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Abstract

Local resources available at a node are often insufficient to solve large com-
puting problems. At the same time, underutilized resources remain unused
because of ignorance of their capabilities, or incompatible administrative re-
strictions. To preserve the investment in equipment, and allow solving large
computational problems, mechanisms are needed to join these independent
systems into cooperating groups across the boundaries of administrative do-
mains and physical proximity.

This cooperation is named as distributed computing that has many flavors like,
Cloud computing, Grid computing, and Cluster computing. These distributed
computing fields are concerned about aggregation of distributed computing
power for solving large-scale problems in science, engineering, and commerce.
However, application composition, resource management, and scheduling in
these environments are complex undertakings. This is due to the geographic
distribution of resources that are often owned by different organizations hav-
ing different usage policies.

Due to the aggregation of heterogeneous resources, resource management is
essential for Grid computing. This makes resource management in Grid sys-
tems distinct from traditional computation platform. Therefore, most task
scheduling algorithms developed for traditional platforms are not applicable
to Grid systems. Resource management includes searching, selecting, schedul-
ing, and monitoring. This thesis focuses on scheduling aspect of Grid comput-
ing resource management while job submission, execution, and monitoring
are delegated to user and provider middleware.

Efficiency of scheduling algorithms affects the user and service provider.
Effectiveness of a scheduling algorithm is measured using response time,
makespan, cost, deadline, budget, and communication overhead. A Grid
scheduling algorithm is employed at two levels - local scheduling and global
scheduling. Local scheduling algorithms manage the nodes within site and
improve the system performance, while global scheduling algorithms select
the site and improve the makespan and cost. They are of much relevance in
these days because user has to pay-per-use.

In the thesis, various centralized scheduling algorithms have been developed
and tested to improve makespan and cost; Decentralized scheduling algo-
rithms are developed and tested to improve response time.



Contributions to the centralized scheduling algorithms are as follows:

Three centralized scheduling algorithms have been designed. First, a depen-
dent task scheduling algorithm has been designed that works on economic
Grid and tasks are scheduled using Double Hybrid Multi-objective Non-
dominating Sorting Genetic Algorithm. The proposed algorithm minimizes
three conflict objectives namely makespan, communication cost, and compu-
tation cost. This approach has 20% minimum objective value than other ap-
proaches. Second, Independent Parallel task scheduling algorithm has been
designed that works on economic Grid. A Parallel task scheduling algorithm
minimizes makespan, cost, and processor fragmentation simultaneously. It re-
duces overall average failure by 31%. Third, an Enhanced Refinery heuristic is
designed for Independent task that works on computation Grid and reduces
the makespan by 9% in case of an inconsistent matrix.

Contributions to the decentralized scheduling algorithms are as follows:

Two decentralized scheduling algorithms have been designed. First, an Ef-
ficient Dynamic Round Robin scheduling algorithm that models a schedul-
ing algorithm as a state transition diagram and duplication candidate task is
chosen intuitively to avoid impractical duplication. Overall response time is
improved by 13% and 20% when job inter-arrival rate of tasks are large and
small respectively. Enhanced Sender-initiated scheduling algorithm works on
Grid system where nodes are heterogeneous in nature. It uses polling infor-
mation to determine threshold. As a result, proposed approach decrease the
12% turnaround time and 23% network overhead.
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Chapter 1

Introduction

Several factors like resource sharing, scalability, etc. have taken communication to the

era of Grid computing. This permits desktop computers to take part in a global network

activity when they are idle, and it enables large software systems to utilize extra hardware

resources. Like the human brain, modern computers normally utilize only a small portion

of their potential and are typically inactive while awaiting inbound tasks. When all the

resources of inactive computer systems are gathered as an all-in-one computer system, a

highly effective system arises.

With the assistance of the Internet, Grid computing has supplied the ability to utilize

hardware resources that belong to various other systems. Grid computing may have

different definitions for various individuals, however, as a simple interpretation, Grid

computing is a system that permits us to link network resources and application programs

and make a large effective system that has the capability to do extremely complex jobs

that a solitary personal computer could not complete. That is, from the perspective of the

users of Grid systems, these operations can only be performed through these systems. As

large infrastructure for parallel and distributed computing systems, Grid systems allow

the virtualization of a vast array of resources, in spite of their considerable heterogeneity.

Grid computing has numerous benefits for developers and administrators. For in-

stance, Grid computing systems can operate programs that need a large amount of mem-

ory and can make information simpler for accessing. Grid computing could help large

organizations and firms that have actually made a substantial investment to benefit from

their systems. Therefore, Grid computing has attracted the attention of industrial man-
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1. INTRODUCTION 1.1 Characteristics of Grid Computing

agers and investors in companies that have become involved in Grid computing, such

as IBM, HP, Intel, and Sun. By focusing on resource sharing and coordination, manag-

ing capabilities, and attaining high efficiency, Grid computing has become an important

component of the computer industry. However, it is still in the developmental stage, and

several issues and challenges remain to be resolved. Grid differs from traditional parallel

and distributed system because these systems are usually homogeneous and dedicated.

Scheduling algorithms that are designed for these systems can not work well in Grid

system due to following reasons:

• Resources reside within a single administration domain.

• Scheduler has knowledge of other resources status.

• Resources are static.

• Communication cost is negligible.

In the next section we discuss the characteristics of Grid computing.

1.1 Characteristics of Grid Computing

1.1.1 Heterogeneity

Grid is a collection of parallel and distributed system that are connected on wide area net-

work and belongs to multiple domains. Thus, it requires to address storage, computation,

and communication heterogeneity.

1.1.2 Sharing of Resources

Resources in a Grid belong to many different organizations that allows harness of the

ideal resources. These resources are shared to increase the efficiency and decrease the

cost.

1.1.3 Multiplicity of Administrative Domains

Each organization can establish management policies and different security techniques to

control the usage of resources deployed in a Grid in a secure manner. Resources must be

2
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accessible and usable by all customers of the Grid. Thus, it requires a method to provide

secure and reliable access of Grid.

1.1.4 Virtualization

Grid system creates virtual resources based on the problem and availability of resources.

These entities are of limited life, dynamically created and are used to solve the problem.

1.2 Categories of Grid

Grid computing is classified based on the structure of the organization that is served and

based on principle for which resources are used in the Grid. For example, Campus Grid

served within campus and Computational Grid efficiently executes the submitted jobs.

Grid categories are described in section 1.2.1 and 1.2.2.

1.2.1 Based on Scale

1.2.1.1 Cluster Grid

Cluster Grid is the most popular and simplest form of a Grid. A cluster Grid consists

of one or more systems, working together, to provide a single point of access to users.

Cluster Grid meets the need of most of the organizations. Typically it is used by a team

of users such as people working in a single project or in a department. A cluster Grid

supports high throughput.

1.2.1.2 Campus Grid

Campus Grid enables multiple projects or departments to share computing resources in a

cooperative way. It is also referred as the cooperative Grid. Campus Grid may consist of

dispersed workstations and servers, as well as centralized resources located in multiple

administrative domains, in departments, or across the enterprise.
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1.2.1.3 Global Grid

When an application needs to exceed the capacity of a campus Grid, organizations can tap

partner resources through a global Grid. Designed to support and address the needs of

multiple sites and organizations, global Grid provides the power of distributed resources

to users anywhere in the world for computing and collaboration. Individuals or organi-

zations sending excess work to a Grid provider or multiple companies working together

and sharing data-crossing organizational boundaries with ease can use the global Grid.

1.2.2 Based on Function

1.2.2.1 Computational Grid

The computational Grid systems have higher aggregate computational capacity for single

applications than the capacity of any constituent machine in the system. Depending on

how this capacity is utilized, these systems can be further subdivided into distributed

supercomputing and high throughput categories. A distributed supercomputing Grid

executes the application in parallel on multiple machines to reduce the completion time of

a job. Typically, applications that require distributed supercomputing are grand challenge

problems such as weather modeling and nuclear simulations. The computation Grid

increases the completion rate of parameter sweep type applications (Buyya et al. 2002).

1.2.2.2 Data Grid

Data Grid provides an infrastructure for synthesizing new information from data repos-

itories such as digital libraries or data warehouses that are distributed in a wide area

network. Computational Grids also need to provide data services, but the major dif-

ference between a data Grid and a computational Grid is the specialized infrastructure

provided to applications for storage management and data access. In a computational

Grid, applications implement their own storage management schemes rather than use

Grid provided services. Typical applications, which include special purpose data mining

activities that correlate information from multiple data sources. The data Grid initiatives,

European Data Grid Project (Hoscheck et al. 2000) and Globus (Chervenak et al. 2000), are

working on developing large-scale data organization, catalogue, management, and access

4
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technologies.

1.2.2.3 Service Grid

The service Grid is a smart, end-to-end service integration platform which provides ser-

vices to the user. This category is further subdivided as on-demand, collaborative, and

multimedia Grid systems. A collaborative Grid connects users and applications into col-

laborative work-groups. These systems enable real time interaction between humans and

applications via a virtual workspace. An on-demand Grid dynamically aggregates dif-

ferent resources to provide new services. A data visualization workbench that allows

a scientist to dynamically increase the fidelity of a simulation by allocating more ma-

chines to a simulation would be an example of an on-demand Grid system. A multi-

media Grid provides an infrastructure for real-time multimedia applications. This re-

quires supporting Quality of Service (QoS) across multiple different machines, whereas

a multimedia application on a single dedicated machine may be deployed without QoS

(Nahrstedt et al. 1998).

1.2.2.4 Utility Grid

The utility Grid environment can be considered as a market where competition takes place

between consumer and providers. Consumer wants to execute his/her task at least cost

and in less time. Providers lease their resources in order to earn revenue. The creation of

utility Grid requires the integration of scalable system architecture, resource management,

scheduling, and market models. In order to make the consumers participate in the utility

Grid, mechanisms for bidding and cost minimization are required. Utility Grid is different

from community Grid. Community Grid provides free access, whereas users need to pay

for service access in utility Grid. In utility Grid, users can make a reservation with a

service provider in advance to ensure the service availability and users can also negotiate

with service providers on Service Level Agreements (SLA) for getting the required QoS.
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1.3 Distributed Environment

For any compute intensive job, it is desired that the submitted job gets executed in mini-

mum time. The advent of multi-processor and multi-computer systems has ensured this

goal effectively. The effort towards parallel/concurrent computing has resulted in Paral-

lel, Distributed, Cluster, Grid, Peer-to-Peer, and Cloud computing. This section discusses

these platforms in brief.

1.3.1 Parallel Computing

Parallel computing is referred to as a tightly coupled system. It has a collection of pro-

cessors, memory and common system bus as shown in Fig. 1.1. It communicates through

shared memory. It can be classified into asymmetric and symmetric systems. Symmetric

multiprocessor involves all the processors to process jobs, whereas in asymmetric system,

one processor acts as a master, others act as slaves. Master processor allocates jobs to

slave processors. The problem with master/slave configuration is that master processor

will become a bottleneck at the time of peak load.

Tightly coupled scheduling systems have one more dimension than a single proces-

sor system. Multiprocessor scheduler selects a process as well as a processor. Proces-

sor can process unrelated or related processes. Each unrelated process runs indepen-

dently, whereas related process runs in a group. In tightly coupled systems, all pro-

cesses reside in the same memory. Whenever a CPU finishes its current task, it picks a

new process. Unrelated processes are scheduled according to their time sharing require-

ment. Major scheduling algorithms under this category are Affinity scheduling algorithm

(Singhal & Shivaratri 1998) and Smart scheduling algorithm (Singhal & Shivaratri 1998).

Related processes use Space sharing scheduling algorithm. Examples of Space sharing

scheduling algorithms are First-In-First-Out (FIFO) (Mualem & Feitelson 2001), Backfill-

ing (Mualem & Feitelson 2001), Conservative Backfilling (Mualem & Feitelson 2001), Ag-

gressive (Mualem & Feitelson 2001), and Gang scheduling (Ousterhout 1982).
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Figure 1.1: Parallel Computing - Source: (Tanenbaum & Bos 2015)

1.3.2 Distributed Computing

Distributed computing is also known as loosely coupled system. It is a collection of

computers (CPU, memory, secondary storage, etc.) instead of only a single computer.

They communicate through message passing over a network as shown in Fig. 1.2. In a

distributed system each node has its own memory, set of processes, and a local scheduling

algorithm.

Distributed scheduling algorithms achieve better system performance by smooth-

ing out any workload imbalance that may exist in a distributed system, such as min-

imizing communication delays, minimizing execution time, and maximizing resource

utilization (Kureger & Livny 1987). Load scheduling is the process of deciding where

to execute a process in a multi-computer system. This can be carried out by a sin-

gle authority (Singhal & Niranjan 2006) or by many entities (Chou & Abraham 1982),

(Krueger & Finkel 1984), (Shivaratri et al. 1992) spread in a distributed system. It also

decides whether to equalize the load at all the computers or to share the load between

highly loaded to lightly loaded nodes (Chou & Abraham 1982).

Table 1.1 depicts the comparison between distributed and parallel computing. Dis-

tributed computing refers to site autonomy where a node is free to behave differently

than other nodes in the system, whereas a node cannot behave differently in parallel

computing. Distributed computing has global scheduling and local scheduling. Global
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Table 1.1: Comparison of Distributed and Parallel Computing

Distributed Computing Parallel Computing
Global and Local scheduling Local scheduling

Site autonomy No site autonomy
Communication through message passing Communication through shared memory

scheduling assigns a task to any processor within the system which refers to task map-

ping or task placement. Objectives of global scheduling are load balancing and minimiza-

tion of communication delay. Local scheduling refers to Central Processing Unit (CPU)

scheduling. Minimization of waiting time and turnaround time are the objectives of local

scheduling.

Figure 1.2: Distributed Computing - Source: (Tanenbaum & Bos 2015)

Due to advancement in CPU computing power and communication bandwidth, tradi-

tional distributed computing emerged as Cluster, Grid, Cloud, and Peer-to-Peer comput-

ing. These modules are described in the next section.

1.3.3 Cluster Computing

Clusters are usually deployed to improve performance and availability over single com-

puters. It creates an illusion of being a single machine. It can be a collection of multi-

computer or multiprocessor systems as shown in Fig. 1.3. Clusters are divided into

two major classes: High Throughput Clusters (HTC) and High Performance Clusters

(HPC). HTC usually connect a large number of nodes using low-end interconnects. In

contrast, HPC connect more powerful compute nodes using faster interconnects. Fast in-
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terconnects are designed to provide lower latency and higher bandwidth than low-end

interconnects. Examples of cluster computers are Beowulf (Becker & Sterling 1995), Sun

cluster (Sun 2014), and Windows cluster (Win 2014).

Figure 1.3: Cluster Computing - Source: (Clu 2015)

These two classes of clusters have different scheduling requirements. In HTC com-

puting, the main goal is to maximize throughput, jobs completed per unit time by re-

ducing load imbalance among compute nodes in the cluster. Load balancing is particu-

larly important if the cluster has heterogeneous compute nodes. In HPC, an additional

consideration arises: the need to minimize communication overhead by mapping appli-

cations appropriately to the available compute nodes. HTC are suitable for executing

loosely coupled parallel or distributed applications, because such applications do not

have high communication requirements among compute nodes during execution time.

High-performance computing clusters are more suitable for tightly coupled parallel ap-

plications, which have substantial communication and synchronization requirements.

A resource management system manages the processing load by preventing jobs from

competing with each other for limited compute resources. Typically, a resource manage-

ment system comprises of a resource manager and a job scheduler. The scheduler commu-

nicates with the resource manager to obtain information about queues, loads on compute

nodes, and resource availability to make scheduling decisions. Scheduling algorithms

9



1. INTRODUCTION 1.3 Distributed Environment

can be broadly divided into two classes: time-sharing and space-sharing. Time-sharing

algorithms divide time of a processor into several discrete intervals, or slots. These slots

are then assigned to unique jobs. Hence, several jobs at any given time can share the

same compute resources. Conversely, space-sharing algorithms give the requested re-

sources to a single job until the job completes the execution. Most cluster schedulers

operate in space-sharing mode. The most common space sharing scheduling algorithms

are First-In-First-Out and Round-robin. There are various commercial resource managers

like Maui (Jackson et al. 2001), Portable batch system (Yan & Chapman 2005), and Condor

(Thain et al. 2005) available today in the market.

1.3.4 Grid Computing

Grid computing is inspired by the electrical power Grid. Looking at the ease of use, per-

vasiveness and reliability of the electrical power Grid, computer scientists too started ex-

ploring the design/development of an analogous infrastructure for wide-area parallel and

distributed computing and data sharing. Simplest form of Grid as shown in Fig. 1.4 where

resources are connected over wide area network to serve various users. The motivation

for Grids was initially driven by large-scale resource (computational and data) intensive

scientific applications that required more resources than a single computer (PC, worksta-

tion, supercomputer, or cluster) could provide to a single administrative domain. Grid

computing strives to aggregate diverse, heterogeneous, and geographically distributed

and multiple domain spanning resources to provide a platform for transparent, secure,

coordinated, and high-performance resource-sharing and problem solving platform.

A Grid layered architecture along with the services provided by each layer is presented

in Fig. 1.5 with connectivity layer, collective services layer, and resource layer together rep-

resented as core Grid middleware (Baker et al. 2002). Submission of jobs corresponding

to various applications is represented as Application layer. Applications can be devel-

oped using Grid-enabled languages and utilities like HPC++ or MPI. The user level Grid

Middleware includes application development environments, programming tools, and re-

source brokers for managing resources and scheduling application tasks for execution on

global resources. The core Grid Middleware offers services such as remote process man-
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Figure 1.4: Grid Computing - Source: (Gri 2015)

agement, co-allocation of resources, storage access, information registration and discovery,

security, and QoS ensuring. The Fabric layer corresponds to the computational resources

held by various participants. The job of the Grid middleware is to act as an interface

between the user and the Grid and to provide a homogeneous view of the heterogeneous

Grid to the participants while providing the following services:

1.3.4.1 Information and Data Management

The Grid Middleware (GM) should allow the various available resources to enroll them-

selves and communicate their services to the entire pool. Once these resources become

part of the pool and an application is allotted on these resources the GM should ensure

its secured execution while meeting the agreed Quality of Service (QoS) requirements.

Further, the GM should provide secured services to create, manage, and access data sets

involved in the computation.

11
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1.3.4.2 Allocation of Resources

When a user connects to a Grid, he simply specifies his application and its requirements.

It is the job of the GM to provide access to resources, CPU time, memory, network band-

width, and other components in order to extract the best performance from them.

1.3.4.3 Computational Economy

There could be administrative domains in which the resources owner may provide rent

based services. The GM should be able to meter the usage of such resources and accord-

ingly realizing the payment. This enables the resources to be chosen according to their

prices.

Resource scheduling in computational Grids has an important role in improving the

efficiency. The Grid environment is very dynamic, with the number of resources, their

availability, CPU loads, and the amount of unused memory constantly changing. In ad-

dition, different tasks have distinct characteristics that require different schedules. For

instance, some tasks require high processing speeds and may require a great deal of co-

ordination between their processes. Examples of Grid computing are SETI@home Project

(Set 2014) and Large Hadron Collider (LHC) (Lhc 2014) Grid computing.

1.3.5 Peer-to-Peer Computing

Peer-to-Peer (P2P) (Foster & Iamnitchi 2003) computing represents computing over an ap-

plication layer, wherein all interactions among the processors are at a "peer" level, without

any hierarchy among the processors. Thus, all processors are equal and play a symmet-

ric role in the computation. P2P computing arose as a paradigm shift from client-server

computing, where the roles among the processors are essentially asymmetrical. P2P net-

works are typically self-organizing, and may or may not have a regular structure of the

network as shown in Fig. 1.6. No central directories (such as those used in Domain Name

Servers) for name resolution and object lookup are allowed. Some of the key challenges

in this paradigm include: object storage mechanisms, efficient object lookup and retrieval

in a scalable manner; dynamic reconfiguration with nodes as well as objects joining and

leaving the network randomly; replication strategies to expedite object search; tradeoffs

12
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Figure 1.5: A Layered Grid Architecture - Source: (Buyya et al. 2002)

Figure 1.6: Peer-to-Peer Computing - Source: (Pee 2015)

13
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between object size latency and table sizes; anonymity, privacy, and security. Examples of

P2P computing are Bittorrent (Bit 2014a), Skype (Sky 2014), and Bitvault (Bit 2014b).

1.3.6 Cloud Computing

Cloud computing provides seamless and unlimited facilities. It is similar to Grid com-

puting. It refers to the hardware and systems software in the data centers that provide

computing resources as services. It provides three kinds of service (Clo 2014a) models

defined by the National Institute of Science and Technology (NIST) as shown in Fig. 1.7

and describes in section 1.3.6.1 to 1.3.6.3.

Figure 1.7: Cloud Computing - Source: (Clo 2014a)

1.3.6.1 Software as a Service (SaaS)

In this model the capability provided to the consumer is to make use of the provider’s

applications operating on a cloud infrastructure. The requests come from different client

devices either through a thin customer interface, such as a web browser (e.g., web-based

e-mail), or a program interface. The customer does not manage or regulate the underly-

ing cloud infrastructure, including network, servers, operating systems, storage, and even

specific application capabilities, with the possible exception of restricted user-specific ap-

plication setup settings. Examples of SaaS model are Abiquo’s (Abi 2014) and Akamai

(Aka 2014).
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1.3.6.2 Platform as a Service (PaaS)

The capability offered to the customer is to deploy onto the cloud infrastructure,

consumer-created or acquired applications produced utilizing programming languages

collections, services, and devices supported by the provider. The customer does not

handle or control the underlying cloud infrastructure, including network, servers, op-

erating systems, or storage space, however, the customer has control over the deployed

applications and potential configuration settings for the application-hosting environment.

Examples of PaaS model are Heroku (Her 2014), EngineYard (Eng 2014), App42 PaaS

(App 2014), and OpenShift (Ope 2014).

1.3.6.3 Infrastructure as a Service (IaaS)

The capability offered to the consumer includes providing processing, storage space, net-

works, and various other essential computing resources where the customer is able to

deploy and run arbitrary software, which can consist of running systems and applica-

tions. The customer does not handle or control the underlying cloud infrastructure, but

has control over operating systems, storage, and deployed applications; and potentially

restricted control of selected networking components (e.g., host firewalls, etc.). Exam-

ples of IaaS model are Amazon Web Services (AWS) (Ama 2014), BlueLock (Blu 2014),

Cloudscaling (Clo 2014b), and Datapipe (Dat 2014).

1.4 Comparison of Distributed and Parallel Systems

Parallel processing and distributed processing are closely related. In some cases, certain

distributed techniques are used to achieve parallelism. As the communication technol-

ogy advances progressively, the distinction between parallel and distributed processing

becomes smaller and smaller.

Clusters are different from supercomputers; supercomputers are well adapted to solve

large problems. Its hardware and maintenance cost is expensive thus only large organi-

zations can afford to have it. Clusters are less expensive, easy to maintain therefore small

organizations can afford it.
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Distributed computing is different from Grid computing. Distribute system is a virtual

computer formed by a networked set of heterogeneous/homogenous machines that agree

to share their local resources with each other, whereas Grid is a very large scale gen-

eralized distributed system that can scale to Internet-size environments with machines

distributed across multiple organizations and administrative domains with the involve-

ment of more central resources.

The distinction between clusters and Grids is based on the resources that are managed

by them. Clusters are owned by a single organization and resource allocation is per-

formed by a centralized resource manager; nodes cooperatively work together as a single

unified resource and connected over local area networks. Grids are an aggregation of

clusters/server/supercomputer/personal computer, etc. Each node has its own resource

manager, and does not aim at providing a single system view. Grids span multiple ad-

ministrative domains and are connected over wide area network and are heterogeneous

in nature.

Peer-to-Peer computing and Grid computing are concerned with sharing. Peer-to-peer

is a collection of low end machines, and it allows sharing files, transferring money, voice

communication, etc. Grids are a collection of high end machines (supercomputer, cluster)

and personal computers, and it harnesses the storage, data, network within a virtual

organization.

The distinction between Cloud and Grid computing is based on the ownership of

resources. Cloud resources are owned by an industry or academic organization while

Grids are mostly owned by academic organization. Clouds are liable to provide seamless

services, whereas the Grid harnesses the underutilized resources. Table 1.2 illustrates

different types of distributed computing systems.

1.5 Resource Management in Cluster Computing

Resource management is an integral part of cluster computing. There are various kinds

of cluster management systems like centralized, decentralized, load balancing, and load

sharing. Resource management system maximizes the system throughput and utilizes

resources in a better way. Some widely developed, distributed resource management
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Table 1.2: Different Types of Distributed Computing Systems

Parameters Cluster P2P Grid Cloud
System Beowulf, Sun

cluster and
Windows
cluster

Bittorrent,
Skype and
Bitvault

SETI@home Project
and Large Hadron
Collider

BlueLock,
Cloudscaling
and Datapipe

Architecture Centralized P2P Decentralized Dynamic
Infrastructure

Application Educational
resources,
Commercial
sectors for
industrial
promotion,
Medical re-
search

MP3 File
Sharing with
Napster, Dis-
tributed Com-
puting using
SETI@Home,
Instant Mes-
saging with
ICQ, File
Sharing with
Gnutella

Predictive Model-
ing and Simula-
tions, Engineering
Design and Au-
tomation, Energy
Resources Explo-
ration, Medical,
Military and Basic
Research, Visual-
ization

Banking,
Insurance,
Weather Fore-
casting, Space
Exploration

Network LAN LAN, WAN LAN, MAN, WAN MAN, WAN
Resources More than

2 computers
are connected
to solve a
problem.

Large num-
ber of non-
dedicated
computers are
used to share
resources.

A large project is
divided among
multiple comput-
ers to make use of
their resources.

It does just the
opposite. It al-
lows multiple
smaller appli-
cations to run
at the same
time.
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systems are Condor, Maui, Portable batch schedule, and Load leveler that provide high

performance. The next section describes some popular resource management systems for

cluster computing.

