Abstract

Phi11, a temperate bacteriophage of *Staphylococcus aureus*, has been found to harbor a *cro* gene and a *cI* repressor gene, both of which play a very important role in the developmental pathway of Phi11. The Cro and CI repressor proteins have been found to bind specifically (with different affinity constant) to 15 bp partially palindromic repeat operator DNA (*O* DNA), located in the *cI-cro* intergenic region. *O* DNA consists of three 15 bp partially palindromic repeats (*O*1, *O*2 and *O*3). CI has binds to *O*1 and *O*2 with maximum affinity for *O*1; on the other hand, Cro binds only to *O*3. Surprisingly, the affinity of Cro repressor towards *O*3 is comparatively much lower than that of CI for *O*1 or *O*2.

To understand the mechanism of action of Cro, the effects exerted by various ions (cations and anions) upon the interaction between Cro and its cognate operator DNA have been studied by employing gel shift assays as well as circular dichroism spectral analysis. This study has revealed that NH_4^+ and $C_2H_3O_2^-$ ions better facilitated the binding of Cro to its cognate operator DNA as compared to Na⁺, K⁺ and Li⁺. Interestingly, Mg^{2+} , CO_3^{2-} and $C_6H_5O_7^{3-}$ have an inhibitory effect upon this binding. The effect of the said ions upon the structure of Cro was also investigated by circular dichroism and it was found that other than $C_6H_5O_7^{3-}$ ions, none of the other ions destabilized the protein. On the other hand, Mg^{2+} and CO_3^{2-} ions maintained the structure of the protein but severely hampered its functional activity. $C_6H_5O_7^{3-}$ ions appeared to be more suitable in maintaining the biological activity of Cro.

Interestingly, the genome of aureophage Phi11 reveals the presence of on early gene *gp07* (ORF7), which codes for the putative antirepressor protein (GenBank accession no. NC_004615.1). Antirepressor proteins are mainly involved in lytic cycle of various bacteriophages. The Phi11 Gp07 consists of two domains - an amino terminal Bro-N domain and a carboxy terminal KilA-C domain. Despite the important role of antirepressor proteins in the developmental pathway of phages, there are no reports on the purification and characterization of aureophage antirepressor proteins. In this work, study Gp07, its two domains and its deletion mutant (Δ Gp07) have been cloned separately. The effects exerted by the overexpression of Gp07, Δ Gp07 and its separate domains upon the growth rate as well as the morphology of the *Escherichia coli* cells have been studied. Taken together, these results indicate that Gp07, Δ Gp07 as well as the carboxy-terminal domain of Gp07 upon overexpression, retards the growth rate of the *E. coli* cells and also induces filamentation in the cells. Moreover, the overexpressing cells also exhibit the presence of multiple nucleoids. The carboxy terminal KilA domain of Gp07

appears to be indispensible for its action upon the growth rate and morphology of the host cells. However, the growth inhibition and filamentation induced by the amino-terminal domain of Gp07 is temporal in nature.

The growth inhibitory effect of Gp07 upon the host cells makes it an interesting candidate for further characterization. However, the purification of Gp07, has proved to be very challenging. Being a lethal protein, upon overexpression it completely retards the growth of the host cells. In a bid to purify Gp07, a method was devised to overexpress and purify the full length Gp07 as carboxy terminal hexa histidine tagged variant. The recombinant protein was overexpressed in *E. coli* BL21(λ DE3) cells. The time and temperature of induction by IPTG were optimized to obtain the overexpressed recombinant Gp07 in soluble form. Later, a gradient of imidazole and NaCl were used for successful purification of soluble Gp07 to homogeneity. It was found that Gp07 exists as a dimer in solution as is evident from gel filtration chromatography and glutaraldehyde cross-linking data. Further, it was observed that temperature has huge impact on the structural conformation of the protein.

Finally, the functional role of Gp07 in the developmental pathway of Phi11 was investigated. Antirepressor proteins of bacteriophages are chiefly involved in interfering with the function of the repressor protein and forcing the bacteriophage to adopt the lytic cycle. The results indicate that Gp07 functions as a novel antirepressor by regulating the developmental pathway of Phi11. It mediates its actions by enhancing the binding of the Cro repressor protein to its cognate operator. It was also observed that the CI repressor protein of Phi11 binds to the putative operator of Gp07 and regulates its expression. Moreover, it has been found that *S. aureus* transcriptional repressor *lexA* and co-protease *recA* genes play a crucial role in the lytic-lysogenic switching in Phi11. Finally, it has been identified that the Bro-N domain of Gp07 is actually responsible for enhancing the binding of Cro repressor to its cognate operator. Phi11 prophage induction is different from other bacteriophages. This work furnishes a first-hand report regarding the regulation involved in the developmental pathway of Phi11.

