
A Comparative Study of High Performance CMOS
Multipliers, Barrel Shifters and Modeling of NBTI

Degradation in Nanometer Scale Digital VLSI
Circuits

THESIS

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

ABHIJIT RAMESHWAR ASATI

Under the supervision of

Dr. CHANDRA SHEKHAR

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2009

 ii

A Comparative Study of High Performance CMOS
Multipliers, Barrel Shifters and Modeling of NBTI

Degradation in Nanometer Scale Digital VLSI
Circuits

THESIS

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

ABHIJIT RAMESHWAR ASATI

Under the supervision of

Dr. CHANDRA SHEKHAR

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2009

 iii

ACKNOWLEDGMENTS

I thank Prof. L. K. Maheshwari, Vice-Chancellor BITS, Pilani and Director, BITS, Pilani

(Pilani Campus) for providing me the necessary infrastructure, facilities and constant

inspiration.

I wish to convey my sincere gratitude to my supervisor Dr. Chandra Shekhar, Director,

CEERI, Pilani, for introducing me to the area of data path exploration, providing me able

guidance, helping me understand the concepts and continuously encouraging me and

providing moral support.

I sincerely thank Prof. Kewal K. Saluja, professor, department of electrical and computer

science engineering, university of Wisconsin Madison, for introducing me to the area of

NBTI degradation in CMOS digital logic circuits and supporting me with the suitable

degradation models.

I thank my Doctoral Advisory Committee (DAC) members, Prof. S. Gurunarayanan and

Dr. Anu Gupta, who spared their valuable time to go through my draft thesis and were

audience to my pre-submission seminar in order to provide several valuable suggestions

that immensely helped in improving the quality of my PhD thesis report.

I thank Prof. K. E. Raman, Director, BITS, Pilani (Goa Campus), Prof. G. Raghurama,

Deputy Director (Academics), Prof. R. K. Mittal Deputy Director (Administration), Prof.

Ravi Prakash, Dean (Research and Consultancy Division), Prof. A. K. Sarkar, Dean

(Instruction Division), Prof. S. Gurunarayanan, Dean (Faculty Division-II), and Prof.

R.N. Saha, Dean (Educational Development Division), Prof. B. V. Babu, Dean

(Engineering Hardware Division), Prof. Rajiv Gupta, Dean (Engineering Services

Division), for providing necessary administrative help.

I specially thank Prof. B. R. Natarajan, Dean (DLPD), for his sincere help and

affectionate enquiries about my work to boost my spirit for the research work.

I wish to express my deep gratitude to Prof. Surekha Bhanot, Unit chief

(Instrumentation) for her kind and affectionate enquiries about the work and continuous

encouragement.

I express my sincere thanks to Prof. V. K. Choubey, Group Leader (Electrical and

Electronics Engineering Group), for giving invaluable suggestions from time to time.

I especially wish to express my deep gratitude to Dr. Anu Gupta, BITS, for providing me

moral support and help in learning various related software tools.

 iv

I wish to express my sincere thanks to Dr. Shikha Tripathi, Group Leader

(Instrumentation Group) for providing me help in various forms for the completion of the

present work.

I wish to express my sincere thanks to Dr. S. C. Bose, Scientist, CEERI, Pilani, for

providing me excellent technical suggestions on high-speed, low-power VLSI design

techniques.

I wish to express my sincere thanks to Mr. Raj Singh, Scientist, CEERI, Pilani, for

providing me help on cell based design approach and physical design related issues.

I thank all the senior faculty members of Electrical and Electronics Engineering Group

and Instrumentation Group along with my colleagues for their kind support in

completion of this research work.

I thank Dr. Hemanth Jadav, Mr. Dinesh Kumar, Ms. Monica Sharma, Mr. Sharad

Shrivastava, Mr. Gunjan Soni, Mr. Amit Kumar and Ms. Sunita Bansal, nucleus

members of Research and Consultancy Division, BITS, Pilani, without their cooperation

and guidance it would not have been possible for me to pursue such goal oriented

research during each of the past few semesters.

I also express my gratitude to the office staff of Research and Consultancy Division

whose secretarial assistance helped me in submitting the various evaluation documents in

time and give pre-submission seminar smoothly.

I am thankful to Mr. Pawan Sharma, in-charge, OYESTER LAB, BITS, for his

invaluable help.

I am thankful to my parents, my brother, my wife and my son for their constant help and

moral support.

Lastly, I express my thanks to all those who directly or indirectly contributed to the

completion of this work.

 Abhijit Rameshwar Asati

 v

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI, RAJASTHAN

CERTIFICATE

This is to certify that the thesis entitled “A Comparative Study of High

Performance CMOS Multipliers, Barrel Shifters and Modeling of NBTI Degradation in

Nanometer Scale Digital VLSI Circuits” and submitted by Mr. ABHIJIT

RAMESHWAR ASATI, ID. No. 2002PHXF040, for award of Ph. D. Degree of the

Institute, embodies original work done by him under my supervision.

Signature in full of the Supervisor

Dr. CHANDRA SHEKHAR

 (Name in capital block letters)

Director,

Central Electronics Engineering Research Institute

(Designation)

Date:

 vi

ABSTRACT

The objective of this thesis is to explore the design space of two specific data path

elements (viz multipliers and barrel shifters) of different bit width at architectural-level,

at logic design level, and at transistor size level to select proper architecture, logic design

style and physical device sizes; keeping in a view their effects on performance (circuit

delay), average power consumption and core area.

The multipliers and barrel shifters are the fundamental data path elements required in

high performance ‘Standard Digital Signal Processors’ and ‘ASIC Digital Signal

Processors’ used for digital signal processing (DSP). Different multiplier and barrel

shifter architectures show trade-offs between propagation delay, average power

consumption and transistor counts. In deep sub-micron technologies, the simple gate-

level analyses are inadequate to validate particular data path architectures. In this thesis

we considered the effects of wiring parasitics and MOS parasitics in the assessment of

architecture. The selected word widths for different multiplier and barrel shifter

architectures are 4-bit, 8-bit, 12-bit and 16-bit; which dominate in DSP applications.

A schematic and physical library consisting of functional cells was defined for static

CMOS logic design style, transmission gate (TG) logic design styles, dual rail domino

logic design style and true single phase clock (TSPC) logic design style. Versions of the

physical libraries were developed using three different sizes of transistors. The layout

assemblies for the 4-bit, 8-bit, 12-bit and 16-bit multiplier and barrel shifter circuits were

carried out using these cell libraries using automatic place and route tool LEDIT (SPR)

from M/s Tanner Research Inc. The circuit delay and average power dissipation then

analyzed for each implementation of the multiplier and barrel shifter circuit using the

same logic design style but utilizing three different physical libraries differing in their

transistor sizes as described above. Maximum instantaneous power, core area, total

routing length and number of vias were also analyzed for each implementation for

highlighting the very large scale integration (VLSI) implementation characteristics.

Further in nanometer scale digital integrated circuits negative bias temperature instability

(NBTI) related circuit performance degradation was studied. The NBTI stress makes P-

channel metal oxide semiconductor (PMOS) devices slower over time due to change in

their threshold voltages. In deep sub-micron technologies the NBTI degradation decides

the lifetime of CMOS circuits; In this thesis we present a novel Verilog HDL based

 vii

circuit modeling method that incorporates NBTI degradation dynamically. This

technique will help the designers to include NBTI degradation effects in their circuit

analysis efforts.

 viii

TABLE OF CONTENTS

ACKNOWLEDGMENT iii

CERTIFICATE v

ABSTRACT vi

TABLE OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xvi

CHAPTER 1- INTRODUCTION 1

 1.1 Background 1

 1.2 Objective of Thesis 3

 1.3 Different Data Path Elements Considered For Exploration 4

 1.3.1 Multipliers 4

 1.3.2 Barrel Shifter 5

 1.4 Research Gaps 5

 1.5 Research Methodology/Work-Plan 7

 1.6 Thesis Structure 8

 1.7 Chapter Summary 9

CHAPTER 2- A DESIGN PHILOSOPHY OF MULTIPLIER AND BARREL

 SHIFTER CIRCUITS

10

 2.1 Array Multiplier 11

 2.2 Wallace Tree 13

 2.3 Booth’s Algorithm 15

 2.4 Array of Array Multiplier 19

 2.5 Different Multiplier Architectures Considered for Exploration 19

 2.6 Barrel Shifter Design Philosophy and Architectures Considered for

 Exploration

20

 2.7 Chapter Summary 20

 ix

CHAPTER 3- DIFFERENT MULTIPLIER AND BARREL SHIFTER

 ARCHITECTURES

21

 3.1 Baugh Wolley Multiplier 21

 3.2 Booth Encoded Wallace Tree Multiplier 25

 3.2.1 Multiplication Logic 25

 3.2.2 Implementation Technique 29

 3.3 MUX Based multiplier 38

 3.3.1 Multiplication Logic 38

 3.3.2 An Illustration of the Multiplication Logic 39

 3.3.3 Implementation 41

3.4 2×2 Cell Based Multiplier 43

 3.5 MUX based Barrel Shifter 47

 3.5.1 Design of 4-bit MUX-based Barrel Shifter 47

 3.5.2 Fill Bit Logic 48

 3.6 Pereira’s Barrel Shifter 50

 3.6.1 Shift-Rotate array 50

 3.6.2 Programming Unit 55

 3.6.3 Mask Generator Unit 55

 3.6.4 Schematic and Operation 56

 3.7 Chapter Summary 57

CHAPTER 4- DIFFERENT CMOS LOGIC DESIGN STYLES AND

 DETRMINATION OF PMOS/NMOS WIDTH RATIO

 FOR HIGH SPEED DESIGN

58

4.1 Static CMOS Logic Circuits 58

 4.1.1 Static Logic Design Style 59

 4.1.2 TG Logic Design Style 60

4.2 Dynamic CMOS Logic Circuits 61

 4.2.1 Domino and Dual Rail Domino Logic Design Style 62

 4.2.2 TSPC Logic Design Style 64

4.3 Determination of β Ratio for High-Speed Digital Designs 66

 4.3.1 Calculation of β ratio and Vth 68

 4.3.2 Dependence of β Ratio on Other Technological Parameters 70

 4.3.3 Comparison of Different β Ratios for 0.5 µm technology 71

 4.3.4 Comparison of Vth for Different β Ratios 71

 x

 4.3.5 Comparison of τP for Different β Ratios 73

4.4 Sizing of Pre-Charge and Pre-Discharge Transistors for Domino Logic Design

 Styles

74

 4.4.1 Load Capacitance Estimation for Pre-charge and Pre-discharge

 Transistor.

75

 4.4.2 Computation of Area Delay Product 76

 4.4.3 Simulation Result 77

 4.5 Chapter Summary 79

CHAPTER 5- STUDY OF NBTI DEGRADATION IN DIGITAL LOGIC CIRCUITS

USING VERILOG HDL

80

 5.1 Model for NBTI Degradation 82

5.2 Incorporation of NBTI Degradation Model In Verilog Simulation 84

5.3 Verilog Simlation Results Showing NBTI Degradation for 1-bit Full Adder 87

 5.4 Chapter Summary 89

CHAPTER 6- SIMULATION RESULTS OF DIFFERENT MULTIPLIERS AND

 BARREL SHIFTERS

90

 6.1 Comparison Between Baugh Wooley Multiplier and Booth Encoded

 Wallace Tree Multiplier Implementations

91

 6.2 Comparison Between MUX Based Multiplier and 2×2 cell Based

 Multiplier Implementations

95

6.3 Comparison Between MUX Based Barrel Shifter and Pereira’s Barrel

Shifter Implementations

99

 6.4 Comparison of Different Barrel Shifter Architectures

 for TSPC Logic Design Style

103

 6.7 Chapter Summary 104

CHAPTER 7- CONCLUSION AND SCOPE OF FURTHER WORK 105

 7.1 Conclusion 105

 7.2 Scope of Further Work 108

REFERENCES 109

APPENDIX A1 114

APPENDIX A2 117

APPENDIX A3 125

 xi

BRIEF BIOGRAPHY OF CANDIDATE 129

BRIEF BIOGRAPHY OF SUPERVISOR 129

LIST OF PUBLICATIONS 130

 xii

LIST OF TABLES

Table No. Title Page No.

