MODELLER-CSA protocol (Joo et al. 2008; Joo et al. 2009) to later refine 
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their unreliable segments (loops or terminal ends) and rebuild their side chains for improving 

the structural topology. Contrarily, the MUFOLD-MD and MULTICOM-NOVEL algorithms 

extensively employed the template search methods to even select the evolutionarily distant as 

well as reliable templates for constructing the accurate target models. MULTICOM-

CONSTRUCT also screened the reliable templates (Söding 2005; Karplus et al. 1997; Finn et 

al. 2011) to construct the alternative target-template alignments and build about 150,000 – 

250,000 models for each target sequence. FEIG algorithm, although employed the template 

search algorithms (Söding et al. 2005; Jaroszewski et al. 1998; Zhang et al. 2005) along with 

the threading based models of TASSER and I-TASSER methodologies (Zhang et al. 2005; 

Wu et al. 2007) to construct the target structures. The MULTICOM algorithm in CASP8 

moreover evaluated all of its predicted models through the ModelEvaluator (Wang et al. 

2009) tool to consider the top 50% structures for extracting their best set of structural 

fragments and for efficiently annealing them the finest way to construct an accurate target 

structure. Baker algorithm in CASP10 however parsed the target sequences into several 

structural domains to separately model them with the reliable templates and ROSETTA de-

novo fragment assembly approach (Bonneau et al. 2002; Leaver-Fay et al. 2011) for 

annealing them into an overall target structure by an extensive conformational sampling of 

about 100000-300000 models. Zhang-IRU however, directly assembled the 9-mer template 

fragments followed by the 3-mer template segments with Edafold (Simoncini et al. 2012) 

probabilistically to further repack the side–chains in the overall target structure and construct 

the minimal energy target model through ROSETTA (Gront et al. 2011). Pcons-net similarly 

employed the threading methods (Söding 2005; Wallner et al. 2007; Remmert et al. 2012; Wu  
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& Zhang 2007) along with the ROSETTA de-novo modelling methodology (Leaver-Fay et al. 

2011) to construct a compact target structure. PconsM however realigned the top 20 Pcons-

net predicted target models with HHsuite (Söding 2005) to construct their diverse set of 

alternative structural alignments and to merge their different structural segments in all the 

possible combinations for building the accurate target model (Larsson et al. 2009). 

 Altogether for some of the CASP target domains, the most accurate CASP algorithms 

threaded the target sequence through the top-scoring set of numerous templates or alternative 

target-template alignments, fixed the loop segments and side-chains additionally in the 

constructed target models and extensively simulated the target structure through 

computationally complex MD or simulated annealing methodologies. Due to consideration of 

these non-ideal comparative modelling steps or the additionally employed modelling tactics 

over the already constructed target structures, some of the CASP algorithms predicted more 

accurate models than our constructed structures for only some of the selected target domains. 

 

5.5 Modelling steps where we improved the prediction accuracy 

 Template ranking helps a lot in improving the accuracy of TBM algorithm. The 

template ranking is likely to improve the protein model quality by the satisfaction of two 

conditions. One is that gapped regions in the alignment to the first best selected template can 

be covered by the complementary alignment with the other template. If multiple such 

complementary templates are available for the considered gapped region, the template 

ranking helps us to choose the best template for the considered sequence segment. Another  
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reason for the modelling accuracy is even more consistently accurate. Ranking helps us to 

choose the best set of structurally similar templates. It has been observed that when any of 

these conditions is not satisfied by the selected set of templates for a target sequence, 

predicted models normally diverge from their native conformations. 

The template ranking method employs the complete available information for a 

template from both pairwise and multiple sequence alignments. It aims to use the minimal 

number of correct templates for a target sequence. The algorithm solves the modelling 

problems that are caused due to the consideration of incorrect templates or the erroneous set 

of alternative target-template alignments and the illogical threading combination of structural 

fragments extracted from the templates unrelated with the considered target sequence (Cheng 

et al. 2005; Jones et al. 2005; Zhang et al. 2005; Wu & Zhang 2008; Moshe et al. 2009; 

Tianyun et al. 2009). 