Acknowledgements

Firstly, I want to convey my heartiest gratitude to my PhD supervisor Dr. Malabika Biswas for giving me this opportunity and for her support, guidance, advice, patience and encouragement during the entire period. Her guidance helped me during my research including manuscripts writing and writing of this thesis.

In the course of my research tenure, she has constantly granted me complete freedom of thought that helped me immensely to foster my scientific attitude in a proper orientation.

Besides my advisor, I would like to express my sincere thanks to my DAC members Professor Sumit Biswas and Professor Angshuman Sarkar for immense help and support whenever required. They are always there for me, whenever I face any problem during my research study. Likewise, their immense help and review helps my research work to improve to a greater extent. I am thankful to them for giving me the access in their laboratory.

A special thanks to Professor Subrata Sau (Professor, Department of Biochemistry, Bose Institute) for allowing me in his lab and all the mental support I received from him. I also thank his research scholar Sukhendu da and Sohom for their help.

I am also very much grateful to Professor Amrita Chatterjee and Professor Mainak Banerjee from Department of Chemistry, BITS Pilani K K Birla Goa Campus for their suggestion and help with different chemicals and synthesized compounds. I profusely thank Zigmee and Viraj for their help.

I am also thankful to all the faculty members of Department of Biological Sciences, BITS Pilani K K Birla Goa Campus for their suggestion and help. I would like thank to the Director of BITS Pilani K K Birla Goa Campus for allowing and helping me to work in BITS Pilani K K Birla Goa Campus. Also, thanks to Vice-Chancellor of BITS Pilani.

I am also thankful to the Board of Research in Nuclear Sciences (BRNS), Govt. of India for providing me junior research fellowships and senior research fellowships (File No. BSC/RP 37B.12/BRNS) and financial support from DST (File No. EMR/2015/002229). BITS Pilani for the institute fellowship. Besides, I am too grateful to the Council of Scientific & Industrial

Research (CSIR), Govt. of India for awarding me with the senior research fellowship (File No. 09/919(0033)/2018 EMR-I).

My sincere gratitude to Dr. Keshab Chandra Mondal (Associate Professor & Head, Department of Microbiology, Vidyasagar University), Dr. Bikash Ranjan Pati (Professor, Department of Microbiology, Vidyasagar University), Dr. Pradeep Kumar Das Mohapatra (Assistant Professor, Department of Microbiology, Vidyasagar University) and Dr. Keya Sau (Associate Professor, Department of Biotechnology, Haldia Institute of Technology) for motivating me to take up research as a career.

I would like to thank all the research scholar of Department of Biological Sciences, BITS Pilani K K Birla Goa Campus for providing me with endless inspiration and assistance. They were always really passionate, caring, friendly and helpful. They are the reason behind every molecular biology and biophysical techniques that I learned.

I would love to express my heartiest gratitude to all my friends and especially to my friends for inspiring and motivating me. A special thanks to my wife Suhasini for always being there by my side.

Last but not the least, I would like to thank my family for their continuous psychological and motivational encouragement and unconditional love. I would never forget the love, the affection and the education provided by my parents to me which helped me to become a good person. They are the real strength of my life. This thesis would never be possible without their sacrifice and help which they did during my doctoral study.

Thank you all for making this journey memorable.

Table No.	Table title	Page No.
Table 1.1.	ICTV classification of prokaryotic viruses (Order: Caudovirales).	15
Table 2.1.	SDS poly-acrylamide gel percentage.	45
Table 3.1.	Primer used in this study to express the Gp07, rNTD, rCTD and Δ Gp07.	70
Table 3.2.	Plasmid used in this study and their derivatives.	71
Table 3.3.	26 Staphylococcus phages are divided on eleven gene organizations type (Type I-XI).	85
Table 5.1.	Primers used in this study to clone our desired genes and promoter regions.	113
Table 5.2.	Plasmids used in this study.	114
Table 5.3.	Nomenclature of the S. aureus and Phi11 recombinant proteins in this study.	115
Table 5.4.	Buffers used in this study.	115
Table 5.5.	<i>In-silico</i> search identified putative LexA-binding sites from the <i>S. aureus</i> and phage Phi11 genome.	125