2.1 Rules for radix-2 Booth encoding 16

2.2 Rules for radix-4 Booth encoding 17

3.1 Booth encoder truth table 26

3.2 Logical operation of a Booth encoded 4×4 multiplier assuming

that all of the partial products are negative

27

3.3 Modified logical operation of Booth encoded 4×4 multiplier 28

3.4 Modified Booth encoding 30

3.5 Equivalace between two different patial product generation

logics

32

3.6 Logic for preprocessing of inputs 34

3.7 Truth table for a 2×2 combinational multiplier 44

3.8 Design of a 4-bit multiplier using 2×2 combinational multiplier 45

3.9 Truth Table for 4-bit barrel shifter operation 48

3.10 Operations performed by AND-OR function 52

3.11 Operations performed by 3rd, 4th and 5th stages 54

3.12 Operation performed by 16-bit barrel shifter 56

4.1 Summary of operation 65

4.2 Operation of first stage 65

4.3 Operation of second stage 66

4.4 Estimation of β ratio using more accurate method 71

4.5 Estimation of β ratio using conventional method 71

4.6 Comparison of Vth for three different β ratios calculated using

three different methods

72

4.7 Comparison of Vth using conventional and the more accurate

method

72

4.8 Comparison of τP using conventional and the more accurate

method (for calculated and simulated values)

73

5.1 Degradation in Vt and propagation delay for all PMOS devices

in a 1-bit full adder

88

 xiii

6.1 (a) Performance and Characteristics of Baugh Wooley and Booth

encoded Wallace tree multiplier for W/L=3

92

6.1 (b) Performance and Characteristics of Baugh Wooley and Booth

encoded Wallace tree multiplier for W/L=5

93

6.1 (c) Performance and Characteristics of Baugh Wooley and Booth

encoded Wallace tree multiplier for W/L=7

94

6.2 (a) Performance and characteristics of MUX based and 2×2 cell

based multiplier for W/L=3

96

6.2 (b) Performance and characteristics of MUX based and 2×2 cell

based multiplier for W/L=5

97

6.2 (c) Performance and characteristics of MUX based and 2×2 cell

based multiplier for W/L=7

98

6.3 (a) Performance and characteristics of MUX based and Pereira’s

barrel shifter for W/L=3

100

6.3 (b) Performance and characteristics of MUX based and Pereira’s

barrel shifter for W/L=3

101

6.3 (c) Performance and characteristics of MUX based and Pereira’s

barrel shifter for W/L=3

102

6.4 Performance and characteristics of MUX based and Pereira’s

barrel shifter for TSPC logic

104

7.1 Ready reckoner for high-speed signed multipliers 107

7.2 Ready reckoner for high-speed unsigned multipliers 107

7.3 Ready reckoner for high-speed barrel shifters 107

 xiv

LIST OF FIGURES

Figure No. Title Page No.

2.1 Array multiplier cell 12

2.2 A 4x4 array multiplier showing critical path 13

2.3 Accumulation of partial product in a Wallace tree 15

3.1 A 4 ×4 Baugh Wooley multiplier 24

3.2 Basic steps in Booth multiplication 29

3.3 Block diagram of Booth encoded Wallace tree multiplier

eliminating limitations

35

3.4 A 4×4 Booth encoded Wallace tree multiplier-eliminating

limitations

37

3.5 (a) MUX based multiplier implementation logic 41

3.5 (b) MUX based multiplier implementation 42

3.5 (c) Cell I used in MUX based multiplier implementation 42

3.5 (d) Cell II used in MUX based multiplier implementation 43

3.6 A 2×2 combinational multiplier 44

3.7 A 4×4 combinational multiplier 46

3.8 A schematic diagram of 4-bit, MUX based barrel shifter 49

3.9 Schematic of shift-rotate array 51

3.10 Complete barrel shifter unit 57

4.1 Static logic gate 59

4.2 CMOS TG switch 60

4.3 Different representations of CMOS TG switch 61

4.4 Domino logic gate 63

4.5 Schematic of a 2input XOR cell designed using dual rail

domino cell

64

4.6 TSPC logic circuit 66

4.7 A static CMOS inverter driving an identical static CMOS

inverter

68

4.8 (a) 2-input AND domino gate (b) another implementation 2-

input AND domino gate

75

 xv

4.9 (a) PMOS driving the estimated capacitance CL1 (b) NMOS

driving the estimated capacitance CL2

76

4.10 Variation of rise- delay 77

4.11 Variation of (area×rise-delay) product 77

4.12 Variation of fall-delay 77

4.13 Variation of (area × fall-delay) product 77

4.14 Design of a domino logic cell 79

5.1 (a)Full adder schematic (b)XOR gate schematic 85

 xvi

LIST OF ABBREVIATIONS

ALU Arithmetic logic unit

ASIC Application specific integrated circuits

CLA Carry look ahead adder

CMOS Complimentary metal oxide semiconductor

CPA Carry propogate adder

CSA Carry save adder

DSP Digital signal processing

FIR Finite impulse response

FSM Finite state machine

GPS Global positioning system

IIR Infinite impulse response

LSB Least significant bit

MAC Multiplier-accumulator

MSB Most significant bit

MUX Multiplexer

NBTI Negative bias temperature instability

NMOS N-channel metal oxide semiconductor

PMOS P-channel metal oxide semiconductor

TG Transmission gate

TSPC True single phase clock

VLSI Very large scale integration

 1

CHAPTER 1

INTRODUCTION

1.1 Background

Data-paths of different bit-widths are frequently required in very large scale integrated

(VLSI) circuits from processors to application specific integrated circuits (ASICs). The

performance of microprocessors and computers heavily depends upon the performance

of the various data-paths used. Such data paths include data registers that hold operands

and results and combinational logic units that manipulate and process data values [1],

[2]. Various combinational logic units are adder, multiplier, divider, barrel shifter and

arithmetic logic unit (ALU) circuits. The selection of a particular data-path depends upon

the state-of-the-art in digital design. The most important and widely accepted metrics for

measuring the quality of data-path designs are propagation delay, area and power [2], [3].

Minimizing area and delay has always been important, but reducing power consumption

has also gained importance recently because of increasing levels of integration and the

desire for portability. Furthermore, the progress in battery technology is slower as

compared to the ever-increasing power requirement due to advances in electronic

circuits; the battery technology is unable to provide a solution to the power problem,

therefore, an accurate estimation of “average power dissipation” is required to estimate

battery life; also, the correct estimate of “peak power dissipation” is required to study

circuit reliability. The three major sources of power dissipation in VLSI circuits are: (i)

switching component of power, which is increasing due to increase in on-chip clock rates

(ii) component of power due to direct-path short-circuit current in circuits, that depends

upon the rise and fall times of signals and (iii) component of power due to leakage

current which is increasing at an alarming rate due to thin gate oxide and small geometry

effects like tunneling and drain induced barrier lowering which are dominating due to

device scaling. The short-circuit dissipation of complimentary metal oxide

semiconductor (CMOS) inverter with and without load (for equal rise and fall times of

input and output signals) is only a fraction (< 20%) of the total dissipation. The dominant

term in power dissipation is the switching power component, which is given by equation

1.1.

)1.1(2 η•••= CLKDDLdynamic fVCP

 2

Low-power designs, thus, aim at minimizing the power consuming transitions (switching

activity factor ‘η’), power supply (VDD), and load capacitance (CL) [3], [4]. Since, the

largest component of power dissipation is due to the signal transitions at circuit nodes, an

accurate estimation of switching activity at the internal circuit nodes is required. Gate

delays have impact on switching activity; a delay model is used for computing the

Boolean conditions that cause glitches in the circuit. Glitches occur primarily due to

mismatch or imbalance in the path lengths in the logic network. Such mismatches in the

path lengths result in mismatches of signal timing with respect to the primary inputs [3],

[5]. The probability of each gate switching at any particular time is computed from input

switching rates, and then the sum of these probabilities over all the gates gives the

switching activity in the entire circuit over all the time points in a clock cycle [1], [3],

[6], [7]. Such probabilistic methods can’t be applied reliably to portable high

performance applications, where accurate estimation of power is required.

Power dissipation due to leakage currents is gaining utmost importance due to scaling of

devices. Many techniques at design and fabrication levels are applied to reduce such

leakage. At transistor-level design ‘Variable Threshold CMOS Circuits’ are used and at

fabrication level ‘Multiple Threshold CMOS Circuits’ and ‘HIGH-k gate oxide

dielectric’ are used to reduce leakage [2], [3], [8], [9].

Portable wireless applications like mobile phones, laptop computers and personal digital

assistants (PDA’s) require high-speed circuitry consuming low power. Such design

requirements are conflicting and involve design tradeoffs. Furthermore the

microprocessor on-chip clock rates have already reached GHz range, leading to

substantial increase in dynamic (switching) power consumption. As a result in high

performance desktops, sinking large amounts of heat through packages is becoming a

difficult problem. Therefore, designing low-power processors is also gaining importance

for high performance desktops, as well as for portable applications like laptops and

palmtops where big heat sinks cannot be used. A low power processor design without

greatly loosing computational speed is a technologically challenging requirement.

 There are several degrees of freedom available in the design of low-power high-

performance circuits and systems at various abstraction levels. These include process

technology level, circuit design level, logic design level, architectural level and

algorithmic level. CMOS technology, the vehicle for VLSI, offers a combination of large

noise margins, ruggedness of design, low power consumption, scalability of technology

and validity of the logic design styles at scaled down technologies [9], [10]. Within the

 3

CMOS technology, designers have the freedom of choosing the architecture, the logic

design style, and the transistor sizes for implementing various arithmetic functions.

Besides these, technology scaling including threshold voltage scaling, and supply voltage

scaling constitute other techniques that can be used in low-power digital design [11].

1.2 Objective of Thesis

It has been reported that the time spent in generating data path designs is typically 60%

of the overall chip design due to the fact that it is the only major component, which is

still handled manually and is a major bottleneck in the design [12]. Automatic layout

generation for the data path circuits is possible [12] but ‘design space exploration’ is still

limited. These automatic layout generation tools exploit regularity and avoid the global

routing and inter-module channel routing by optimally performing signal alignments

between modules during the module generation. The random selection of architecture or

logic design style in VLSI design flow may lead to substantial increase in the design time

due to complicated VLSI design flow from net list to layout generation in order to meet

the specified design constraints. In the present study two data path elements have been

considered namely signed/unsigned multipliers and barrel shifters. These data path

elements are implemented as purely combinational logic circuits. The objective of this

thesis is to explore the design space of these data path elements for different bit-widths at

architectural-level, at logic design level (to select proper logic design style), and at

transistor-level (to select proper transistor sizes) keeping in view their contributions to

performance indices like average switching energy, circuit delay and area.

Presently, wide exploration has been carried out in literature for adder circuits but

exploration for other data path elements is still limited. We have explored the design

space of multipliers and barrel shifters (at architectural level, at logic design style level

and at transistor size level). Such exploration will help the designer in choosing an

optimal implementation strategy in terms of the choices of architecture, logic design

style and transistor sizes. Various data path elements considered for exploration are listed

in section 1.3.

Further, we have also explored one of the most important circuit reliability issues,

namely, negative bias temperature instability (NBTI), which has become the deciding

factor for the lifetimes of CMOS devices in deep sub-micron technologies.

 4

1.3 Different Data Path Elements Considered for Exploration

The multiplier and barrel shifters are fundamental building blocks in ‘Standard Digital

Signal Processors’ and ‘ASIC Digital Signal Processors’ used for digital signal

processing (DSP) [13]. The DSP processors are provided with multiplier-accumulators

(MACs) in order to perform sum-of-product computations efficiently. The high

performance of these processors is achieved by using a high degree of parallelism and

faster data-path architectures. Different multiplier and barrel shifter architectures provide

trade-offs between gate counts, latency and speed.

1.3.1 Multipliers

Classification of various multiplier architectures is described below: [13]

Multiplier architectures are classified broadly into two categories:

 Bit serial multipliers: These multipliers are slower but take much less area and

power.

 Bit parallel multiplies: These multiplier are faster but take more area and power.

 Bit parallel multipliers are further classified into following two categories:

(i) Array type multipliers: These multipliers follow regular array structure,

thereby simplifying the wiring and layout design [4], [8], [10], [14], [15],

[16], [17] [18], [19]

(ii) Tree based multipliers: These multipliers show irregular structure and

therefore take larger wiring area. These multipliers use different column

compression techniques namely Ofman tree, Wallace tree and Dadda tree

column compression techniques [20], [21], [22], [23], [24], [25], [26],

[27]

In this thesis both regular arrays and Wallace tree multipliers have been considered for

exploration. Gate-level analyses suggest that Wallace trees are not only faster than array

multiplier but they also consume much less power. However these analyses did not take

wiring into account, resulting in optimistic timing and power estimates [28]. In sub-

micron and deep sub-micron technologies the effect of wiring delays cannot be ignored

and therefore wiring parasitics and MOS parasitics must be considered to provide an

accurate assessment of a particular architecture. The selected word lengths for multiplier

and barrel shifter implementations are 4-bit, 8-bit, 12-bit and 16-bit; which dominate in

DSP applications. Different multipliers considered for exploration in this research work

are described in section 1.6.