It is very important that the template ranking algorithm should correctly rank the 

templates through a set of multiple structural and alignment parameters. The approach has 

been implemented to make the ranking and modelling algorithm robust enough for selecting 

the correct templates from a set of promiscuously similar templates. We have not allowed 

iterative improvements or overtraining of the algorithm parameters for only a few CASP 

targets and rather we employed the same set of parameters by considering the complete 

available alignment information to make the algorithm robust enough at handling the diverse 

target proteins. Considering all the functionally similar HHPred templates has also allowed 

the feasible application of our algorithm even for the difficult modelling cases, where we 

have only a few templates sharing an utmost 35% identity with the target sequence. 
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 Chapter 

V 

 It is interesting to observe that an erroneous topological pool of coordinates in a 

model normally generated from the consideration of multiple unrelated templates is 

successfully stabilized through our template ranking approach employed along with a 

structurally balanced sequence alignment. The template ranking algorithm also aids us to 

easily avoid the consideration of promiscuous template matches for the target sequences. The 

approach would assist the development of accurate protein modelling tools and servers to 

allow us quickly bridge the ever-increasing sequence-structure gap. 

For all the selected CASP8, CASP9 and CASP10 targets, we have improved the 

modelling accuracy with a huge respective sum GDT-TS, GDT-HA and TM_Score margin of  

327.241, 480.346 and 1.681 in comparison to the best predicted CASP models, as orderly 

enlisted in the Tables 5.1, 5.2 and 5.3. Lastly, the significantly high modelling accuracy of 

the constructed target models prove that our predicted structures are definitely the result of 

correct structural reorientation of the secondary structure segments extracted from the correct 

templates and it may also be due to the higher coverage of the target sequence through the 

reliable set of structurally similar templates. 
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6.1 Conclusion 

With the increasing number of templates in PDB, a multi-template based TBM 

algorithm has become increasingly useful to predict protein structures. It has already been 

shown that a target sequence can be more accurately modelled through the consistent distance 

restraints of multiple templates in comparison to the single best available template (Zemla, 

2003; Zhang et al. 2005). Despite the development of several TBM or threading algorithms, 

the template selection and combination step still has some limitations such as the inability to 

select and employ the best set of templates for constructing the accurate target models. 

In comparison to the conventional TBM algorithms that evaluate pairwise alignment 

or MSA of a target sequence against the templates to select the reliable templates, we have 

evaluated both the pairwise alignment as well as MSA information of templates against a 

target sequence through a diverse set of scoring parameters. Employing these pairwise and 

MSA scores of templates, we have developed a template ranking-cum-selection methodology 

for selecting the best set of templates. Our algorithm evaluates the pairwise sequence 

similarity of a target sequence against the template hits through the key scoring parameters 

viz. coverage span and aligned charges. Moreover, it also evaluates the structural similarity of 

a hit against the seed template through several important scoring parameters viz. TM_Score, 

GDT-TS and the proportion of topologically correct residues fitting within 8Ǻ distance 

deviation. The consideration of all these scoring parameters empowers our developed 

algorithm to correctly rank the templates and select their best set for a target sequence. 

To sample the conformational space of a target sequence, we have developed an 

iterative sampling algorithm. Unlike the conventional single long model sampling technique 

that does not consistently improves the topology of a target structure, our algorithm employs 

the best set of model assessment measures (TM_Score and Z_Score) to guide the optimal 
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iterative sampling of the target conformation and construct a model that is more accurate than 

the first constructed target model. 