LIST OF TABLES

Figure No. **Figure title** Page No. Figure 1.1. Scanning electron micrograph of S. aureus RN4220, phage Phil1 host bacterium. 2 Some major discoveries in the phage research. Figure 1.2. 7 Phage life cycles (lytic and lysogenic mode of development). Figure 1.3. 8 The genetic map of model lambda (λ) phage. Figure 1.4. 11 Figure 1.5. The right operator region (O_R) of lambda phage. 12 Regulatory mechanism of Cro repressor on $O_{\rm R}$. 13 Figure 1.6. Regulatory mechanism of CI repressor on $O_{\rm R}$. Figure 1.7. 14 Figure 1.8. Caudovirales phage families, morphologies (tail), genome types (dsDNA) and relative 16 genome sizes. The genetic map of Salmonella typhimurium phage P22. Figure 1.9. 18 Gene organization of the major control region of coliphage 186. Figure 1.10. 19 Conversion of phage N15 dsDNA genome into linear plasmid. Figure 1.11. 20 Three lysogeny control regions (*immA*, *immB* and *immC*). Figure 1.12. 21 Regulation of the lysogenic (A) and lytic (B) switch in the *B. thuringiensis* temperate Figure 1.13. 22 phage GIL01. Figure 1.14. LexA regulon overview. 24 LexA functions differently in different phages for lytic development. Figure 1.15. 25 The genetic map of model S. aureus phage Phi11. Figure 1.16. 26 Sequence of *cI-cro* intergenic region (designated as *O* DNA) of Phi11. Figure 2.1. 47 Figure 2.2. Effect of NaCl on Phi11 Cro. 49 Figure 2.3. Effect of KCl on Phi11 Cro. 50 Figure 2.4. Effect of LiCl on Phi11 Cro. 50 Effect of NH₄Cl on Phi11 Cro. Figure 2.5. 51 Effect of MgCl₂ on Phi11 Cro. Figure 2.6. 52 Figure 2.7. Effect of C₂H₃NaO₂ on Phi11 Cro. 53 Effect of Na₂CO₃ on Phi11 Cro. Figure 2.8. 54 Effect of Na₃C₆H₅O₇ on Phi11 Cro. 55 Figure 2.9. Oligomeric status of Phi11 Cro in presence of buffers containing NaCl, MgCl₂ or Figure 2.10. 56 Na₂CO₃. Figure 3.1. Domain architecture of Gp07. 73 Figure 3.2. Phylogenetic analysis. 74 Sequence analysis of the full-length protein of some phages in Caudovirales. Figure 3.3. 75 Overexpression of Gp07, its domains (rNTD, rCTD), Δ Gp07 and a control protein in E. Figure 3.4. 76 coli. Effect of Gp07, its domains and Δ Gp07 upon the growth of *E. coli*. Figure 3.5. 77 Effect of overexpression of Gp07, its domains and Δ Gp07 on the morphology of host Figure 3.6. 80 cell. Scanning electron micrographs of Wild type (WT), Control protein, Gp07, rNTD, rCTD Figure 3.7. 83 and Δ Gp07 expression in *E. coli*. Gene organization analyses of Caudovirales phage protein contain Bro-N domain. 84 Figure 3.8. Confirmation of recombinant Gp07 clones. Figure 4.1. 97 Figure 4.2. Gp07 over-expression. 98 Purification of Gp07, fractions analysed by SDS-12% PAGE. Figure 4.3. 99 Figure 4.4. Oligomerization analysis of Gp07 by gel filtration chromatography. 100 Temperature-induced unfolding of Gp07. Figure 4.5. 101

LIST OF FIGURES

Figure 5.1.	Purification of the constructed recombinant proteins (from Phi11 and S. aureus).	118
Figure 5.2.	Analysis of the effect of Gp07 upon the binding of CI to O DNA.	119
Figure 5.3.	Analysis of Gp07 interaction with 269 bp cI-cro intergenic region (O DNA).	120
Figure 5.4.	Analysis of Cro and O DNA binding enhancement by Gp07.	121
Figure 5.5.	CI and Cro repressors binding to p-gp07.	122
Figure 5.6.	Analysis of the interaction between Cro and O DNA in presence of rCTD (KiIA-C), Δ Gp07 and rNTD (Bro-N).	123
Figure 5.7.	Sequence analysis of 14bp LexA binding box.	124
Figure 5.8.	Repression of $gp07$ by LexA repressor.	125
Figure 5.9.	LexA mediated repression of recA, lexA and gp07 expression.	126
Figure 5.10.	RecA mediated cleavage sites of CI and LexA repressor.	127
Figure 5.11.	RecA mediated cleavage of CI and LexA.	127
Figure 5.12.	Purification of tag-less Cro.	128
Figure 5.13.	Pull-down assay.	128