 5

1.3.2 Barrel Shifters

A barrel shifter [29], [30] is a circuit that allows its input to be shifted or rotated any

number of positions in either direction. For example, a 4-bit rotating barrel shifter can

shift its inputs I3, I2, I1, I0 by zero, one, two or three bit positions to the right or left by

using the shift control inputs S1, S0. The direction control bit (DIR) decides the left/right

shift direction. Barrel shifter can be implemented as a purely combinational logic circuit,

using conventional multiplexers (MUX), decoders, and logic gates. The sequential

approach to implement the barrel shifter uses a finite state machine (FSM) and a simpler

data-path. Such sequential approaches have not been considered in the present

exploration.

 Different combinational multiplier and barrel shifter architectures considered for

exploration in the present work are described in section 1.6.

Appropriate selection of multiplier and barrel shifter units can be done efficiently by

using the data available through such study.

1.4 Research Gaps

Most DSP tasks which are multiplication and shifting intensive must be performed

speedily while minimizing cost and power. This requires efficient multipliers and

shifters. Different multiplication algorithms differ in the manners of ‘partial product

generation’ and ‘partial product addition [21]. The array multipliers have a linear time

complexity and therefore their delay increases linearly with operand size n. Also it has

poor space complexity O (n2), as it requires approximately n2 cells to produce

multiplication. Therefore as the operand size grows, the circuit takes larger area and

power [14], [15], [16]. A radix-y Booth encoding, where y=2x reduces the partial product

rows by a factor of x. Booth radix-4 (y=4=22) encoding can reduce the number of partial

product rows by a factor of two [22]. Since the number of partial product rows is reduced

to half, the hardware required for multiplication is also roughly reduced by a factor of 2

[16]. In Wallace tree multipliers, since ripple effect is reduced they produce products in

far less time. The time complexity is reduced to O (log n) but larger routing area is

required as compared to regular array multipliers making them less suitable for VLSI

implementation [16]. The advantage of reduction in hardware using Booth encoding

scheme can be combined with accelerated Wallace tree accumulation of partial products

to obtain the reduced time complexity of O (log n), which is well suited for large operand

 6

size multipliers [16], [22]. In sub-micron/deep sub-micron technologies for the

multipliers of moderate operand sizes, where tree based architectures may degrade their

performance due to larger routing lengths, some hybrid architectures [such as array of

array multiplier] may show better performance [10]. These multiplier architectures have

moderate routing area requirements and time complexity of)(nO [10]. Even though

there is a body of research studies on multipliers in the literature, a systematic

research study of promising high performance multipliers across architectures,

logic design styles and transistor sizes does not exist. Such a study can be of great

value to multiplier designers.

Similarly different barrel shifter architectures also show tradeoffs between silicon area

and speed of operations. Some architectures have a dedicated block for all the operations

to be performed by the barrel shifter. They are faster, but consume larger silicon area and

power. A significant reduction in area and power required by the barrel shifter circuit is

achieved by implementing rightward operations as operations in leftward direction [30].

Once again, no systematic study of barrel shifter design across architectures, logic

design styles and transistor sizes exists in literature.

In the area of circuit reliability, even though NBTI has been identified as the primary

factor limiting the circuit life of CMOS circuits using deep sub-micron technology no

published method exists in literature to incorporate and simulate NBTI effects

dynamically in digital CMOS circuits. The CAD tools for modeling and simulation of

NBTI degradation are not widely available due to this effect’s complexity and emerging

status [31], [32], [33]. Presently research works on NBTI is actively pursued only within

the community of device and reliability physicists and leading industrial companies

appear to develop their models and tools only internally to handle this effect [31], [32],

[33], [34]. Considering all the above the scope of the research to be carried out under this

thesis was determined as follows:

1. To study high performance multipliers (for a range of bit widths from 4-bit to 16-bit)

across architectures, logic design styles and transistor sizes to gain an understanding of

the optimality of various design approaches for high performance multipliers.

2. To carry out a similar study for barrel shifters.

3. To explore and propose a method of incorporating NBTI effect dynamically in

logic/switch level simulation of CMOS circuits.

 7

1.5 Research Methodology/Work-Plan

As proposed, the research work started its journey by collecting the various

relevant literature items available on the various multiplier and barrel shifter

architectures. This helped to understand their algorithms, architectures and their VLSI

implementations. Various techniques to achieve optimum performance (i.e. low-power,

high-speed and optimum area) were also studied in detail.

In the second phase, transistor level schematic libraries consisting of a standard sets of

functional cells were developed for static logic design style, transmission gate (TG) logic

design style, dual-rail domino logic design style and true single phase clock (TSPC)

logic design style (used only for the barrel shifters). Corresponding to each schematic

library, three different versions of physical library were developed by respectively sizing

the W/L ratios of the N-channel metal oxide semiconductor (NMOS) transistor to values

of 3, 5 and 7 (W/L values smaller than 3 were also experimented with but not considered

further as they resulted in parasitic dominated slower speeds due to weak drives of

transistors and were not considered good candidates for high performance). Physical

libraries were implemented in 0.5 µm, N-well CMOS process (SCN_SUBM,

lambda=0.3) of MOSIS. The layout assemblies for the 4-bit, 8-bit, 12-bit and 16-bit

multiplier and barrel shifter circuits were carried out using these cell libraries and

automatic place and route tool LEDIT (SPR) from M/s Tanner Research Inc. [35], [36].

In the third phase the generated layouts were then simulated after parasitic extraction

using circuit simulator, ELDO spice. Supply voltage VDD was kept at 3.3V. The product

of average switching energy and circuit delay was then computed for each

implementation of the selected multiplier and barrel shifter circuit using the same logic

design style but utilizing three different physical libraries- differing in their transistor

sizes as described above. It was noticed that for all the three logic design styles, the

physical library utilizing W/L ratio of 3 for NMOS transistors gave the smallest average

switching energy-delay product. A detailed comparative study was carried out for

different parameters like propagation delay, transistor count, core area and power

dissipation at 20MHz input/clock rate (selected for comparison purposes) across all the

implementations.

In fourth phase, one of the most important circuit reliability issues, namely, NBTI [31],

[32] was considered. We proposed a new technique to study the NBTI degradation using

widely available Verilog HDL, which will help many designers to include NBTI effect in

 8

their designs. The NBTI is identified as most critical reliability concern for nanometer

scale digital integrated circuits. Degradation occurring in P-channel metal oxide

semiconductor (PMOS) devices is most critical as it decides the lifetime of CMOS

devices in deep sub-micron technologies. We studied the NBTI degradation for a 1-bit

full adder circuit in 90 nm technology using Verilog HDL. The circuit model describes

basic static CMOS logic gates using switch-level Verilog description, which also

incorporates the model for computing change in the threshold voltage (∆Vt) and the

delay (tp) of PMOS devices after every NBTI stress. NBTI stress can be computed by

knowing the time for which particular PMOS transistor remains under negative bias (i.e

Vgs<0).

1.6 Thesis Structure

In this thesis a total of four multiplier architectures have been chosen for study,

out of which two multiplier architectures support signed 2’s complement numbers. These

are Baugh Wooley multiplier and Booth encoded Wallace tree multiplier. The remaining

two multiplier architectures supports unsigned numbers. These are MUX based

multiplier and 2×2 cell based multiplier. The barrel shifter architectures chosen for study

are Pereira’s architecture and MUX-based architecture. The different logic design styles

used for VLSI implementation are static CMOS logic, dual rail domino CMOS logic, TG

logic and TSPC logic (only for the barrel shifter designs).

The thesis consists of seven chapters. Chapter 2 describe the design philosophy of

multiplier and barrel shifter circuits, Chapter 3 explains the different multiplier and

barrel shifter architectures, chapter 4 discusses the different CMOS logic design styles

and determination of PMOS/NMOS width ratio (β) for high speed design, chapter 5

presents the study of the dynamics of NBTI degradation in digital logic circuits using

Verilog HDL. The VLSI implementation and simulation results for different multiplier

and barrel shifter circuits are tabulated and compared in chapter 6. The comparison

parameters are propagation delay, average power, maximum power and leakage power,

transistor count, core layout area, routing length and number of vias. The complete

research work is summarized in chapter 7, which concludes the thesis. The list of

references, appendix, and brief bibliography of the candidate as well as the supervisor

are appended at the end of the thesis.

 9

1.7 Chapter Summary

In this chapter we discussed about the background of the work and the objectives of the

thesis. Further we described the different data path architectures considered for

exploration and identified the research gaps based on detailed literature survey. The

chapter also lays out the research methodology and chapter wise structure of the thesis.

 10

CHAPTER 2

A DESIGN PHILOSOPHY OF MULTIPLIER AND BARREL

SHIFTER CIRCUITS
Multiplication is the most widely used operation in many computational systems.

Multiplication process is used in many neural computing and DSP applications like

instrumentation and measurement, communications, audio and video processing,

graphics, image enhancement, 3D rendering, navigation, radar, global positioning system

(GPS), and control applications like robotics, machine vision and guidance. It is used

mainly to implement algorithms like frequency domain filtering such as finite impulse

response (FIR) and infinite impulse response (IIR), frequency-time transformations,

correlation etc. Most DSP tasks require real-time processing; it must perform these tasks

speedily while minimizing cost and power. The optimizations carried out at different

levels of abstraction in the design process are typically at architectural-level, at logic

level to select proper logic design style, and at transistor-level to select proper transistor

sizes- keeping in view their contributions to performance indices like average power,

circuit delay and area.

The multipliers used for various applications can be categorized as unsigned and signed

multipliers. The popular 2’s complement number representation is considered for signed

multipliers. Apart from reducing the length of critical path, the VLSI implementation of

multiplier circuit primarily focuses on iterative circuits with uniform interconnection

pattern, which also helps in reducing the total interconnect length. The multiplication

involves two basic operations i.e. the generation of partial products and their

accumulation. Different multiplier algorithms differ in terms of ‘partial product

generation’ and ‘partial product accumulation’, therefore their time and space complexity

also varies. The complexity becomes important when operand size increases (i.e.

problem size grows). The speed-up for the multiplication can be achieved using the

following two techniques [13], [14], [22], [37]:

1. Reduce the number of partial products.

2. Accelerate the accumulation of partial products.

The smaller number of partial products reduces the time needed to accumulate the partial

products. The accumulation process can be accelerated using faster carry save addition

(CSA) technique as discussed in section 2.2.

 11

2.1 Array Multiplier [4], [8], [18], [19], [10], [14], [15], [16], [17], [37], [38]

In this scheme, the two dimensional logic can be so organized that the partial product at

(i+1)st stage is the sum of the partial products up to ith stage and the left shifted version of

(i+1)st partial product. The partial products in the multiplication process may be

independently computed in parallel. For a multiplicand A=An-1 An-2 ……A0, and

multiplier B=Bn-1 Bn-2 ……B0 the product P=A.B is given by equation 2.1.

)1.2(222
1

0

1

0

1

0
∑∑∑
−

=

−

=

−

=

⋅⋅=⋅⋅=
n

j

j
ji

n

i

ii
n

i
i ABABP

The ith partial product sum PPi can be denoted by equation 2.2

Example 2.1 shows the simple multiplication process. The figure 2.1 shows the simple

array multiplier cell. This simple cell is used repetitively and arranged to realize a

complete array multiplier circuit as shown in figure 2.2. The critical path in multiplier

circuit is also indicated. Reduction in the length of critical path is one of the major

objectives in any combinational circuit design.

Example 2.1:
A= Multiplicand
B= Multiplier

A: 1101=13
B: 1011=11

 1101
 1101+
 0000++
 1101+++

 10001111=143

PP0=0

PP1 =PP0+B0A

PP2 =PP1+B1 21A

PP3 =PP2+B2 22A
.
.
.
PPi+1 =PPi + Bi 2iA (2.2)

 12

Figure 2.1 Array multiplier cell

Advantages:

• Regular circuit structure; hence suitable for VLSI implementation.

• The length of interconnects is reduced appreciably.

• Execution is comparatively faster than sequential multiplication.

• Such architecture can be faster for smaller operand size multipliers.

Disadvantages:

• As the operand size grows the circuit takes large area and power due to space

complexity O (n2).

• Execution is slow due to ripple effect in partial product addition.

• These multipliers have time complexity of O (n).

• Due to linear time complexity, delays may not be acceptable for larger operand

size multipliers.