Among the 33, 52 and 31 domains present in the selected CASP8, CASP9 and 

CASP10 TBM-HA targets, our developed algorithm has predicted models with improved 

GDT-TS score for 31, 43 and 25 domains in comparison to their best structures predicted 

during the CASP. Overall for all the selected CASP target domains, our predicted models 

have shown an average respective GDT-TS, GDT-HA and TM_Score improvement of 3.531, 

4.814 and 0.022 over the best structures predicted during the CASP. 

We have programmed our complete template-ranking-cum-selection and sampling 

scripts in the “C”, Python and PERL languages. The developed algorithm significantly 

improves the accuracy of predicted protein models and it would certainly pave way for the 

development of automated protein modelling tools that can be integrated with the genome 

sequencing experiments. 

 

6.2 Future Perspectives 

To understand the cellular system the best possible way, the detailed knowledge of 

protein structures is essential to understand all of their functions. Despite the phenomenal 

research currently being done in this field, protein structure prediction is one of the most 

challenging problems of bioinformatics to structurally understand the complete proteome of a 

cell system. We have improved the modelling accuracy of several CASP target domains and 

have attempted to solve the modelling problems that are usually caused due to the inaccurate 

template selection and model sampling steps. However, further advancements are still needed 

to overcome the shortcomings of each of the steps of a TBM algorithm for predicting the 

accurate protein structures. 
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Although several HMM based template search algorithms have been developed 

(Söding 2005; Biegert & Söding, 2009; Hildebrand et al. 2009; Remmert et al. 2012), the 

entire set of correct and biologically related templates is not resulted by any of these 

methodologies for a target sequence. Though being probabilistic, these HMM profile based 

template search algorithms are unable to search the correct templates that share a distant 

evolutionary relationship with the target sequence. Moreover, these algorithms also result in 

some false positive and spurious templates that share a significant homoplastic sequence 

similarity with the target sequence due to the following three reasons. Firstly, the template 

selection error starts due to greedy nature of PSI-BLAST (employed by HHPred to construct 

the target-template scoring profiles) as it also considers non-homologous template fragments 

at the sequence-ends of the high-scoring centrally aligned segments of a target sequence 

(Gonzalez & Pearson, 2010). To solve this problem, HHSearch aligns the target-template 

sequences and considers only the high-scoring segments by pruning the terminal unaligned 

segments, although yet another problem arises. HHSearch aligns the high-scoring local folds 

or conserved domains of templates with the target sequence segments to result in an overall 

sequence profile of the target sequence and these local folds of different templates are usually 

never the complimentary sub-structures which can be reliably juxtaposed to result in an 

accurate target model. Current TBM algorithms merely search and combine the local 

template folds to maximally cover the target without worrying for their overall correct mutual 

agreement with other target residues, possibly covered with the other templates (Cheng 2007; 

Gront et al. 2011; Simoncini et al. 2012). Secondly, the prefixed values of all the parameters 

viz. E-value cut-off, E-value inclusion threshold and the number of considered profile 

iterations, that are normally used to construct a HMM profile of a target or a template 

sequence, may wrongly result in some unreliable hits as high-scoring false-positive hits. The 

reliability of such distant templates again becomes too questionable especially while 
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predicting the structure of a protein sequence whose function is not well understood. Lastly, 

the HMM-based algorithms predict secondary structure of target sequence through PSIPRED 

(Pirovano et al. 2007) and consider its structural context to optimally localize the gaps in the 

target-template sequence profile for searching the reliable templates. Consideration of only 

the PSIPRED makes the entire template search results of these HMM based algorithms 

biased towards it. Moreover, PSIPRED does not properly estimates the distant evolutionary 

relationship between the target and template sequences, and it consequently fails to select the 

correct set of distantly related templates. A better HMM sequence profile based template 

search approach is thus needed to search all the correct templates that are biologically related 

with a target sequence. and to improve the spatial satisfaction of unaligned target segments in 

accordance with the best set of reliable structural folds of the selected templates. Hence, if we 

are able to implement the robust set of protein secondary structure prediction algorithms the 

best way in the optimally scored HMM based computational target-template sequence profile 

construction and evaluation algorithm, we can attempt to screen the plausible as well as 

reliable templates for a target sequence. 