Chapter	Title	Page
1	Introduction and review of literature	1
2	Changes in functional activity of Cro repressor mediated by various ions	41
3	Expression of Gp07 causes filamentation in Escherichia coli	62
4	Overexpression and purification of Gp07-a lethal protein	90
5	The role of Gp07 in the developmental pathway of Phi11	106

BRIEF CONTENTS

TABLE OF CONTENTS

PAGE

Thesis title page (Annexure I) Certificate from Supervisor (Annexure II) Acknowledgements Abstract Table of contents List of tables List of figures List of abbreviations

Chapter 1: Introduction and review of literature

1.1. Staphylococcus aureus	2
1.1.2. S. aureus pathogenicity	2
1.1.3. Adherence and invasion of host cell by the pathogen	3
1.1.4. Symptoms of staphylococcal infections	3
1.1.5. Treatment of Staphylococcal infections	3
1.1.6. Mechanism of Staphylococcal pathogenesis	4
1.2.1. Phage therapy	4
1.2.2. Advantage of phage therapy over antibiotics	5
1.2.3. Bacteriophages: Discovery and Significance	6
1.3. The life cycle of bacteriophages	8
1.3.1. Lytic cycle of phages	8
1.3.1.1. Adsorption of the phages to the host cells receptors	8
1.3.1.2. Penetration of the phage nucleic acid into the host cell	9
1.3.1.3. Transcription and biosynthesis of the bacteriophage genes within the host cell	9
1.3.1.4. Maturation of phages and lysis of the host cell to release of progeny phages	9
1.3.2. Lysogenic cycle of phages	10
1.4. Model phage: Lambda (λ)	
1.4.1. Life cycle of λ phage	10

1.4.2. The genetic switch in phage λ	12
1.4.3. Lytic development and regulation	12
1.4.4. Lysogenic development and regulation	13
1.4.5. Induction	14
1.4.6. The genes of phage λ regulating host growth	15
1.5. S. aureus and its phages (Aureophages)	15
1.6. The life cycles of different phages	17
1.6.1. Salmonella phages	17
1.6.2. Temperate coliphage 186	18
1.6.3. Lambdoid coli phage N15	19
1.6.4. Bacillus thuringiensis phage GIL01	22
1.6.5. Vibrio cholerae phage CTXφ	23
1.7. Phage development and role of SOS response	23
1.7.1. LexA and life cycles of temperate phage	24
1.8. Bacteriophage Phi11	25
1.8.1. Life cycle of aureophage Phi11	26
1.8.2. The lysogeny module	27
1.8.3. The putative <i>cI</i> repressor gene	27
1.8.4. Autocleavage of Phi11 CI repressor	28
1.8.5. The lytic module	28
1.8.6. The putative cro gene	28
1.8.7. The cI-cro intergenic region contains binding sites for repressors	28
1.8.8. Interaction of Phi11 CI and Cro proteins with the cI-cro intergenic region	29
1.9. Gap in existing research	29
1.10. Objectives of the Proposed Research	30
1.11. References	31

Chapter 2: Changes in functional activity of Cro repressor mediated by various ions

2.1. Introduction	42
2.2. Materials and Methods	44

	2.2.1. Bacterial strains and growth conditions	44
	2.2.2. Over-expression and purification of recombinant Cro	44
	2.2.3. Qualitative estimation of the purified Cro using Tris-Glycine polyacrylamide gel electrophoresis (Tris-Glycine SDS-12% PAGE)	45
	2.2.4. Staining of polyacrylamide gel using Coomassie Brilliant Blue-R250 (CBB-R250)	46
	2.2.5. Quantitative estimation of the purified Cro using Bradford method	46
	2.2.6. Gel shift assay and KD (Apparent equilibrium dissociation constant) determination by image analysis	46
	2.2.7. Secondary structure determination of Cro in presence of various ions by employing circular dichroism spectroscopy	47
	2.2.8. Oligomerization of Cro in presence of NaCl, MgCl ₂ and Na ₂ CO ₃	48
2.3	2.3. Results	
	2.3.1. Cro retains its biological activity in presence of monovalent cations such as Na ⁺ , K ⁺ and Li ⁺	49
	2.3.2. The monovalent cation NH_4^+ has a stimulatory effect upon the binding of Cro to its cognate operator DNA	51
	2.3.3. Mg^{2+} does not unfold Cro but has an inhibitory effect upon the binding of Cro to its cognate operator DNA	52
	2.3.4. Effects of $C_2H_3O^{2-}$ and CO_3^{2-} on Cro	52
	2.3.5. $C_6H_5O_7^{3-}$ has a profound effect on the structure and function of Phi11 Cro	55
	2.3.6. Mg_2^+ and CO_3^{2-} induce oligomerization in Phi11 Cro	56
2.4	. Discussion	57
2.5	. References	59