FA

AND

Bi

Aj

Sin Cin

Cout

Pout

Where,

Sin is the incoming sum bit and Cin is the incoming carry bit being summed along with the

partial product bit Bi Aj by the full adder.

 13

Figure 2 .2 A 4x4 array multiplier showing critical path

2.2 Wallace Tree [22], [37], [39]

A Wallace tree scheme accelerates the accumulation using faster CSA technique. CSA is

one of the major speed enhancement techniques used in modern digital multiplier circuits

due to its ability to add numbers with minimal carry propagation. Using 3:2 compressors,

three numbers can be reduced to two using simple addition while keeping their carries

and the sum separate. This means that all of the columns can be added in parallel without

waiting for the result of the previous column. The two outputs that the adder generates as

sum and carry can be compressed further in next stage. In the last stage, two rows of sum

and carry can be added using carry propagate adder (CPA) to obtain final product.

Example 2.2 shows accumulation of partial product in a Wallace tree multiplier.

AND AND AND AND

FA

AND

FA

AND

FA

AND

FA

AND

FA

AND

FA

AND

FA

AND

FA

AND

FA

AND

FA

AND

FA

AND

FA

AND

B0

B1

B2

B3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

‘0’

‘0’

‘0’

‘0’

‘P0’

‘P1’

‘P2’

‘P3’ ‘P4’ ‘P5’ ‘P6’

‘P7’

 14

Advantages:

• Since ripple effect is reduced, it produces the product in far less time.

• The time complexity is reduced to O (log n).

Disadvantages:

• Requires more hardware to accumulate partial product bits as compared to array

multipliers (which are regular).

• Takes larger routing area as compared to regular array multipliers; hence less

suitable/adaptable for VLSI implementation.

Example 2.3 shows the addition of partial product rows in a Wallace tree multiplier. The

addition can be performed using fast CSA as shown in figure 2.3.

Example 2.3:

 A= 111 (7)
 B= 110 (6)
 00000 (PP0)
 01110 (PP1)
 11100 (PP2)
101010 (Final Sum Calculated)

Example 2.2:
 10111001

 00101010

 00111001

 Sum: 10101010

 Carry: 00111001X

 Result:100011100

 15

Figure 2.3 Accumulation of partial product in a Wallace tree

2.3 Booth’s Algorithm [37], [39]

The motivation of this scheme is to “speed up” multiplication process by reducing the

number of partial products. It is not essential to execute add and shift for each ‘1’

multiplier bit.

A multiplier (say) B = 001110011110 can be treated as:

0 0 1 1 1 0 0 1 1 1 1 0

0 +1 0 0 -1 0 +1 0 0 0 -1 0

Instead of add and shift operation for each bit that is ‘1’ in the multiplier the ‘0’ and ‘1’

multiplier bits can be replaced by +1, 0, or –1 as noted.

• +A or –A with appropriate shift need to be added to the partial product

corresponding to +1 or –1.

• Thus the number of ADD operations is reduced from 7 to only 4 ADD/SUB

operations.

• Rules for first order Booth encoding are given in table 2.1.

PP1

(01110) PP0
(00000)

PP2
(11100)

S (10010) C (011000)

Final Product
(101010)

5-bit CSA

6-bit CPA

3×3 Wallace Tree Multiplier

 16

Table 2.1 Rules for radix-2 Booth encoding

Bi Bi-1 Comments Yi

0 0 String of zeros 0

1 1 String of ones 0

1 0 Beginning of a string with ones -1

0 1 End of a string with ones 1

Such encoding is useful for sequential multiplier design, since it reduces the number of

addition operations to be performed. The Booth encoding in combinational circuit design

can be explained by example 2.4.

This is called radix-2 Booth encoding. A radix-y Booth encoding, where y=2x reduces

the number of partial product rows by factor of x. Therefore radix-2 Booth encoding

does not reduce the number of partial product rows. Example 2.5 shows that radix-2

Booth multiplier does not show any advantage in combinational multiplier design, since

the number of partial product rows remains unreduced and algorithm puts additional

burden of negation of a multiplier. Thus radix–2-Booth encoding is costlier than normal

multiplier.

Example 2.5:

Multiplicand = A= −5 = 1011 (⇒ -A = +5=0101)

Multiplier = B = −3 =1101

Multiplicand (A) 1 0 1 1

Multiplier (B) 1 1 0 1

Recoded multiplier (Y) 0 -1 1 -1

PP1 0 0 0 0 1 0 1

PP2 1 1 1 0 1 1 -

PP3 0 0 1 0 1 - -

PP4 0 0 0 0 - - -

Sum 0 0 0 1 1 1 1

Example 2.4:

• A multiplier of 14 (0,1,1,1,0) can be treated as (+1,0,0, -1,0) i.e. (16-2)

• A multiplier of 15 (0,1,1,1,1) can be treated as (+1,0,0,0, -1) i.e. (16-1)

 17

To get rid of the above problem higher radix Booth algorithms are used. Booth radix-4

(y=4=22) encoding can reduce the number of partial product rows by a factor of two. For

radix-4 Booth encoding, we are encoding each pair as operation like 0, ±A, ±2A, this

will reduce the number of rows of partial products in combinational circuit by a factor of

two. In this algorithm Bi and Bi-1 is recoded as Zi and Zi-1 but taking into account the Bi-2

bit. The algorithm to convert a sequence is given in the table 2.2.

Table 2.2 Rules for radix-4 Booth encoding

Bi Bi-1 Bi-2 Zi Zi-1 Dj Operation

0 0 0 0 0 +0 +0

0 0 1 0 1 +1 +A

0 1 0 0 1 +1 +A

0 1 1 1 0 +2 +2A

1 0 0 -1 0 -2 -2A

1 0 1 0 -1 -1 -A

1 1 0 0 -1 -1 -A

1 1 1 0 0 +0 +0

For the case of radix-4 Booth encoding a signed binary number in two’s complement

form is partitioned into overlapping groups of three bits (in general for the radix-y Booth

encoding the overlapping group takes x+1 bits) and each group is represented by possible

value of 0, +A, -A, +2A, -2A using the rules indicated in the table 2.2. The value of

overlapping groups of three bits can also be computed easily using the equation 2.3,

which computes digits Dj as shown in table 2.2. Use of this algorithm reduces the number

of partial product rows to half. Example 2.6 shows the grouping of multiplier bits in a

radix-4 Booth encoding.

Example 2.6:
Multiplier (B) = 11010 = B4B3B2B1B0

Multiplier B
Comments

B5 B4 B3 B2 B1 B0 B-1 i
j=(i-1)/2 Operation

B is sign extended 1 1 1 0 1 0 0

Group 0 1 0 0 1 0 (-2A)

Group 1 1 0 1 3 1 (-A)

Group 2 1 1 1 5 2 (0)

 18

)3.2(222

2
222

1
222

0

222
:2

222.........2

3
0

4
0

5
1

2

1
0

2
0

3
1

1

1
0

0
0

1
1

0

12
0

2
0

12
1

1
00

1
1

1
1

BBBDdigitcoded

jfor
BBBDdigitcoded

jfor
BBBDdigitcoded

jfor

BBBDdigitcoded
nfor

BBBBDdigitcoded

jjjj

njnjnjnj
n

j

++−=

=
++−=

=
++−=

=

++−=

=

+++−=

−

−+

−++
−

Example 2.7 shows the multiplication process for radix-4 Booth algorithm. In this

method the number of bits should always be even. If the number of bits is odd then sign

bit is extended at the most significant bit (MSB) position. The example shows that the

number of partial product rows is reduced by a factor of 2.

Example 2.7:
Multiplicand A = +13 = 01101 (⇒ -A = 10011)
Multiplier B= -6 = 11010 = 111010 (sign extended to 6-bit)

Modified multiplier bits:
 i = 5 ⇒ Z5Z4 = (0 0), i =3 ⇒ Z3Z2 = (0 –1) and i = 1 ⇒ Z1Z0= (–1 0)

OR {since, i=2j+1 ⇒ j=(i-1)/2}

 j = 2 ⇒ D2=0, j = 1 ⇒D1 = -1, j = 0 ⇒ D0 = -2

Operation to be performed = 0, –A, –2A (From Table 2.2)

0 0 1 1 0 1 (+13)
0 0 0 –1 –1 0 (-6)

 1 1 1 1 0 0 1 1 0 (-26)
 1 1 1 0 0 1 1 + + (-52)
 0 0 0 0 0 + + + + (0)
 1 1 0 1 1 0 0 1 0 (-78)

Note: Number of partial product rows have been reduced by a factor of 2

 19

Advantages:

• Number of partial product rows is reduced to half. This also implies that the

hardware required to generate partial products is reduced to n2/2 cells.

• The advantage of reduction in hardware using Booth encoding scheme can be

combined with accelerated Wallace tree accumulation of partial products to

obtain the reduced time complexity of O (log n).

• Such Booth encoded tree multipliers are highly suitable for large operand size

multipliers.

 Disadvantages:

• The Booth encoding requires extra hardware and generation of partial products

becomes complex due to increased number of operations on multiplicand A.

• The Booth encoder circuit adds an extra delay to critical path hence for smaller

operand-size multipliers the performance may degrade.

2.4 Array of Array Multiplier [10]

As discussed earlier, array multipliers are preferred for smaller operand sizes due to their

simpler VLSI implementation, in-spite of their linear time complexity. On the other hand

the tree-based multipliers have better time complexity as compared to array based

multipliers but are less suitable for VLSI implementation; since being less regular they

require larger total routing length, which may degrade their performance. Some hybrid

architectures have area and latency characteristics in between the two extremes. These

are called array of array based schemes, which have routing area requirements close to

an array multiplier and time complexity of)(nO .

2.5 Different Multiplier Architectures Considered for Exploration

The different multiplier architectures to be studied based on the above points of view are

listed below.

(1) Baugh Wooley Multiplier [8]

(2) Booth Encoded Wallace Tree Multiplier [22], [40], [41]

(3) MUX Based Multiplier [16]

(4) 2×2 Cell Based Multiplier [10], [42]

The multipliers (1) and (2) are signed multipliers while multipliers (3) and (4) are

unsigned multipliers. The detailed design implementation for these multiplier

 20

architectures are discussed in chapter 3. These architectures have been considered for

exploration in the present study. The performance and characteristic parameters for

comparison purposes are propagation delay, average power, maximum power and

leakage power, transistor count, core layout area, routing length and number of vias.

2.6 Barrel Shifter Design Philosophy and Architectures Considered for Exploration

Data shifting is a requirement of many key computer operations- from address

generation to arithmetic functions. Shifting a single data bit one field at a time can be a

slow process; this is where a barrel shifter comes in. A barrel shifter is a combinational

logic device/circuit that can shift or rotate a data word by desired number of bits in a

single operation. It is another most important block in DSP processor circuits. Intel

80386 and Motorola 68030 chips have also utilized the barrel shifter circuit in their

design. It is used for floating-point normalization, word pack/unpack, and field

extraction from a bit stream, editing, data modification, and arithmetic manipulation.

Different barrel shifter architectures show tradeoffs between silicon area and speed of

operations. Some architectures have a dedicated block for all the operations to be

performed by the barrel shifter. They are faster, but consume larger silicon area and

power. A significant reduction in area and power required by the barrel shifter circuit is

achieved by implementing rightward operations as operations in leftward direction [30].

The barrel shifter architectures to be studied from the above points of view and included

in our studies are listed below.

(1) MUX Based Barrel Shifter [43]

(2) Pereira’s Barrel Shifter [29]

The detailed design implementation for these barrel shifter architectures are discussed in

chapter 3.

2.7 Chapter Summary

In this chapter we present the design philosophy of the multiplier and barrel shifter

circuits for achieving high performance. The chapter presents the schematic structure and

highlights the associated advantages and disadvantages of array multipliers, Wallace tree

multipliers, Booth’s algorithm and array of array multipliers. Furthermore, the chapter

proposes four high-speed multiplier architectures for further investigation. Similarly, it

proposes two high-speed barrel shifter architectures for further investigation.

 21

CHAPTER 3

DIFFERENT MULTIPLIER AND BARREL SHIFTER

ARCHITECTURES

Basics of multiplier design have been already discussed in chapter 2. In this chapter we

present details of architecture and logic implementations in respect of four different

multipliers and two different barrel shifters selected for exploration.

The multipliers selected are:

(1) Baugh Wooley Multiplier [8]

(2) Booth Encoded Wallace Tree Multiplier [22], [40], [41]

(3) MUX Based Multiplier [16]

(4) 2×2 Cell Based Multiplier [10], [42]

Multiplier (1) and (2) are signed multipliers and multiplier (3) and (4) are unsigned

multipliers. The signed multipliers follow the 2’s complement number representation.