Constructing a biologically correct alignment is yet another challenge. It has been 

observed that the protein models constructed through the sequence profile based MSA of 

templates are more accurate than the ones constructed through the structural alignment of 

templates (Hildebrand et al. 2009). Through the target-template sequence profile, the TBM 

algorithms consider the top-ranked templates to construct the target model, although the 

conformational topology of secondary strctures extracted for all the corresponding target 

residues as per the considered target-template alignment is not normally retained in the target 

model. The algorithm that evaluates all the optimal as well as sub-optimal target-template 

alignments, constructed through sequence as well as structural topology parameters, is 

required to select or further construct the biologically significant alignment through the 
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efficient implementation of protein secondary structure prediction algorithms. It would thus 

allow us to properly use the available templates to build accurate target model. 

Model building algorithms also suffer from several problems. Several modelling 

algorithms employ the threading methodologies like TASSER (Zhou & Skolnick 2009) and 

ROSETTA (Leaver-Fay et al. 2011) to link the structurally conserved folds of different 

templates for constructing the target model which is not always an energetically stable 

conformation devoid of atomic clashes. Moreover, some modelling algorithms employ the Cα 

backbone topology of selected templates to construct the complete target structures by lastly 

adding the backbone and side-chain atoms. However, this method is very complex as it 

considers the templates to evaluate different combinations of template fragments, side-chain 

atoms and backbone atoms. As this method separately add the backbone and side-chain atoms 

to the Cα backbone model of a target sequence, the probability of erroneous alteration of the 

conserved Cα backbone, extracted from the selected templates, greatly increases and it may 

further ruin the overall topology and accuracy of the constructed target model. Additionally, 

this method fails to construct the target models that are free of atomic clashes (Zhou & 

Skolnick 2009). Hence, the modelling methodology should efficiently assess the topological 

similarity and conformational diversity of the top-ranked templates to select thir best set for 

maximally covering the target sequence and constructing its accurate structure. 

As multiple templates are normally employed for modelling a target sequence, model 

refinement algorithms still need to be improved to refine the target model the best way so that 

the structural topology extracted from the considered templates is not disturbed and the side-

chains, loops and secondary structures are packed the best possible way in the target model. 

These refinement algorithms are required to optimally sample the conformational space of the 

target sequence and construct its minimal energy conformation that is structurally closer to its 

native conformation. Hence, while energetically refining the energetically unfavorable and 
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incorrect segments of the target model, the algorithms should quickly evaluate the 

conformational space of a target sequence and should also retain the conformational topology 

intact for all of its secondary structures that are correctly constructed by the modelling 

algorithm. 

Model assessment has also been given huge emphasis in the recent CASP rounds and 

many assessment measures like TM_Score, GDT, DISOPRED, and SphereGrinder have been 

developed. Currently, the TM_Score and GDT-TS scores are considered as the most reliable 

model assessment parameters. However as these scoring schemes consider the Cα distance 

deviation between the equivalent residues of the two protein structures and the count of such 

topologically correct residues fitting within a specified distance deviation to calculate the 

overall structural similarity score, the residue segments that are structurally much more 

similar or are topologically correct are not clearly highlighted. Selecting an accurate structure 

also becomes a really difficult task when the two predicted models have an equivalent 

TM_Score or GDT score against the employed template(s). Hence the algorithm that 

effectively evaluates the topological cartesian distance between every successive residue Cα 

atom and also correctly assesses the angular deviation of every successive residue backbone 

plane is urgently required to solve the logical shotcomings of the TM_Score and GDT based 

model scoring measures. Furthermore, we also need to revise our assessment algorithm to 

correctly rank the target models that contain several structural domains. 

Altogether, the algorithmic improvement is still needed at every single step of a TBM 

algorithm to construct an accurate target model. 
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