Chapter 3: Expression of Gp07 causes filamentation in Escherichia coli

3.1. Introduction	63
3.2. Materials and Methods	65
3.2.1. Bacterial strains, phage strains, and growth conditions	65
3.2.2. Phi11 phage preparation	65
3.2.3. Assay of viable phage particles in a lysate (PFU assay)	65
3.2.4. Isolation of Phi11 genomic DNA	65
3.2.5. Preparation of plasmid DNA	66

3.2.5.1. Boiling preparation of plasmid	66
3.2.5.2. Kit based plasmid purification	66
3.2.6. DNA amplification using Polymerase Chain Reaction (PCR)	66
3.2.7. Restriction endonuclease of DNA	67
3.2.8. Agarose gel electrophoresis	67
3.2.9. Purification of DNA bands from agarose gel	68
3.2.10. Ligation of DNA	68
3.2.11. Transformation of DNA	68
3.2.11.1. Competent cell preparation	68
3.2.11.2. Transformation of plasmid DNA or ligation mixture	69
3.2.12. Bioinformatics analysis of Gp07	69
3.2.13. Cloning of $gp07$, its domains and truncated Gp07(Δ Gp07)	70
3.2.14. Overexpression assays of Gp07, its domains and Δ Gp07 in <i>E. coli</i>	71
3.2.15. Examination of cell morphology of E. coli (harbouring Gp07, rNTD,	71
rCTD or Δ Gp07) using phase-contrast and fluorescence microscopy	/1
3.2.16. Examination of E. coli cell morphology with scanning electron	72
microscopy (SEM)	12
3.3. Results	73
3.3.1. Pfam analysis of Gp07	73
3.3.2. Gp07 of Phi11 belongs to the Caudovirales	73
3.3.3. Inhibition of cell growth by expression of Gp07, its domains and Δ Gp07	76
3.3.4. Microscopic observation of <i>E. coli</i> cells upon overexpression of Gp07, its	77
domains and Δ Gp07	11
3.3.5. Gene organization of Bro-N and KilA-C	84
3.4. Discussion	86
3.5. References	88

Chapter 4: Overexpression and purification of Gp07-a lethal protein

4.1. Introduction	91
4.2. Materials and Methods	
4.2.1. Strains and plasmids	92
4.2.2. Cloning of gp07 into expression vector pET28a	92
4.2.3. Test expression with time scan for the Gp07 purification	92

4.2.4. Large-scale protein expression and purification of His-tagged Gp07	93
4.2.5. Western blot analysis	94
4.2.6. Analytical gel filtration chromatography	94
4.2.6. Glutaraldehyde cross-linking of Gp07	95
4.2.7. Spectroscopy studies on Gp07	95
4.3. Results	96
4.3.1. Cloning of gp07 into pET28a expression vector	96
4.3.2. Test expression with time scan for the Gp07 purification	96
4.3.3. Large-scale protein expression and purification of His-tagged Gp07	98
4.3.4. Oligomeric state of Gp07	99
4.3.5. Thermal denaturation of Gp07 monitored by CD spectroscopy	100
4.3.6. GdnHCl mediated changes in structure of Gp07	101
4.4. Discussion	103
4.5. References	104

Chapter 5: The role of Gp07 in the developmental pathway of Phi11

chapter et me tote of opor in the developmental pathway of thirt	
5.1. Introduction	107
5.2. Materials and Methods	
5.2.1. Basic molecular biological methods	109
5.2.2. Phage, bacterial strains and growth conditions	109
5.2.3. Plasmid construction	109
5.2.4. Cloning of putative operator sites	110
5.2.5. Over-expression and purification of the recombinant proteins	110
5.2.6. Bioinformatic analysis	111
5.2.7. Gel retardation assays	111
5.2.8. DNase I footprinting assay	116
5.2.9. Pull-down assay	116
5.2.10. RecA-mediated cleavage of LexA and CI	117
5.3. Results	
5.3.1. Purification of the constructed recombinant proteins (from Phi11 and S. <i>aureus</i>)	118

	5.3.2. Gp07 has no effect upon the binding of CI to its cognate operator	119
	5.3.3. Gp07 has no binding site in O DNA	120
	5.3.4. Gp07 greatly enhances the binding of Cro to its cognate operator	120
	5.3.5. Interaction of CI and Cro with the putative operator region of Gp07	121
	5.3.6. Effect of NTD, CTD and Δ Gp07 on the binding of Cro to <i>O</i> DNA	123
	5.3.7. Interaction of LexA with the putative operator of Gp07	124
	5.3.8. Cleavage of Phi11 CI and host LexA with host RecA	126
	5.3.9. Pull-down assay to identify protein-protein interaction	128
5.4.	Discussion	129
5.5.	References	130