The barrel shifter architectures considered for explorations are:

(1) MUX Based Barrel Shifter [43]

 (2) Pereira’s Barrel Shifter [29]

All the multipliers as well as barrel-shifter architectures are implemented for 4-bit, 8-bit,

12-bit and 16-bit sizes using four different logic design styles.

3.1 Baugh-Wooley Multiplier

The Baugh-Wooley multiplier is a signed array multiplier, which utilizes 2’s

complement number system in the implementation of multiplication algorithm. Partial

products are adjusted to maximize regularity of multiplication array. Algorithm moves

partial product terms with negative signs to the last steps, where it adds (-22N-1) to other

partial product terms to get sum of partial products as shown in equation 3.4, which is

derived using equation 3.1, equation 3.2 and equation 3.3.

 22

Design implementation for a 4×4 multiplier: As explained earlier in a 4×4 multiplier the

sign-bit of product carries a weight of -27. The design procedure for a 4×4 multiplier

utilizes equation 3.1, equation 3.2 and equation 3.3 and derives the terms T1, T2, T3, T4,

T5 and T6 (where, the first term T1=-27) such that their summation generates the final

product in 2’s complement notation as shown by equation 3.4

)3.3(
)222)(222(

 2)222(2)222(2 ,

)2.3()222(2

)1.3()222(2

0
0

1
1

2
2

0
0

1
1

2
2

30
0

1
1

2
23

30
0

1
1

2
23

6
33

0
0

1
1

2
2

3
3

0
0

1
1

2
2

3
3

BBBAAA

AAABBBBABAABPSo

BBBBB

AAAAA

+++++

++−⋅++−==

+++−=

+++−=

)222)(222(

22)222(2

2 2)222(22 ,
]11111000000 ;10001000111 .,.[
22222)222(

,

0
0

1
1

2
2

0
0

1
1

2
2

3
3

30'
0

1'
1

2'
23

6
3

3
3

30'
0

1'
1

2'
23

6
3

6
33

00'
0

1'
1

2'
2

30
0

1
1

2
2

BBBAAA

BAAABB

ABBBAABAABPSo
ge

BBBBBB
Let

+++++

+⋅+++−

+⋅+++−==

++−=−++−=−
++++−=++−

 2)(222

2)()11(222

221222222222

22122222222

1202020202020222
,

6'
3

'
3

76
3

6
3

6'
3

'
3

66
3

6
3

6'
3

60123456'
3

76
3

6'
3

60123456'
3

7

0'1'2'3'4'5'6'
3

76
3

⋅++−=−−⇒

⋅+++−=−−⇒

+−=+++++++++−=−

+−=++++++++−=

++++++++−=−

BABA

BABA

BBB

AA

AA
again

 23

The final product obtained by adding T1, T2, T3, T4, T5 and T6 is then rearranged to

produce product bits P0 to P7 as shown in equation 3.5, which helps the designer to

implement the combinational logic circuit for 4×4 multiplier as shown in figure 3.1. For

this multiplier, Ai & Bi are two 4-bit input vectors and Pk & Cout are outputs of 8-bit and

1-bit length respectively. The final carry bit Cout is discarded.

 Similar technique is followed in design of 8×8, 12×12 and 16×16 multipliers.

)5.3(
2

)(2

)(2

)(2

)(2

)(2

)(2

)(2

7
7

'
3

'
333

6
6

3
'
2

'
23

5
5

'
13

'
1322

4
4

3
'
0

'
03332112

3
3

201102
2

2

1001
1

1

00
0

0

−=

+++=

++=

+++=

++++++=

+++=

++=

+=

P

BABAP

BABAP

ABBABAP

BABABABABAP

BABABAP

BABAP

BAP

)4.3(
T)222)(222(

T 2)(

T 2)222(B

T 2)222(A

T 2)(

T 2

6
0

0
1

1
2

2
0

0
1

1
2

2

5
3

33

4
30'

0
1'

1
2'

23

3
30'

0
1'

1
2'

23

2
6'

3
'
333

1
7

BBBAAA

BA

AAA

BBB

BABA

ABP

+++++

⋅++

⋅+++

⋅+++

⋅+++

−==

 24

Figure 3.1 A 4 ×4 Baugh Wooley multiplier

A.B A.B AB AB’

AB’

A’B A’B A’B AB

B0

B1

B2

B3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2

A0 A1 A2
A3

‘0’

‘P0’

‘P1’

‘P2’

‘0’ ‘0’

AB’

A3

B’3 A’3

‘P3’ ‘P4’ ‘P5’ ‘P6’ ‘P7’

A3 B3 ‘1’

‘Cout’

A.B A.B A.B

FAFA FA

A.B

FA

A.B A.B

FAFA

FAFAFAFA FA

FA FA FA FA

 25

3.2 Booth Encoded Wallace Tree Multiplier

The basic operation of radix-2 and radix-4 Booth encoding has already been discussed in

chapter 2. This section presents design implementation for a M×N radix-4 Booth

encoded optimized Wallace tree multiplier. In this multiplier design, the partial product

at each bit position is compressed into sum and carry signals, which are then added to

give the final output as explained later in section 3.2.2.

3.2.1 Multiplication Logic

The multiplier’s main blocks are multiplier/multiplicand selector block, the modified

Booth encoder block, partial product generator block, Wallace tree section (which adds

all the partial products simultaneously to produce final two rows of sum and carry). The

final two rows of sum and carry are then added using CPA.

 Mao-Sorley proposed modified Booth 3-bit recoding. Application of this method of

recoding to an M-bit two’s complement binary number B is shown in equation 3.6. An

equivalent base 4 redundant sign digit representation is obtained as B’ is shown in

equation 3.7.

)6.3(22
2

0
1

1 ∑
−

=
−

− +−=
M

i

i
iM

M BBB

)7.3(4
1

2

0

' ∑
−

=

=

M

i

i
iDB

The digits Di are chosen from the set +2,+1,0,-2,-1 according to the rules in table 3.1 At

each step 3-bits of B i.e.B2i+1B2iB2i-1, are examined and table 3.1 is referred to for

selecting Di. The multiplier B is always appended on the right by a zero (i.e. B–1=0) and

M is always even.

 26

Table 3.1 - Booth encoder truth table

B(2i+1) B(2i) B(2i –1) Di

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 2

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0

In the M-bit by N-bit multiplication, the M-bit multiplier number B is Booth encoded.

The product AB is then obtained by adding M/2 partial product rows as shown in

equation 3.8. These partial products rows are calculated easily by shifting and/or

complementing the multiplicand A.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −==

=

=

∑

∑

−

=

−

=

1
2

.......2,1,0,

)9.3(4.

)8.3(4

1
2

0

1
2

0

MiADPWhere

PAB

ADAB

ii

M

i

i
i

M

i

i
i

When adding the M/2 partial product rows Pi, the Pi+1
st partial product row is placed two

bits to the left of partial product row Pi as indicated by equation 3.9. However, all Pi rows

must be sign extended to the (M+N)th binary position, such a sign extension becomes

very costly in terms of hardware. In order to avoid excessive hardware required for sign

extension, we use sign extension prevention technique, which assumes that all of the

partial products are negative. In this case, the sum of all sign extensions can be pre-

calculated as shown in equation 3.10.

 27

)10.3(
3

)12()1(2

42)1(
1

2

0

−
−=

−= ∑
−

=

M
N

M

i

iN

Signs

Signs

Equation 3.10 suggests that a fixed number, (-1) (2 M – 1)/3, should be added to the (un-

extended) partial products, starting from the Nth binary position leftwards as shown in

table 3.2, which depicts the logical operation of a 4×4 multiplier. If it turns out that a

partial product Pi = Di A is indeed positive, we simply replace its sign bit with a one to

undo the effect of our earlier assumption that the partial product Pi is negative, that is we

will take 2’s complement of sign extended portion (i.e. add jS’=’1’ at sign bit to invert

all 1’s and add jS’=’1’ at the beginning of partial product row as shown in example 3.1).

Equation 3.12 explains the generation of jS’ bit.

Table 3.2 Logical operation of a Booth encoded 4×4 multiplier assuming that all of the

partial products are negative

 A3 A2 A1 A0

 B2 B0

1 1 1 1 P3 , 0 P2 ,0 P1, 0 P0, 0

1 1 P3,2 P2,2 P1,2 P0,2

Sum of sign bits

1 0 1 1

P7 P6 P5 P4 P3 P2 P1 P0

A fixed number = (-1) (2 M – 1)/3 = (-5) = 1011 is added at the position indicated in table

3.3.

The original algorithm does not generate correct result if particular partial product row is

‘0’, since it is neither positive nor negative. Hence for 0×0 it gives wrong output. The

algorithm is slightly modified as shown in table 3.3.

 28

Example3.1:

Let A=(-3) 10=(1101) 2 and B=(22) 10=(010110) 2

Booth encoding of B gives:- (010), (011), (100) =A, 2A, -2A

Note: Multiplier to be Booth encoded has size of M-bit and multiplicand has size
of N-bit.

M = 6, N = 4 ⇒ signs = (336)10= (1010110000)2

Or fixed number = (-1) (2 6 – 1)/3 = (-21) = 101011 is added at position indicated.
 (0S’=1) 0 1 0 1

 (0S’=1)

 (2S’=0) 1 0 1 0 + +

 (2S’=0)

 (4S’=0) 1 1 0 1 + + + +

 (4S’=0)

1 0 1 0 1 1

1 1 1 0 1 1 1 1 1 0

Table shows that if partial product is non zero then jS’ is selected for addition at both

MSB and least significant bit (LSB) positions and if partial product row is zero then

jMVDD=’1’ is added at MSB position and jMGND=’0’ is added at LSB position. The

prevention of sign extension plays an important role in hardware reduction of a

multiplier architecture design based on Booth encoding. Equation 3.13 explains the

generation of jMVDD and jMGND bits.

Table 3.3 Modified logical operation of Booth encoded 4×4 multiplier

 A3 A2 A1 A0

 B2 B0

 0S’/0MVDD P3 , 0 P2 ,0 P1, 0 P0, 0

 2S’/2MVDD P3,2 P2,2 P1,2 P0,2 0S’/0MGND

1 0 1 1 2S’/2MGND

P7 P6 P5 P4 P3 P2 P1 P0

 29

3.2.2 Implementation Technique

This section presents the design procedure for implementing the M×N multiplier as

shown in table 3.3. The multiplier has three design levels:

The first level in design is the part where the partial products are generated using the

Booth encoded multiplier. The second level in deign is the accumulation of the partial

products using 3:2 and 4:2 compressors (as explained later in section 3.2.2.5), which

generate intermediate sum and carry. The intermediate sum and carry of the second level

are further accumulated using 3: 2 compressors that are essentially full adders to generate

final row of sum and carry. The third level in design accumulates sum and carry obtained

by the second level, using a (M+N) bit CPA , which gives the final output of (M+N) bits.

Figure 3.2 explains all three levels in the design of Booth encoded multiplier.

The functions of different design blocks used in Booth encoded Wallace tree multiplier

are explained in sections from 3.2.2.1 to 3.2.2.6.

3.2.2.1 Modified Booth Encoder

 The multiplier is Booth encoded using the Booth encoder to generate the Booth encoded

bits (PLj, Mj, Xj, 2Xj). The PLj, Mj, Xj and 2Xj are derived from the basic Booth

algorithm. Table 3.4 shows the Booth encoding for all the input combinations.

Figure 3.2 Basic Steps in Booth multiplication

Multiplicand

Booth encoded Multiplier

Accumulation of partial products and
sign bits to generate reduced final two
rows as sum and carry.

Sum
Carry

CPA Result

 30

 Where, PLj =1, ⇒ positive partial product

 Mj =1, ⇒ negative partial product

 Xj =1, ⇒ partial product neither doubled and nor zero

 2Xj =1, ⇒ partial product doubled

Table 3.4 Modified Booth encoding

Inputs Sign Select

Bj+1 Bj Bj-1
Function

Xj 2Xj PLj Mj

0 0 0 0 0 1 0 0

0 0 1 +A 1 0 1 0

0 1 0 +A 1 0 1 0

0 1 1 +2A 0 1 1 0

1 0 0 -2A 0 1 0 1

1 0 1 -A 1 0 0 1

1 1 0 -A 1 0 0 1

1 1 1 0 0 1 0 0

After logic optimization using Karnaugh maps equations obtained are shown as equation

3.11. Using these equations the combinational circuit can be designed to generate Booth-

encoded bits (PLj, Mj, 2Xj). (Note that Xj bit is not evaluated, as it can be eliminated in

generation of partial products as explained in next section.)