1.5.1 Condor

Condor is a high-throughput resource management system that manages a heterogeneous

pool of resources (Thain et al. 2005). It harnesses the computing power of idle resources

by stealing the idle CPU cycles. Condor system follows a layered architecture. A set

of resources managed by Condor is known as a condor pool. Condor keeps all the jobs

submitted by the user in a queue. These jobs are then scheduled onto the machines in

the pool, transparent to the user. Condor migrates a running job from one machine to

another machine if, given machine fails to complete the given job.

Figure 1.8: Condor Matchmaking Process - Source: (Thain et al. 2005)

Condor uses a resource specification language, known as Classified Advertisement

language (ClassAds) to specify the resource requests. ClassAds uses a semi-structured

data model and a query language as part of a data model that enables the advertising

agents to include constraints to resource requests and offers and hence specifies their

compatibility.

Condor has a centralized scheduling model and uses a dedicated machine, known

as Central Manager, which is responsible for scheduling the jobs onto the resources in

the condor pool. Condor matchmaking process (Thain et al. 2005) requires four steps as
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shown in Fig. 1.8. In the first step, customer and resources agent advertise their char-

acteristics and requirements in ClassAds. In the second step, a matchmaker scans the

known ClassAds and creates pairs that satisfy each others constraints and preferences. In

the third step, the matchmaker informs both parties of the match. The responsibility of

the matchmaker then ceases with respect to the match. In the final step, claiming, the

matched agent and resource establish contact, possibly negotiate further terms, and then

cooperate to execute a job. The clean separation of the claiming step allows the resource

and agent to independently verify the match.

Condor also supports preemption of jobs. In case a resource is withdrawn, then al-

ready running jobs are check-pointed and preempted to other resources, thus ensuring

the resource owner autonomy as well as in-time completion of the jobs.

1.5.2 Portable Batch System

The Portable Batch System (PBS) (Yan & Chapman 2005) is designed to manage large

parallel batch jobs running on multiple compute servers. It is based on a client-server

paradigm. Clients make requests to the server to perform actions on a set of objects.

Scheduler periodically collects the information about the jobs that are ready to run or

currently running from the batch server.

PBS consists of four major components: commands, job server, job executor, and job

scheduler. PBS provides commands and graphical interface to submit, monitor, modify,

and delete jobs. Job server function is to provide the basic batch services such as receiving

or creating a batch job, modifying the job, protecting the job against system crashes, and

running the job (placing it into execution). Job executor is a daemon that places the job

into execution by communicating Machine Oriented Miniserver (MOM). Job scheduler is

another daemon, which contains the site’s policy controlling (Loa 2014) which job to run

and where and when to run it. PBS job scheduling and selection process are depicted in

Fig. 1.9.

PBS includes several built-in schedulers, each of which can be customized for the local

site requirements. Schedulers included in the suite are FIFO, Shortest Job First (SJF), and

Fair Share. PBS server defines various kinds of queues for batch jobs like very long queue,
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Figure 1.9: Portable Batch System - Source: (Yan & Chapman 2005)

short queue, and default queue. PBS maximizes the CPU utilization thus, it loops through

the queued job list and starts any job which seems fit with the available resources.

1.5.3 Load Leveler

Load Leveler (LL) (Loa 2014) was developed to exploit CPU cycle stealing on worksta-

tions. LL does not follow centralized server configuration. User can submit and query

jobs from any machine and then requested machine will send this request to the load

negotiator. Load negotiator runs on a machine that is responsible for getting resources in-

formation and performs system wide task scheduling. Scheduling algorithms supported

by LL are FIFO, Gang, and Backfilling.

1.5.4 Load Sharing Facility

Load Sharing Facility (LSF) (Pla 2005) is a suite of application resource management prod-

ucts that schedule, monitor, and analyze the workload for a network of computers. LSF

supports sequential and parallel applications running as interactive and batch jobs. LSF

is a loosely coupled cluster solution for heterogeneous systems that supports a num-
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ber of scheduling mechanisms. There are several (like Fair share, Backfilling, and High

Throughput) scheduling strategies available in LSF for managing priorities and deadlines.

LSF scheduler performs load balancing and job migration among nodes in a cluster in case

of load imbalance in the system.

1.5.5 Maui

Maui (Jackson et al. 2001) is an enhanced open source task scheduler that can team up

with LSF and LL. Its emphasis is on rapid turnaround time of parallel jobs in a heteroge-

neous HPC environment.

The key to the Maui scheduler is its wall-time based reservation system. This system

orders the queued jobs based upon priority, starts all the high priority jobs that it can,

and then makes a reservation in the future for the next high priority job. As soon as this

is done, the backfill mechanism attempts to locate lesser priority jobs that will fit into

time gaps in the reservation system. This gives guaranteed start time to large jobs, while

providing a quick turnaround time for smaller jobs. Maui is capable of supporting mul-

tiple scheduling policies, dynamic priorities, reservations, and fair share capabilities. The

task of the job scheduler is to route the activities of the source manager, indicating when,

where, and how tasks are to be started, preempted, and called off. It is also responsible

for coordinating actions with other systems such as a Grid scheduler, allocation manager,

or information service.

1.6 Resource Management in Grid Computing

A Grid resource management system is a middleware (Joshy & Craig 2003) that provides

a cohesive and interoperable software solution. Grid middleware topology is shown in

Fig. 1.10. A major component of middleware is security, resource management, informa-

tion provider, and data management. The middleware provides security through integra-

tion of heterogeneous resources. Grid provides Grid Security Infrastructure (GSI) for sin-

gle sign-on and platform integration. Due to a large number of heterogeneous resources,

Grid resource management plays a crucial role in resources discovery, resources monitor-

ing, job management, and resources selection. The most interesting aspect of the resource
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management is the selection of the correct resources from the Grid resource pool, based

on the service-level requirements, and then to efficiently provision them to facilitate user

needs. Grid Resource Allocation and Management (GRAM) middleware provides this

facility. Grid Information Service (GIS) provides static and dynamic information about

resources. This includes resource utilization, availability, and capacity. This information

is used by GRAM for resource management. The current advances in this platform are

on virtualized data storage mechanisms, such as Storage Area Networks (SAN), Network

File Systems (NFS), Dedicated Storage Servers (DSS), and Virtual Database (VD), etc. Fol-

lowing sections describe popular resource management systems of Grid computing.

Figure 1.10: Grid Resource Management Topology - Source: (Joshy & Craig 2003)

1.6.1 Gridbus

Gridbus broker is a solitary user broker that sustains accessibility to both computational

and information Grids (Gri 2005). It transparently connects with several types of compu-

tational resources, which are subjected by various community Grid middlewares such as

Globus (Foster & Kesselman 1997), Unicore (Almond & Snelling 1999), and Amazon EC2

(Ama 2014), and organizing systems such as PBS and Condor. By nonpayment, it carries

out two scheduling techniques that take into account budget plan and deadline of ap-

plications. Furthermore, the style of the broker enables the combination of customized

organizing algorithms.
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1.6.2 NetSolve

NetSolve (Seymour et al. 2005) is a client server system that enables user to perform com-

putations remotely. The system allows users of FORTRAN, C, Matlab, Mathematica, Oc-

tave, or Excel to access both hardware and software computational resources distributed

across the Grid. A NetSolve agent searches for computational resources, chooses the best

available resource, retries for fault tolerance, and performs the computation. NetSolve

uses a load-balancing policy to achieve good performance.

1.6.3 Legion

Legion (Chapin et al. 1999) is an object-based meta system that provides the software in-

frastructure for a Grid. In a Legion-based Grid, objects represent the different components

of the Grid. Legion objects are defined and managed by the corresponding class or meta

class. Classes create new instances, schedule them for execution, activate or deactivate

the object, and provide state information to client objects. Each object is an active process

that responds to method invocations from other objects within the system. Legion defines

an Application Programming Interface (API) for object interaction, but does not specify

the programming language or communication protocol. Although Legion appears as a

complete vertically integrated system, its architecture follows the hierarchical model with

Legion Class at the top and the host and vault classes at the bottom as shown in Fig. 1.11.

It supports a mechanism to manage the load on hosts. It provides resource reservation

capability and the capacity for application level schedulers to perform regular or batch

scheduling. Legion machine architecture is hierarchical with a decentralized scheduler.

Legion provides default system oriented scheduling policies; however, it enables policy

extensibility through a structured scheduling extension interface.

1.6.4 Condor-G

Condor-G (Thain et al. 2005) is a fault tolerant system that can access different computers,

which employs software applications from Globus and Condor to allocate resources to

users in several domains. Condor-G has a task supervisor; therefore, it does not sustain

scheduling plans. However, it provides a structure to execute scheduling designs con-
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Figure 1.11: Legion Resource Management - Source: (Chapin et al. 1999)

cerning it. Condor-G can work together with the complying middleware: Globus Toolkit,

Unicore and NorduGrid, and it can submit tasks to Condor, PBS and Grid Engine schedul-

ing systems. Condor’s ClassAd match making tool enables individuals to point out which

resource to allot. The system permits both jobs and devices to explain attributes regard-

ing themselves, their demands and inclinations, and matches an outcome in a logical-to

physical binding.

The Glidein (Sfiligoi 2008) system is, likewise, supplied in Condor-G that begins dae-

mon processes, which could promote resource accessibility, which is used by Condor-G to

match queued jobs to sources advertised. The command-line interface is supplied to carry

out fundamental job management, such as sending a job, indicating executable input and

output documents and disagreements, querying a job condition or revoking a task.

1.6.5 Nimrod-G

Nimrod-G is (Nir 2014) an automated and specialized source administration system,

which permits implementation of parameter sweep applications on Grid to scientists and

other types of users. Nimrod-G generally follows the commodity market model and

provides four budget and deadline based algorithms for computationally-intensive ap-

plications. Each resource provider provides resources to the users. The users can vary
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their QoS need based upon their requirement. Nimrod-G includes a Task Farming Engine

(TFE) for creating and/or plugging user-defined scheduling policies and/or customised

task farming applications. The task farming engine coordinates resource trading, schedul-

ing, staging data and executable, execution, and gathers results from remote Grid nodes to

the user home transparently. Nimrod-G is widely utilized in the areas of bio-informatics

(Cab 2014).

1.6.6 Askalon

Askalon (Fahringer et al. 2005) is a Grid middleware for application development and

computing environment whose goal is to provide transparent services to the application

developers. Askalon provides four tools to the user: Scalea, Zenturio, Aksum, and Per-

formance Prophet. Unlike other middleware systems such as Condor-G and Nimrod-G,

Askalon is designed as a set of distributed Grid services using web services. Askalon

supports workflow applications. A workflow application can be modeled as a Directed

Acyclic Graph (DAG) where the tasks are the nodes and the dependencies between tasks

are the arcs among the nodes. The user can describe workflows using the XML-based Ab-

stract Grid Workflow Language (AGWL). Grid Askalon Resource Manager (GridARM),

provides user authorization, resource management, resource discovery, and advanced

reservation. Resource discovery and matching are performed based on constraints pro-

vided by the scheduler.

Askalon scheduler has a centralized architecture. It has three main components, as il-

lustrated in Fig. 1.12: Workflow converter, Scheduling engine, and Event generator. Work-

flow converter converts AGWL into simple Directed Acyclic Graphs. Scheduler engine

uses GridARM to get information about the Grid resources and maps the workflow onto

resources using scheduling algorithm like Genetic Algorithm, HEFT, or Myopic based

on user-defined QoS parameters. After the initial scheduling, the workflow is executed

based on the current mapping until the execution finishes or any event is interrupted.

Event generator module uses the performance analysis service to monitor the workflow

execution and detect whether any of the contracts have been violated. In case of contract

violation or if machine crashes, it performs a reschedule if necessary.
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Figure 1.12: Askalon Scheduler Architecture - Source: (Fahringer et al. 2005)

1.6.7 Pegasus

Pegasus (Deelman et al. 2005) is part of the GridPhyN (Zhao et al. 2006) project and is a

system that maps complex scientific workflows onto Grid resources. Pegasus uses GRAM

(Foster & Kesselman 1997) for remote job submission and management; Monitoring and

Discovery Service (MDS) to get information about the state of resources; Replica Location

Service (RLS) to get information about the data available at the resource. Fig. 1.13 depicts

the steps taken by Pegasus during the workflow refinement process.

Pegasus uses Directed Acyclic Graph Manager (DAGMan) and Condor-G to submit

jobs on Globus-based resources. There are two main components in Pegasus: Pegasus

Workflow Mapping Engine (PWME) and DAGMan workflow executor for Condor-G.

PWME receives an abstract workflow description and generates an optimized concrete

workflow. An abstract workflow describes the computation in terms of logical files and

logical transformations and indicates the dependencies between the workflow compo-

nents that can be described using Chimera’s Virtual Data Language (VDL). A concrete

workflow is an executable workflow that DAGMan can process. First, Pegasus queries

the MDS to get information about the availability of the resources. The next step consists

26



1. INTRODUCTION 1.7 Simulation Tools

of reducing the workflow to only contain the necessary tasks for the final product. This

is done by querying the RLS for replicas of the required data. Next, Pegasus queries the

Transformation Catalog (TC) to find the location of the logical transformation (software

components) defined on the workflow. The obtained information is used to make schedul-

ing decisions of various scheduling algorithms like Random-selection, Round-robin, and

Min-min. It is also possible to add new scheduling algorithms to Pegasus.

Figure 1.13: Pegasus Scheduler Architecture - Source: (Deelman et al. 2005)

1.7 Simulation Tools

Evaluation and comparative analysis of Grid scheduling algorithms are often difficult to

perform. There are many causes; for example, difficulties in obtaining exclusive access to

large scale infrastructures for research purposes or lack of certain functionality of real re-

source management systems, such as Advance Reservation (AR) or Grid user accounting.

Therefore, Grid scheduling algorithms have been often tested in simulation environments.

Simulators are useful to observe with high precision a local or global characteristic of a

distributed system. The advantage of the simulators are their independence to the execu-

tion platform. Simulating large numbers of nodes of distributed system on a single PC
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Table 1.3: Simulator Classification

Simulators Programming Network Workload
Language Topologies Archive

Bricks JAVA Yes No
SimGrid C/JAVA/Ruby Yes No
GridSim JAVA Yes Yes
GSSIM JAVA Yes No

is not rare. This advantage is made possible because the simulator does not run the real

distributed system, but is a model of it. Key features of different simulators are tabulated

in Table 1.3. The rest of this section describes some of the most popular Grid simulators.

1.7.1 Bricks

Bricks (Takefusa et al. 1999) was the first proposed Grid simulator designed for scheduling

issues. Bricks was proposed and designed for studies and comparisons of scheduling

algorithms and frameworks, under different structural and workload conditions. Bricks

allows the simulation of diverse behaviors: resource scheduling algorithms, programming

modules for scheduling, network topology of clients and servers in global computing

systems, and processing schemes for networks and servers. It is basically a Java discrete

event driven simulator where users can specify network topologies, server architectures,

communication models, and scheduling framework components. It is possible to add new

scheduling features by modifying a module called scheduling unit. Bricks has been in use

for experiences associated with the Network Weather Service (NWS) for High-Energy

Physics (HEP).

1.7.2 SimGrid

SimGrid (Legrand et al. 2003) was developed to study single-client multi-servers schedul-

ing in the context of complex, distributed, dynamic, and heterogeneous environments.

SimGrid is based on event driven simulation. Resources have characteristics like speed,

availability, latency, and service rate. It provides a set of abstractions and functionalities

to build a simulation corresponding to the applications and infrastructure characteristics.

These characteristics may be set as constants or evolved according to previously collected

traces. The topology is fully configurable and jobs have a cost and a state associated with
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them. SimGrid is available in C, JAVA, and recently in Ruby (Sim 2014).

1.7.3 GridSim

The GridSim (Gri 2014) toolkit allows modeling and simulation of entities in parallel and

distributed computing systems like users, applications, resources, and resource brokers

for design and evaluation of scheduling algorithms. It provides a comprehensive facility

for creating different classes of heterogeneous resources that can be aggregated using

resource brokers, for solving computational and data intensive applications. A resource

can be a single processor or multi-processor with shared or distributed memory and

managed by time or space shared schedulers. The processing nodes within a resource can

be heterogeneous in terms of processing capability, configuration, and availability. The

resource brokers use scheduling algorithms or policies for mapping jobs to resources to

optimize system or user objectives depending on their goals.

1.7.4 Grid Scheduling Simulator (GSSIM)

GSSIM (Kurowski et al. 2007) is a Java based discrete event simulator based on GridSim.

GSSIM supports multilevel scheduling architectures with plugged-in algorithms both for

Grid and local schedulers. It also enables both reading existing real workloads and gener-

ating synthetic Grid workloads based on given probabilistic distributions and constraints.

These workloads are compliant with known workload formats such as Standard Workload

Format (SWF) and Grid Workload Format (GWF). The framework also supports gener-

ation of resource failures which may be useful in modeling realistic behavior of Grid

environments.

1.8 Description of Problem

A Grid is a system of high diversity, which is rendered by various applications, middle-

ware components, and resources. But from the point of view of functionality, we can

still find a logical architecture of the task scheduling subsystem in Grid. Grid scheduling

architecture generalize a scheduling process in the Grid into three stages: resource discov-

ering and filtering, resource selecting and scheduling according to certain objectives, and
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job submission (Buyya et al. 2002). As a study of scheduling algorithms is our primary

concern here, we focus on the second step. Based on these observations, Fig. 1.14 depicts

a model of Grid scheduling systems in which functional components are connected by two

types of data flow: resource or application information flow and task or task scheduling

command flow.

Figure 1.14: Grid Scheduling Architecture - Source: (Dong & Akl 2006)

Basically, a Grid scheduler (GS) receives applications from Grid users, selects feasible

resources for these applications according to acquired information from the Grid Infor-

mation Service module, and finally generates application-to-resource mappings, based

on certain objective functions and predicted resource performance. Unlike their coun-

terparts in traditional parallel and distributed systems, Grid schedulers usually cannot

control Grid resources directly, but work like brokers or agents (Baker et al. 2002), or even

tightly coupled with the applications as the application-level scheduling scheme proposes

(Dong & Akl 2006). They are not necessarily located in the same domain with the re-

sources which are visible to them. Fig. 1.14 only shows one Grid scheduler, but in reality

multiple such schedulers might be deployed, and organized to form different structures

(centralized, hierarchical, and decentralized) according to different concerns, such as per-
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formance or scalability. Grid level scheduler/Metascheduler is crucial for harnessing the

potential of Grids as they are expanding quickly, incorporating resources from supercom-

puters to desktops.

Information about the status of available resources is very important for a Grid sched-

uler to make a proper schedule, especially when the heterogeneous and dynamic nature

of the Grid is taken into account. The role of the Grid Information Service (GIS) is to pro-

vide such information to Grid schedulers. GIS is responsible for collecting and predicting

the resource state information, such as operating system, architecture and capacity, num-

ber of nodes in cluster, communication bandwidth, latency between clusters, and cluster

current load. GIS can answer queries for resource information or push information to sub-

scribers. The Globus Monitoring and Discovery System (MDS) (Foster & Kesselman 1997)

is an example of GIS.

Besides raw resource information of resources it also requires application and

performance of resources for different application. Application profiling tool

(Hoschek et al. 2000) is used to extract properties of application. Application properties

includes relationship (parent and child) among jobs in a workflow, number of jobs form-

ing the workflow, size of each jobs in terms of the number of instructions and the number

of bytes required to be exchanged between the two jobs in case of parent and child re-

lationship between jobs. Analogical Benchmarking (Wolski et al. 1999), (Gong et al. 2002)

provides a measure of how well a resource can perform a given type of application. On

the basis of resource and application information and user specified criteria, resource

broker maps applications to the resources. Criteria could be:

• Minimization of makespan, communication time, and cost of execution

• Satisfy the user defined QoS like deadline with budget

• Maximization of reliability, reputation, or security

The Launching and Monitoring module creates an agent to submit an application to

selected resources, staging input output data and monitoring the execution of the appli-

cations.

A Local Resource Manager is responsible for local scheduling and reporting resource
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information to GIS. Local scheduling schedules the local and Grid jobs. Example of local

schedulers are PBS and Condor. Resource information is collected from Network Weather

Service (Wolski et al. 1999) and report the resource status information to GIS.

Figure 1.15: Workflow Partitioning Techniques - Source: (Fahringer et al. 2005)

We have considered two scheduling models: Centralized and Decentralized. Cen-

tralized model schedules applications on multiple clusters that are located in multiple

domain. In decentralized model schedulers interact among themselves in order to decide

which resources should be allocated to the jobs being executed. In centralized model

resource broker receives a Grid enabled application from user, and application is con-

verted into Directed Acyclic Graph (Workflow). After that, resource broker either maps a

full workflow (Dependent task scheduling algorithm) or subworkflow (Independent task

scheduling algorithm). Dependent task scheduling algorithm considers parent and child

relationship between tasks, a child task cannot start until its parent task completes exe-

cution. For example, in Fig. 1.15 task (t3) cannot start execution until task (t1) complete

execution. Independent task scheduling is formed using Iterative workflow partition-

ing technique (Fahringer et al. 2005). Workflow partitioning technique schedules a work-

flow into a sequence of subworkflows, which are subsequently scheduled and executed.

For example Fig. 1.15, has four subworkflows such that subworkflow-1, subworkflow-2,

subworkflow-3, and subworkflow-4, have tasks (t1), (t2, t3, t4), (t5, t6, t7), and (t8) re-

spectively. Task scheduling algorithm is further classified as online and offline. Online
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scheduling algorithm schedules a tasks to clusters as they arrive into the system. Offline

scheduling algorithm schedules the tasks to clusters after scheduling interval.

1.9 Thesis Contributions

In this thesis new Grid scheduling algorithms of various categories are designed, known

as dependent task scheduling algorithm, independent task scheduling algorithm and dis-

tributed scheduling algorithm. The contributions are as follows:

• Dependent task scheduling algorithm is named as Double Hybrid Non Dominated

Sorting Algorithm has been developed. This scheduling algorithm works on eco-

nomic Grid. It minimizes communication cost, computation cost and makespan.

Its results are compared with existing widely referred meta scheduling algorithm.

The comparison is done on the real world problem, known as Gaussian elimination

algorithm. Results show that Double Hybrid Non Dominated Sorting Algorithm

outperformed the existing algorithm in terms of solution quality and hyper volume

matrix. Further solutions are ranked because in multi-objective no solution is better

than other solutions.

• Two novel independent task scheduling algorithms have been designed. Enhanced

Refinery heuristic is worked on computational Grid. It minimizes makespan. It

outperforms the counter heuristics, in terms of makespan. Parallel tasks scheduling

algorithm schedules parallel tasks on economic Grid. The simulation results show

that parallel scheduling algorithm performs better than existing approaches in terms

of average cost, average makespan and number of failure.

• In the final part of this thesis, we explored two decentralized scheduling algorithms

where nodes itself decide when and where to schedule newly arrived tasks. En-

hanced Sender-initiated scheduling algorithm works in heterogeneous system, in

which system threshold is changed dynamically. The results obtained using the

proposed scheduling algorithm improves over the existing approaches in terms of

number of messages and turnaround time. Efficient Dynamic Round Robin schedul-

ing algorithm, models a scheduling system as a state-transition diagram and repli-
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cates a task intuitively. This scheduling algorithm outperforms the other existing

algorithms in terms of average response time.

1.10 Thesis Organization

The rest of the thesis is organized as follows. A brief introduction of distributed and

parallel systems is given in Chapter 1. Survey of the current literature is presented in

Chapter 2.

Chapter 3 presents dependent task scheduling algorithm on Grid. This scheduling

algorithm minimizes three conflict objectives namely makespan, communication cost, and

computation cost of execution using NSGA-II. Various version of NSGA-II has been tested

and new Double Hybrid NSGA-II version is introduced. A detailed simulation study

and its results are discussed to reveal the benefits attained and compromises reached as

compared to the results obtained with the use of models based on above mentioned three

objectives. The chapter ends with discussion on the model’s performance.

Chapter 4 presents two independent task scheduling algorithms. Enhanced Refinery

heuristic works on computational Grid that minimizes makespan. Parallel task schedul-

ing algorithm works on economic Grid that minimizes makespan, cost, and processor

fragmentation. A detailed simulation study and its results are discussed to reveal the

benefits of proposed algorithms.

Chapter 5 presents two decentralized Grid scheduling algorithms, namely Efficient

Dynamic Round Robin scheduling algorithm and Enhanced Sender-initiated scheduling

algorithm. Efficient Dynamic Round Robin scheduling algorithm model a scheduling al-

gorithm as a state transition diagram and duplication candidate task is chosen intuitively

to avoid impractical duplication. Enhanced Sender-initiated scheduling algorithm works

on Grid system where nodes have heterogeneous in nature and uses polling information

to determine threshold.

Chapter 6 concludes the thesis by analyzing the various models presented with a com-

parative evaluation of their performance. This section throws light on the achievements

made by the work and the areas where a further exploration is required along with the

future directions that may be undertaken.
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Chapter 2

State of the Art

Distributed systems offer a tremendous processing capacity. However, in order to real-

ize this tremendous computing capacity, and to take full advantage of it, good resource

allocation schemes are needed. A scheduler is a resource management component of a

distributed system that focuses on judiciously and transparently redistributing the load

of the system among the computers so that the overall performance of the system is maxi-

mized. In this chapter, we discuss various scheduling methods available in the distributed

computing literature.

2.1 Scheduling Algorithms in Distributed Computing

Distributed scheduling algorithms achieve better system performance by smoothing out

any workload imbalance that may exist in a distributed system, such as minimizing com-

munication delays, minimizing execution time, and maximizing resource utilization, etc.

Load scheduling is the process of deciding where to execute a process in a multi-computer

system. This can be carried out by a single authority or by many entities spread in a dis-

tributed manner. It also decides whether to equalize the load at all the computers or to

share the load between highly loaded to lightly loaded nodes.

Load distributing algorithms are classified as static, dynamic, and adaptive. In a static

algorithm, the scheduling algorithm is carried out according to a predetermined policy.