Summary of results and discussion
Conclusion
Future scope of work
Buffer and reagent composition (Appendix A)
List of publications (Appendix B)
Brief biography of the candidate (Appendix C)
Brief biography of the supervisor (Appendix D)

List of abbreviations

Δ Gp07	Eleven amino acids deletion mutant of Gp07
A ₅₉₅	Absorbance at 595 nm
A ₆₀₀	Absorbance at 600 nm
Amp	Ampicilin
Amp ^R	Ampicilin resistance gene
APS	Ammonium per sulphate
bp	Base pair
BSA	Bovine serum albumin
CBB G250	Coomassie brilliant blue G-250
CBB R250	Coomassie brilliant blue R-250
CD	Circular dichroism
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
dsDNA	Double-stranded DNA
EDTA	Ethylenediamine tetra acetic acid
EMSA	Electrophoretic mobility shift assay
EtBr	Ethidium bromide
EtOH	Ethanol
Gp07	Gene product of ORF7
IPTG	Isopropyl thio-β-D-galactoside
Kan	Kanamycin
Kan ^R	Kanamycin resistance gene
Kb	Kilo base pairs
kD	Kilodalton
LA	Luria bertani Agar
LB	Luria bertani broth
Μ	Molar
Mb	Mega base pairs
ml	Millilitre
mM	Millimolar
MOI	Multiplicity of infection

ng	Nanogram
Ni-NTA	Nickel-nitrilotriacetic acid
nm	Nanometer
O DNA	cI-cro intergenic region bearing the cognate operator DNA for Phi11 Cro
OD	Optical density
OD ₅₉₅	Optical density at 595nm
OD ₆₀₀	Optical density at 600nm
ORF	Open reading frame
PCR	Polymerase Chain Reaction
PEG	Polyethylene glycol
pfu	Plaque-forming unit
pmol	Picomol
rCTD	Recombinant carboxy terminal domain (KilA-C) of Gp07
RNase	Ribonuclease
rNTD	Recombinant amino-terminal domain (Bro-N) of Gp07
rpm	Revolution per minute
SDS	Sodium dodecyl sulphate
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
ssDNA	Single-stranded DNA
TEMED	N,N,N',N'-Tetramethylethylenediamine
Tris	Tris (hydroxymethyl) amino methane
Trp	Tryptophan
TSA	Tryptic soy agar
TSB	Tryptic soy broth
UV	Ultra violet
μg	Microgram
μl	Microlitre

Appendix A

Buffer and reagent composition

• 30% acrylamide and bis-acrylamide solution (100ml)

Acrylamide	29.2gm	
Bis-acrylamide	0.8gm	
Makeup the volume to 100ml with autoclaved miliQ water.		

• 10X SDS-PAGE running buffer (100ml)

Tris base	3gm	
Glycine	14.44gm	
SDS	1gm	
Makeup the volume to 100ml with autoclaved miliQ water, no need to adjust pH.		

• Coomassie staining solution (100ml)

Coomassie brilliant blue R250	0.1gm	
Methanol	50ml	
Glacial acetic acid	10ml	
Makeup the volume to 100ml with autoclaved miliQ water.		

• 6X SDS sample loading dye (10ml)

1M TrisHCl (pH 6.8)	2.4ml	
20% SDS	3ml	
100% Glycerol	3ml	
β-mercapitalethanol	3.2ml	
Bromophenol blue	12mg	
Makeup the volume to 10ml with autoclaved miliQ water.		

• 1X transfer buffer (100ml), western blot

Tris base	0.3gm
Glycine	1.44gm
Methanol	20ml [#]

Makeup the volume to 100ml with autoclaved miliQ water, no need to adjust pH.

Depend on protein size amount may vary.

• Destaining solution (100ml)

Methanol	20ml
Glacial acetic acid	10ml
MiliQ water	70ml

• 50X TAE buffer (100ml)

Trisbase	24.2gm
Glacial acetic acid	5.7ml
0.5 M EDTA (pH 8.0)	10ml
Makeun the volume to 100ml with autoclayed miliO water	

Makeup the volume to 100ml with autoclaved miliQ water.

• 5X TBE buffer (100ml)

Tris base	5.4gm	
Boric acid	2.75ml	
0.5 M EDTA (pH 8.0)	2ml	
Makeup the volume to 100ml with autoclaved miliQ water.		