)11.3(2..........2,0,

)(

)(2

'
1

''
1

1
'

1

'
1

−=

••=

••=

⊕=

−+

+−

−

MjWhere

BBBPL

BBBM

BBX

jjjj

jjjj

jjj

3.2.2.2 Sign Bit Generator

 This generates the sign bit as shown in table 3.3, which removes the need for sign

extension. This takes PLj, Mj and MSB of A input as input and gives jS’ as output.

Mj+PLj=’1’ means partial product is non-zero. MSB of A=’1’ means multiplicand is

negative. If Mj=’1’ then jS will be zero meaning partial product is positive and therefore

 31

jS’=not (jS)=’1’ is added at the appropriate positions as shown in table 3.3. The logic

equation used for implementing sign bit generator is shown in equation 3.12. Thus this

sign bit is valid for non-zero partial products and when multiplicand is negative.

)12.3(2..............2,0
,

)(

)]()[(
'

−=

=

⊕•+=

Mj
Where

jSnotjS

MAofMSBPLMjS jjj

Table 3.3 shows that if partial product is non zero then jS’ is selected for addition at both

MSB and LSB positions and if partial product row is zero then jMVDD=’1’ is added at

MSB position and jMGND=’0’ is added at LSB position. Mj+PLj= ‘0’ means partial

product is zero, for such cases ‘1’ is placed at jMVDD location and ‘0’ at jMGND locations

as shown in table 3.3, which are taken care by jMVDD and jMGND bits. The generation of

jMVDD and jMGND bits can be obtained by modifying equation 3.12. The modified

equation 3.13 takes care of the case of zero partial products for which original algorithm

gives wrong results.

)13.3(2..............2,0
,

)()(

)()(
''

''

−=

+++=

+++=

Mj
Where

GPLMjSPLMjM

VPLMjSPLMjM

NDjjjjGND

DDjjjjVDD

3.2.2.3 Partial Product Generator

The partial products are generated using the partial product generator. The bits of partial

products generated at different bit positions are accumulated. When there is a single

partial product then the simple partial product generator is enough. For generating and

accumulating 2 or 3 or 4 partial products, 2D, 3D and 4D units are used respectively,

which generate the respective number of partial products and then compress them into

sum and carry signals. Partial product bit at position (i,j) as given by reference [41] are

shown in equation 3.14.

 32

)14.3()2(),4....(4,2,0
)1......(2,1,0

,

)(2)('
11

'
,

−−=
−=

+++= −−

MMj
Ni

Where

MAPLAXMAPLAXP jijijjijijji

Equation 3.14 can also be implemented using two 2:1 MUX and two XOR gates as

shown by equation 3.15 (this eliminates the Xj input, which is complement of input 2Xj).

)15.3()2(),4....(4,2,0
)1......(2,1,0

,

)])2()2(()[(1
'

,

−−=
−=

+•⊕⊕= −

MMj
Ni

Where

AXAXPLMMP ijijjjjji

Equivalace between 3.14 and 3.15 has been shown in table 3.5

Table 3.5 Equivalace between two different patial product generation logics

Xj 2Xj PLj Mj Pi,j using eq. (3.14) Pi,j using eq. (3.15)

0 1 0 0 0 0

1 0 1 0 Ai Ai ⊕ Mj = Ai

1 0 1 0 Ai Ai ⊕ Mj = Ai

0 1 1 0 Ai-1 Ai-1⊕ Mj = Ai-1

0 1 0 1 A’
i-1 Ai-1 ⊕ Mj = A’

i-1

1 0 0 1 A’
i Ai ⊕ Mj = A’

i

1 0 0 1 A’
i Ai⊕ Mj = A’

i

0 1 0 0 0 0

3.2.2.4 Addition of Fixed Number

The fixed number (-1) (2 M – 1)/3, should be added to the un-extended partial products,

starting from the Nth binary position leftwards.

 33

3.2.2.5 Accumulation of Partial Product Rows

 Partial product rows are accumulated using fast CSA/ 3:2 compressor/ 4:2 compressor/

2D/ 3D/ 4D to generate final rows of sum and carry [40], [41]. These final rows of sum

and carry are added using CPA to generate final product for an M×N multiplier.

(A) 3:2 Compressor: This is essentially a 1-bit full adder. It accepts 3-bit input and

generates two bit output as sum and carry.

(B) 4:2 Compressor: The first stage sum and carries are given to the 4:2 compressor as

4-bit input, which generates two bit output as sum and carry.

(C) 2D Block: This block generates two partial products using partial product generator

and then these bits are compressed into sum and carry using 3:2 compressor.

(D) 3D Block: This block generates three partial products using partial product generator

and then these bits are compressed into sum and carry using 3:2 compressor.

(E) 4D Block: this block generates four partial products using partial product generator

and then these bits are compressed into sum and carry using 4:2 compressor.

3.2.2.6 Eliminating the Other Limitations of an Existing Algorithm

Another limitation of the basic algorithm is that it does not work for all the combinations

of inputs. When both the inputs are zero it produces wrong results. Equation (3.12)

suggests that MSB of multiplicand input A has to be ‘1’ meaning it is always negative

and multiplier input B is Booth encoded. Adding a 2’s complement and swapping unit

before Booth encoding removes these limitations, but it increases gate count and delay.

The logic for pre-processing of inputs through 2’s complement and/or swapping unit is

presented below in table 3.6. The external inputs AI and BI are assigned to algorithm

inputs A and B using swap select logic. Note that algorithm input A is always negative

and B input is Booth encoded. This can be seen from equation 3.12 where MSB of A has

to be ‘1’. If out of AI and BI one number is negative and the other number is positive

then A is taken – ve & B is taken as positive. In such cases always the positive B

operand is Booth encoded. If both numbers AI and BI are negative then A=AI and

B=BI and B operand is Booth encoded. AI=’0’ is considered as +ve number if other

 34

number is negative. AI=’0’ is considered as -ve number if other number is positive.

BI=’0’ is always considered as +ve irrespective of the other number. The swapping and

2’s complement operations are explained in table 3.6.

Table 3.6 Logic for preprocessing of inputs

External Inputs Swapping 2’S Complement Algorithm Inputs

AI (+ve)

BI (+ve)
NO YES

A = -AI

B = -BI

AI (+ve)

BI (-ve)
YES NO

A = BI

B = AI

AI (-ve)

BI (+ve)
NO NO

A = AI

B = BI

AI (-ve)

BI (-ve)
NO NO

A = AI

B = BI

AI (zero) / AI (+ve)

BI (zero)
NO YES

A = -AI

B = -BI

AI (-ve)

BI (zero)
NO NO

A = AI

B = BI

AI (zero)

BI (-ve)
YES NO

A =BI

B = AI

AI (zero)

BI (+ve)
NO NO

A = AI

B = BI

Figure 3.3 shows the Block diagram of Booth encoded Wallace tree multiplier, which

eliminates all limitations of existing algorithm.

 35

Table 3.3 represents the 4×4 multiplier. The partial product bits in a particular column

are generated and accumulated by either simple partial product generator/2D/3D/4D to

give sum and carry bits as per equations 3.16-a. The selection of particular block

depends on number of partial products to be generated and accumulated in a particular

column (e.g. for generating and accumulating a single bit of partial product in a column

requires simple partial product generator, while, if in a particular column 2 partial

product bits are required to be generated and accumulated then 2D unit will be used).

The sum and carry bits obtained by partial product generator/2D/3D/4D units are then

added with sign bits and fixed number derived by using equation 3.10 to generate the

final rows of sum and carry as per equations 3.16-b. These final rows of sum and carry

are then added using a CPA to generate the product bits of the multiplier as per equations

3.16-b.

Figure 3.3 Block diagram of Booth encoded Wallace tree multiplier
eliminating limitations

Multiplier/ Multiplicand
Selector Block

Booth Encoder

AI BI

A B

Partial Product Generator Sign Bit Generator

An

First stage Compression
(Wallace Tree Adder)

Second stage Compression
(CPA)

Product= AI×BI

 36

)16.3(

,
,

2,35

2,24

2,10,333

2,00,222

0,11

0,00

aPS
PS

PPSC
PPSC

PS
PS

−=

=

+=

+=

=

=

Where, Si and Ci are the bits after the 1st stage compression of the partial product bits

produced by partial product generator/ 2D/3D/4D units. 1Si & 1Ci are intermediate sum

and carry bits generated after 2nd stage compression, which accumulate Si & Ci sign bits

and fixed number. 2Ci are carry bits and Pi are final product bits generated by the last

stage of the CPA as shown by equation 3.16-b.

)16.3(2'1'
21,2

211,2
211,2
211,2

21,2
1,2

21
'1'1,1

'1'01,1
1,1

21,1
0,1

57

4565

34354

23243

12132

0121

0110

5

544

3433

2322

211

000

bCP
CSPC

CSCPC
CSCPC
CSCPC

CSPC
CSPC

MS
SSC

CMSSC
CSSC
MSSC
MSPC

VDD

VDD

GND

GND

−+=
+=

++=
++=
++=

+=
+=

=
+=

+++=
+=
+=
+=

Figure 3.4 shows a 4×4 Booth encoded Wallace tree multiplier designed using above

described technique. Similar technique is followed in the design of 8×8, 12×12 and

16×16 multipliers.

 37

Figure 3.4 A 4×4 Booth encoded Wallace tree multiplier-eliminating limitations (j=’0’)

Multiplier/

Multiplicand
Selector
Block

AI0
AI1
AI2
AI3

BI0
BI1
BI2
BI3

B0
B1
B2
B3

A0
A1
A2
A3

Booth
Encoder

PLj
PLj+2
Mj
Mj+2
2Xj
2Xj+2

PLj Mj 2Xj A0 gnd

Partial
Product
Generator

S0

PLj Mj 2Xj A1 A0

Partial
Product
Generator

S1

2D Unit

PLj PLj+2 Mj Mj+2 2Xj 2Xj+2 A2 A1 A0 gnd

S2 C2

2D Unit

PLj PLj+2 Mj Mj+2 2Xj 2Xj+2 A3 A2 A1 A0

S3 C3

Partial
Product
Generator

S5

PLj+2 Mj+2 2Xj+2 A2 A1

Partial
Product
Generator

S4

PLj+2 Mj+2 2Xj+2 A3 A2

Sign Bit
Generator

Mj PLj A3

0MVDD 0MGND

Sign Bit
Generator

Mj+2 PLj +2 A3

2MVDD 2MGND

3-2
Compressor

S2 2MGND ‘0’

1C1 1S1

3-2
Compressor

S3 C2 ‘0’

1C2 1S2

 S4 C3 0MVDD ‘1’ ‘0’

Cx=0 1C3 1S3

4-2
Compressor

3-2
Compressor

 S5 ‘0’ ‘1’

1S4 1C4

3-2
Compressor

 2MVDD ‘0’ ‘0’

1S5 1C5=0

3-2
Compressor

S1 1C0 ‘0’

2C0 P1

3-2
Compressor

1S1 ‘0’ 2C0

2C1 P2

3-2
Compressor

1S2 1C1 2C1

2C2 P3

3-2
Compressor

1S3 1C2 2C2

2C3 P4

3-2
Compressor

1S4 1C3 2C3

2C4 P5

3-2
Compressor

 1S5 ‘0’ 2C4

2C5 P6

3-2
Compressor

 ‘1’ 1C5 2C5

P8 P7

3-2
Compressor

 S0 0MGND ‘0’

1C0

P0

 38

3.3 MUX Based Multiplier

It is based on an unsigned multiplier algorithm in which one bit of the multiplier and

one bit of the multiplicand are processed in parallel. The algorithm is symmetric, i.e. the

multiplier and multiplicand can be interchanged. According to this algorithm, sum of the

two operands, progressively computed, is a useful quantity that is used in the

computation of certain partial products. The different quantities are computed one bit at

each step of the algorithm and the appropriate quantity is then selected in the next step, if

so required. The parallel implementation of this algorithm yields an iterative type array.

Compared to implementation based on the modified Booth’s algorithm, this algorithm

requires similar amount of circuitry but yields faster multiplication [16]. This MUX

based architecture performs parallel computation of the partial sums of the two operands

together, which simplifies the tasks such as compression and accumulation. It also

performs favorably well with regards to gate area, compared to other regular array

architectures [16]. This architecture can also be extended to accept input in 2’s

complement form, with a little modification, but is not considered for present

exploration.

3.3.1 Multiplication Logic

Equation 3.17, equation 3.18, equation 3.19, equation 3.20 and equation 3.21 explain the

multiplication logic.