The state of the system at the time of the scheduling is not taken into consideration.

On the other hand, a dynamic algorithm adapts its decision to the state of the system.
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Adaptive algorithms are a special type of dynamic algorithms where the parameters of

the algorithm are changed based on the current state of the system.

The policies adopted by a load balancing algorithm are as follows: Transfer policy

decides when to initiate load balancing across the system and whether the node is a

sender or a receiver. This is decided by a threshold that is called load index. Selection

policy determines which task should be transferred, whether it be the newly arriving job

or a job that has been executed for some time. Information policy specifies the information

about the load level of a node that is made available to the job placement decision makers.

System information can be collected periodically or by a demand driven approach or by

a state change driven approach. Location policy determines the node to which a process

has to be transferred, where the selection is made on the basis of load index of the node.

Location based policies can be broadly classified as Sender-initiated, Receiver-initiated,

and Symmetrically-initiated. Section 2.1.1 to 2.1.5 describes some popular distributed

scheduling algorithms.

2.1.1 Sender-initiated Scheduling Algorithm

The working of Sender-initiated scheduling algorithm (Shivaratri et al. 1992) is shown in

Fig. 2.1. In this algorithm whenever a new task arrives at a node, node computes its

queue length. If the node’s queue length+1 is greater than the threshold, node acts as a

sender. Sender node randomly polls a node i in the system. If the polled node queue

length is less than predefined threshold t, sender transfers the newly arrived task to the

polled node. This process is repeated until, poll count is lesser than poll limit. Otherwise

the task is processed locally.

Drawback of Sender-initiated algorithm is that it is not stable in high system load

because polling activity increases the system load and wastes the CPU cycle.

2.1.2 Receiver-initiated Scheduling Algorithm

This scheduling algorithm (Shivaratri et al. 1992) is similar to Sender-initiated scheduling

algorithm. Instead of arrival a new task at a node, it works when a task departs from a

node. The working of Receiver-initiated algorithm is shown in Fig. 2.2. In this algorithm
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Figure 2.1: Working of Sender-initiated Scheduling Algorithm - Source:
(Shivaratri et al. 1992)

whenever a task departs from a node, the node checks its the queue length. If the queue

length is less than the predefined threshold t, node randomly polls the nodes i in the

system, until either it gets the task from the overloaded node or reaches the poll limit.

Figure 2.2: Working of Receiver-initiated Scheduling Algorithm - Source:
(Shivaratri et al. 1992)

This scheduling algorithm does not suffer from instability because in high system

load there is low probability that node acts as a receiver. If any node acts as a receiver,

it will find a sender within few polls, wherein, low system load polling activity does not

increase the system load. The drawback of this algorithm is mostly preemptive transfer

that is costly, because process’s state needs to be transferred.

37



2. STATE OF THE ART 2.1 Scheduling Algorithms in Distributed Computing

2.1.3 Symmetrically-initiated Scheduling Algorithm

Symmetrically-initiated scheduling algorithm (Shivaratri et al. 1992) is a combination of

Sender-initiated and Receiver-initiated scheduling algorithms. At the high system load

receiver finds the sender and at the low system load, sender finds the receiver. This algo-

rithm does not remove the drawback of Sender-initiated and Receiver-initiated scheduling

algorithms (Shivaratri et al. 1992) because in high system load sender polling activity in-

creases the system instability and mostly receiver initiated transfers are preemptive.

2.1.4 Stable Symmetrically-initiated Scheduling Algorithm

Stable Symmetrically-initiated scheduling algorithm (Shivaratri et al. 1992) is an adaptive

algorithm that stores the information, which has been collected during the polling, to clas-

sify the node in the system as sender, receiver, or okay. The state of nodes is maintained by

a data structure at each node, comprises of sender, receiver, and okay lists. These lists are

maintained by efficient data structure so that manipulation takes constant time. Initially,

each node assumes that every other node is a receiver. The used policies are described as

follows:

• Transfer policy: Queue length based transfer policy is used. It maintains two thresh-

olds namely Lower Threshold (LT) and Upper Threshold (UT). Whenever a task

departs/arrives at a node, node decrements/increments its Queue (Q) length re-

spectively. After that, if the Q length is between the LT and UT node act as an okay

node, else if Q length is less than the LT node acts as a receiver, otherwise node act

as a sender.

• Selection policy: The sender-initiated component considers only newly arrived tasks

for transfer, whereas receiver-initiated component uses preemptive transfer or reser-

vation based policy.

• Information policy: The information policy is demand driven that is whenever a

node becomes sender/receiver, polling activity starts.

• Location policy: The location policy has two components namely sender-initiated

and receiver-initiated component.
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– Sender-initiated component: It is triggered when a node becomes a sender. The

sender polls the node at the head of the receivers list to determine whether it

is still the receiver or not. The polled nodes updates the sender’s node status

in its own list and inform the sender about its status. On receiving the reply

message the sender updates its list, if reply message is positive (still receiver),

sender transfers the newly arrived task. Otherwise sender polls the next node

from the receiver list.

This polling process stops if a suitable receiver is found for the newly arrived

task, if the number of polls reach a poll limit, or if receiver list at the sender

becomes empty. If polling fails to find a receiver the task is processed locally,

and later it can migrate when receiver component is initiated at that node.

– Receiver-initiated component: This component is triggered when a node de-

parts a task. The receiver polls the nodes in the following order: head to tail

in the sender list, then tail to head in the okay list because most out of date

information is used first, in the hope that node has become a sender, then tail

to head in the receiver list so that the most out of date information is used first.

The receiver polls the selected node to determine status. On receiving the reply

message receiver updates its list, if the reply is positive (polled node is sender)

receiver receives a task, otherwise polls to the next node from the list.

The polling process stops if a suitable sender is found, if the number of poll

reaches the poll limit or the receiver is no longer a receiver.

Drawback: This algorithm has the same disadvantages that we have in Symmetrically-

initiated scheduling algorithm. Even, it becomes worse at high system loads, because

unsuccessful polls result in the removal of polled node ids from receivers lists. This

scheme prevents future sender-initiated polls at high system loads and hence, the sender-

initiated component is deactivated at high system loads, leaving only receiver-initiated

load sharing which is effective at such loads. At low system loads, receiver-initiated polls

are frequent and generally fail. These failures do not adversely affect performance, since

extra processing capacity is available at low system loads. In addition, these polls have the

positive effect of updating the receiver’s lists. With the receivers lists accurately reflecting
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the system’s state, future sender-initiated load sharing will generally succeed within a

few polls. Thus, by using sender-initiated load sharing at low system loads, receiver-

initiated load sharing at high system loads, and symmetrically-initiated load sharing at

moderate system loads, the Stable Symmetrically-initiated algorithm achieves improved

performance over a wide range of system loads and preserves system stability.

2.1.5 Stable Sender-initiated Adaptive Scheduling Algorithm

Stable Sender-initiated Adaptive scheduling algorithm (Krueger & Finkel 1984) uses the

sender-initiated load-sharing component of the previous approach, but modifies receiver-

initiated component to attract future non preemptive task transfers from sender nodes. An

important feature is that the algorithm performs load sharing only with non-preemptive

transfers, which are cheaper than preemptive transfers. In the following section, we point

out the differences. In this scheduling algorithm, the data structure (at each node) of

the Stable Symmetrically-initiated scheduling algorithm is augmented by an array called

the state vector. Each node uses the state vector to keep track of which list (senders,

receivers, or okay) it belongs to at all the other nodes in the system. For example, state

vector [node id] says, to which list node i belongs at the node indicated by node id. As

in the Stable Symmetrically-initiated scheduling algorithm, the overhead for maintaining

this data structure is small and constant because state vector is maintained in an array

structure that takes constant time to access an item, irrespective of the number of nodes

in the system.

The sender-initiated load sharing is augmented with the following steps: When a

sender polls a selected node, the sender’s state vector is updated to show that the sender

now belongs to the senders list at the selected node. Likewise, the polled node updates

its state vector based on the reply it sent to the sender node to reflect which list it will

belong to at the sender.

The receiver-initiated component is replaced by the following protocol: When a node

becomes a receiver, it informs only those nodes that are misinformed about its current

state. The misinformed nodes are those nodes whose receivers lists do not contain the

receiver id. This information is available in the state vector at the receiver. The state
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vector at receiver is then updated to reflect that it now belongs to receiver at all those

nodes. By this technique, this scheduling algorithm avoids receivers sending broadcast

messages to inform other nodes that they are receivers. The broadcast messages impose

message handling overhead at all nodes in the system. This overhead can be high if nodes

frequently change their state.

2.2 Scheduling Algorithms in Parallel/Cluster Computing

Multitasking operating systems are able to execute several tasks at once by allocating

resources to different tasks for a very short period of time. This method is called time

sharing scheduling because applications share the resources in turn. This strategy can

be applied in clusters as well. However, using a time sharing scheduling policy with

high performance parallel application, generally leads to very poor performance. Indeed,

switching between applications has a cost, therefore it is usually better to execute applica-

tions one after the other. Furthermore, two applications with large memory requirements

may not be able to run concurrently on a single machine of the cluster. For above men-

tioned reasons (Schwiegelshohn & Yahyapour 1998), schedulers in clusters usually use a

space sharing policy where each application has a dedicated access to the resources for a

given period.

Therefore, in order to execute a job on a cluster, users must submit their job to a

batch scheduler that gives a dedicated access to the resources for some time. Batch sched-

ulers keep a Gantt chart/diagram of the resources. X-axis of the diagram corresponds to

time and Y-axis represents the processors/machines. When a job is submitted, the batch

scheduler looks for a place where the application can be executed. Therefore, finding

a schedule is equivalent to finding a tiling of this 2D plane, where the plane represents

resource availability over time and tiles represent jobs. Thus, submissions of jobs must

include a description of their requirements: the number of processors needed as well as

their duration. Most schedulers are only able to schedule rigid tasks. Giving the duration

of a job before its execution is usually impossible, therefore a wall time is provided. The

wall time of a job is the expected duration of the job. Batch schedulers use this informa-

tion to perform the scheduling. If the wall time is underestimated, jobs are usually killed,
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so the users give an overestimation of the expected execution time. Some of the most

commonly used algorithms in batch scheduling are described next.

2.2.1 First-Come First-Served (FCFS) Scheduling Algorithm

FCFS (Schwiegelshohn & Yahyapour 1998) is the simplest scheduling algorithm. This

scheduling algorithm schedules the jobs in the order of their arrival. If enough resources

are not available, job waits until enough resources are available. If a task finishes before

its wall clock time, tasks are resubmitted in their submission order. Thus, a job cannot

be delayed by a job that arrives after it, as shown in Fig. 2.3. In Fig. 2.3, job 1 and 2

are running, job 4 arrives after job 3. It is scheduled after job 3, even when the required

number of processors are available. FCFS scheduling algorithm suffers from starvation

problem when smaller tasks wait behind a longer task.

Figure 2.3: First-Come First-Served Example - Source: (Schwiegelshohn & Yahyapour 1998)

2.2.2 Conservative Backfilling (CBF) Scheduling Algorithm

CBF scheduling algorithm (Mualem & Feitelson 2001) removes the disadvantages of FCFS

scheduling algorithm. CBF scheduling algorithm uses empty spaces present in the waiting
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queue. In this system when a new job is submitted into the system, it goes to the front of

the queue. If any space is found, it fills that space, with the objective that the scheduled

jobs should not be delayed. Working of CBF scheduling algorithm is described in Fig.

2.4. In the Fig. 2.4, job 1 and 2 are running and job 4 arrives after job 3 that requires less

number of processors, that are available for the required time, therefore, job 4 is scheduled

before the job 3. This scheduling algorithm improves the resource utilization.

Figure 2.4: Conservative Backfilling Example - Source: (Mualem & Feitelson 2001)

2.2.3 Aggressive Backfilling (ABF) Scheduling Algorithm

ABF scheduling algorithm (Lifka 1995) is a variation of CBF scheduling algorithm. This

scheduling algorithm allows the delay of scheduled jobs. Fig. 2.5, illustrates the process

of ABF scheduling algorithm. Here, job 3 arrives after job 2 and required number of

processors are available before the scheduled job 2, but not for required time. Still, it will

be scheduled by delaying the job 1, which is acceptable in ABF scheduling algorithm.

Thus, ABF scheduling algorithm does not give guaranty of the start time of a job and jobs

are delayed for a long time and suffer from starvation problem.
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Figure 2.5: Aggressive Backfilling Example - Source: (Lifka 1995)

2.2.4 Easy Backfilling (EASY) Scheduling Algorithm

EASY scheduling algorithm (Feitelson et al. 2004) removes the starvation problem of ABF

scheduling algorithm. This scheduling algorithm works similar to ABF scheduling algo-

rithm except it does not allow the delay of running job as shown in Fig. 2.6. Job 3 is

scheduled before the job 2 because required number of processors are available and job

2 can be delayed because it is not running. It improves the resource utilization of the

system.

All the scheduling algorithms that are mentioned in section 2.2 work in an online man-

ner. They schedule each job independently upon their submission. Other scheduling algo-

rithms work in an offline manner such that, Backfilling with Look Ahead scheduling algo-

rithm (Shmueli & Feitelson 2005a) uses packing techniques (Shmueli & Feitelson 2005b)

to maximize the resource utilization at each job submission. The packing techniques use

the knowledge of all the jobs each time. This kind of scheduling algorithm is not widely

used because the execution time needed to execute the algorithm can easily become too

long.
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Figure 2.6: Easy Backfilling Example - Source: (Feitelson et al. 2004)

2.3 Scheduling Algorithms in Grid Computing

Grid is a kind of parallel and distributed computing that is not administered centrally.

Therefore, scheduling jobs in a Grid is quite different than scheduling on a distributed

computing. Indeed cluster computing is homogeneous and have a reasonable size. How-

ever, a Grid can embed different kinds of hardware, software, and scheduling policies.

Furthermore, the number of resources available in a Grid is a lot larger than on dis-

tributed computing and resource access is done differently. Distributed computing is

accessed through local resource management systems, but Grids are usually accessed

through a resource broker. Job scheduling in a Grid, therefore, takes all these additional

constraints into account.

Grid scheduling works in three phases, namely resource discovery and filtering, sys-

tem selection and scheduling, and job launching and monitoring. Resource discovery and

filtering phase performs authorization and gathers initial information about resources.

System selection and scheduling phase collects information about application and re-

sources, it designs a schedule based on objective functions or QoS constraints. Job launch-
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ing and monitoring, prepares the job for transfer, transfers the jobs to local resources and

monitors its execution. Local resources execute the tasks. Our work emphasizes on system

selection and scheduling in Grid computing system.

2.3.1 Objective Functions

Task scheduling objective functions are classified into user and resources centric. User

centric includes makespan or flow time. Resource centric includes resource utilization

and system load balance. These objective functions (Xhafa & Abraham 2010) are shown

in Fig. 2.7 and described in section 2.3.1.1 to 2.3.1.4.

Figure 2.7: Classification of Objective Functions

2.3.1.1 Makespan

Makespan corresponds to the total duration (overall job completion time) required to

execute all the jobs of a schedule. It is the difference between the last job completion time

and the first job start time. The scheduling heuristics that are based on the makespan, try

to minimize it, so that all the computations are finished in minimum time. The makespan

is influenced by the order in which jobs are executed. The completion time of jobi is

computed as:

cti = readytimej + ETC[i][j] (2.1)

here cti is the completion time of jobi. It includes ready time and Expected Time to

Compute (ETC) of machinej. Completion of machinej is defined as:
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ctj = ∑
k∈K;m∈M

ct[k][j] (2.2)

Here, ctj is the sum of completion time of machinej, M is the number of machines and

K is the set of assigned tasks to machine m. Makespan defined as a function of ct. It is

the maximum completion time of all machines and is given as follows:

makespan = max(ctj, ....ctm) for (j = 1, 2, ..., m) (2.3)

2.3.1.2 Flow Time

Flow time is the sum of the finishing times of jobs. Flow time is minimum, when jobs are

processed in ascending order of processing time on resources. It is defined as follows:

f lowtime =
n

∑
i=0

cti (2.4)

Here, n is the number of jobs.

2.3.1.3 Average Resource Utilization Rate

Average resource utilization of a resource is calculated using the following equation.

ruj =
∑k

i=0 tei − tsi

T
(2.5)

Here, k is the set of tasks assigned to resource j, ruj is the resource utilization rate of a

resource j, tei is the end time of executing a task ti on resource mj, tsi is the start time of

executing task and ti on resource mj.

T is the turnaround time of an application. It is obtained using the following equation:

T = (max(tei)∀ i = 1 . . . n )− (min(tsi)∀ i = 1 . . . n ) (2.6)

The average resource utilization rate is defined as:

ru =
∑m

i=1 rui

m
(2.7)
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Here, ru is the range between 0 to 1.

2.3.1.4 Load Balancing Level

The mean square deviation d of resource utilization ru is defined as:

d =

√
m

∑
i=1

ru− rui

m
(2.8)

Here, m is the number of resources. The load balancing level β is determined through the

relative deviation of d over ru is defined as:

β = 1− d
ru
× 100 (2.9)

The most effective load balancing is achieved when d is equal to zero and β equals to

100%.

The other Grid model that has recently been researched is called as economic Grid.

It follows the market model where user has to pay-per-use based on his/her QoS satis-

faction level. QoS are defined by various parameters like execution cost, execution time,

bandwidth, reliability, time within budget, and budget within the deadline, etc.

2.3.2 Categories of Task Scheduling Algorithms

Scheduling algorithms are classified based on when the scheduling decision is taken, what

is the type of task (dependent or independent) and what are the scheduling objectives.

Following section elaborates some of these categories of scheduling algorithms.

2.3.2.1 Dependent vs. Independent

When the relations among tasks in a Grid application are considered, a common

dichotomy used is dependency vs. independency. Dependent tasks have prece-

dence orders, that is, a task cannot start until all its parent tasks are done. Ex-

amples of dependent task scheduling algorithms are Heterogeneous Earliest-Finish-

Time (HEFT) (Topcuouglu et al. 2002), Cluster and Duplicate based scheduling algorithm

(Wieczorek et al. 2008), (Kang & Agrawal 2000), (Bajaj & Agrawal 2004), etc. Independent
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tasks do not have relation with other tasks. (Braun et al. 2001) have studied various on-

line and offline independent tasks scheduling heuristics i.e., Minimum Completion Time

(MCT), Minimum Execution Time (MET), Min-min, and Max-min.

2.3.2.2 Online vs. Offline

Online mode, a task is mapped onto a machine as soon as it arrives at the scheduler. In

the offline mode, tasks are not mapped onto the machines as they arrive; instead they are

collected into a set that is examined for mapping at prescheduled times called mapping

events. A meta-task can include newly arrived tasks that arrive after the last mapping

event and that were mapped in earlier mapping events, but did not begin execution.

Examples of online and offline task scheduling algorithms are MCT, MET, Min-min, and

Max-min respectively.

2.3.2.3 Meta-heuristics vs. Heuristics

Heuristics and meta-heuristics are the approximate methods used for solving non-

deterministic polynomial time problems. Meta-heuristics are problem-independent

techniques. Example of meta-heuristics are Evolutionary and Genetic algorithms

(Zomaya & Teh 2001), Simulated Annealing (Bandyopadhyay et al. 2008), etc. Heuristics

are problem-dependent techniques. Heuristic are designed for the solution to a specific

problems. Common examples of scheduling heuristics are Min-min, Max-min, and Suf-

frage (Braun et al. 2001). In general, meta-heuristic approaches manage to obtain much

better performance, but take a longer execution time.

2.3.2.4 Resource Oriented vs. Application Oriented

The two major parties in Grid computing, namely, resource consumers who submit vari-

ous applications, and resource providers who share their resources, usually have different

motivations when they join the Grid. These incentives are presented by objective func-

tions in scheduling. Currently, most of the objective functions in Grid computing are in-

herited from traditional parallel and distributed systems. Grid users are concerned with

the performance of their applications, for example the makespan, flow time, and cost to
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run a particular application. Examples of application oriented scheduling algorithms are

Min-min, Cost optimization (Buyya et al. 2002), and Time optimization (Buyya et al. 2002).

Resource providers concern is about the resource utilization, resource balance and total

reward in a particular period (Thain et al. 2005).

2.3.2.5 Single Objective vs. Multi-objective

Scheduling algorithms are also classified based on the number of objectives i.e. sin-

gle objective and multi-objective. Single objective algorithms minimize/maximize one

objective, whereas multi-objective minimizes/maximizes more than one objectives. Sin-

gle objective meta-heuristics generates one optimal solution where multi-objective meta-

heuristics generates many solutions that are called Pareto front. Examples of single ob-

jective meta-heuristics are Genetic and Simulated Annealing techniques. Strength Pareto

Evolutionary Algorithm (SPEA2) (Deb 2007), Pareto Archived Evolution Strategy (PEAS)

(Deb 2007), Particle Swarm Optimization (PSO) (Pandey et al. 2010), Non-dominated Sort-

ing Genetic Algorithm-II (NSGA-II) (Deb 2007), and Steady-State NSGA-II (SNSGA)

(Durillo et al. 2009) are some examples of multi-objective meta-heuristic approaches.

2.3.2.6 Best Effort vs. QoS Constraint

Best effort based scheduling attempts to minimize the execution time of jobs, ignoring

other factors such as the monetary cost of accessing resources and various users’ QoS

satisfaction levels. On the other hand, QoS based scheduling algorithm attempts to min-

imize performance under most important QoS constraints, for example, Time minimiza-

tion under budget constraints (Buyya et al. 2002) and Cost minimization under deadline

constraints (Buyya et al. 2002).

2.3.3 Online Independent Task Scheduling Algorithms

2.3.3.1 Random Scheduling Algorithm

Random scheduling algorithm selects a resource randomly. It does not need any infor-

mation about jobs or resources. However, it usually provides poor results. In a context
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where all jobs and resources are similar, it should provide an acceptable load balancing

approach.

2.3.3.2 Round-Robin (RR) Scheduling Algorithm

Round-robin scheduling algorithm selects resources one at a time and starts over when

all resources have been selected. This algorithm requires no information about jobs or

resources. In a homogeneous context, RR scheduling algorithm will make a good load

balancing amongst the resources. However, in a heterogeneous context, some resources

will get overloaded and others will be endorsed. Indeed, each resource will get the same

amount of work, but some will require more time to process their part of the work.

2.3.3.3 Optimistic Load Balancing (OLB) Scheduling Algorithm

OLB (Braun et al. 2001) scheduling algorithm assigns each task on the resource expected

to be available first. The objective of this algorithm is to keep the platform as busy as

possible. This algorithm only requires information about the resources state. It does not

take the execution time into account. Thus, OLB scheduling algorithm can lead to poor

results of resource utilization.

2.3.3.4 Minimum Execution Time (MET) Scheduling Algorithm

MET (Braun et al. 2001) scheduling algorithm assigns jobs onto the resources where the

job is expected to have the smallest duration. This scheduling algorithm requires an

estimation of the execution time of each job on each resource. Furthermore, if it is used

in a context where tasks are characterized as consistent (a machine running a task faster

will run all the tasks faster), it will assign each task to the same machine.

2.3.3.5 Minimum Completion Time (MCT) Scheduling Algorithm

MCT (Braun et al. 2001) scheduling algorithm assigns each task to the machine with

shorter expected completion time to accomplish it. The completion time corresponds

to the sum of the time necessary for the machine to become available (in case it is already

running other tasks) plus the time that it will take in order to execute the task. This
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scheduling algorithm can map more than one task per resource. The mapping complexity

is O(m), since when a task arrives, all Grid machines are examined for determining the

one having the shortest expected completion time for its execution.

2.3.4 Offline Independent Task Scheduling Algorithms

These scheduling algorithms are designed to schedule dependent tasks in a workflow.

These scheduling algorithms map the tasks on resources. Three major heuristics namely

Min-min, Max-min, and Suffrage have been employed for scheduling workflow tasks in

Pegasus and Askalon projects.

2.3.4.1 Min-min Heuristic

Min-min heuristic has a set of unmapped meta-tasks M and a set of Grid machines R.

At the first step, the algorithm computes the completion time of each task of M for every

machine R. Next, the algorithm searches for the lowest completion time of each task. Then

selects the task which has minimum completion time among all tasks in M, and assigns

it to the machine in which this performance is expected to be obtained. The mapped task

is removed from the meta-task M, and the algorithm increments the expected available

time of the chosen Grid resource considering the time to run the newly mapped task.

This process is repeated until there are no more tasks to schedule. As MCT scheduling

algorithm, Min-min heuristic also maps more than one task per node. Being m as the

number of tasks in M and r, the number of resources in R, computing the completion

time of each task in all machines will take O(mr). The loop is repeated m times, leading

to a total time complexity is O(m2r).

2.3.4.2 Max-min Heuristic

Max-min heuristic works similar to Min-min heuristic. Instead of finding the minimum

completion time among all tasks in R, it finds the maximum completion time among all

the tasks. Max-min heuristic attempts to minimize the penalties incurred from performing

tasks with longer execution time. It is also one of the heuristics implemented in SmartNet

(Lifka 1995). its time complexity is similar to Min-min heuristic.
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2.3.4.3 Suffrage Heuristic

Suffrage heuristic (Casanova et al. 2000) is based on the idea that a task should be assigned

to a certain resource and if it does not go to that resource, then more it will suffer. The

first step finds the difference between best minimum completion time and second-best

minimum completion time of each task and that is called suffrage value. Then, it selects

the task that has maximum suffrage value, and assigns the task on the machine that

has minimum completion time. The mapped task is removed from meta-task M. This

process is repeated until all tasks are assigned from meta set M. Suffrage heuristic time

complexity is O(m2r).

2.3.4.4 QoS Guided Min-min Heuristic

QoS Guided Min-min heuristic (He et al. 2003) divides the tasks into two categories,

namely high quality and low quality based on the bandwidth requirement. Min-min

heuristic is applied to assign tasks, high quality bandwidth requirement tasks take prece-

dence over low bandwidth requirement tasks.