• 8% urea-PAGE (60ml), footprinting gel

Urea	30gm
5X TBE	12ml
20% acrylamide	24ml
Makeup the volume to 60ml with autoclaved miliQ water.	

• 5X Bradford reagent

Coomassie Brilliant Blue G-250	100mg	
100% methanol	47ml	
85% phosphoric acid	100ml	
Makeup the volume to 200ml with autoclaved miliQ water.		

• STET buffer

TrisHCl (pH 8.0)	10mM	
NaCl	100mM	
EDTA (pH 8.0)	1mM	
Triton X-1000	5%	
Makeup the volume with autoclaved miliQ water.		

• 6X DNA loading dye

Glycerol	30% (v/v)
Bromophenol blue	0.25% (w/v)
Makeup the volume with autoclaved miliQ water.	

• Ethidium bromide solution

Ethidium bromide	10% (w/v)
Makeup the volume with autoclaved miliQ water.	

• BCIP/NBT color development substrate, western blot

NBT	33µl	
BCIP	16.5µl	
BCIP/NBT substrate buffer	5ml	
Add the NBT first, mix, add the BCIP, and mix again.		

Appendix B

List of publications

B1. List of publications related to the thesis

- **Das, A.,** Mondal, S., and Biswas, M. Studies on the gene regulation involved in the lyticlysogenic switch in *Staphylococcus aureus* temperate bacteriophage Phi11. (*Communicated*; 2019).
- **Das, A.,** and Biswas, M. (2019). Cloning, overexpression and purification of a novel twodomain protein of *Staphylococcus aureus* phage Phi11. *Protein Expression and Purification*, 154, pp.104-111.
- **Das, A.**, Biswas, S., and Biswas, M. (2018). Expression of Phi11 Gp07 Causes Filamentation in *Escherichia coli*. *The open microbiology journal*, 12, 107.
- **Das, A.,** and Biswas, M. (2016). Changes in the Functional Activity of Phi11 Cro Protein is Mediated by Various Ions. *The protein journal*, 35(6), 407-415.

B2. Other publications

- Hemmadi, V., **Das, A.**, Chouhan, O.P., Biswas, S. and Biswas, M., (2019). Effect of ions and inhibitors on the catalytic activity and structural stability of *S. aureus* enolase. *Journal of Biosciences*, *44*(4), p.90.
- Kumar, V., Naik, V.G., Das, A., Bal, S.B., Biswas, M., Kumar, N., Ganguly, A., Chatterjee, A. and Banerjee, M., (2019). Synthesis of a series of ethylene glycol modified water-soluble tetrameric TPE-amphiphiles with pyridinium polar heads: Towards applications as light-up bioprobes in protein and DNA assay, and wash-free imaging of bacteria. *Tetrahedron*, 75(27), pp.3722-3732.
- Naik, V. G., Hiremath, S. D., Das, A., Banwari, D., Gawas, R. U., Biswas, M., Banerjee, M. and Chatterjee, A., (2018). Sulfonate-Functionalized Tetraphenylethylenes for Selective Detection and Wash-Free Imaging of Gram-positive bacteria (*Staphylococcus aureus*). *Materials Chemistry Frontiers*, 2(11), pp.2091-2097.
- Bhutia, Z. T., Das, A., Biswas, M., Chatterjee, A., and Banerjee, M. (2018). 7-Oxa-4-thia-1-aza-bicyclo [3.2.1] octane 4, 4-Dioxides: Mechanochemical Synthesis by Tandem Michael Addition–1, 3-Dipolar Cycloaddition of Aldoximes and Evaluation of Antibacterial Activities. *European Journal of Organic Chemistry*, 2018(4), 506-514.
- Bhutia, Z. T., Prasannakumar, G., **Das, A.**, Biswas, M., Chatterjee, A., and Banerjee, M. (2017). A Facile, Catalyst-Free Mechano-Synthesis of Quinoxalines and their In-Vitro Antibacterial Activity Study. *ChemistrySelect*, 2(3), 1183-1187.