ABPLet
bbbB
aaaA

nn

nn

=
=
=

−−

−−

,
)17.3(021

021

K

K

Aj & Bj are binary numbers after truncation, up-to the (j-1)th bit in A, B respectively as

per equation 3.18.

)18.3(2

2

1

0
021

1

0
021

∑

∑
−

=
−−

−

=
−−

==

==

j

n

n
njjj

j

n

n
njjj

bbbbB

aaaaA

K

K

 39

)19.3(0
021

021

njforBAP

bbbB

aaaA

jjj

jjj

jjj

<<=

=

=

−−

−−

K

K

{ }{ }

)20.3(22

2)(2

2)(2

)(22

22

2&

2

0

1

0

1

0

2

1

0

1

0

2

1

0
0

1

0

2

111111
1

11
22

1
1

11
1

1

1
1

1

1
1

1

000

∑∑

∑∑

∑∑

−−

−−

−−

−−−−−−
−

−−
−

−
−

−−
−

−

−
−

−

−
−

−

+=

++=

+++=

+++=

++==

+==

+==

===

n
j

j

n
j

jj

n
j

jjjj

n
j

jj

n
j

jjjj

n
j

jj

nnnnnn
n

nn
n

n
n

nn
n

nnnn

n
n

nn

n
n

nn

Zba

bABaba

PbABaba

BAbABaba

bBaABAP

bBBB

aAAA

PBA

)21.3(1,1

0,00

0,1

1,0

,

==+=

===

===

===⇒

+=

jjjjj

jjj

jjjj

jjjj

jjjjj

baifBAZ

baifZ

baifBZ

baifAZ

bABaZ
Where

3.3.2 An Illustration of the Multiplication Logic

Example 3.2 shows the multiplication process for two 4-bit binary numbers using MUX

based approach. The multiplication process shows that the number of rows remains the

same, but number of partial product bits to be compressed in a particular column are now

restricted to 3 bits only. This makes compression much faster and easier. If carry bits C1,

 40

C2, C3 … as shown by example 3.2 are taken care then the number of bits to be added in

particular column will be 2 bits only. The two columns can be added simultaneously

using 2-bit carry look ahead adder (CLA), which also accepts carry input C1, C2, C3 of

particular column (this is possible because, these carries are occurring in alternate

columns). Thus the first step in algorithm is generation of partial product rows and

second step performs the addition of these partial products together with compression.

Example 3.2(a): A0B0, A1B1, A2B2 & A3B3 at the positions shown below has be added with
appropriate term selected by 4:1 MUX based on select lines shown in first column.

Let A= A3A2A1A0 = 0111 = (+7)10 and B= B3B2B1B0 = 0011 = (+3)10
The uncolored portion explains the operation to be performed by algorithm and colored portion
show the application of algorithm on selected inputs A and B.
Working of MUX: Select lines ‘00’/’01’/’10’/’11’ corresponds to I1/I2/I3/I4.

Select
line for

4:1
MUX

 A3B3 A2B2 A1B1 A0B0
 0 0 1 1

 0/0/0/C1
=0/0/0/1

0/A0/B0/S0
=0/1/1/0 A1B1

=’11’
 1 0
 0/0/0/C2

=0/0/0/1
0/A1/B1/S1
=0/1/1/1

0/A0/B0/S0
=0/1/1/0 A2B2

=’10’
 0 1 1

 0/0/0/C3
=0/0/0/1

0/A2/B2/S2
=0/1/0/0

0/A1/B1/S1
=0/1/1/1

0/A0/B0/S0
=0/1/1/0 A3B3

=’00’
 0 0 0 0
0 0 0 1 0 1 0 1 =(21)10
P7 P6 P5 P4 P3 P2 P1 P0

Example 3.2 (b): A0B0, A1B1, A2B2 & A3B3 at the positions shown below has be added with
appropriate term selected by 4:1 MUX based on select lines shown in first column.

Let A= A3 A2 A1 A0 = 1111= (+15)10 and B= B3 B2 B1 B0 = 1111 = (+15)10
The uncolored portion explains the operation to be performed by algorithm and colored portion
show the application of algorithm on selected inputs A and B.
Working of MUX: Select lines ‘00’/’01’/’10’/’11’ corresponds to I1/I2/I3/I4.

Select
line for

4:1
MUX

 A3B3 A2B2 A1B1 A0B0
 1 1 1 1

 0/0/0/C1
=0/0/0/1

0/A0/B0/S0
=0/1/1/0 A1B1

=’11’
 1 0
 0/0/0/C2

=0/0/0/1
0/A1/B1/S1
=0/1/1/1

0/A0/B0/S0
=0/1/1/0 A2B2

=’11’
 1 1 0

 0/0/0/C3
=0/0/0/1

0/A2/B2/S2
=0/1/1/1

0/A1/B1/S1
=0/1/1/1

0/A0/B0/S0
=0/1/1/0 A3B3

=’11’
 1 1 1 0

1 1 1 0 0 0 0 1 =(225)10
P7 P6 P5 P4 P3 P2 P1 P0

 41

It produces output in time T = (n+1) τFA_2CLA where τFA_2CLA is the delay of a 2-bit CLA

with a timing overhead of one 4:1 MUX delay, while regular array multiplier takes

approximate delay of T = (2n) τFA as seen in figure 3.1. The large area overhead will be

due to routing needed between these MUXs.

3.3.3 Implementation

The logic explained in example 3.2 can be shown through a schematic, which uses 4:1

MUXs & AND gates as shown in figure 3.5(a). The MUXs are used to choose the Zj for

the Zj
 2

j terms (refer to equation 3.21) while AND gates are used to produce the ajbj2
2j

terms. Complete implementation of the multiplier is shown in figure 3.5 (b). Cell I and

cell II used in MUX based multiplier implementation are shown in figure 3.5 (c) and

figure 3.5 (d) respectively. The number of cell I required in a n×n multiplier are n(n-1)/2

while number of cell II required are n.

Figure 3.5 (a) MUX based multiplier implementation logic

4:1
MUX

A1
B1

0 A0 B0 S0

4:1
MUX

0 0 0 C3

4:1
MUX

A2
B2

0 A0 B0 S0

4:1
MUX

0 A1 B1 S1

4:1
MUX

X1
Y1

0 A2 B2 S2

4:1
MUX

A3
B3

0 A0 B0 S0

4:1
MUX

0 A1 B1 S1

4:1
MUX

0 0 0 C2

4:1
MUX

0 0 0 C1

AND2

A0 B0

20A0B0

AND2

A1 B1

22A1B1

AND2

A2 B2

24A2B2

AND2

A3 B3

26A3B3

Z121

Z222

Z323

 42

Figure 3.5 (b) MUX based multiplier implementation

Figure 3.5 (c) Cell I used in MUX based multiplier implementation

Aj Bj

4:1

MUX FA

Cin
Sin

Cout

Ai=Aj
Bi=Bj
Si=Sj

CELL-I

Ai
Bi
Si Aj

Bj

Sout

0 I

Aj Bj Cin
Sin

Aj Bj Cout Sout

Ai=Aj
Bi=Bj
Si=Sj

 II
I I

I II
I

II

I

II

P0=A0B0
x

P1

I

x

2-bit CLA

2-bit CLA

FA

P2 P3

P4 P5

P6

P7

‘A0’ ‘B0’‘0’ ‘A1 ‘B1‘0’ ‘A2 ‘B2‘0’ ‘A3 ‘B3‘0’

‘0’ ‘0’ ‘0’ ‘0’

‘0’

‘0’

‘0’

‘0’

x No connection

 43

Figure 3.5 (d) Cell II used in MUX based multiplier implementation

3.4 2×2 Cell Based Multiplier

In this architecture the 2×2 multiplier is used as a basic building block in the hierarchical

design of a larger bit-size multiplier. This multiplier uses a hybrid scheme called the

array of array multiplier, which has moderate routing area requirements and time

complexity of)(nO for an n×n multiplier [10]. The truth table for a 2×2 combinational

multiplier is shown in table 3.7. The truth table can be solved using Karnaugh maps,

which generates the equation (3.22) as shown below. A combinational circuit can be

realized using these equations. Figure 3.6 shows the schematic of a 2×2 combinational

multiplier.

First step in the design of a 4-bit multiplier will be to find the different combinations of

input bit pairs that are to be processed by 2×2 multipliers. Each input bit pair is handled

by a separate 2×2 combinational multiplier to produce a partial product row. These

partial products rows are then added optimally to generate the final product bits. The

design procedure for 4×4 combinational multiplier is shown in table 3.8. Figure 3.7

shows the schematic of a 4×4 combinational multiplier designed using 2×2

combinational multiplier.

Aj Bj

AND2

FA

FA AND2

Sout

Sin

Cout

Aj

Bj

Cj
Bi=Bj

Ai=Aj

Si=Sj

Cj+1

CELL-II

Cin

AiBi

 II

Aj Bj Cin

Cj

Sin

Ai=Aj
Bi=Bj
Si=Sj

AiBi Sout Cout
Cj+1

 44

Table 3.7 Truth table for a 2×2 combinational multiplier

A1 A0 B1 B0 P3 P2 P1 P0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

Figure 3.6 A 2×2 combinational multiplier

NAND2 A0
B1

INVERTER

NAND2
A1
B0 INVERTER

NAND2
A1
B1

P2A0
B0

NAND2 A0
A1 NOR2

NAND2 A0
B0

INVERTER P0

B0
B1

P3

NAND2

NAND2

INVERTER

INVERTER

P1NAND2

NAND2

NAND2

NAND2

 45

Table 3.8 Design of a 4-bit multiplier using 2×2 combinational multiplier

Pair A3 A2 A1 A0

 Group II Group I

 B3 B2 B1 B0

 Group IV Group III

I × III PP3 PP2 PP1 PP0

II ×III PP7 PP6 PP5 PP4

I × IV PP11 PP10 PP9 PP8

II × IV PP15 PP14 PP13 PP12

Sum P7 P6 P5 P4 P3 P2 P1 P0

P0=A0 ⋅ B0

P1=A0 B1(B’

0+A’
1) + A1 B0(B’

1 +A’
0)

 ={[A0 B1(B’
0+A’

1) + A1 B0(B’
1+A’

0)]’}’

 ={[A0 B1(B’
0+A’

1)]’ ⋅ [A1 B0(B’
1+A’

0)]’}’

 ={[(A0B1)’ + (B0 A1)] ⋅ [(A1 B0)’+(A0B1)]}’

 = [(A0B1)’ + (B0 A1)]’+ [(A1B0)’+(A0B1)]’

 = [A0B1 (B0A1)’]+ [(A1 B0)(A0B1)’]
 = {[A0B1 (B0A1)’]’ ⋅ [(A1 B0) (A0B1)’]’}’

P2=A1B1 (A’

0+ B’
0)

 ={[A1B1 (A’
0+ B’

0)]’}’

 =[(A1 B1)’
 + (A0 B0)]’

 =(A1 B1) ⋅ (A0 B0)’

P3=A1 A0 B1 B0
 ={[A1A0 B1 B0]’}’

 =[(A1A0)’
 +(B1B0)’]’ (3.22)

 46

Figure 3.7 A 4×4 combinational multiplier

Similar technique is used in the design of 8×8, 12×12 and 16×16 multipliers. In such

design at each level of hierarchy in schematic design only four partial product rows are

required to be generated. Hence the accumulation of these partial product rows is much

simplified as compared to other architectures

2B2
MULT

PP15 PP14 PP13 PP12

2B2
MULT

PP7 PP6 PP5 PP4

2B2
MULT

PP11 PP10 PP9 PP8

2B2
MULT

PP3 PP2 PP1 PP0

Y4 Y3 Y2 Y1 Y0 X4 X3 X2 X1 X0
5-Bit Full Adder

 Cout S4 S3 S2 S1 S0

Y4 Y3Y2 Y1 Y0 X4 X3 X2 X1 X0
5-Bit Full Addder

Cout S4 S3 S2 S1 S0

 Y4 Y3 Y2 Y1 Y0 X4 X3 X2 X1 X0
5-Bit Full Adder

 Cout S4 S3 S2 S1 S0

P0 P1 P2 P3 P4 P5 P6 P7

‘0’

‘0’

‘0’

‘0’

B1 B0 A1 A0 B3 B2 A1 A0 B1 B0 A3 A2 B3 B2 A3 A2

‘0’ ‘0’ ‘0’

‘0’

 47

3.5 MUX Based Barrel Shifter

The MUX based barrel shifter architecture has been designed using 4:1, 8:1, 16:1, 32:1

and 64:1 MUXs. The design follows a hierarchy, which can be described as follows. The

2:1 MUX is first designed using CMOS logic. It is then used to design the 4:1 MUX. The

8:1 MUX is designed using the 4:1 MUXs as the basic building block. Similar hierarchy

is followed in the design of 16:1, 32:1 and 64:1 MUXs. A 2n:1 MUX will have 2n input

lines, n select lines and one output line. MUXs with any n, greater than one can be

implemented using 2:1 MUX. One 2n: 1 MUX requires (2n-1) 2:1 MUX s and has a delay

of n 2:1 MUX. In this architecture n =1, 2, 3, 4, 5, 6 are used in the design 2:1, 4:1, 8:1,

16:1, 32:1 and 64:1 MUXs.