2.3.4.5 High Standard Deviation First Heuristic

High Standard Deviation First (HSDF) heuristic is proposed by (Munir et al. 2008). This

heuristic computes standard deviation of the expected execution time of meta-tasks M. A

task that has high standard deviation is assigned first to the machine based on minimum

expected time to finish. This process is repeated until all tasks are assigned. Time com-

plexity of this algorithm is higher than other offline heuristics because it computes the

standard deviation.

2.3.4.6 Segmented Min-min Heuristic

Segmented Min-min heuristic (Wu et al. 2000) reduces the imbalance that occurs in Min-

min heuristic. Min-min heuristic assigns the smaller task first. Thus, the smaller tasks

would execute first and a few larger tasks execute later, while several machines sit idle,

resulting in poor machine utilization. Segmented Min-min heuristic first orders the tasks

based on average expected completion time of each task. Then, tasks are divided into
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equal sized segments. The segment of larger tasks is scheduled first with the Min-min

heuristic. This process is repeated until all tasks are assigned. This heuristic works well

when the length of tasks varies, because it first executes the long tasks and then shorter

once.

2.3.4.7 Resources Aware Scheduling Algorithm (RASA)

RASA heuristic (Parsa & Entezari-Malekir 2009) is a combination of Min-min and Max-

min heuristics. This algorithm first finds the completion time of each task on each re-

source. Then, it assigns the tasks in alternative fashion using Min-min and Max-min

heuristics. RASA heuristic supports concurrency in the execution of tasks and removes

the deficiency of Min-min and Max-min heuristics.

2.3.4.8 Preemptive Version of Min-min Heuristic

(Khalifa et al. 2007) have introduced Preemptive Version of Min-min heuristic. This

heuristic utilizes all the idle machines. It assigns waiting tasks to the idle machine. Wait-

ing tasks are those tasks that are waiting for the next mapping event. Idle machines are

those machines whose completion time is lesser than the makespan at particular mapping

event. This heuristic assigns the task to idle machines using MET scheduling algorithm

and marks them as migration enabled. At the consequent mapping event relative resid-

ual time on each machine is calculated on migration enabled tasks. Tasks are mapped

according to Min-min heuristic.

2.3.4.9 Modified Minimum Completion Time (MMCT) Scheduling Algorithm

(Kumar et al. 2009) introduced MMCT task scheduling algorithm. They categorized the

jobs into three categories named as short, medium, and long based on average expected

completion time of a task. Short jobs are assigned using OLB scheduling algorithm and

other jobs are assigned using the MCT scheduling algorithm to take advantage of resource

utilization and makespan.
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2.3.4.10 Min-mean Heuristic

(Kamalam & Muralibhaskaran 2010) presented Min-mean heuristic. This heuristic works

in two phases. First phase assigns a task based on Min-min heuristic. Second phase

computes mean completion time of all machines. Then, it finds the set of machines X =

xi, xi + 1, i = 1 . . . n whose completion time is greater than the mean completion time.

Next, tasks are moved from that machines set X to other machines whose completion time

is lesser than the mean completion time, to make them nearly equal to mean completion

time. This heuristic obtains lesser makespan, but takes more time to assign a task.

2.3.4.11 Refinery Heuristic

(Bey et al. 2010) introduced a makespan refinery approach to schedule unmapped tasks.

This heuristic also works in two phases. In the first phase, tasks are sorted in decreasing

order based on longest minimum expected execution time. After that, tasks are assigned

based on the Max-min heuristic, which is called initial task scheduling algorithm. In order

to reduce the overall makespan, tasks are swapped from the maximum completion time

machine to other machines in the system. This process is repeated until no more swap is

possible.

2.3.5 Dependent Task Scheduling Algorithms

When a task comprising of a job has precedence orders, a popular model applied is

the Directed Acyclic Graph (DAG), in which a node represents a task and a directed

edge denotes the precedence orders between its two vertices. In some cases, weights can

be added to nodes and edges to express computational costs and communication costs

respectively. As Grid computing infrastructures become more mature and powerful. It

supports for complicated workflow applications, which can be usually modeled by DAGs.

We can find such tools like Condor DAGMan, Pegasus, and Askalon.

In general, list scheduling is a class of scheduling heuristics in which tasks are assigned

with priorities and placed in a list ordered in decreasing magnitude of priority. The

differences among various list heuristics mainly lie in how the priority is defined and

when a task is considered ready for assignment. In the next section we discuss some

55



2. STATE OF THE ART 2.3 Scheduling Algorithms in Grid Computing

popular list heuristics.

2.3.5.1 HEFT Scheduling Algorithm

The HEFT scheduling algorithm works in three phases. First phase, computes average

weight of each task and edge because tasks can run on multiple resources. Second phase,

computes upward rank of each task. The rank value is equal to the weight of the node

plus the execution time of the successors. The successor’s execution time is estimated, for

every edge being immediate successors of the node, adding its weight to the rank value

of the successor node, and choosing the maximum of the summations. At the last phase,

the tasks are sorted in decreasing order and assigned to the resources based on earlier

expected time to finish. The time complexity of HEFT scheduling algorithm is O(e× p),

where e is the number of edges and p is the number of resources. HEFT scheduling

algorithm is tested on Askalon.

Fast Critical Path (FCP) scheduling algorithm is developed by

(Radulescu & Van Gemund 1999). It reduces the complexity of the HEFT schedul-

ing algorithm. Instead of sorting all the tasks of workflow at the beginning, it sorts the

limited number of tasks and considers limited number of processors. The processors are

ideal processors or processors that send reply. The time complexity of FCP scheduling

algorithm is O(v log p + e), where p is the number of resources, v is the number of tasks,

and e is the edge.

2.3.5.2 Cluster and Duplication Based Scheduling Algorithms

Cluster and Duplication Based scheduling algorithms are developed to reduce the In-

ter Process Communication (IPC) time. These scheduling algorithms run some tasks

on more than one processor with the objective to utilize the ideal resources and re-

duce the makespan. Task Duplication-Based Scheduling (TDS) algorithm is introduced

by (Darbha & Agrawal 2008) and works on homogenous processors. TDS algorithm com-

putes Earliest Start Time (EST), Earliest Completion Time (ECT), Latest Allowable Start

Time (LAST), Latest Allowable Completion Time (LACT), Level of Task (LT), and Favorite

Predecessor (FP) of each task. Based on these values, clusters are created iteratively. In
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the last step LACT and LAST is used to determine whether duplication is needed or not.

For example j is FP of task i, if (LACTj − LASTi) is less than Cji (communication time of

task i or resource j), i will be assigned to same processor as j, and if j has been assigned to

other processor, it will be duplicated on the taski processor. The time complexity of this

scheduling algorithm is O(v2), where v is the number of tasks.

Task Duplication-Based Scheduling Algorithm for Network of Heterogeneous systems

(TANH) is developed by (Ranaweera & Agrawal 2000). It is heterogeneous version of TDS

algorithm. This scheduling algorithm works in two phases. In the first phase it makes

cluster of tasks, irrespective of the number of available processors. Each task computes

its favorite processor. Favorite processor is a processor that has minimum completion

time. Tasks are assigned to favorite processor, if favorite processor is free, otherwise

tasks are assigned to second favorite processor and so on. Second phase merges the

cluster if number of available processors is less than the clusters. Time complexity of this

scheduling algorithm is O(v2 p log p), where p is the set of processors and v is the set of

tasks.

2.3.5.3 Dynamic Workflow Scheduling Algorithms

Dynamic Workflow scheduling algorithms consider the dynamic nature of resources.

This scheduling algorithm employed workflow partition technique. This technique par-

titions the workflow into sub workflows which is executed sequentially. It schedules

the sub workflows based on current status of the resources. Once, the sub workflow

starts execution, it schedules the next sub workflow with consideration of the current

status of resources. Iterative mapping first maps the workflow based on existing List

scheduling algorithms. If required, rescheduling or migration is applied. Task mi-

gration (Prodan & Fahringer 2005) moves the task from the assigned resources, if bet-

ter resources are found or starting execution time of the task is elapsed. Rescheduling

(Sakellariou & Zhao 2004) is employed whenever the performance of resources is dimin-

ished and does not use initial mapping.
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2.3.6 Meta-heuristic

Many real world problems, having complex search space, are difficult to be solved by tra-

ditional optimization methods. Non-traditional optimization methods like Genetic Algo-

rithms (GA) (Goldberg 1989), Simulated Annealing (SA) (Kirkpatrick et al. 1983), and Ant

Colony Optimization (ACO) (Dorigo et al. 1996) possess several characteristics that make

them more preferable than traditional optimization methods for these types of problems.

The following sections discuss these methods in detail.

2.3.6.1 Simulated Annealing (SA)

Simulated Annealing is a probabilistic search algorithm. The term simulated annealing

derives from the process of heating and then cooling a substance slowly to finally arrive

at the solid state. The search algorithm simply mimics the physical process as follows.

In the early stages of the execution, the temperature is high resulting in higher prob-

ability of accepting the solutions. Jumping occurs as a way of avoiding local minima,

accepting a poorly performed solution with a higher probability. Otherwise, any solution

performing better than the current solution is accepted and replaced as the best solution

found so far. As the execution time elapses, the temperature decreases, thus reduces the

frequency of jumping. This probabilistic nature of the system guarantees the exploration

of other solution space instead of terminating whenever encountering the first local opti-

mum.

The simulation process terminates after a number of successive executions with no

improvements, and returns the best solution so far. The only drawback of Simulated

Annealing is the long execution time to obtain quality solutions. Although it is possible

to achieve global optimum solution, it comes at a cost of slower cooling procedure and

longer iteration at each temperature level. Conversely, in shorter execution time, the

algorithm compromises the solution quality.

2.3.6.2 Genetic Algorithms (GA)

Genetic Algorithms (GA) are based on the mechanics of natural selection and natural ge-

netics. They combine survival of the fittest with a structured but randomized information
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exchange to form a search algorithm. The GA works with an initial population of a string

of variables known as chromosomes, which hold the parameters or genes and the size of

population. The chromosome can be represented using binary code or decimal system

and are accordingly termed as binary-coded GA or real-coded GA. There are three oper-

ators namely selection, crossover, and mutation to generate new population from the old

population and one set of the process is termed as generation. In selection operator, a

set of chromosomes are selected as initial parents at the reproduction stage on the basis

of their fitness, subject to the constraints specific to the problem. The fittest are given a

greater chance of survival with greater probability of reproducing more off-springs. The

process of mating is implemented through the crossover operator. Mutation, an arbitrary

change of the genes, is implemented to preserve the genetic diversity in the population.

The probability of occurrence of mutation is kept low as it can potentially disrupt a good

solution.

A stochastic selection process, biased towards the fitter individuals, is implemented

to select a new set of population for the next generation. Tournament selection operator

is generally used for the selection of good solutions. The newly-created population is

evaluated and tested for termination to decide the maximum number of generations. If

the termination criterion is not met, the population is iteratively operated further by the

above three operators and evaluated. This process is continued until termination criterion

or a preset maximum number of generations is reached. The main feature of GA is its

ability to operate on many solutions simultaneously, thereby exploiting the search space

of the objective function intensively.

2.3.6.3 Combined Heuristics

GA can be combined with SA to create combinatorial heuristics. For example, The Ge-

netic Simulated Annealing (GSA) (Zheng et al. 2006) heuristic is a combination of the GA

and SA techniques. In general, GSA follows procedures similar to the GA outlined in

section 2.3.6.2. However, for the selection process, GSA uses the SA cooling procedure

and system temperature and a simplified SA decision process for accepting or rejecting a

new chromosome.
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2.3.7 Approaches of Meta-heuristic

(Braun et al. 2001) have studied heuristics and meta-heuristics on independent tasks. The

fitness function of Genetic Algorithm (GA) and Simulated Annealing (SA) algorithms are

taken as makespan. GA and SA are different in acceptance of off-spring. GA accepts

the off-spring for next generation if it has better fitness value than existing individual in

population. While SA may accept worst solution at initial stage, it depends on probability

function. Their simulation results show that meta-heuristics performs better than simple

heuristic, but takes more time.

(Braun et al. 2008) has applied Generator style genetic algorithm on dependent tasks

where each task has priority, deadline, and version number. Generator style genetic al-

gorithms is different from Steady State genetic algorithms and GA. Steady State genetic

algorithms generate off-spring in each iteration. The generated off-spring occupies the

place in population, if the fitness value is better than any chromosome in population.

GA generates N off-springs and make a sorted list of combined population based on fit-

ness function. Generator style generates less than N/2 off-springs, merge the population

with new off-springs based on fitness function. It has been observed that steady state

algorithms take more time to compute and produce better results.

(Yarkhan & Dongarra 2002) have applied Simulated Annealing on Grid Application

Development Software (GrADS). They have compared SA with an Adhoc Greedy sched-

uler. The goal of their work is to minimize execution time, regardless of any cost or time

constraints. The authors concluded that SA generates schedules that have better estimated

execution times than those generated by Adhoc Greedy scheduler.

2.3.8 Multi-objective Meta-heuristic

Many of the real world problems are generally characterized by the presence of many

conflicting objectives. Therefore, it is necessary to look at that problem as a multi ob-

jective optimization problem. Pareto-optimal (non-dominated or non-inferior) solutions

can be obtained for the multiple objectives optimization problems using multi objective

optimization techniques (Deb 2007), (Bandyopadhyay et al. 2008). The solutions belong-

ing to the Pareto-optimal solution set are not dominated by rest of the solutions in the
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search space. Any solution of the Pareto optimal front cannot be said to be better than the

other solutions in absence of any further information on preference ordering. Therefore,

there is a demand to generate as much as Pareto-optimal solutions as possible to give

more option to the planner. Classical optimization methods have limitation in handling

multi-objective optimization problems. Generally, classical optimization methods convert

the multi-objective optimization problem into a single objective optimization problem to

generate only a single Pareto optimal solution.

2.3.8.1 Principle of Multi-objective Optimization (MOO)

The MOO problem consists of a number of objectives and several equality and inequality

constraints (Deb et al. 2000) as shown follows:

f (x) = fi (x) , fi+1 (x) , fn(x) i = 1, 2, 3, . . . .., n (2.10)

Subjected to gi (x) ≥ 0 i = 1, 2, 3, . . . .., m (2.11)

hi (x) = 0 i = 1, 2, 3, . . . .., h (2.12)

Here f (x) is the decision variable vector representing a feasible solution, i.e. satisfying

the m inequality constraints and h equality constraints; fi is the i
th objective function to be

minimized, n is the number of objective functions, gi is the inequality constraints, and hi

is the equality constraint.

For unconstrained optimization problem, a solution x dominates y, if (a) the solution

x is no worse than solution y in all objectives, and (b) x is strictly better than y in at least

one objective. If any one of (a) and (b) is violated, the solution x does not dominate the

solution y.

The unconstrained non-dominated concept is illustrated in Fig. 2.8. Here, solution ’1’,

’2’, and ’3’ are the non-dominated solutions. But solution ’4’ is dominated by solution ’2’

as the solution ’2’ is better in one objective and is equal in other objective. On the other

hand, solution ’6’ is also dominated by solution ’2’. In this case, solution ’6’ is not worse

than solution ’2’ with respect to the second objective, but the solution ’2’ is strictly better

than solution ’6’ with respect to the first objective. Solution ’5’ is dominated by solution
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’2’ and ’4’ as ’2’ and ’4’ are better than solution ’5’ in both the objectives.

Figure 2.8: Unconstrained Non-dominated - Source: (Deb 2007)

In the recent past MOO algorithms have been developed. The objective of MOO al-

gorithms are that the generated solutions should be diverse and convergence along the

Pareto front. Thus MOO algorithm employs different strategies for diversity preserva-

tion, elitism maintains, and fitness function. Elitism can be maintained in population or

external archive. Diversity is computed using fitness sharing, cell density, or crowded

comparison operator (Konak et al. 2006). Fitness is assigned using non-domination count

or based on objective functions. The following sections discuss various MOO algorithms

in detail.

2.3.8.2 Vector Evaluated Genetic Algorithm (VEGA)

VEGA (Schaffer 1985) is the first MOO algorithm. This algorithm is similar to classical

GA except that each individual objective fill the proportion of population for mating.

2.3.8.3 Strength Pareto Evolutionary Algorithm (SPEA)

SPEA algorithm is developed by (Zitzler & Thiele 1999). It is Evolutionary Multi-objective

Optimization (EMOO) algorithm that uses varying size archive and auxiliary popula-

tion. At each iteration it moves the non-dominated solution from auxiliary population
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to archive. Thus, at the initial stage archive size is small, increases selection pressure. If

archive is larger than predefined limit, clustering technique is used. It computes strength

value of each individual in both populations. Strength value includes non-domination

count of each individual divided by size of population. The individual that is with less

strength value is preferable because it covers the least number of solutions.

2.3.8.4 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

It is an extension of SPEA (Zitzler & Thiele 1999). It uses fixed sized populations if archive

size is smaller than the predefined size. Archive is filled with dominated solution. Thus, it

reduces the selection pressure at initial stage. It uses fine grained non-domination that is

proportion between domination and non-domination count of each individual. Its fitness

value includes both Pareto rank and count. It employs a nearest neighbor technique to

estimate the density of each individual, which searches the non-dominated solutions more

efficiently.

2.3.8.5 Pareto Archived Evolution Strategy (PAES) Algorithm

PAES algorithm uses archive and 1 + 1 evolution strategy (i.e., a single parent that gener-

ates a single off-spring). At each iteration a parent generates an off-spring, the one which

is non-dominated is further muted. If both are not dominating each other, off-spring

computes non-domination with respect to the archive. All the individuals of archive that

are dominated by an off-spring is removed, off-spring becomes parent for the next itera-

tion. If off-spring does not dominate any individual of archive, then parent and off-spring

density is estimated with respect to the archive. If the off-spring resides in less crowded

region, it is added into the archive then it becomes parent for the next iteration. This

algorithm also maintains diversity which consists of a crowding procedure that divides

objective space in a recursive manner. Each solution is placed in a certain Grid location

based on the values of its objectives (which are used as its "coordinates" or "geographical

location"). A map of such Grid is maintained, indicating the number of solutions that

reside in each Grid location. Since the procedure is adaptive, no extra parameters are

required (except for the number of divisions of the objective space).
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2.3.8.6 Non-dominated Sorting Genetic Algorithm (NSGA)

NSGA (Deb 2007) classifies the population into different front. This algorithm computes

the first front and then fitness sharing of each solution with the front is computed. The

solution that is of less density is more preferable. This process is repeated until all indi-

viduals of a population is assigned into front. This algorithm is not very efficient because

it requires sharing parameter as input, and time complexity is very high.

2.3.8.7 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

NSGA-II eliminates the weaknesses of NSGA. It does not require sharing parameter to

select the non-dominated solution. It uses crowded comparison operator to preserve the

diversity of solutions. It does not use external archive because it preserves elitism in

population itself. More detail of NSGA-II algorithm is described in Chapter 3.

Various versions of NSGA-II have been developed for example Steady State NSGA-II

(Durillo et al. 2009), Parallel NSGA-II (Nebro et al. 2008), etc. Steady State NSGA-II gen-

erates one off-spring and performs non-dominated sorting between off-spring and popu-

lation. Hence time complexity is more. Parallel NSGA-II works on multiple processors.

Multiple processors compute the objective of solutions simultaneously, thus computation

time is less. Table 2.1 elaborates various MOO algorithms.

Table 2.1: Multi-objective Optimization Algorithms

Algorithm Fitness Elitism Diversity
SPEA Non-domination count/population

size
Varying size
external popu-
lation

It computes
the strength
value

SPEA2 Non-domination count/domination
count

Fixed size ex-
ternal popula-
tion

It computes
nearest neigh-
bor technique

PEAS Non-domination count External pop-
ulation

Cell density

NSGA Non-domination count Maintain in
population

Fitness shar-
ing

NSGA-II Non-domination count Maintain in
population

Crowded com-
parison opera-
tor
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2.3.9 Approach of Multi-objective Meta-heuristics

(Yu 2007) have explored constraint based multi-objective genetic algorithms on dependent

tasks. Scheduling algorithm finds the trade-off between two conflicting objectives execu-

tion time and cost, while meeting user’s requirement. User’s requirements minimize the

monetary cost while meeting user’s budget constraints, or minimizing the execution time

while meeting user’s deadline constraints. Budget and deadline value are computed us-

ing single objective genetic algorithm and HEFT scheduling algorithm respectively. After

that, relax, tight, and medium constraint is given to workflow and fitness is computed.

(Garg & Singh 2011) have applied Referenced Point NSGA-II (RNSGA-II) (Deb 2007)

on workflow. The major difference between NSGA-II and RNSGA-II is that NSGA-II

generates solutions over entire Pareto optimal where RNSGA-II generates the solution in

user specified region. Objectives of scheduling algorithm are to minimize the time and

cost together with the maximization of reliability in the given QoS constraints.

(Chitra et al. 2011) have applied Hybrid NSGA-II on workflow where objectives are

to minimize makespan and improve reliability. This algorithm uses simple neighbor-

hood search algorithm and weighted fitness function for local search. Simplest neighbor-

hood search algorithm starts from an initial solution and explores the vicinity of this

solution using a certain mechanism to generate neigh-boring solutions. Neighbors are

then accepted to replace the initial solution if they improve upon it. They have also used

fuzzy logic to choose the best solution among all available solutions.

(Garg et al. 2008) have introduced Hybrid Genetic Algorithm on independent tasks,

where each application requires more than one Central Processing Unit to execute. If an

application is not able to find the number of required CPUs, the task is considered as

infeasible and scheduled in the next iteration. This algorithm finds the initial scheduling

using linear programming without considering the CPU requirement, then converts this

assignment into CPU requirement, if possible, otherwise assigns the task to dummy node

for the next iteration. This initial schedule is input of GA.
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2.3.10 Utility/Quality of Service Based Scheduling Algorithms

QoS are a constraints that are related to the service. In telephony and computer networks

response time, signal-to-noise ratio, and cross-talk are considered as QoS parameters. In

the Grid environment deadline, price, execution time, and overhead are considered as QoS

parameters. Utility is a concept, originally from economics that evaluates the satisfaction

of a consumer while using a service. In a Grid environment, utility can be combined

with QoS constraints in order to have a quantitative evaluation of a user’s satisfaction

and system performance. The classical scheduling algorithms presented in the previous

section do not consider QoS or utility demands. Next, we present some QoS and utility

based scheduling algorithms for Grid environments.

2.3.11 Approach of QoS Based Scheduling Algorithms

(Buyya et al. 2002) introduced Deadline and Budget Constrained (DBC) scheduling algo-

rithms with four different optimization strategies, namely Cost optimization, Cost-time

optimization, Time optimization, and Conservative-time optimization for scheduling task-

farming applications on geographically distributed resources. Time optimization schedul-

ing algorithm completes the jobs as soon as possible within the budget limit. This schedul-

ing algorithm sorts the tasks based on the completion time. Then, it assigns a job to the

first resource for which cost per job is less than or equal to the remaining budget per job.

This process is repeated until all the jobs are assigned to the resource. Cost optimization

scheduling algorithm completes an experiment at minimum cost within the time limit.

Cost optimization scheduling algorithm sorts the resources by increasing cost. Then, for

each resource in order, assign as many jobs as possible to the resource, without exceeding

the deadline. The Cost-time optimization scheduling algorithm is similar to Cost opti-

mization scheduling algorithm, but if there are multiple resources with the same cost, it

applies time optimization strategy while scheduling jobs on them. The Conservative-time

optimization scheduling algorithm is similar to the time-optimization scheduling strategy,

but it guarantees that each unprocessed job has a minimum budget-per-job.

(Amudha & Dhivyaprabha 2011) proposed a QoS Priority-based scheduling algorithm

in which QoS parameter is used as priority which is user defined. This algorithm classifies
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the tasks into four groups. Groups are named as high complexity and high priority, low

complexity and high priority, high complexity and low priority, and low complexity and

low priority. Resources are also classified into two groups for example, high processing

speed (group-1) and low processing speed (group-2) systems. High priority tasks are

assigned before the low priority. High complexity tasks are assigned to high processing

speed system and vice versa.

(Chen & Zhang 2009) proposed an Economic Grid resource scheduling algorithm. It

is based on a utility function that includes user specified budget and deadline. This

algorithm assumes Grid is hierarchical. At the top level, Grid Resource Manager (GRM)

is responsible for mapping the tasks. Domain Resource Manager (DRM) is responsible

for other DRM or Computing Node (CN). This scheduling process starts whenever user

submits tasks to GRM. GRM gets updated information about DRM and CN, computes

the utility function on different DRM, the DRM, which has maximum utility is selected

for assignment. If maximum utility is not unique, it selects the DRM that has maximum

variance. This process is further repeated until next level is not CN.

(Yu 2007) considered the scheduling problem on the utility Grid where user has to

pay money for services. It is constraint based scheduling algorithm in which cost should

be minimized, while meeting the user specified deadline for executing a workflow. This

algorithm first partitions a workflow into sub-workflows. A sub-workflow contains a

sequential set of tasks between two synchronization tasks (as specified in section 1.8) in

the workflow. It assigns a sub-deadline to each partition by a combination of Breadth-

first search and Depth-first search with critical path analysis. Then, for each partition a

planning process is applied to find the optimal mapping for which the cost is the lowest

and the deadline is met. The optimal search is modeled by a Markov Decision Process and

is implemented using a dynamic programming algorithm. Rescheduling is also possible

on the sub-workflow, when a sub-workflow misses its sub-deadline to decrease the cost.

An identical problem (Yu 2007) is considered by (Sample et al. 2002). The scheduler

starts with bids from resource providers for the QoS. QoS includes completion time, start

time, complexity, and size of the input parameters. The scheduler takes the decision based

on the Pareto optimality. The scheduler assigns the tasks to the provider based on QoS

agreement. If the certainty of the completion time and cost is dropped to a threshold,
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which is usually caused by performance fluctuation, rescheduling will be carried out.

(Garg et al. 2010) introduced Min-min Cost Time Trade-off (MinCTT), Min-max Cost

Time Trade-off (MaxCTT), and Suffrage Cost Time Trade-off (Suffrage CTT) algorithms for

parallel tasks. Parallel task is a task that requires more than one CPU to execute. Then, it

computes the utility value of each task based on average cost and average response time.