B3. Conferences attended

- Avijit Das and Malabika Biswas (2019). "Studies on the gene regulation involved in the lytic-lysogenic switch in *Staphylococcus aureus* temperate bacteriophage Phi11". 43rd Indian Biophysical Society (IBS) Meeting, Kolkata, India on 15th to 17th Mar 2019.
- Malabika Biswas and Avijit Das (2018). "The role of *gp07* in the developmental pathway of Phi11". Trends in Biochemical and Biomedical Research: Advances and Challenges, Varanasi, India on 13th to 15th Feb 2018.
- Malabika Biswas and Avijit Das (2017). "The ORF7 of Phi11 and its bacteriostatic effect on *E. coli* cells". Microbiology in the New Millennium: from Molecules to communities, Kolkata, India on 27th to 29th Oct 2017.
- Avijit Das and Malabika Biswas (2015). "The Antirepressor protein of Phi11 and its effect upon the host cell". 56th Annual Conference of Association of Microbiologists of India (AMI) & International Symposium on "Emerging Discoveries in Microbiology on 7-10th Dec 2015.
- Avijit Das and Malabika Biswas (2014). "The putative Antirepressor protein of *Staphylococcus aureus* phage Phi11 has a killing effect on the host cells". The 83rd Society of Biological Chemist (SBC) & "Haldane memorial symposium on evolutionary biology", Bhubaneswar, India on 18th to 21st Dec 2014.
- Avijit Das (2013). "3rd annual conference of the toxicological society of India and 1st international conference on biology of natural toxins", BITS Pilani K K Birla Goa Campus, India on 19th to 21st Dec 2013.

B4. Workshops attended

- "Healthcare Data Analytics: Underlying Foundations & Perspectives" at BITS Pilani K K Birla Goa Campus, India on 12th Apr 2019.
- "Practical protein crystallography using PX beamline at Indus-2 synchrotron" at Raja Ramanna Centre for Advance Technology Indore, India on 27th to 28th Mar 2018.
- "Bio-entrepreneurship grant-writing and intellectual property management" at BITS Pilani K K Birla Goa Campus, India on 18th to 19th Feb 2016.

B5. Scientific community membership

- Life Member, Society for Bacteriophage Research and Therapy (SBRT), India. 2019 Present (Id. No.- SBRTLM00012).
- Affiliate Membership, Microbiology Society, United Kingdom. 2018 Present. (Membership No: C020855).
- Basic Member, International Society for Viruses of Microorganisms (ISVM). 2018 Present.
- Life Member, Association of Microbiologists of India (AMI), India. 2015 Present. (Id. No: 4196-2015).

B6. Scholarships

- Awarded Council of Scientific & Industrial Research (CSIR) Senior Research Fellowship (SRF). [May, 2018 Present] (File No. 09/919(0033)/2018EMR-I).
- Awarded BITS Pilani, Institute Fellow (IF). [Apr, 2016-Apr, 2018].
- Awarded Board of Research in Nuclear Sciences (BRNS) Junior Research Fellowship (SRF) [Sep, 2013 - Sep, 2015], Senior Research Fellowship (SRF) [Sep, 2015 - Mar, 2016]. (File No. BRNS:BSC/RP37B.12/BRNS).

Appendix C

Brief Biography of the Candidate

Avijit Das received his Master of Science (M.Sc.) degree in Microbiology from Department of Microbiology, Vidyasagar University in 2012. For his dissertation (M.Sc.), he worked on "Factors Influencing the Synonymous codon and Amino Acid Usage Bias in Giant Phage 201phi2-1" under the supervision of Professor Keya Sau at Department of Biotechnology, Haldia Institute of Technology. Avijit Das has been enrolled in the PhD program of the Department of Biological Sciences, BITS Pilani K K Birla Goa campus. During this period, he worked as a junior research fellow and upgraded to senior research fellow on a BRNS funded project entitled "Cloning and characterization of the promoters of *Staphylococcus aureus* temperate bacteriophage Phi11". Also, he received Institute fellowship from BITS Pilani. Later in 2018, he was awarded with senior research fellowship from Council of Scientific & Industrial Research (CSIR), Govt. of India.

Avijit has co-authored six international publications and has presented his work at six conferences so far.

Appendix D

Brief Biography of the Guide

Dr. Malabika Biswas completed her Ph.D. in Bose Institute, Kolkata, under the supervision of Prof. Subrata Sau, as an Institute Fellow and finally as a CSIR-SRF in 2008. During her doctoral work she analysed the genetic switch involved in the developmental pathway of bacteriophage Phi11. She went on to work as a postdoctoral researcher at the Department of Biochemistry, Bose Institute, Kolkata from April 2008 to July 2009 with Prof. B. Bhattacharyya. Dr. Malabika Biswas joined the Department of Biological Sciences of K. K. Birla Goa campus as an Assistant Professor in January 2012. She has since been involved as the Principal Investigator of two research projects funded by BRNS, and DST, as well as the co-Investigator of a DST project. Her research interests include studies on the molecular biology of temperate phages, specifically aureophages. She further studies the genes of pathogenic bacteria which are essential for host invasion. Dr. Biswas has 14 publications in reputed journals and several conference publications to her name.

Presently, Dr. Biswas has three registered Ph.D. students under her tutelage and numerous thesis dissertation and project students working with her.