After that, tasks are assigned to the resources using Min-min or Max-min or Suffrage

heuristic.

(Li et al. 2010) proposed a cost and time balancing scheduling algorithm for parallel

tasks. They have defined a new parameter urgency of the task based on deadline. Re-

sources are divided into two groups based on average cost of schedule. Group-1 has the

resources that have more cost than average cost of schedule. Group-2 has the resources

that have less cost than average cost of schedule. This scheduling algorithm finds the two

tasks that have minimum utility value, then checks the urgency value of those tasks. The

task that has more urgency is assigned to group-2 and vice versa. Because group-2 has

faster resources. This approach generates more balanced schedule.

(Braun et al. 2002) have developed static mapping heuristic for QoS on economic Grid.

QoS parameters include timeliness, reliability, security, data accuracy, and priority. This

scheduling algorithm is designed from two different perspectives, namely the user and

the system perspectives with penalty. They have also classified the tasks as hard, soft

and best effort tasks. Hard tasks should complete before deadline otherwise it utility

value is zero. Soft tasks utility value is decreased if it does not complete within deadline.

Best effort tasks utility value is always one whether it completes within deadline or not.

Various utility functions have been designed for QoS parameters like task type (whether

it is hard or soft) reliability and timeliness. User defines the budget and QoS parameters.

If scheduler is able to find a machine that has better or equal QoS than user defined QoS

tasks are scheduled on machine. Otherwise task is considered as failure.

(Golconda et al. 2004) have compared various static QoS heuristics on independent

task. They have considered same task parameters and utility functions defined in

(Braun et al. 2002). This scheduling algorithm first, finds the weighted utility function

of a hard task, on most preferred version. Because hard task should complete within

deadline and most preferred version of task has least execution time. If no machine can
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Table 2.2: Evolution of Scheduling Algorithms

Criteria Traditional Cluster Grid
Chronology Late 1970 Late 1980 Mid 1990

Single System Image Yes Yes No
Number of Nodes Static Static Dynamic
Communication Bus, Switch LAN WAN

Node Heterogeneity No Low Yes

complete the hard task within the deadline on most preferred version, task is considered

as failure. Otherwise the machine, which gives maximum utility, is assigned to the tasks.

This process is repeated for soft and best effort tasks respectively. The efficiency of this

approach is evaluated in terms of number of satisfied users, makespan, and utility value

with the Suffrage and Min-min heuristic.

2.3.12 Comparison of Scheduling Algorithms

Table 2.2 shows the evolution of different types of scheduling algorithms. Traditional

parallel and distributed computing scheduling algorithms provide single system image,

nodes are homogenous, number of nodes are static and connected through bus and

switches. Cluster scheduling algorithms also provide single system image, nodes in a

cluster have low heterogeneity, communicate over LAN, and number of nodes are pre-

determined. Grid scheduling algorithms do not provide single system image, nodes are

dynamic and communicate over WAN.

Table 2.3 summarizes the various scheduling algorithms that are used in Grid projects.

2.3.13 Shortcoming of Existing Scheduling Algorithms

• Very few online heuristics consider the processor fragmentation, time, and cost of

service providers simultaneously. We have developed Parallel task scheduling algo-

rithm on economic Grid that selects the resource that leaves the smallest fragment

of processor, and takes the minimum cost and time.

• Little attention has been paid on dynamic scheduling algorithms in Grid. We have

designed a scheduling algorithm that model a scheduling algorithm as a state tran-

sition diagram and duplication candidate task is chosen intuitively to avoid imprac-
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Table 2.3: Overview of Various Scheduling Algorithms

Scheduling Algorithm Project Organization
Online Independent Myopic Condor and

DAG Man
University of Wisconsin
Madison, USA

Offline Independent Min-min GrADS Rice University, USA
Pegasus University of Southern Cali-

fornia, USA.
List HEFT Askalon University of Innsbruck, Aus-

tria.
Cluster and Duplica-
tion

TANH Ranaweera
and Agrawal

University of Cincinnati, USA

Genetic Algorithm Askalon University of Innsbruck, Aus-
tria.

Simulated Annealing ICENI London e-Science Centre,
UK.

tical duplication.

• Existing Sender-initiated scheduling algorithm does not work in high system load

because polling activity itself increases the system load. Thus, we proposed En-

hanced Sender-initiated scheduling algorithm that uses polling information to de-

termine the threshold. This approach improves the turnaround time of tasks and

communication overhead.

• Existing improved NSGA-II algorithms either applied the pre-selection operator or

memetic operator. We have combined both the operators and work on scheduling

algorithm where prices offered by resources providers are not correlated with their

services. Since, NSGA-II is multi-objective, it produces many solutions, it is nearly

impossible to find the best solution that has minimum cost and time. Thus, we

propose ranking algorithm to select the best solution.

The discussion in this chapter presents a broad picture of scheduling algorithms in the

distributed environments. Together with Chapter 1, it forms the foundations of this thesis

by providing the background knowledge and identifying research problems. From the

next chapter, discussions will be focused on original works in the Ph.D. study.
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Chapter 3

Dependent Task Scheduling

This chapter focuses on our proposed multi-objective dependent task scheduling algo-

rithm on economic Grid where user has to pay-per-use. Where prices offered by resources

providers are not correlated with their services. Thus, user wants more information such

as range of cost and time before making decisions. For example, users may prefer so-

lutions which have slightly longer time but offer large savings in execution cost. The

proposed Double Hybrid NSGA-II (DHNSGA-II) algorithm minimizes three conflicting

objectives without making them single scalar objective, using NSGA-II. DHNSGA-II does

hybridization at two levels. At the first level, it uses Pre-selection operator and at the

second level it uses Memetic operator/Local search. Pre-selection operator seeds the

DHNSGA-II with the previously generated solutions. Memetic operator improves the

current population using simple neighborhood search algorithm. Apart from DHNSGA-

II we introduced an approach to rank the Pareto frontiers because Pareto frontier has

many solutions; it is nearly impossible to choose the best solution. Various versions of

NSGA-II is tested and results are compared.

3.1 Motivation

Existing seeded NSGA-II (Yu 2007) algorithm works on Utility Grid where service cost

and time are reciprocal and user has to define cost and deadline. Memetic NSGA-II

(Chitra et al. 2011) algorithm applies Simple Neighborhood Search (SNS) and minimizes

the makespan and reliability. (Garg & Singh 2011) applied the reference point NSGA-
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II that requires user input. (Chitra et al. 2011) has also introduced decision maker that

suggest best weights for the different objectives using fuzzy logic. While we introduced

an approach to rank the solutions based on user defined trade-off factor. Rank of solu-

tions is computed using Technique for Order Performance by Similarity to Ideal Solution

(TOPSIS) method (Sen & Yang 1998) because TOPSIS method requires few numbers of

input (weights of criteria) to choose the best alternative than other Multiple Criteria Deci-

sion Making (MCDM) (Aruldoss et al. 2013) methods. Time complexity of TOPSIS is also

lesser than other MCDM methods because it does not perform pairwise comparison of

each criterion with other criteria. Following sections illustrate non-dominated sorting and

crowded comparison operator.

3.1.1 Steps of NSGA-II

NSGA-II has the following steps:

1. Initialize a population using uniform random distribution method.

2. Apply crossover and mutation operators to generate children solutions.

3. Combine the children and parent population to compute non-dominated sorting.

4. Compute the objective value of each solution.

5. Compute the non-domination rank of each solution and assign different fronts. The

solutions having lesser rank are better candidates for next generation.

6. Compute the crowding distance of each solution within the front. For a minimiza-

tion type optimization problem, a solution x wins with another solution y if (a)

solution x has better rank than solution y, or, (b) if the solutions x, and y have the

same rank, but solution x has large crowding distance than solution y.

3.1.2 Crowded Comparison

Crowded comparison operator uses non-domination count of each solution in a popula-

tion. Then, it makes different fronts of solutions based on non-domination count. Each

solution in a particular front computes the density of solutions with other solutions in
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the front. Density of an individual is computed using average distance of two points on

either side of this point along each objective of the problem. This value is called crowding

distance. After that, the solution that resides in the less crowded region is preferred in a

particular group.

3.2 Problem Definition

This section formulates the Grid resource scheduling problem into Grid resource market

model. It considers the economic Grid that is a collection of heterogeneous clusters and

network resources. Clusters are heterogeneous in processor architecture and pricing. Net-

work resources have different speed and cost. We use Directed Acyclic Graph (DAG) to

model an application as shown in Fig. 3.1a. A workflow w is represented by a DAG ’G’

= (v, e, x, c), where v and e are the set of tasks and directed edges respectively. A node

in the task graph represents a task that runs non-preemptively on any cluster. Each edge

is denoted by eij corresponding to the data communication between ti and tj, where ti is

called immediate parent task of tj. Child task cannot be started until all of its parent tasks

are completed. A task which does not have a parent task is called entry task tentry. A task

that does not have a child task called exit task texit. x is computation matrix in which xij

is computation time of task i on cluster j. c is the communication matrix shown where

cij is the communication time between (ti, tj). Fig. 3.1a, shows example of an application

modeled by DAG ’G’ = (v, e) where v= (t1, t2....tn) are set of eight tasks to be executed.

Fig. 3.1b represents computation matrix x, of three clusters named as M1, M2 and M3.

Fig. 3.1c represents c communication requirement of between sub tasks. A schedule is a

function s : v→ m that maps v tasks on m clusters, that executes it.

Completion time of task: The completion time comij of a task ti on the cluster cj is

given by

comij = stij+xij (3.1)

Here, stij is the start time of the task ti on cluster cj and computation time xij is added.

Start time of the entry task is zero. Other tasks start time is computed by considering the

completion time of all immediate predecessors of the task. The communication time cij,
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Figure 3.1: Workflow of 8 Tasks

is added if the dependent tasks are allocated to different clusters.

Completion time of cluster: The completion time comj of cluster cj is the maximum of

completion time comij of all assigned tasks is given as

comj = max
(
comij

)
∀ i = 1 . . . k (3.2)

Here k is the set of all assigned tasks to the cluster cj.

Makespan: Makespan of the workflow is the maximum of comj. It is defined as follows

makespan (sch) = max
(
comj

)
∀ j = 1 . . . m (3.3)

Here, comj is the completion time of cluster cj, m is the number of clusters, and sch is

schedule of the workflow.

Computation Cost: It occurs when a task is executed on a cluster. The computation

cost of task ti on cluster cj is determined by

compuCostij = compuCostj × xij (3.4)
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Here, compuCostj is cluster cj computation cost in G$ (G$ means Grid Dollar), and xij is

computation time of task i on cluster j. Computation cost compuCost of schedule sch is

calculated as follows:

compuCost(sch) =
n

∑
i=1

compuCostij (3.5)

Here, n is the number of tasks.

Communication Cost: It occurs when a cluster transfers result of a task to other clus-

ters. The communication cost is defined as:

commuCostij = commuCostj × cij (3.6)

Here, commuCostj is cluster cj communication cost in G$, and cij is the communication

time between task i and j. Communication cost is not reciprocal of communication time.

Communication cost commuCost(sch) of schedule sch is computed as follows:

commuCost(sch) =
n

∑
i=1

commuCostij (3.7)

The task scheduling problem is formulated by considering the objectives of minimiz-

ing the makespan, computation cost and communication cost of the schedules.

Given an application graph G and a set of clusters m, the task scheduling problem is

to determine a static distributed schedule with a minimal makespan, computation cost

and communication cost simultaneously. This is a multi-objective scheduling problem. In

multi-objective optimization, optimality is not defined as an absolute best solution. The

notion of pareto dominance is considered in order to get a partial order between solutions.

The quality of a solution is represented by the values of all the objective functions. This

problem is formulated as a non-linear multi-objective optimization problem as follows:

Min f = [ f1, f2, f3] (3.8)
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3.2.1 Objective functions

1. Makespan objective: The makespan of a schedule sch is calculated as:

f1 = makespan(sch) (3.9)

where makspan(sch) is calculated using equation (3.3). Makespan is the completion

time of a schedule sch.

2. Computation cost: The computation cost of a schedule sch is calculated as:

f2 = compuCost(sch) (3.10)

where compCost(sch) is calculated using equation (3.5). Computation cost is the cost

of computation resources to execute a schedule sch. Computation cost is measured

in G$.

3. Communication Cost: The communication cost of a schedule sch is calculated as:

f3 = commuCost(sch) (3.11)

where com(sch) is calculated using equation (3.7). Communication cost is the cost of

network resources to transfer data from one cluster to other cluster. Communication

cost is measured in G$.

3.3 Double Hybrid NSGA-II (DHNSGA-II)

NSGA-II is similar to GA. NSGA-II works on multi-objective while GA works on single

objective and provides single best solution at the end. Pseudo code of GA is given in

Algorithm-2. Initially it generates random solutions. Then, it performs crossover and

mutation operators in order to generate offspring. This process is repeated until i is less

than population popSize. Then, it computes objective function of each offspring. This

process is repeated until gen is less then generation N.

DHNSGA-II is an enhancement of NSGA-II where solutions are seeded and memetic
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operator is applied on population. Pictorial diagram and pseudo code of DHNSGA-II are

shown in Fig. 3.2 and Algorithm-3 respectively. Its, initial population p′ is seeded through

GA solutions (lines 3-5). DHNSGA-II minimizes three objectives namely communication

cost, computation cost, and makespan. Thus, GA runs three times to minimize each

objective. After that remaining solutions are generated randomly. In order to compute

offspring p′′, parents p are selected from population p′ using Binary Tournament operator

(line 11). Crossover and mutation operators are applied on parents p (lines 12 to 13).

After that newly generated offspring p are evaluated to determine their fitness (line 14)

and added into new offspring p′′ (line 15). This process is repeated until the offspring

p′′ size is less than population size popSize. Next, SNS algorithm is applied to newly

generated offspring (line 17) for memetic operator. Pseudo code of SNS algorithm is

given in Algorithm-4.

Algorithm 1 Pseudo Code of GA
1: Input = G(v, e, x, c)
2: Output = single schedules
3: p′ ← GernatesRandomSolutions();
4: for gen = 1→ N do
5: for i = 1→ popSize do
6: p ← selectTwoParents(p′);
7: p ← performCrossover(p);
8: p ← performMutation(p);
9: computeObjective(p)

10: p′′ ← addOffspring(p);
11: end for
12: end for

SNS algorithm selects current solution c from offspring and searches its neighborhood

solution c′ using swap based mutation. After that, it computes the fitness function using

equation 3.12 of c′. If fitness function of c′ dominates, it replace the c. Fitness function of

SNS algorithm is follows:

fc=
m

∑
i=1

wi
fin −mini

maxi −mini
(3.12)

Here, wi is weight of ith objective, mini is minimum value of ith objective, maxi is maximum

value of ith objective, and fin is the fitness value of ith objective of current solution. Local

search operator is performed on set solutions [10, 10, 5], at set of time [1, 2, 5].

After that Non-dominated sorting between offspring and population is performed to
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assign different fronts (line 18). This process is repeated until generation gen is less than

number of generation N.

Figure 3.2: Pictorial Diagram DHNSGA-II

3.3.1 Implementation of DHNSGA-II

The chromosome is represented using two strings, namely matching string and schedul-

ing string. Scheduling string represents the schedule. Matching string represents the task

order. Following genetic operators are used:

3.3.1.1 Chromosome Representation

The process of representing a solution that conveys the required meaning is necessary.

We have used scheduling string Ss, and matching string Ms of length v. Matching string

contains the value between 0 to max cluster. Ms[i] = k means the task vi is assigned to

cluster k. Scheduling String Ss is generated using topology sort of length v. Scheduling

string Ss[i] = k indicates that vk is ith sub task of the DAG. For the Fig. 3.1b matching

string Ms and scheduling string Sc could be [M1, M2, M3, M2, M3, M2, M1, M3] and

[t1, t2, t4, t3, t6, t7, t5, t8] respectively.
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Algorithm 2 Pseudo Code of DHNSGA-II
1: Input = G(v, e, x, c)
2: Output = multiple schedules
3: for i = 1→ 3 do
4: p′ ← seedsSolutions();
5: end for
6: for i = 3→ popSize do
7: p′ ← RandomlyGernatedSolutions();
8: end for
9: for gen = 1→ N do

10: for i = 1→ popSize do
11: p ← selectTwoParents(p′);
12: p ← performCrossover(p);
13: p ← performMutation(p);
14: computeObjectives(p)
15: p′′ ← addOffspring(p);
16: end for
17: p′′ ← LocalSearch(p′′);
18: p′ ← nonDominatedSorting(p’,p”);
19: end for

Algorithm 3 Pseudo Code of SNS Algorithm (Local Search)
1: Input = (p′′);
2: Output = (p′′);
3: p ∈ [10, 10, 5]
4: l ∈ [1, 2, 5]
5: for count = 1→ p do
6: c← SelectsSolution(p′′);
7: c′ ← c
8: f ← Compute fitness of c′ 3.12
9: for k = 1→ l do

10: Apply swap mutation on c′

11: f ′ ← Compute fitness of c′ 3.12
12: if f ′ <= f then
13: c ← c′

14: end if
15: end for
16: end for

79



3. DEPENDENT TASK SCHEDULING 3.3 Double Hybrid NSGA-II (DHNSGA-II)

3.3.1.2 Selection/Replacement

Selection phase is used to allocate reproductive trials to chromosomes according to

their fitness. There are different approaches that can be applied during the selec-

tion phase. Binary Tournament selection operator is use due to its efficiency, gen-

eration of diverse population and simple implementation (Blickle & Thiele 1996).

It selects the population based on the rank and crowding distance (Deb 2007),

(Bandyopadhyay et al. 2008). An individual selected has either its rank lesser (bet-

ter) than the other or its crowding distance greater than the other.

3.3.1.3 Crossover

Crossovers are used to create new solutions by rearranging parts of the existing

solutions in the current population. The idea behind the crossover is that the fittest

solution may result from the combination of two of the current fittest solutions.

Two point crossover is implemented for the matching string Ms and illustrated in

Fig. 3.3. It is implemented as follows:

1. Two parents are chosen at random in the current population.

2. Two random points are selected from the matching string Ms to form a

crossover window.

3. All machines included in the crossover window are chosen as successive

crossover points.

4. The machines allocations of all tasks within the crossover window are ex-

changed.

3.3.1.4 Mutation

Mutations operator is applied to obtain features that are not possessed by either

of its parents. This process helps the algorithm to explore new and possibly better

genetic material than previously considered. Move mutation is developed for the
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Figure 3.3: Two Point Crossover

workflow scheduling problem. The mutation operators are applied to the chosen

solutions with probabilities 0.3. Two random numbers are generated in which

first indicates the task number and second indicates the machine number in Ms.

For example, if matching string Ms is [M1, M2, M3, M2, M3, M2, M1, M3] and

two random numbers are 2 and 4. After applying the move operator new Ms will

be [M1, M4, M3, M2, M3, M2, M1, M3].

3.3.1.5 Pre-selection

In NSGA-II, the initial population is usually generated randomly. Besides the

random method, we have used GA because GA provides better solutions than

other list heuristics (Aggarwal et al. 2005). GA pseudo code is given in Algorithm-

2. Fitness function of GAs are makespan, computation cost, and communication

cost as given in equations 3.9 to 3.11.

3.3.1.6 Local Search/Memetic Operator

Local search operator (Ishibuchi & Murata 1998) uses swap based mutation to

increase the fitness measure. It randomly generates two numbers for Ms and

swapped. For example, if Ms is [M1, M2, M3, M2, M3, M2, M1, M3] and two

random numbers are generated like 3 and 1 that indicates the index of Ms. After
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applying the swap new Ms will be [M3, M2, M1, M2, M3, M2, M1, M3].

3.3.1.7 Evaluation

Evaluation of population is performed over three objectives that are described in

section 3.2. Non-domination count of solutions are computed in order to find dif-

ferent fronts. If particular front size is more than the remaining population size, it

performs crowded comparisons operator for clustering and selects the remaining

chromosomes.

3.3.2 Time Complexity

Time complexity of DHNSGA-II is similar to NSGA-II. NSGA-II time complexity

of one iteration is governed by non dominated sorting that is O(mN2), where N

is the population size and m is the number of objectives (Deb 2007). Similarly, GA

one iteration time complexity is dominated by compute objective function of GA.

It computes the objective value of each solution in population, therefore, O(N).

We run GA, for each objective, so it becomes O(k× N), where k is the number of

objectives. Overall time complexity of DHNSGA-II is O(mN2) which is dominated

by NSGA-II.

3.4 Simulation and Evaluation

A Java based simulator has been designed using jMetal (Durillo & Nebro 2011)

tool kit. jMetal stands for Meta-heuristic Algorithms in Java. jMetal toolkit

provides an environment to solve multi-objective optimization problems. To

test the effectiveness of the DHNSGA-II, real world DAG of Gauss Elimination

algorithm is used as a workflow. Gauss elimination graph is introduced by

(Topcuouglu et al. 2002). Gauss Elimination algorithm finds the upper triangle

of a square matrix. This application requires matrix of size m as an input, that

should be 2m. The total number of tasks in a Gauss elimination graph is equal

to (m2 + m− 2)/2. DHNSGA-II requires two kinds of parameters; to generate a
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workflow and perform the DHNSGA-II. The parameters to generate a workflow

like matrix size, average computation cost, and computation to communication

ratio, etc. is shown in Table 3.1. DHNSGA-II parameters are shown in Table 3.2.

It requires probability of crossover and mutation operators, etc.

Table 3.1: Workflow Parameters

Parameter Name Range
Matrix size 8 to 64
Average computation cost 10 to 200
Computation to communication ratio 0.1 to 10
Heterogeneity factor of resources 0.2 to 0.5
Cost of computation resources in G$ 0.1 to 0.9
Cost of network resources in G$ 1 to 10

To assess the search capability of the proposed algorithm, we have generated

16 Gauss elimination graphs of a particular matrix. After that a particular graph,

is ten times generated, each time different computation cost and computation to

communication ratio is randomly chosen from particular set. Thus, a particular

matrix graph is evaluated 160 times. We have compared the seeded NSGA-II,

Memetic NSGA-II, and DHNSGA-II with reference solutions. Memetic NSGA-

II applies the local search on the best solution. The best solutions are picked out

using Roulette wheel selection method because (Noraini & G. 2011) has suggested

that whenever solution quality is the main concern, then rank-based selection

(Roulette wheel come under this category) strategy is the best.

Table 3.2: DHNSGA-II Parameters

Parameter Name Value
Population size 100
Cross over rate 0.8
Mutation 0.3
Generation 500
Crossover operator Two point crossover
Mutation operator Move based mutation
Selection operator Binary tournament
Local selection operator Roulette wheel
Local operator Swap
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3.4.1 Performance Index

Multi-objective Optimization (MOO) algorithms measure two parameters regard-

ing the obtained solution set and reference solution set. It should converge close

to the reference solution set, and it should maintain diverse solution set. The

first condition clearly ensures that the obtained solutions are near optimal, and

the second condition ensures that wide ranges of trade-off solutions are obtained.

Hyper Volume (HV) indicator (Zitzler & Thiele 1999) is used to compute both

convergence and diversity.

It computes difference between non-dominated solution set obtained from al-

gorithm and reference solution set. Reference solution set is obtained by merging

all of the non-dominated solutions generated by all of the algorithms. The higher

value is better for HV. Statistical significance with alpha value (0.05) is computed

(Garg et al. 2010), (Yu 2007).

3.4.2 Results of DHNSGA-II

Fig. 3.4 to 3.6 show the comparison between reference solution set and non-

dominated solution set obtained of matrix size 64. In the figures, communication

cost (blue color), and computation cost (green color) show the reference solution

set, and communication cost (red color) and computation cost (yellow color) show

the solution set of different algorithms. Reference solutions have least communi-

cation cost, computation cost, and makespan. From the figures it is clearly visible

that DHNSGA-II Fig. 3.6 has least computation cost, communication cost and

makespan. DHNSGA-II has more number of solutions around the reference point

while other solutions are scattered. This is because its initial population is seeded

and local search is applied. DHNSGA-II has at least 20% less makespan, com-

munication cost, and computation cost than other algorithms. From the figures it

can be also observed that Seeded NSGA-II performs better than Memetic NSGA-

II. Thus, we conclude that the pre-selection operator plays a greater role than the

local search. Seeded NSGA-II has 15% less objective value than Memetic NSGA-II.
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Figure 3.4: Comparison of Seeded NSGA-II Solutions with Reference Solutions

Figure 3.5: Comparison of Memetic NSGA-II Solutions with Reference Solutions
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Figure 3.6: Comparison of DHNSGA-II Solutions with Reference Solutions

Inter Quartile Range (IQR) value (It measures a variability of data by ignoring

outliers of different quartiles) of HV of different size of matrices is summarized in

Table 3.3. Since the lesser value of IQR is better, from the table it can be observed

that DHNSGA-II obtains least value than other algorithms. Seeded NSGA-II per-

forms better than Memetic NSGA-II. DHNSGA-II overall average (all matrices)

HV value is 0.11 lesser than Seeded NSGA-II. Similarly, Seeded NSGA-II overall

average (all matrices) value 0.06 is lesser than Memetic NSGA-II.

Table 3.3: HV of Different Matrices

Matrix Seeded NSGA-II Memetic NSGA-II DHNSGA-II
8 0.46 0.47 0.32

16 0.32 0.34 0.22
32 0.38 0.40 0.21
64 0.25 0.42 0.23

3.4.3 Ranking of Non-dominated Solutions

A large number of non-dominated solutions are provided by the DHNSGA-II, so

the subjective ranking of solutions is very difficult and also will not be precise.
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In the present investigation, a comprehensive approach has been adopted to rank

the non-dominated solutions. Non-dominated solutions are ranked using TOPSIS

algorithm. It gives the rank of a solution based on relative closeness with positive

(maximum) and negative (minimum) of a separation matrix. Separation matrix is

an M-dimensional Euclidean distance of each alternative from the positive criteria

value and negative criteria value which is computed as follows:

R+
j =

√
n

∑
i=1

(
xij − x+j

)2
j = 1 . . . m (3.13)

R−j =

√
n

∑
i=1

(
xij − x−j

)2
j = 1 . . . m (3.14)

Here, m is the number of objectives, n is the number of solutions, xij is normalized

value of each solution’s objective, x+i and x−i is maximum and minimum value of

each criteria, R+
i is the distance from positive solution, and R−i is the distance

from negative solution.

The relative closeness of each solution i with ideal solution R−i and R+
i is

measured as shown in equation (3.15).

C+
i =

R−i
R−i + R+

i
= 0 ≤ c+i ≤ 1; i = 1 . . . n. (3.15)

The solution that has the least value of C+
i is considered as the best alternative.

3.4.4 Results of Ranking Algorithm

The developed approach has been tested on different matrices. Top five solutions

of each algorithm are selected by giving equal weight (0.33, 0.33, 0.34). After that

ratio of makespan and total cost (communication cost plus computation cost) is

computed. Matrix of size 32 and 64, top five solutions, makespan, and total cost

ratio of each algorithm is tabulated in Table 3.4 and 3.5 respectively. It can be

observed that in the case of matrix size 32, Table 3.4 ratio of average makespan

and total cost is 11.59, 13.16, and 4.18 of Seeded NSGA-II, Memetic NSGA-II, and

87



3. DEPENDENT TASK SCHEDULING 3.5 Discussion

DHNSGA-II respectively. In the case of matrix size 64 Table 3.5 ratio of average

makespan and total cost is 18.07, 22.07, and 8.08 of Seeded NSGA-II, Memetic

NSGA-II, and DHNSGA-II respectively. Thus, it can be observed that Seeded

NSGA-II has less objective values than Memetic NSGA-II. DHNSGA-II has 30%

to 32% lesser ratio of average makespan and total cost than other techniques.

DHNSGA-II outperforms the other two approaches and obtains good reduction

in average ratio of makespan and total cost.

Table 3.4: Ratio of Makespan and Total Cost of Matrix Size 32

No. Seeded NSGA-II Memetic NSGA-II DHNSGA-II
1 11.24 13.96 3.82
2 12.31 13.80 4.23
3 11.22 12.80 4.35
4 11.71 13.58 4.38
5 11.47 11.67 4.14

Average 11.59 13.16 4.18

Table 3.5: Ratio of Makespan and Total Cost of Matrix Size 64

No. Seeded NSGA-II Memetic NSGA-II DHNSGA-II
1 17.90 23.77 8.14
2 17.81 20.64 8.17
3 17.85 21.88 7.99
4 18.09 20.87 7.90
5 18.68 23.19 8.20

Average 18.07 22.07 8.08

3.5 Discussion

In this chapter, workflow scheduling problem is analyzed and solutions are per-

formed for economic Grid. Our proposed algorithm DHNSGA-II minimizes the

computation cost, makespan, and communication cost. The multi-objective prob-

lem of workflow scheduling is solved using GA, NSGA-II, and neighborhood

search approaches. We have compared our proposed algorithm DHNSGA-II with

Seeded NSGA-II and Memetic NSGA-II. The reference solution set is obtained by

combining the Pareto front of all the algorithms. Then, spread and convergence
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of algorithms are measured along with reference solution set. From the results,

it is noted that DHNSGA-II gives the satisfactory performance. The DHNSGA-II

is further analyzed using TOPSIS to rank the solutions built upon their distance

from the best solution and worst solution. Considering the ranking of the so-

lutions, the decision manager may choose a suitable candidate among the top-

ranking solutions to justify the objectives defined by the management along with

the present market scenario. In the current study, neighborhood search is used

as local search. In future, we plan to apply the other local search techniques like

archived multi-objective based simulated annealing, etc.
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Chapter 4

Independent Task Scheduling

This chapter purposes two novel scheduling algorithms for handling indepen-

dent, serial, and parallel tasks. An independent task does not have parent and

child relationship with other tasks, thus it can execute in any order. An indepen-

dent task can be a parallel or a serial task. A parallel task requires more than

one processor to execute the task. Proposed Enhanced Refinery heuristic works

on computational Grids that minimize makespan, while Parallel task scheduling

algorithm works on Economic Grids that minimize makespan, cost, and processor

fragmentation.

4.1 Enhanced Refinery Heuristic

Enhanced Refinery (ER) heuristic is a type of offline heuristic that schedules tasks

at predefined scheduled intervals.

4.1.1 Motivation

Existing Min-min heuristic (Braun et al. 2001) attempts to minimize makespan by

scheduling the smallest task on the fastest machine. Outcome of this approach,

is shorter makespan, if the execution time of the tasks varies slightly. However, if

there are large and small tasks, the large ones may be assigned to slower machines

and the makespan of the system will be increased dramatically, which is of course
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not a good heuristic.

The Max-min heuristic (Braun et al. 2001) seems to be better than the Min-min

heuristic when the number of short tasks is much more than the long ones. For

example, if there is only one long task, the Max-min heuristic executes many short

tasks concurrently with the long task. In this case, the makespan of the system

is most likely determined by the execution time of the long task. However, when

there is more than one long task Max-min heuristic assigns the shorter task to

fastest machine and longer task assigns to slower machines. The result of this

approach increases the makespan.

RASA heuristic (Parsa & Entezari-Malekir 2009) is designed to eliminate de-

ficiency of Max-min and Min-min heuristics. It applies Min-min and Max-min

heuristic alternatively. It supports concurrency in the execution of tasks.

Refinery heuristic (Bey et al. 2010) works in two phases in order to optimally

assign the tasks to machines in the Grid system. In the first phase, it arranges

the tasks in the longest minimal execution time, and then assigns the tasks to the

machine that takes minimum completion time. In the second phase, tasks are

swapped from highest completion time machine to the other available machines

in the system. The pseudo code of Refinery heuristic is given in Algorithm-5 and

described as follows:

Refinery heuristic first finds the order of tasks using the latest completion time

of each task (lines 2 to 4). Then it assigns the task in that order to a machine

that has minimum completion time (lines 5 to 9). This process is repeated until

all the tasks are assigned. Second phase computes the makespan (line 13). Next,

it finds the machine that has highest completion time, that machine is named

as makespan machine (Mm) (line 15). Now, all the tasks that are assigned on

Mm machine are swapped to other machines in the system, with the objective

that completion time of Mm machine and other machine should be less than the

makespan. This process is repeated until makespan gets reduced.

Since, Max-min and Min-min heuristics have their own drawbacks. Refinery

heuristic first sorts the task, then assign using Max-min heuristic, after that swap
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Algorithm 4 Pseudo Code of Refinery Heuristic
1: Input (ETC[task][machine]);
2: for Ti = 0→ N do
3: L[i]← computeLatestFinishtime(ETC);
4: end for
5: for Ti = 0→ N do
6: k← findMax(L);
7: m← findMachine(k);
8: assignTask(k,m);
9: remove(k,L);

10: updateMachine(m);
11: end for
12: repeat
13: oldMake← computeMakespan();
14: tmp← newMake′ ← oldMake;
15: Mm ← f indMachine(oldMake);
16: for all Ti ∈ Mm do
17: for all Mj /∈ Mm do
18: for Tk ∈ Mj do
19: newMake′′ ← computeFinishTime(Mj);
20: newMake′′ ← newMake′′ − ETC[Tk][Mj] + ETC[Ti][Mj];
21: newMake′ ← newMake′ + ETC[Tk][Mm]− ETC[Ti][Mm];
22: if newMake′′ <= oldMake then
23: if newMake′ < oldMake then
24: swapTask(Ti,Tj);
25: oldMake← newMake′;
26: end if
27: end if
28: end for
29: end for
30: end for
31: until (oldMake < tmp);
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the task from one machine to other machines. In Refinery approach, number

of tasks at each machine do not change because it swaps the tasks between two

machines. While we propose an Enhanced Refinery heuristic that does not arrange

the tasks, it not only swaps the tasks but also moves the tasks from one machine

to other machines in the system. Thus, it reduces the makespan.

4.1.2 Proposed Enhanced Refinery Heuristic

ER heuristic works in two phases. First phase assigns tasks according to Min-

min heuristic. Second phase reassigns the tasks that are assigned in the first

phase. Reassignment is done by reallocating a task from highest completion time

machine to other machines in the system. Tasks are reassigned either by swap

or move strategy. Swap strategy retains the same number of tasks while move

strategy changes the number of tasks. We describe our proposed ER heuristic in

the next section.

First Phase: It is very important to select a better initial scheduling solution to

achieve minimum makespan. Thus, we have chosen the Min-min heuristic. Min-

min heuristic is known as benchmark heuristic and gives the minimum makespan.

This heuristic first finds minimum completion time of all unmapped tasks. Next,

the task which has minimum completion time is selected and mapped to the

machine. Then, the newly mapped task is removed; the process repeats itself

until all tasks are mapped.

Second Phase: In a distributed environment, some machines are overloaded

while other machines are underloaded. We move and swap the tasks between

machines to increase the system load balance. Move procedure moves a task

from one machine to another machine. Swap procedure swaps tasks between two

machines. ER heuristic selects the method which gives minimum makespan. ER

heuristic is described in Algorithms 6, 7, and 8. These are described as follows:

ER heuristic (Algorithm-6) first assigns the tasks according to Min-min heuris-

tic (lines 1 to 9). Next, it finds new reassignments using move or swap procedure

(lines 13 to 14). Based on the outcome, i.e., whichever method gives minimum
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Algorithm 5 Pseudo Code of ER Heuristic
1: Input (ETC[task][machine]);
2: for Ti = 0→ N do
3: L← computeSmallestFinishtime(ETC);
4: k← findMin(L);
5: m← findMachine(k);
6: assignTask(k,m);
7: remove(k,ETC);
8: updateMachine(m);
9: end for

10: repeat
11: tmp← oldMake← makeTime← computeMakespan();
12: Mm ← f indMachine(oldMake);
13: newMake′ ← swap();
14: newMake′′ ← move();
15: if newMake′ < newMake′′ then
16: swapTask();
17: oldMake← newMake′;
18: else
19: moveTask();
20: oldMake← newMake′′;
21: end if
22: until oldMake < tmp;

Algorithm 6 Pseudo Code of Move Procedure
1: for all Ti ∈ Mm do
2: for all Mj /∈ Mm do
3: for Tk ∈ Mj do
4: comTime′′ ← computeFinishTime(Mj);
5: comTime′′ ← comTime′′ + ETC[Ti][Mj];
6: comTime′ ← makeTime− ETC[Ti][Mm];
7: if comTime′′ <= makeTime then
8: if comTime′ < makeTime then
9: makeTime← comTime′;

10: task← Tk;
11: machine← Mj;
12: end if
13: end if
14: end for
15: end for
16: end for
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Algorithm 7 Pseudo Code of Swap Procedure
1: for all Ti ∈ Mm do
2: for all Mj /∈ Mm do
3: for Tk ∈ Mj do
4: comTime′′ ← computeFinishTime(Mj);
5: comTime′′ ← comTime′′ − ETC[Tk][Mj] + ETC[Ti][Mj];
6: comTime′ ← makeTime + ETC[Tk][Mm]− ETC[Ti][Mm];
7: if comTime′′ <= makeTime then
8: if comTime′ < makeTime then
9: makeTime← comTime′;

10: end if
11: end if
12: end for
13: end for
14: end for

makespan is selected, and then the task is reassigned. This process works itera-

tively, until the makespan changes.

Algorithm-7 describes the move procedure. It finds a task which can be re-

moved from Mm machine (a machine that has maximum completion time) and

be assigned to another machine in the system in order to reduce the makespan.

Then, it computes completion time of Mm machine and other machine. If comple-

tion time of Mm machine and other machine is less than the makespan, then the

makespan gets updated. This process keeps information about machine and task,

where and which task will be moved.

Algorithm-8 shows the swap procedure. This method works similar to the

move procedure. Instead of moving a task, it swaps the tasks between two ma-

chines so that same number of tasks are retained on the Mm machine.

4.1.3 Illustrative Example of Enhanced Refinery Heuristic

Consider a sample of ETC matrix which is shown in Fig. 4.1. It has 15 tasks and

three machines. ER heuristic first assigns tasks according to Min-min heuristic.

Makespan of Min-min heuristic is 921 as shown in Fig. 4.2. Now, we find a new

makespan from move or swap procedure. In Iteration-1 swap procedure swaps

the task T4 and T8 from machine M1 to M2. This makes makespan 843, (shown

in Fig. 4.3). Move procedure (Fig. 4.4) moves a task T3 from machine M2 and

95



4. INDEPENDENT TASK SCHEDULING 4.1 Enhanced Refinery Heuristic

Figure 4.1: ETC Matrix

Figure 4.2: Min-min Heuristic

assigns to machine M0 and makes makespan 840. Move procedure makespan

is lesser than swap procedure. Therefore, we choose the move results for next

iteration. In Iteration-2, swap procedure swaps the task T2 and T3 from machine

M0 to M1 and makes a new makespan 764 (shown in Fig. 4.5). Move procedure

moves a task T13 from machine M0 and assigns it to M1. The results are shown in

Fig. 4.6. Here, we again choose the move results for next iteration. In Iteration-3,

swap does not reduce the makespan. Move procedure further moves a task T9

from machine M2 and assigns it to machine M1. The results are presented in

Fig. 4.7. Iteration-4 does not reduce the makespan further. Thus, ER heuristic

makespan comes out to be 746 whereas Refinery heuristic makespan is 764.

The time complexity of ER heuristic is similar to Refinery heuristic. The time

complexity of first phase is O(m× n2) where m is the number of machines and

n is the number of tasks. The time complexity of move and swap procedure

are O(k × m × n2) and O(k × m × n2) respectively. Where k is the number of

iterations when the makespan value change, m is the number of machines, and n

is the number of tasks. So, the time complexity is maximum of all the procedure

which is O(k×m× n2).
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Figure 4.3: Iteration-1 of ER Heuristic (Swap Procedure)

Figure 4.4: Iteration-1 of ER Heuristic (Move Procedure)

Figure 4.5: Iteration-2 of ER Heuristic (Swap Procedure)

Figure 4.6: Iteration-2 of ER Heuristic (Move Procedure)

Figure 4.7: Iteration-3 of ER Heuristic (Move Procedure)
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4.1.4 Experimental Setup

To evaluate and compare the proposed ER heuristic with the other existing algo-

rithms, a Java based simulator has been developed. A similar simulation model is

used by (Braun et al. 2001), (Sahu & Chaturvedi 2011). Major classes of the simu-

lator are given as follows:

• Main class provides user interface that takes input from the user as number

of tasks, number of machines, meta-task size, machines, and tasks hetero-

geneity.

• Simulator engine class generates ETC matrix and initializes the scheduling

engine based on heuristics.

• Scheduling class maps tasks on resources based on heuristics.

To simulate the heterogeneous environment, ETC matrix of size N × M is gen-

erated. In the actual Grid systems, state estimation is generally done based on

the experimental data, application profiling (Hoschek et al. 2000) and benchmark-

ing techniques (Wolski et al. 1999), (Gong et al. 2002). In this experimental testbed,

instead of actual task profiling a pre-computed ETC matrix is used.

A row in the ETC matrix contains the expected time to compute for a given job

on each resource, whereas a column consists of the expected time to compute of

every job on a given resource. Hence, for a task Ti and a machine Mj, an entry of

the ETC matrix contains the expected time to compute of task Ti on resource Mj.

4.1.4.1 Constructing ETC Matrix

Constructing the ETC matrix is a three steps process as given follows:

• Step 1: All necessary initializations are performed. ETC is a two dimensional

array of size N ×M where N is the total number of jobs and M is the total

number of machines. To construct the ETC matrix, first a baseline vector B

of integer number is generated. Baseline vector B will contain N elements.
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• Step 2: It explains the creation of Baseline vector B. To generate the baseline

vector B a uniform random number Xb is generated such as Xb ∈ [1, Ub] (Ub

is the upper bound of the range of possible values of B). Xb is generated

repeatedly for N times and baseline vector B is constructed such as B[i] = Xbi

where 1 ≤ i ≤ N.

• Step 3: Rows of the ETC matrix are generated from the baseline vector B. A

uniform random number Xr, known as row multiplier, is generated such as

Xr ∈ (1, Ur) (Ur is the upper bound of the range of possible values of the

row multiplier, Xr). M different row multipliers are required for a row. Xrij

is generated for every element of the ETC matrix in a row and final value of

ETC matrix element is generated as ETC[i][j] = Xrij × B[i], where 1 ≤ i ≤ N

and 1 ≤ j ≤ M.

4.1.4.2 Achieving Heterogeneity

The characteristics of the ETC matrix are varied to achieve the heterogeneity. The

variation among the execution times of task for a given machine is defined as task

heterogeneity. Task heterogeneity is achieved by changing the upper bound of the

random numbers within the base line column vector B. High task heterogeneity

is achieved taking Ub = 3000 and low task heterogeneity is achieved by taking

Ub = 100. Similarly, high machine heterogeneity and low machine heterogeneity

are achieved by varying the upper bound, Ur of the random number used to

multiply the base line column vector. High machine heterogeneity is represented

by taking Ur = 1000 and low machine heterogeneity is achieved by taking Ur =

100 as adopted by (Braun et al. 2001), (Bey et al. 2010).

Further, the ETC matrix can be categorized, based on the consistencies as con-

sistent, semi-consistent, and inconsistent. Consistent means, if a machine Mj ex-

ecutes the task Ti faster than machine Mk then, it will execute all the jobs faster

than Mk. On the other hand, inconsistent means a machine Mj can be faster than

machine Mk for some tasks and slower for others. Semi-consistent matrices are
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Table 4.1: Excerpt from Inconsistent High Heterogeneity of Tasks and Machine

8371 113539 198121 224209
328009 378379 515152 607315
624898 631797 642177 733006
749809 797941 1261081 1275031

Table 4.2: Excerpt from Semi High Heterogeneity of Tasks and Machine

1 1742 3805 4005
4439 5006 5073 6965
6965 7008 7408 8009
8706 9877 9877 17284

inconsistent matrices that include a consistent sub matrix of a predefined size. In

the semi-consistent ETC matrices used here, 50% of the tasks define a consistent

sub-matrix. Based on the above idea (described in section 4.1.4), four categories

were proposed for the ETC matrix. These are given as follows:

1. High task heterogeneity and high machine heterogeneity (hi-hi)

2. High task heterogeneity and low machine heterogeneity (hi-lo)

3. Low task heterogeneity and high machine heterogeneity (lo-hi), and

4. Low task heterogeneity and low machine heterogeneity (lo-lo)

Sample 4× 4 excerpt for inconsistent and semi-consistent matrices are shown in

the Table 4.1 and 4.2 respectively. These are taken from the actual matrix of 512×

16.

4.1.5 Experimental Results

This section provides the experimental details and results for the proposed

scheduling algorithm. ETC matrices are generated using simulation model spec-

ified in section 4.1.4.2. The average variation along the rows is referred as the

machine heterogeneity and the average variations along the columns are referred

as the task heterogeneity and above specified (section 4.1.4.2) values are used.

To compare the results with already existing algorithms, we have considered the

512× 16 matrices as given, i.e. number of jobs (N) = 512 and number of machines
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(M) = 16 as adopted by (Braun et al. 2001), (Parsa & Entezari-Malekir 2009),

(Bey et al. 2010).

In order to evaluate the proposed approach, we have implemented the heuris-

tics described in section 4.1.1, and compared our output with Min-min heuristic

and Refinery heuristic. The performance of the ER heuristic was evaluated by the

average makespan of 100 results on the 100 ETCs generated by the same parame-

ter used by (Bey et al. 2010), (Braun et al. 2001), (Parsa & Entezari-Malekir 2009).

Fig. 4.8 to 4.11 show the comparison of average makespan of Min-min, Refin-

ery, and ER heuristics. We have shown graphs based on the task and machine

heterogeneity. At X-axis, instances are labeled as u− yy− zz− x. u means uni-

form distribution (used in generating the matrix), yy indicates the heterogeneity

of the tasks (hi means high, and lo means low), zz indicates the heterogeneity of

the machines (hi means high, and lo means low), and x means the type of con-

sistency (c means consistent, i means inconsistent, and s means semi-consistent).

At Y-axis, average makespan is shown. From the figures, it is clearly visible that

ER and Refinery heuristics performs better than Min-min heuristic in each case.

While ER heuristic reduces the makespan over Refinery heuristic by 5%, 12%,

12%, and 24% in lo-lo, lo-hi, hi-lo, and hi-hi consistencies respectively. Here, 5%

improvement in the case of lo-lo heterogeneity over Refinery heuristic because

there is less number of move and swap occurs. While 24% improvement in the

case of hi-hi heterogeneity over Refinery heuristic because there is more number

of move and swap occurs. This shows that it is feasible to use ER heuristic. Fig.

4.12 depicts the improvement of ER heuristic over Refinery heuristic with the dif-

ferent consistency. From the Fig. 4.12 it is clearly visible that ER heuristic reduces

the makespan by 6%, 15%, and 9% in the case of consistent, semi-consistent, and

inconsistent. In the case of inconsistent there is 9% improvement in makespan

that is remarkable.
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Figure 4.8: Average Makespan of lo-lo Heterogeneity

Figure 4.9: Average Makespan of hi-hi Heterogeneity
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Figure 4.10: Average Makespan of lo-hi Heterogeneity

Figure 4.11: Average Makespan of hi-lo Heterogeneity
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Figure 4.12: Improvement of ER Heuristic Over Refinery Heuristic

4.2 Parallel Task Scheduling Algorithm

This section discusses our proposed online parallel task scheduling algorithm on

economic Grid. In economic Grid, two parties that get benefit are users and ser-

vice providers. In order to get efficient and effective resources, user has to pay-per-

use, otherwise service provider gives the least priority to the user work. Online

task scheduling approach assigns the tasks to machines as task arrives into the

system. Existing Parallel task scheduling approaches suffer from processor frag-

mentation and heterogeneity. Processor fragmentation means sufficient number of

processors are available in Grid, but not at single site. Scheduling becomes more

challenging when clusters are heterogeneous in computation speed and price.

4.2.1 Motivation

Best fit (Huang et al. 2007) algorithm selects the resources that leaves the small-

est hole at cluster. As a result, this approach increases the load balance and

average response time. Fastest fit (Huang et al. 2007) algorithm selects the re-

sources that takes the minimum execution time. Result of this algorithm is

the least average response time but more load imbalance among the clusters.

Adaptive (Shih et al. 2013), (Huang et al. 2009) algorithms go through the waiting

queue before scheduling the current task in order to find which strategy (Fastest
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fit or Best fit) will complete the maximum number of tasks in minimum time.

(Garg et al. 2008) have applied hybrid GA, that first finds the initial scheduling

using linear programming without considering the PE requirement of applica-

tion, then converts this initial assignment into PE requirement of application, if

possible, otherwise assigns the task to dummy node for the next iteration. Thus,

Existing algorithms that consider both the issues are computationally expensive

and are not scalable. We propose a new online parallel task scheduling algorithm

that adds cluster cost as one more dimension to the problem. Thus, minimization

of cost, time, and processor fragmentation are difficult. We employed TOPSIS

algorithm that selects the resource that optimizes all three criteria simultaneously.

4.2.2 System Model

Grid scheduling architecture in Fig. 1.14 consists of following entities:

Grid Information Server (GIS): A GIS contains information about all available

Grid resources with their computing capacity and cost at which they offer their

services to Grid users.

Service/Resource Providers: Service providers are resource owners, including

clusters, servers, and supercomputers. They are responsible for executing Grid

user application. Resource provider provides static information to Grid Infor-

mation Server (GIS). Static information includes CPU speed in terms of Million

Instructions Per Second (MIPS), operating system, the number of PEs, and the

usage cost per second.

Users: Users have to be registered with GIS and submit their applications to

the resource broker for execution on Grid. They also supply information of the

QoS parameters.

Resource Broker: Resource broker schedules applications for the resource

provider. It collects the resources information from the GIS.

This work assumes that all the participants trust and benefit one another by

cooperating with one another. It is assumed that service price does not change

during the scheduling of applications. We assume an application requires fixed
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number of PEs and an application cannot be executed until all the required PEs are

available simultaneously. Application of this type of requirement is Synchronous

parallel applications or Single Instruction Multiple Data (SIMD).

4.2.3 Problem Statement

We first modeled the applications as parallel applications where the application

requires more than one computing elements. We proposed Economic Minimum

Completion Time (EMCT) scheduling algorithm to select the resources based on

trade-off factors that indicates the importance level of cost, time, and PE. To solve

this multi-criterion scheduling problem, we used the well known TOPSIS algo-

rithm.

Proposed algorithm considers a Grid environment that consists of a set of re-

source providers, R = {rj, rj+1, ... , rm}, each resource’s available time-slots, TS =

{tk, tk+1, . . . , tp}, and a set of Parallel applications, A = {ai, ai+1, . . . , an}. Each

application is characterized by, ai = (ali, api, adi, asi ) where ali is the application

length in number of instructions that can be estimated using application profiling

or benchmarking techniques, api is the number of Processing Elements (PE) re-

quired, adi is application input data in bits, and asi is the application submission

time.

Each resource characteristic is defined by, ri = (rcj, rsj, rpj, rbj, rtj), where the

first three parameters are static and others are dynamic. The rcj is resource pro-

cessing cost per second, rsj represents resource computational power in terms

MIPS of one PE, rpj is the number of processors a resource has, to execute a task,

rbj is resource bandwidth that changes periodically, and rtj is the list of available

time-slots. Time-slot is characterized by, tsk = (tsk, tfk, tpk), where tsk is start time

of time slot, tf k is finish time of time slot, and tpk available PE of time slot. We as-

sume that application ai cannot be executed until all the required api are available

simultaneously.

Let m be the total number of resource providers available for the application ai.

Here, we assume application is type of rigid; must be processed simultaneously
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Table 4.3: Notations

Notation Definition
al Length of application
ad Input data of application
ap Required PE of application
as Submission time of application
rc Resource cost per second in G$
rs Resource MIPS
rp Resource PE
rb Resource bandwidth
rt List of time-slots
ts Start time of time-slot
tf Finish time of time-slot
tp Available PE of time-slot

on required number of processors. If, resource providers want to earn more, pro-

cessor fragmentation should be minimized, so that more number of applications

can execute. The used notations are described in Table 4.3.

A lower bound of cost and time of all successful applications can be calculated

as minimum cost and minimum time. Value of cost is minimum when application

is scheduled on cheapest resources. Value of time is minimum when application

is scheduled on fastest resources. Execution time of application ai on resource

provider rj is given by

Ψij =
ali
rsj

(4.1)

Response time of application ai on resource provider rj in time slot tk is given

by

αij = t f ik − asi (4.2)

The cost of executing application ai on resource provider rj is calculated by

cij = rcj × api ×Ψij (4.3)
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Transfer time of application ai on resource provider rj is given as follows:

τij =
ali + adi

rbj
(4.4)

4.2.4 EMCT Scheduling Algorithm

Our proposed EMCT scheduling algorithm is a combination of the MCT and TOP-

SIS algorithms. MCT scheduling algorithm assigns the task to a machine which

would complete the task at the earliest so that all the machines are busy. TOPSIS

algorithm is based on the concept that the chosen alternative has the shortest geo-

metric distance from the positive ideal solution and the longest geometric distance

from the negative ideal solution. It is a method of compensatory aggregation that

compares a set of alternatives by identifying weights for each criterion, normaliz-

ing scores for each criterion and calculating the geometric distance between each

alternative and an ideal alternative, whichever is the best score in each criterion.

The pseudo code of EMCT scheduling algorithm is given in Algorithm-9. This

algorithm uses a matrix that represents decision matrix of TOPSIS algorithm. Ma-

trix is size of [m][n], where m is the number of resources that satisfy the applica-

tion requirement and n is the number of criteria. Matrix [0][n] contains trade-off

factor of each criterion.

Whenever a new application arrives in the system, the broker collects informa-

tion about resources and the application. Steps 3 to 5 assign the trade-off factor of

each criterion. Steps 6 to 8 find free time slots from each resource and determine

feasible time slot of each resource. A feasible time slot is a slot which has the

number of PEs more than or equal to required PEs and start time is equal to or

greater than the application submission time. Steps 9 to 11 calculate the response

time, cost, and transfer time of the application using equations 4.1, 4.2, 4.3, and

4.4 respectively. Steps 15 to 17 assign total time, processing cost, and available

PEs of time slot as an alternate to the matrix. This process is repeated for all the

resources. At step 19, TOPSIS process is called that returns the ideal solution as

resource. At Step 20, resource broker reserves the resource for an application.
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This process is repeated until applications arrive into the system.

Algorithm 8 Pseudo Code of EMCT Scheduling Algorithm
1: while application arrives into system do
2: get an application ai
3: matrix[0][0]← aηi
4: matrix[0][1]← aδi
5: matrix[0][2]← γi
6: for all resource rj ∈ R do
7: for all time-slot tk ∈ TS do
8: if (tpk >= api) then
9: αij ← t f ik − asi

10: cij ← rcj × api ×Ψij

11: τij ← ali+adi
rbj

12: break
13: end if
14: end for
15: matrix[j][0]← τij + αij
16: matrix[j][1]← cij
17: matrix[j][2]← tpk - api
18: end for
19: res← topsis(matrix)
20: res← ai
21: end while

4.2.5 TOPSIS Algorithm

Input to TOPSIS algorithm is the decision matrix that contains trade-off factor and

value of each criterion. We have discussed TOPSIS algorithm in section 3.4.3.

4.2.5.1 Construction of Decision Matrix D

In the context of resource selection, the effect of each criterion cannot be consid-

ered alone and should be viewed as a trade-off factor among various criteria. The

decision matrix D can be constructed as shown in Table 4.4.

Here i denotes the alternative resources i=1, 2,. . . , m; j represents the jth cri-

terion, j = 1, 2, . . . , n related to ith cluster, and fij is a crisp value indicating the

performance value of each resource fi with respect to each criterion f j. wj denotes

the trade-off factor of criterion j and sum of value of all trade-off factors should

be ∑n
j=1 wj = 1.
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Table 4.4: Decision Matrix D

wj wj+1 wn
ri fij fij+1 fin
ri+1 fi+1j fi+1j+1 fi+1n
.. .. .. ..
rm fmj fmj+1 fmn

Table 4.5: Grid Resources

Site Name PE MIPS Price (G$)
Delhi 100 1140 0.0069
Kolkata 65 1000 0.0032
Madras 252 1200 0.1267
Hyderabad 200 1330 1.856
Bombay 60 1320 0.1424
Pune 54 166 0.0353
Bangalore 265 1176 0.0627
Chennai 20 1140 0.0061
Indore 26 1330 0.1799

4.2.6 Simulation and Evaluation

We simulated our proposed algorithms on GridSim (Buyya et al. 2002) tool kit.

Resources are modeled according to specifications given in Table 4.5. Resources

like number of PEs, MIPS, and prices are also shown in Table 4.5 where the re-

source’s price is not consistent with PE’s MIPS. Grid topology is shown in Fig. 4.13

where users are connected with router1 with speed of 1 MBPS. In the simulation

we have used 10 resources that are connected with router2. Router1 is connected

with router2 with speed 10 MBPS to simulate Grid environment. Different num-

ber of applications are generated. Here after, jobs, tasks, and applications are

inter changeable. All the resources are simulated as clusters of PE that employ

CBF scheduling algorithm and allow advance reservations. CBF scheduling algo-

rithm uses empty spaces present in the waiting queue. The number of CPUs on

each resource are chosen such that the demand of CPUs by all applications will al-

ways be greater than the total number of free CPUs available on all the resources.

Jobs are modeled according to the workload Lublin model

(Lublin & Feitelson 2003). Lublin model is based on logs of different com-
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Figure 4.13: Grid Topology

puter system such that San-Diego Supercomputer Center Intel Paragon machine,

Los-Alamos National Lab, and Swedish Royal Institute of Technology. This model

first apply a logarithmic transformation to the data, due to large range, and

then fit it to a novel hyper-gamma distribution function and find the parameters

of distribution using iterative expectation maximization algorithm. It derives

a function for job length, job run time, job inter-arrival time, and degree of

parallelism for batch and interactive jobs. Application run times are generated

using a gamma distribution method where mean application length is set and

coefficient of variation value is set to 0.9 to test the high variation of application’s

length.

The performance evaluation of our approach is based on the average cost,

average makespan, and average failure. Makespan is the time when the last tasks

is finished in given number of applications. Failure is due to the non-availability

of required PE of application. Cost is the total money which user has to pay for
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Figure 4.14: Average Cost with Number of Applications

execution of applications. The results presented are averaged out over ten trials

with different trade-off factors.

Fig. 4.14 to 4.16 show the average cost, average makespan, and average failure

of different number of applications. Cost, time, and PE trade-off are 0.33, 0.33,

and 0.34 respectively. In the figures, X-axis corresponds number of applications

and Y-axis represents average cost, average makespan, and average failure. We

compare our proposed EMCT scheduling algorithm with a Parallel Round Robin

(PRR) scheduling algorithm. It is enhancement of Round Robin scheduling algo-

rithm. Round Robin scheduling algorithm schedules a serial independent tasks in

circular fashion. PRR scheduling algorithm also schedules tasks in circular fash-

ion but cluster should have required number of PE, other wise, it finds the next

cluster that satisfy the task requirement.

Fig. 4.14 shows average cost of PRR scheduling algorithm and EMCT schedul-

ing algorithm. As the number of applications increases cost of both scheduling al-

gorithms is also increases but growth of PRR scheduling algorithm is higher than

EMCT scheduling algorithm. Fig. 4.15 displays average makespan with varying

number of applications. The average makespan of PRR scheduling algorithm in-

creases greatly, EMCT scheduling algorithm increases mildly. When the number

of applications reaches to 5000, the makespan of PRR scheduling algorithm is 45%
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Figure 4.15: Average Makespan with Number of Applications

Figure 4.16: Average Failure with Number of Applications
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Figure 4.17: Average Cost with Varying Trade-off Factor

higher than the EMCT scheduling algorithm. Fig. 4.16 exhibits the average num-

ber of failures with different number of applications. It can be observed that as

the number of applications increase, numbers of failures also increase because re-

sources have limited time slots. EMCT scheduling algorithm has average failure is

31% lesser than PRR scheduling algorithm because EMCT scheduling algorithm

selects a resource that leaves the smallest fragment free.

In previous experiments, the number of applications submitted is varying,

here, we fixed the number of applications to 5000 and analyzed how average

makespan, average cost, and average failure change in different trade-off factors,

which is shown in Fig. 4.17 to 4.19. In the figures, X-axis corresponds trade-

off factor, each trade-off factor is increasing order. As the trade-off factor is in-

creased, objective value is decreased. For example, when trade-off factor of PE

is 0.50, number of failure is minimum among all factors. Similar trend is found

with other objectives. EMCT performs well when all objective trade-off factors are

same. EMCT scheduling algorithm objective value increases mildly, while PRR

increase greatly.
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Figure 4.18: Average Makespan with Varying Trade-off Factor

Figure 4.19: Average Failure with Varying Trade-off Factor
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4.3 Discussion

We have discussed our proposed Enhanced Refinery heuristic and Parallel task

scheduling algorithm in this chapter. Enhanced Refinery heuristic works on com-

putational Grid and minimizes the makespan. This heuristic uses the Min-min

heuristic as initial algorithm because it is the benchmark algorithm. Enhanced

Refinery heuristic not only swaps the tasks but also moves the tasks from one ma-

chine to other machines. It axes the makespan by 9% in case of an inconsistency

matrix. Parallel task scheduling algorithm works on economic Grid. Objective of

Parallel task scheduling algorithm is to minimize the cost, makespan, and pro-

cessor fragmentation. It is difficult in nature because cost is not consistent with

computational speed of resources. Therefore, we used TOPSIS algorithm, that

selects the resource based on separation matrix. The GridSim tool and different

workload archive are used to demonstrate the efficiency of algorithms. EMCT

scheduling algorithm reduces the processor fragmentation by 31% with different

number of applications.

116



Chapter 5

Decentralized Task Scheduling

We have developed two Decentralized task scheduling algorithms in which sched-

uler model interacts among themselves in order to decide which resources should

be allocated to the jobs being executed. Our proposed scheduling algorithms

are Efficient Dynamic Round Robin scheduling algorithm and Enhanced Sender-

initiated scheduling algorithm. Efficient Dynamic Round Robin scheduling algo-

rithm models a scheduling system as a state-transition diagram and replicates a

task intuitively. Enhanced Sender-initiated (ESender) scheduling algorithm uses

polling information to determine the threshold. Simulation study and a compari-

son of the results with other similar scheduling algorithms reveal the effectiveness

of the of proposed scheduling algorithms.

5.1 Motivation

Traditional Round Robin (RR) scheduling algorithm schedules a task to a re-

source without considering the workload of task and resource, as a result

poor performance. In order to improve the performance Multiple work queue

(Lee & Zomaya 2006) scheduling algorithm has developed. Multiple work queue

scheduling algorithm sorts tasks and hosts, based on task length and initial pro-

cessing speed of host respectively. After that, tasks are grouped into multiple

queue and scheduled from the queue based on host rank. Host rank is computed
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based on current performance of node. Dynamic Round Robin (DRR) schedul-

ing algorithm (Lee et al. 2006) models a scheduling system as a state-transition

diagram and tasks are replicate if waiting queue is empty and processor is free.

Replica is used when task requirement and processor processing efficiency is not

known. It is used to increase the resource utilization rate or reduce the response

time of tasks. We have developed an Efficient Dynamic Round Robin (EDRR)

scheduling algorithm that intuitively duplicates a tasks based on current perfor-

mance of node.

5.2 EDRR Scheduling Algorithm

This scheduling algorithm considers a Grid system comprising of distributed com-

puting nodes and a central server for task allocation purpose. The Grid is modeled

in the state transition diagram as shown in Fig. 5.1, to be passing through among

the four states. The system comprises two queues to store records of the tasks

currently in the Grid, namely the waiting queue and the execution queue. The

waiting queue comprises of tasks in the Grid, which are yet to be mapped to the

machines, while the execution queue contains all the tasks which are currently in

execution on at least one of the machines in the Grid.

5.2.1 Assumptions

• The model assumes that the tasks arriving in the Grid are atomic (cannot be

broken into further sub-tasks) and are independent of one another.

• It is assumed that task transfer cost (It occurs when task is transferred to

respective machine) and result collection cost is negligible.

• It is assumed that there is no information available on the workload of the

incoming tasks as it is not practically feasible to derive information regarding

the same without the services of a full-fledged prediction system.

• The approach assumes that the processing speed of individual computing
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Figure 5.1: EDRR Scheduling Algorithm Grid Model

nodes is available. The initial processing speed of nodes is provided and the

processing capacity of machines is updated from time to time on the basis of

the last task executed and the time taken.

5.2.2 Proposed Solution

Proposed scheduling algorithm is represented using a state transition diagram

given in Fig. 5.1 with the Grid occupying one of the four states at any given

time. The waiting queue, comprising of tasks waiting to be mapped and executed

on their respective machines, is implemented as a First-In-First-Out (FIFO) queue

where the task with the earliest arrival time is at the head of the queue and is

allocated on idle machine before other tasks waiting in the queue. The execution

queue, consisting of tasks currently in execution, is implemented as a circular

queue where each task in the queue has a specific order, and no task has the same

order as any other task. The execution queue makes use of three pointers to scan
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the circular list in a ringed Round-robin fashion. The current pointer is used to

point to the task currently having the highest priority in the execution queue. The

next pointer is used to point to the task with the second highest priority, which

is nothing but the task lined next to the current task, one step in the clockwise

direction. The last pointer is used to point to the task with the least priority in

the execution queue, which is precisely the task placed behind the current task, a

step in the anti-clockwise direction. The following is the description of the four

states occupied by the Grid system, during the life time of a task within the Grid

system.

5.2.2.1 Waiting State

This state is represented by an idle scheduler that is waiting for tasks to arrive

in the Grid. Incoming tasks are lined up in the waiting queue. Both the waiting

queue and the execution queue are initially empty. When the number of tasks in

the waiting queue becomes more than the threshold value, a transition is made to

State II.

5.2.2.2 Execution State

The execution queue is initially empty while the waiting queue contains a number

of incoming tasks in the Grid. We maintain a list of idle machines in the system.

Initially, all the machines are idle in State II, and hence the list contains all the ma-

chines in the Grid. The tasks from the head of the waiting queue are mapped one

by one to the machines in the idle list. As soon as a task from the waiting queue

gets mapped to a machine, the given machine is subsequently removed from the

idle list, while the task is removed from the head of the waiting queue and in-

serted into the execution queue. The mode of insertion is used to give the highest

priority to a task which has been assigned the slowest processor and vice-versa.

The task with the highest priority in the execution queue would be the first one to

get replicated because it is essentially the task with the slowest processors dedi-

cated to it and hence replicating such a task would lead to a very high probability
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of the new machine executing the task before the machines already assigned to it.

5.2.2.3 Replica State

The waiting queue is initially empty while the execution queue contains tasks

that are currently executing in the Grid. If a machine completes the execution of

a task, the processor list of that particular task is referred to, and all the machines

dedicated to executing the given task are released and made free while the task is

removed; the execution queue and the current, next, and last pointers are updated

if required. We update the processing power of the newly freed machine based

upon the number of instructions that the machine used for the previous task and

the time it took to finish its execution. If the processing speed of the machine is

greater than that of the processing speed of the task pointed by the current pointer,

then the given machine is required to execute the replica of the task pointed to by

the current pointer.

The current, next, and last pointers are also updated as follows. The current

pointer becomes the last pointer, the next pointer becomes the current pointer and

the next pointer would now be pointing to the task that was one step down in the

clockwise direction to the task pointed to by the erstwhile next pointer. Also, if

the machine assigned to execute the replica of a task has a processor speed greater

than that the processing speed of that task, then the value needs to be updated

to the processing speed of the given machine. We also keep track of the number

of machines executing replicas and the number of tasks in the waiting queue, this

information is exploited in State IV (in section 5.2.2.4). At this point of time, it also

checks if there are any other idle machines present in the Grid from the idle list

and assigns tasks from the execution queue in the same way as described above,

one by one, to these idle machines which are then subsequently removed from the

idle list.

However, if a machine is found to have its updated processing speed to be less

than that of the processing speed of the current task, then we do not assign the

machine to execute the task replica for the simple reason that in all probability,
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the task would be accomplished faster on one of the machines already assigned

to it as compared to the given machine. The machine name is then inserted at the

tail of the list containing the idle machines present in the Grid. There are three

scenarios, eventually possible, in State III.

• Case I: All the tasks in the execution queue are successfully completed while

the waiting queue is still empty. In this case, we traverse back to State I.

• Case II: All the tasks in the execution queue are successfully completed while

the number of tasks in the waiting queue is still less than or equal to the

threshold. In this case, we traverse back to State II.

• Case III: The number of tasks in the waiting queue exceeds the threshold

before all the tasks in the execution queue could be completed. In this case,

we traverse to State IV.

5.2.2.4 Removal of Replica

Both the waiting and the execution queues are initially non-empty. Two scenarios

are possible at this point of time.

• Case I: The number of machines executing replicas is less than the number

of tasks in the waiting queue.

• Case II: The number of machines executing task replicas is more than the

number of tasks in the waiting queue.

The tasks in the execution queue are traversed in an anti-clockwise direction (tasks

are assigned in order of processing speed of computing node in a Grid system)

one by one, starting from the task pointed to by the last pointer (the least priority

task) and if a task has more than one machine allocated to it, the machine at the

tail end of the processor list is taken out of the list, freed from the task it was

currently executing and assigned the task at the head of the waiting queue (after

removing the task from the queue).
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In Case I, we stop the traversal as soon as all the tasks in the execution queue

are being run on one and only one machine and transit to State II. In Case II, we

stop traversing the linked list as soon as all the machines in the waiting queue are

assigned a machine, and then subsequently transit to State III.

5.2.3 Experimental Setup

Simulation run of our proposed approach consists a Grid network having a fixed

number of computing nodes between 200 to 1000 and capacity of resources are

between 1 to 200 (in MIPS). The task length is between 1000 to 90000. For sim-

ulation purpose, we have considered the four test cases based on the number of

tasks and arrival rate of tasks. Cases are following:

• Case I: 6000 tasks and job inter-arrival rate is between 1 to 30.

• Case II: 6000 tasks and job inter-arrival rate is between 1 to 50.

• Case III: 3000 tasks and job inter-arrival rate is between 1 to 30.

• Case IV: 3000 tasks and job inter-arrival rate is between 1 to 50.

We have considered the Average Response Time as the yardstick to test the per-

formance of the EDRR scheduling algorithm against the DRR (Lee et al. 2006)

scheduling algorithm. Average Response Time is computed as

AverageResponseTime = ∑n
i=1 EndTimei − StartTimei

N
(5.1)

5.2.4 Experimental Results

The results shown are averaged out over thirty trials. Fig. 5.2 to 5.5 show the av-

erage response time of four cases that are described in section 5.2.3. In the figures

X-axis corresponds to resources and Y-axis represents the average response time.

From the Fig. 5.2 to 5.5 it can be observed as the number of resources increases re-

sponse time decreases. Fig. 5.2 to 5.3 demonstrates average response time of 6000

tasks for case I and II respectively. EDRR scheduling algorithm performs better
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Figure 5.2: Comparison of DRR and EDRR Scheduling Algorithm for Case I

Figure 5.3: Comparison of DRR and EDRR Scheduling Algorithm for Case II
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Figure 5.4: Comparison of DRR and EDRR Scheduling Algorithm for Case III

Figure 5.5: Comparison of DRR and EDRR Scheduling Algorithm for Case IV
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when job inter-arrival rate is small and less number of resources. Fig. 5.4 to 5.5

show average response time of 3000 tasks for case III and IV respectively. EDDR

scheduling algorithm improves overall response time for case I and II by 20% and

13% respectively. This is due to tasks are replicate only if free host capacity is

better than available nodes in system.

5.3 ESender Scheduling Algorithm

ESender scheduling algorithm eliminates the weakness of Sender-initiated (SI)

scheduling algorithm. SI scheduling algorithm works in homogenous system

where each node has predefined threshold and an overloaded node polls other

nodes in the system. If polling fails, overloaded node gets affected adversely, be-

cause polling activity itself increases the system load. Therefore, the performance

impact of a query is quite severe at high system load, where most queries fail.

ESender scheduling algorithm works in Grid system that is heterogeneous in na-

ture. It reduces the polling activity by broadcasting a message in the system, to

increase the queue length that act as a threshold. (Lau et al. 2006) have developed

an algorithm that works in Functional heterogeneous distributed systems and that

transfers multiple tasks. In Functional heterogeneous (Menascé & Almeida 1990)

a node can share its workload with only a subset of nodes in the system. Multiple

tasks are categorized into different classes based on service demand, code length,

and arrival rate. While we have developed an algorithm that does not classify the

tasks and works in heterogeneous distributed system (in which overloaded node

can share his load to any other nodes in the system). ESender scheduling algo-

rithm is designed to address the above drawbacks. It has the following features:

• It works on heterogeneous system where each node has different threshold,

based on common policy.

• At high system load, if sender node does not find the receiver node, it asks

for increased threshold, so that sender component will not be deactivated
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and, no further communication will take place from other nodes in the sys-

tem.

The policies on which the proposed scheduling algorithm works are discussed in

section 5.3.1 to 5.3.4.

5.3.1 Information Policy

Information policy is demand-driven, since polling starts only after a node be-

comes a sender node. Sender node looks for a receiver node where load can be

shared.

5.3.2 Transfer Policy

Predefined threshold transfer policy based on CPU queue length is considered

a node as a sender node. A node identifies itself as a suitable sender node if

accepting the task will increase the node’s queue length from threshold T.

5.3.3 Selection Policy

A newly arrived task at the sender node is selected to be transferred.

5.3.4 Location Policy

In this policy sender node polls other nodes in the system, if a sender node finds

suitable receiver node, it transfers the job to the receiver node. Otherwise, the

sender node broadcasts a message to increase the threshold T by 1%. Thus, all

the other nodes will increase threshold T, no more polling will be taking place in

high load. Because if a system has n nodes in which m nodes are overloaded, then

one of the node polls all the nodes in the system and if it does not find suitable

receiver node, it broadcasts a message to increase the threshold T. Thus, there

will be one broadcast message which is equivalent to n messages. While in SI

scheduling algorithm n×m messages are taken placed because each overloaded

node polls the few nodes in the system, if it does not find the suitable receiver
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then process the job locally. Further, it reduces the polling message within the

whole system.

The working of ESender scheduling algorithm is shown in Algorithm-10 and

flowchart in Fig. 5.6. Here, total n nodes in the system S = (si, si+1, ....., sn). When

a new job arrives at site si, it checks its queue length; if the queue length is greater

than the threshold, it polls all the nodes in the system (lines 3 to 7). During the

polling if a sender node finds a receiver node, it transfers the task to receiver node

(line 5 to 7). If a node does not find suitable receiver node it broadcasts a message

to increase the threshold by 1% (line 10). So other nodes will not perform polling

in the system.

The working of SI scheduling algorithm is shown in Algorithm-11. SI schedul-

ing algorithm works similar to ESender scheduling algorithm. In SI scheduling

algorithm sender node polls the receiver node till the poll limit. If the sender node

does not find receiver node it processes the task locally. As a result, other nodes

do not get the benefit of polling activity and at high system load it increases the

system load.

Algorithm 9 Pseudo Code of ESender Scheduling Algorithm
1: S ∈ si, si+1.....sn
2: if siq > t then
3: for j = 1→ n− 1 do
4: poll sj
5: if sjq < tj then
6: transfer the job
7: end if
8: end for
9: if j == n− 1 then

10: broadcast message
11: end if
12: end if

5.3.5 Simulation and Evaluation

The experimental setup is designed as described in section 4.2.6. Ten resources

with different MIPS using uniform random distribution between 10 to 20 MIPS

are created. Different number of jobs are generated using workload Lublin model
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Algorithm 10 Pseudo Code of Sender-initiated Scheduling Algorithm
1: S ∈ si, si+1.....sn
2: if siq > t then
3: for j = 0→ m do
4: select a node randomly
5: poll sj
6: if sjq < t then
7: transfer the job
8: end if
9: end for

10: end if

Figure 5.6: Flowchart of ESender Scheduling Algorithm
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and assigned to each node uniformly. Each node’s threshold is made equal to its

number of MIPS multiplied by 5 to observe the appropriate threshold value. If a

node has 20 MIPS then its threshold will be 100 tasks. The results presented are

averaged out over thirty trials.

Figure 5.7: Comparison of Number of Messages Transfer of SI and ESender Scheduling
Algorithm

Figure 5.8: Comparison of Turnaround Time with SI of ESender Scheduling Algorithm

Fig. 5.7 shows the number of messages communicated between the sender

node and receiver node. X-axis, shows the number of tasks and Y-axis, shows the

number of messages. As the number of tasks increases, the number of messages

also increases. ESender scheduling algorithm has overall 23% lesser number of
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messages than the SI scheduling algorithm. Fig. 5.8 shows the average turnaround

time of ESender and SI scheduling algorithm. X-axis, shows the number of tasks

and Y-axis, shows the average turnaround time. ESender scheduling algorithm

has 12% lesser turnaround time with respect to SI scheduling algorithm.

5.4 Discussion

ESender scheduling algorithm eliminates the weakness of SI scheduling algo-

rithm. SI scheduling algorithm works in a distributed system where each node

has predefined threshold and an overloaded node polls other nodes in the sys-

tem. If polling fails, overloaded node affects adversely because polling activity

itself increases the system load. Therefore, the performance impact of an inquiry

on polling is quite severe at high system load, where most inquiries fail. ESender

scheduling algorithm works in Grid system that overcomes this limitation and re-

duces the polling activity by broadcasting a message in the system, to increase the

threshold. ESender scheduling decreases turnaround time by 12% and network

overhead by 23%. EDRR scheduling algorithm is an enhancement of existing DRR

scheduling algorithm that replicates a task intuitively. This approach is based on

exploiting information on processing capability of individual Grid resources and

applying replication on tasks assigned to the slowest processors. As a result, Over-

all response time is improved by 13% when job inter-arrival rate of tasks are large,

and 20% improved when job inter-arrival rate of tasks are small.
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Chapter 6

Conclusions

6.1 Conclusions

This thesis presents novel scheduling algorithms for Grid computing systems,

which is currently being used by industry for providing a platform for running

resource intensive tasks in an efficient manner.

Chapter 1, introduces to these emerging areas and Chapter 2 presents related

work. Following are the conclusions that can be drawn:

In Chapter 3, presents dependent task scheduling algorithm on Grid. This

scheduling algorithm minimizes three conflict objectives namely makespan, com-

munication cost, and computation cost of execution, using NSGA-II. Various ver-

sion of NSGA-II has been tested and new Double Hybrid NSGA-II version is

introduced by employing pre-selection and memetic operator before and after the

NSGA-II algorithm respectively. This approach is 20% minimum objective values

than other proposed NSGA-II approaches. Since, multi-objective algorithm gen-

erates many solutions, it is nearly impossible to choose the best solution that has

minimum cost and time. Therefore, a ranking algorithm is designed to suggest

the possible better solutions. Proposed ranking approach obtained 30% to 32%

lesser ratio of average makespan and cost than other techniques.

In Chapter 4, we addressed two independent task scheduling algorithms in

a Grid. First, offline scheduling algorithm that works on computational Grid,
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named as Enhanced Refinery heuristic. Enhanced Refinery heuristic moves and

swaps the tasks from overloaded machines to underloaded machines. As a result

of our proposed approach, makespan is decreased by makespan by 9% in case

of an inconsistent matrix with existing techniques. Second, online parallel task

scheduling algorithm works on economic Grid, named as Economic Minimum

Completion Time (EMCT) scheduling algorithm. EMCT scheduling algorithm

minimizes processor fragmentation, makespan, and cost. EMCT scheduling al-

gorithm is evaluated by an extensive simulation study, which analyzed the best

scheduling algorithm to adopt according to different trade-off factors. EMCT re-

duces overall average failure by 31%.

In Chapter 5, two decentralized scheduling algorithms are introduced. First,

Efficient Dynamic Round Robin scheduling algorithm, model a Grid scheduling

algorithm as a state transition diagram and duplication candidate task is chosen

intuitively to avoid impractical duplication. As a result, Overall response time is

improved by 13% when job inter-arrival rate of tasks are large, and 20% improved

when job inter-arrival rate of tasks are small. Second, Enhanced Sender-initiated

(ESender) scheduling algorithm works in a heterogeneous environment where

each node has different transfer policies based resource’s MIPS. If a sender node

does not find a suitable receiver node, the job is processed locally and a message

is broadcast to increase the threshold. ESender scheduling algorithm is compared

with Sender-initiated scheduling algorithm based on turnaround time and num-

ber of messages. It is shown that ESender scheduling algorithm works better

than Sender-initiated scheduling algorithm in case of heterogeneous system. As

a result, proposed approach decrease the 12% turnaround time and 23% network

overhead.

6.2 Summary of Contributions

The following are the contributions of the research carried out as part of this thesis

work:
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1. Developed a Double Hybrid Non-dominated Sorting Genetic Algorithm-II

algorithm for workflow scheduling on Grids.

2. Developed an Independent offline task scheduling that works on computa-

tional Grid and reduces makespan of a job submitted to the system.

3. Developed a Parallel task scheduling algorithm that works on economic

Grids and minimizes cost, makespan, and processor fragmentation.

4. Developed an Efficient Dynamic Round Robin scheduling algorithm that uti-

lizes free resources effectively.

5. Developed an Enhanced Sender-initiated scheduling algorithm that works

on heterogeneous distributed computing environment.

6.3 Future Research

The following are the areas that need further research which we plan to pursue in

future.

The effectiveness of developed algorithms has been tested on simulators. In

future, we would like to test our designed algorithms in real Grid project like

Globus or Condor-G. We also would like to design and develop a simulation

toolkit for workflow scheduling algorithm for other researchers to experiment

their ideas.

As part of our work related to economic Grid scheduling algorithms, we con-

sidered fixed computation prices for service providers. We would like to explore

two approaches in this context. First, we would like to test a scheduling algo-

rithm that works on variable prices for providers. Second, we would also like to

test preemptive task scheduling algorithms, in order to enhance the provider’s

and user’s utility values, where user can move a task from expensive resources to

cheaper resources. Similarly, a provider can preempt a task that is less profitable.

We plan to work these points in our future research.
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Appendix A

Simulator Input-Output

A.1 DHNSGA-II Input-Output

A.1.1 Input

Input screen of Task graph generator as shown in Fig. A.1. It generates graph as

shown in Fig. A.2.

Figure A.1: Task Graph Generator
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It also generates the two output files:

computation.txt file keeps the information like Number of processors, Com-

putation cost of each task on each of the processor as shown follows:

4

100 97 103 100

97 94 100 97

103 100 106 103

96 93 99 96

104 101 107 104

95 92 98 95jec

105 102 108 105

94 91 97 94

106 103 109 106

93 90 96 93

107 104 110 107

92 89 95 92

108 105 111 108

91 88 94 91

109 106 112 109

90 87 93 90

110 107 113 110

89 86 92 89

111 108 114 111

88 85 91 88

112 109 115 112

87 84 90 87

113 110 116 113

86 83 89 86

114 111 117 114

85 82 88 85
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Figure A.2: Gauss Elimination Graph of Matrix Size of 8
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115 112 118 115

84 81 87 84

116 113 119 116

83 80 86 83

117 114 120 117

82 79 85 82

118 115 121 118

81 78 84 81

119 116 122 119

communication.txt file keeps the information like Number of nodes, Num-

ber of edges, Communication cost between nodei and nodej as shown follows:

35

55

1 2 500

1 3 497

1 4 503

1 5 496

1 6 504

1 7 495

1 8 505

9 10 494

9 11 506

9 12 493

9 13 507

9 14 492

9 15 508

16 17 491

16 18 509

16 19 490

16 20 510
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16 21 489

22 23 511

22 24 488

22 25 512

22 26 487

27 28 513

27 29 486

27 30 514

31 32 485

31 33 515

34 35 484

2 9 516

3 10 483

4 11 517

5 12 482

6 13 518

7 14 481

8 15 519

10 16 480

11 17 520

12 18 479

13 19 521

14 20 478

15 21 522

17 22 477

18 23 523

19 24 476

20 25 524

21 26 475

23 27 525
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24 28 474

25 29 526

26 30 473

28 31 527

29 32 472

30 33 528

32 34 471

33 35 529

A.1.2 Output

Output of DHNSGA-II is shown as follows:

Schedules of GA that minimize makespan

2 2 2 2 2 2 3 2 2 2 1 1 2 1 1 1 2 1 3 1 3 2 2 2 3 2 2 1 1 1 2 2 2 3 2

2 2 2 2 2 2 3 2 2 2 1 1 2 1 1 1 2 1 3 1 3 2 2 2 3 2 2 1 1 1 2 2 2 3 2

Objective function of GA that minimize makespan

15360.363308021531

15360.363308021531

Schedules of GA that minimize computation cost

0 0 3 0 0 0 0 0 1 3 1 3 1 1 3 3 2 3 3 3 3 2 2 3 2 2 2 3 2 3 3 3 3 3 3

3 0 0 0 0 0 0 0 0 3 3 0 2 1 0 1 1 3 1 3 3 2 2 3 2 0 2 3 2 3 3 3 3 3 3

Objective function of GA that minimize computation cost

6395.428264645327

24971.270679300225

Schedules of GA that minimize communication cost

1 1 1 3 1 2 1 3 1 3 3 0 3 3 2 3 2 3 1 3 0 2 3 2 0 0 3 3 3 3 2 2 2 3 3

3 0 1 3 1 2 1 3 1 3 3 0 3 3 2 3 2 3 1 3 0 2 3 2 0 0 3 3 3 3 2 2 2 3 3

Objective function of GA that minimize communication cost

4493.0

5183.0

Schedules of NSGA-II*
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0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 1 0 0 2 0 1 0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 2 0 0 0 2 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 3 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 1 0 0 2 0 1 0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 2 0 1 0 2 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 2 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 3 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0

Objective functions of NSGA-II*

7372.514792519578 3069.0 17776.482640231785

6387.660019255511 3125.0 17923.23906663212

6078.764435961059 3120.0 19892.566069019307

7372.514792519578 3069.0 17776.482640231785

6712.636979751509 3125.0 16538.0884269168

5850.665742029125 3995.0 21238.425553700028

6647.593362388683 3384.0 17862.035933766118

6091.774485702155 3069.0 19625.44622742642

6412.5116432381255 2947.0 20200.817924373947

5850.665742029125 3995.0 21238.425553700028

6078.764435961059 3120.0 19892.566069019307

5902.446661076887 3992.0 20123.26542820139

Schedules of NSGA-II**

3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1

3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 1 1 3 1 1 1 1 1 1 1 1 1

3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
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3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 1 1 1 1 1 1 1 1

3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1

3 3 3 1 1 3 3 1 3 3 3 3 3 3 3 1 1 3 3 3 3 1 3 3 3 3 1 1 1 1 1 3 3 3 3

3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 3 1 3 3 3 1 1 1 1 1 1 1 1 1 3

3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1

3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3 1 1 1 1 1 1 1 1 1 1

Objective functions of NSGA-II**

8227.092115293168 2573.0 19341.56496496086

9233.156745353292 2684.0 14717.173292824149

7907.7267505158125 2897.0 17617.986697948025

9233.156745353292 2684.0 14717.173292824149

7421.594844297847 2897.0 25021.46955822536

8227.092115293168 2573.0 19341.56496496086

6904.943173412531 4254.0 58322.514669971955

7378.3585110191025 3387.0 30852.506600115335

8183.855782014423 2666.0 15404.738639026093

7626.511091572644 2897.0 21415.9734052703

Schedules of NSGA-II***

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 2 2 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 3 1 1 0 1 0 1 0 3 0 0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 2 2 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0

2 0 0 0 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 2 2 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0

2 2 2 2 2 0 2 2 0 2 0 2 0 2 2 2 2 2 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 2 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0

0 0 0 1 2 2 0 2 0 1 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 0 0 0 2 0 0 0 0 2 2 0 3 2 2 2 2 2 0 0 0 0

2 0 0 0 2 0 2 2 0 2 0 2 0 0 0 2 2 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 0 1 2 2 0 2 0 1 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
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3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 2 2 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 3 1 1 0 1 0 1 0 3 0 0 0 0 0 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 2 2 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 0 1 2 2 0 2 0 1 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 0 1 2 2 0 2 0 1 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

2 0 0 0 2 0 2 2 0 2 0 2 0 0 0 2 2 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 0 0 0 2 0 0 0 0 2 2 0 3 2 2 2 2 2 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

2 0 0 0 2 0 2 2 0 2 0 2 0 0 0 2 2 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 2 2 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0

2 2 2 2 2 2 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 2 2 2 2 0 0 0 0 0

2 2 2 2 2 0 2 2 0 2 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

2 2 2 2 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0

2 0 0 0 2 0 2 2 0 2 0 2 0 0 0 2 2 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 3 1 1 0 1 0 1 0 3 0 0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0

2 0 0 0 2 0 2 2 0 2 0 2 0 0 0 2 2 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

2 2 2 2 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 2 0 3 0 0 0 0 0 0 0 2 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 2 2 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 0 0 0 2 0 0 0 0 2 2 0 3 2 2 2 2 2 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 3 1 1 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 2 2 2 0 2 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0

0 0 0 1 2 2 0 2 0 1 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

3 3 3 2 3 3 1 0 3 1 1 2 3 1 0 1 1 2 2 0 1 1 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 2 0 2 0 2 0 2 2 2 2 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0

Objective functions of NSGA-II***

8720.755821795 2904.0 47279.55018336183

10298.929072719906 2928.0 40251.74725213821
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570.0372954838606 3028.0 33846.443390455206

8720.755821795 2904.0 47279.55018336183

570.2905965079191 3531.0 32591.699574589427

8720.755821795 2904.0 47279.55018336183

531.1141318757 4895.0 39722.63766142977

560.4288953890077 3415.0 40874.7951920279

4377.8869289865415 3010.0 43970.31678979393

538.1050880552823 3556.0 39195.72865311218

588.8319273001357 3531.0 27585.530545026446

4377.8869289865415 3010.0 43970.31678979393

8720.755821795 2904.0 47279.55018336183

10298.929072719906 2928.0 40251.74725213821

8720.755821795 2904.0 47279.55018336183

4377.8869289865415 3010.0 43970.31678979393

4377.8869289865415 3010.0 43970.31678979393

588.8319273001357 3531.0 27585.530545026446

538.1050880552823 3556.0 39195.72865311218

570.0372954838606 3028.0 33846.443390455206

588.8319273001357 3531.0 27585.530545026446

8720.755821795 2904.0 47279.55018336183

563.2996403283366 3332.0 38233.69597045869

563.9751097258259 4878.0 24282.182148953645

578.9702261812243 3634.0 21480.712058537953

538.8649911274576 3854.0 32775.45102396472

588.8319273001357 3531.0 27585.530545026446

10298.929072719906 2928.0 40251.74725213821

563.2996403283366 3332.0 38233.69597045869

588.8319273001357 3531.0 27585.530545026446

531.705167598503 4677.0 37203.71016225587

8720.755821795 2904.0 47279.55018336183
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538.1050880552823 3556.0 39195.72865311218

9651.95302378372 2928.0 42336.41041448227

627.2484888601795 3112.0 21694.20833045069

560.4288953890077 3415.0 40874.7951920279

4377.8869289865415 3010.0 43970.31678979393

8720.755821795 2904.0 47279.55018336183

565.157181171432 3332.0 38152.53080635103

A.2 Enhanced Refinery (ER) Heuristic Input-Output

A.2.1 Input

This algorithm takes number of tasks, resources, Task Heterogeneity, and Machine

Heterogeneity as input

Number of resources = 3, Number of tasks = 15, Task Heterogeneity = High,

and Machine Heterogeneity = High

Expected Time to Complete

694 604 594

179 279 309

237 237 532

391 469 157

401 451 151

75 667 593

593 75 223

545 69 545

109 25 31

35 52 18

433 11 217

78 386 1

1 271 631

163 111 244
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31 271 101

A.2.2 Output

The following section shows the working of different heuristic.

Min-min Heuristic

Assigning task 11 to machine 2. Completion time = 1

Assigning task 12 to machine 0. Completion time = 1

Assigning task 10 to machine 1. Completion time = 11

Assigning task 9 to machine 2. Completion time = 19

Assigning task 14 to machine 0. Completion time = 32

Assigning task 8 to machine 1. Completion time = 36

Assigning task 7 to machine 1. Completion time = 105

Assigning task 5 to machine 0. Completion time = 107

Assigning task 4 to machine 2. Completion time = 170

Assigning task 6 to machine 1. Completion time = 180

Assigning task 13 to machine 0. Completion time = 270

Assigning task 3 to machine 2. Completion time = 327

Assigning task 2 to machine 1. Completion time = 417

Assigning task 1 to machine 0. Completion time = 449

Assigning task 0 to machine 2. Completion time = 921

Makespan = 921, Strategy: Min-min

Enhanced Refinery Heuristic

First Phase

Assigning task 11 to machine 2. Completion time = 1

Assigning task 12 to machine 0. Completion time = 1

Assigning task 10 to machine 1. Completion time = 11

Assigning task 9 to machine 2. Completion time = 19

Assigning task 14 to machine 0. Completion time = 32
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Assigning task 8 to machine 1. Completion time = 36

Assigning task 7 to machine 1. Completion time = 105

Assigning task 5 to machine 0. Completion time = 107

Assigning task 4 to machine 2. Completion time = 170

Assigning task 6 to machine 1. Completion time = 180

Assigning task 13 to machine 0. Completion time = 270

Assigning task 3 to machine 2. Completion time = 327

Assigning task 2 to machine 1. Completion time = 417

Assigning task 1 to machine 0. Completion time = 449

Assigning task 0 to machine 2. Completion time = 921

Second Phase

new makespan from move method = 840.0 Task = 3 toMachine = 0

new makespan from swap method = 843.0 Task = 4 to Task = 8

move method has less makespan

Lowest Makespan1 =840.0 fromTask =3 fromIndex =3 toTask =3 toMachine =0

new makespan from move method = 677.0 Task = 13 toMachine = 1

new makespan from swap method = 686.0 Task = 3 to Task = 2

move method has less makespan

Lowest Makespan1 =677.0 fromTask =13 fromIndex =3 toTask =13 toMachine

=1

new makespan from move method = 746.0 Task = 9 toMachine = 0

new makespan from swap method = 764.0 Task = -1 to Task = -1

move method has less makespan

Lowest Makespan1 =746.0 fromTask =9 fromIndex =1 toTask =9 toMachine =0

new makespan from move method = 746.0 Task = -1 toMachine = -1

new makespan from swap method = 746.0 Task = -1 to Task = -1

swap method has less makespan

Lowest Makespan1 =746.0 fromTask =-1 fromIndex =-1 toTask =-1 toMachine

=-1
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Final schedule

Assigning task 11 to machine 2. Completion time = 1

Assigning task 12 to machine 0. Completion time = 1

Assigning task 10 to machine 1. Completion time = 11

Assigning task 9 to machine 0. Completion time = 36

Assigning task 14 to machine 0. Completion time = 67

Assigning task 8 to machine 1. Completion time = 36

Assigning task 7 to machine 1. Completion time = 105

Assigning task 5 to machine 0. Completion time = 142

Assigning task 4 to machine 2. Completion time = 152

Assigning task 6 to machine 1. Completion time = 180

Assigning task 13 to machine 1. Completion time = 291

Assigning task 3 to machine 0. Completion time = 533

Assigning task 2 to machine 1. Completion time = 528

Assigning task 1 to machine 0. Completion time = 712

Assigning task 0 to machine 2. Completion time = 746

Makespan = 746, Strategy: ER

Refinery Heuristic

The following section shows the working of Refinery heuristic.

First phase

Assigning task 11 to machine 2. Completion time = 1

Assigning task 12 to machine 0. Completion time = 1

Assigning task 10 to machine 1. Completion time = 11

Assigning task 9 to machine 2. Completion time = 19

Assigning task 14 to machine 0. Completion time = 32

Assigning task 8 to machine 1. Completion time = 36

Assigning task 7 to machine 1. Completion time = 105
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Assigning task 5 to machine 0. Completion time = 107

Assigning task 4 to machine 2. Completion time = 170

Assigning task 6 to machine 1. Completion time = 180

Assigning task 13 to machine 0. Completion time = 270

Assigning task 3 to machine 2. Completion time = 327

Assigning task 2 to machine 1. Completion time = 417

Assigning task 1 to machine 0. Completion time = 449

Assigning task 0 to machine 2. Completion time = 921

Second Phase

makespan: 921.0 At machine :2

new makespan =843.0 firstTask = 4 secondTask =8 toMachine =1 fromIndex 2

toIndex 1

makespan: 843.0 At machine :1

new makespan =671.0 firstTask = 4 secondTask =1 toMachine =0 fromIndex 1

toIndex 4

makespan: 801.0 At machine :2

new makespan =795.0 firstTask = 3 secondTask =4 toMachine =0 fromIndex 3

toIndex 4

makespan: 795.0 At machine :2

Final schedule

Assigning task 11 to machine 2

Assigning task 12 to machine 0

Assigning task 10 to machine 1

Assigning task 9 to machine 2

Assigning task 14 to machine 0

Assigning task 1 to machine 1

Assigning task 7 to machine 1

Assigning task 5 to machine 0

149



A. SIMULATOR INPUT-OUTPUTA.2 Enhanced Refinery (ER) Heuristic Input-Output

Assigning task 8 to machine 2

Assigning task 6 to machine 1

Assigning task 13 to machine 0

Assigning task 4 to machine 2

Assigning task 2 to machine 1

Assigning task 3 to machine 0

Assigning task 0 to machine 2

Makespan = 795, Strategy: Refinery
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Heuristic for Grid Task Scheduling. Journal Computer Science Technology,

vol. 18, no. 4, pages 442 – 451, 2003.

[Her 2014] Build, Run, and Scale Apps. https://www.heroku.com/, 2014.

[Hoscheck et al. 2000] W. Hoscheck, F. J. Jaen-Martinez, A. Samar, H. Stockinger

and K. Stockinger. Data Management in an International Data Grid Project.

In Proceedings of the First IEEE/ACM International Workshop on Grid

Computing, pages 77 – 90, 2000.

[Hoschek et al. 2000] W. Hoschek, J. Jaen-Martinez and A. Samar. Data Manage-

ment in an International Data Grid Project. In Proceedings of the first Inter-

national Workshop on Grid Computing, pages 1 – 15, Banaglore, India,

2000.

[Huang et al. 2007] K. C. Huang, P. C. Shih and Y. C. Chung. Towards Feasible and

Effective Load Sharing in a Heterogeneous Computational Grid. In Proceedings

of the Second International Conference on Grid and Pervasive Computing,

volume 4459, pages 229 – 240, 2007.

[Huang et al. 2009] K. Huang, C. Shih and Y. Chung. Adaptive Processor Allocation

for Moldable Jobs in Computational Grid. International Journal of Grid and

High Performance Computing, vol. 1, no. 1, pages 10 – 21, 2009.

[Ishibuchi & Murata 1998] Hisao Ishibuchi and Tadahiko Murata. A multi-

objective genetic local search algorithm and its application to flowshop scheduling.

IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 28, no. 3,

pages 392 – 403, 1998.

157



REFERENCES REFERENCES

[Jackson et al. 2001] D. Jackson, Q. Snell and M. Clement. Core Algorithms of The

Maui Scheduler. In Proceedings of the 7th International Workshop on Job

Scheduling Strategies for Parallel Processing, Lecture Notes in Computer

Science, pages 87 – 102, 2001.

[Joshy & Craig 2003] J. Joshy and F. Craig. Grid computing. International Busi-

ness Machines Press, 2003.

[Kamalam & Muralibhaskaran 2010] G. K. Kamalam and V. Muralibhaskaran. A

New Heuristic Approach: Min-mean Algorithm for Scheduling Meta-Tasks on

Heterogeneous Computing Systems. International Journal of Computer Sci-

ence and Network Security, vol. 10, no. 1, pages 24 – 31, 2010.

[Kang & Agrawal 2000] O. Kang and D. P. Agrawal. S3MP: A Task Duplication

Based Scalable Scheduling Algorithm for Symmetric Multiprocessors. In Pro-

ceedings of the 14th International Parallel and Distributed Processing Sym-

posium, pages 451 – 456, 2000.

[Khalifa et al. 2007] A. S. Khalifa, R. A. Ammar, T. A. Fegrany and M. E. Khalifa.

A Preemptive Version of the Min-min Heuristic for Dynamically Mapping Meta

Task on a Distributed Heterogeneous Environment. In Proceedings of the IEEE

International Symposium on Signal Proceeding and Information Technol-

ogy, Giza, pages 537 – 542, 2007.

[Kirkpatrick et al. 1983] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization

by Simulated Annealing. Journal of Science, vol. 220, no. 4598, pages 671 –

680, 1983.

[Konak et al. 2006] A. Konak, D. W. Coit and A. E. Smith. Multi-objective Optimiza-

tion Using Genetic Algorithms: A Tutorial. Reliability Engineering & System

Safety, vol. 91, no. 9, pages 992 – 1007, 2006.

[Krueger & Finkel 1984] P. Krueger and V. Finkel. An Adaptive Load Balancing Al-

gorithm for a Multicomputer. Technical Report No. 539, April 1984, pages 1

– 21, 1984.

158



REFERENCES REFERENCES

[Kumar et al. 2009] A. Kumar, N. Chaubey and S. Yakkali. Immediate Mode Schedul-

ing Methods for Independent Jobs on Open Online Heterogeneous Systems. In

Proceedings of the 15th International Conference on High Performance

Computing, pages 12 – 17, Banaglore, India, 2009.

[Kureger & Livny 1987] P. Kureger and M. Livny. The Diverse Objectives of Dis-

tributed Scheduling Policies. In Proceedings of the 7th IEEE International

Conference on Distributed Computing Systems, Berlin, Germany, pages

242 – 249, 1987.

[Kurowski et al. 2007] K. Kurowski, J. Nabrzysk, A. Oleksiak and J. Weglarz.

GSSIM - Grid Scheduling Simulator. Computational Methods in Science and

Technology, vol. 13, no. 2, pages 121 – 129, 2007.

[Lau et al. 2006] S. Lau, Q. Lu and K. Leung. Adaptive Load Distribution Algorithms

for Heterogeneous Distributed Systems with Multiple Task Classes. Journal of

Parallel and Distributed Computing, vol. 66, no. 2, pages 163 – 180, 2006.

[Lee & Zomaya 2006] Y. C. Lee and A. Y. Zomaya. A Grid Scheduling Algorithm

for Bag-of-Tasks Applications Using Multiple Queues with Duplication. In Pro-

ceedings of the 5th IEEE International Conference on Computer and Infor-

mation Science, pages 5 – 10, 2006.

[Lee et al. 2006] L. T. Lee, C. Liang and H. Chang. An Adaptive Task Scheduling

System for Grid Computing. In Proceedings of the Sixth IEEE International

Conference on Computer and Information Technology, Seoul, pages 1 – 6,

2006.

[Legrand et al. 2003] A. Legrand, L. Marchal and H. Casanova. Scheduling Dis-

tributed Applications: The SimGrid Simulation Framework. In Proceedings of

the 3rd IEEE/ACM International Symposium on Cluster Computing and

the Grid, page 138 âĂŞ 145, 2003.
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