3.5.1 Design of 4-bit MUX Based Barrel Shifter

Table 3.9 shows the behavior of 4-bit MUX-based barrel shifter, which utilizes control

inputs D for direction, S/R for operation (shift/rotate) and S1, S0 for number of bits to be

shifted or rotated. O0, O1, O2, O3 represent the output bits and I0, I1, I2, I3 are input bits.

D=’0’ means the direction of shift/rotate operation is towards left and D=’1’ means the

direction of shift/rotate operation is towards right. F represents the fill bit, fill bit is ‘0’

for left shift and fill bit is MSB bit for right shift operation. The line S/R=’1’ for rotate

operation and S/R= ‘0’ for shift operation. Bits S1 and S0 are length selection bits.

S1S0=’00’ means length is zero bit, S1S0= ‘01’ means length is one bit, S1S0= ‘10’ means

length is two bits and S1S0= ‘11’ means length is three bits. Table 3.9 explains the

various operations performed by 4-bit barrel shifter.

As there are four control inputs, we need a 16:1 MUX for each output bit. Thus for 4

output bits, we need four 16:1 MUXs in the design of a 4-bit barrel shifter. In addition

we need a 2:1 MUX for fill bit as shown in figure 3.9. Thus the total number of 2:1

MUXs required in the design are 61.

 48

Table 3.9 Truth Table for 4-bit barrel shifter operation

Operation D S/R S1 S0 O3 O2 O1 O0

0 0 0 0 I3 I2 I1 I0

0 0 0 1 I2 I1 I0 F

0 0 1 0 I1 I0 F F
Arithmetic shift left

0 0 1 1 I0 F F F

0 1 0 0 I3 I2 I1 I0

0 1 0 1 I2 I1 I0 I3

0 1 1 0 I1 I0 I3 I2

Rotate left

0 1 1 1 I0 I3 I2 I1

1 0 0 0 I3 I2 I1 I0

1 0 0 1 F I3 I2 I1

1 0 1 0 F F I3 I2
Arithmetic shift right

1 0 1 1 F F F I3

1 1 0 0 I3 I2 I1 I0

1 1 0 1 I0 I3 I2 I1

1 1 1 0 I1 I0 I3 I2
Rotate right

1 1 1 1 I2 I1 I0 I3

Each row of the truth table 3.9 can be implemented with a dedicated 16:1 multiplexer

circuit, which is designed using 2:1 MUX cells, to obtain the final output. Similar

technique is followed in the design of 8-bit, 12-bit and 16-bit barrel shifters.

3.5.2 Fill Bit Logic

Fill bits are required only in the case of shift operations. In left shift operation, the lower

significant bits are filled with 0’s. While in the right shift operation, in order to preserve

the sign of the input number, MSB is sign extended. This is accomplished using a 2:1

MUX. The D=’0’ represents the left operation for which fill bit is ’0’ and D=’1’ means

the right operation for which fill bit is MSB bit of input. The Fill bit is utilized for shift

operations, while it is discarded for rotate operations. Figure 3.8 shows the schematic of

a 4-bit MUX-based barrel shifter, which also includes fill bit logic.

 49

Figure 3.8 A schematic diagram of 4-bit, MUX based barrel shifter

O2

I0
I1
I2
I3

I4
I5
I6
I7 16:1 MUX

I8
I9
I10
I11

I12
I13
I14
I15
 S0 S1 S2 S3

I0
F
F
F

I0
I3
I2
I1

I0
I1
I2
I3

I0
I1
I2
I3

I0
I1
I2
I3

I4
I5
I6
I7 16:1 MUX

I8
I9
I10
I11

I12
I13
I14
I15
 S0 S1 S2 S3

I1
I0
F
F

I1
I0
I3
I2

I1
I2
I3
F

I1
I2
I3
I0

I0
I1
I2
I3

I4
I5
I6
I7 16:1 MUX

I8
I9
I10
I11

I12
I13
I14
I15
 S0 S1 S2 S3

I3
I2
I1
I0

I3
I2
I1
I0

I3
F
F
F

I3
I0
I1
I2

I0
I1
I2
I3

I4
I5
I6
I7 16:1 MUX

I8
I9
I10
I11

I12
I13
I14
I15
 S0 S1 S2 S3

I2
I1
I0
F

I2
I1
I0
I3

I2
I3
F
F

I2
I3
I0
I1

O0

O1 O3

S0 S1 S/R D S0 S1 S/R D

S0 S1 S/R D S0 S1 S/R D

I0 I1

2:1
MUX

‘0’ I3

F

D

 50

3.6 Pereira’s Barrel Shifter

In this architecture significant reduction in area occupied by the barrel shifter circuit is

achieved by implementing rightward operations as operations in leftward direction and

significant reduction in delay is possible by reducing the length of the critical path. The

16-bit barrel shifter is chosen for explanation. The 16-bit barrel shifter design has six

external control signals out of which the first four bits represent the length of operation,

while the fifth and sixth bits represent the ‘direction’ and the ‘type’ of the operation

respectively. Length bits LGTHx [x=0, 1, 2, 3], allow shifting or rotation of data from 0

[i.e LGTH=LGTH3 LGTH2 LGTH1 LGTH0=’0000’] to 15 positions [i.e LGTH=LGTH3

LGTH2 LGTH1 LGTH0=’1111’]. DIR bit decides direction of shift/rotation (DIR=’0’

means leftward and DIR=’1’ means rightward direction) and TYP bit decides shifting or

rotation (TYP=’0’ means shifting and TYP=’1’ means rotation). This barrel shifter

circuit consists of shift rotate array, programming unit and mask generator unit. Section

3.6.1 explains the shift-rotate array, section 3.6.2 describes the programming unit and

section 3.6.3 describes the mask generator unit. Schematic and operation are described in

section 3.6.4

3.6.1 Shift-Rotate Array

This unit consists of six stages. The first stage will allow leftward rotation of data by 0 or

1 position. This stage is used for creating an additional left rotation by 1-bit, required for

rightward operations. Next four stages provide shifting or rotation of data from 0 to 15

positions to the left, using combination of second stage (0 or 1 position), third stage (0 or

2 positions), fourth stage (0 or 4 positions) and fifth stage (0 or 8 positions). The sixth

stage performs the masking for right shift operations only.

Rotating 16-bit (N=24) data p positions to the right where 0≤p≤N-1 is equivalent to

rotating data (N-p) positions to the left. Similarly, shifting p position to the right where

0≤p≤N-1 is equivalent to rotating data (N-p) positions to the left and masking p most

significant bits with the sign bit of the input data for arithmetic shifting. Attaining the

(N-p) positions leftward operation is achieved by first rotating by 1-bit towards left and

then rotating leftward again by 1’s complement of length LGTH. Figure 3.9 shows the

schematic representation of a shift rotate array. First stage of the circuit performs the

additional left rotation of data by 0 or 1 position and is controlled by R and R’ signals,

 51

which are derived from DIR. Stage 2 to stage 5 perform the task of left rotation/left shift

and are controlled by LSx, LS’x and LRx which are generated by programming unit using

equation (3.27), equation (3.28) and equation (3.29). Note that x=0 (for stage 2), x=1

(for stage 3), x=2 (for stage 4) and x=3 (for stage 5). For left shift operation fill bits are

‘0’ which are appropriately created by stage 2 to stage 5. Since for right shift operation

fill bits are sign extension bits, we require an extra masking stage labeled as stage 6,

which provides sign extensions of MSB bit for appropriate bit length and is controlled by

signal Mi (i=1…..15) and M’i (i=1…..15) which are generated by the masking unit (as

described in section 3.6.3).

Figure 3.9 Schematic of shift-rotate array

Each stage of the shift rotate array circuit consists of one instance of AND-OR function

per bit (i.e. for 16 bits we need 16 interconnected AND-OR functions). The AND-OR

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O10

O11

O12

O13

O14

O15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

Mi (i=1…..15)

1st

S
T
A
G
E

2nd

S
T
A
G
E

R’ R LS’0 LR0 LS0

3rd

S
T
A
G
E

LS’1 LR1 LS1

4th

S
T
A
G
E

LS’2 LR2 LS2

5th

S
T
A
G
E

LS’3 LR3 LS3

6th

S
T
A
G
E

M’i (i=1…..15)

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

E0

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

I15

 52

function implements the logic function given in equation (3.23). Operations of AND-OR

function are explained in table 3.10.

Yi=C1. Ii+ C2. Ij. (3.23)

Where C1, and, C2 are internal control bits applied to individual instances of AND-OR

function that are derived from top level control signals. Also ‘Ii’ is input bit, and, ‘Ij’ is

left rotated bit which are appropriately derived from input data bits to each stage (as

described below).

Table 3.10 Operations performed by AND-OR function

C1 C2 Output (Yi) Comments

0 0 Fill bit ‘0’ is passed Required for left shift operations for stage 2 to stage 5

0 1
Left rotated bit (Ij) is

passed

Required for passing left rotated data for stage 1 to

stage 5

1 0 Input bit (Ii) is passed
Required for passing data without any change for

stage 1 to stage 6

1 1 Ii+ Ij Never comes

The 1st stage of shift rotate array has C1=R’, and, C2=R for all 16 instances of AND-OR.

Note that R’=’0’, and, R=’1’ for performing 1-bit additional left rotate operation required

for rightward operations. R’=’1’, and, R=’0’ for passing data without any operation (as

required in leftward operations). The operation of 1st stage is explained in equation

(3.24).

i.e.

For R’=’1’, and, R=’0’:

Ai=Ii (For i=0…..15)

For R’=’0’, and, R=’1’:

Ai=I15 (For i=0)

Ai=Ii-1 (For i=1…..15) (3.24)

 53

The 2nd stage of the circuit has C1= LS’0 and C2= LR0 for one instance of AND-OR

corresponding to one LSB fill bits. The remaining 15 instances of AND-OR have C1=

LS’0 and C2=LS0. For passing the data without any modification LS’0=’1’, LR0=’0’, and,

LS0=’0’. For left rotation LS’0=’0’, LR0=’1’, and, LS0=’1’, but for left shift operation

LS’0=’0’, LR0=’0’, and, LS0=’1’ [since LS’0=’0’, and, LR0=’0’ the fill bit instance of

AND-OR will generate output ‘0’ according to equation (3.23)]. The operation of 2nd

stage is explained in equation (3.25).

i.e.

For LS’0=’1’, LR0=’0’, and, LS0=’0’:

Bi=Ai (For i=0…..15)

For LS’0=’0’, LR0=’1’, and, LS0=’1’:

Bi=A15 (For i=0)

Bi=Ai-1 (For i=1…..15)

For LS’0=’0’, LR0=’0’, and, LS0=’1’:

Bi=0 (For i=0)

Bi=Ai-1 (For i=1…..15) (3.25)

Operations performed by 3rd, 4th & 5th stages can be explained in similar manner as

shown in table 3.11.

 54

Table 3.11 Operations performed by 3rd, 4th and 5th stages

Stage #3 Stage #4 Stage #5

For LS’1=1,LR1=0, and LS1=0:

Ci=Bi (For i=0…..15)

For LS’1=0,LR1=1, and LS1=1:

 Ci=B14+i (For i=0,1)

Ci=Bi-2 (For i=2…..15)

For LS’1=0,LR1=0, and LS1=1:

 Ci=0 (For i=0,1)

 Ci=Bi-2 (For i=2…..15)

For LS’2=1,LR2=0, and LS2=0:

Di=Ci (For i=0…..15)

For LS’2=0,LR2=1, and LS2=1:

 Di=C12+i (For i=0….3)

Di=Ci-4 (For i=4…..15)

For LS’2=0,LR2=0, and LS2=1:

 Di=0 (For i=0,….3)

Di=Ci-4 (For i=4…..15)

For LS’3=1,LR3=0, and LS3=0:

Ei=Di (For i=0…..15)

For LS’3=0,LR3=1,and LS3=1:

 Ei=D8+i (For i=0…7)

Ei=Di-8 (For i=8…..15)

For LS’3=0,LR3=0, and LS3=1:

 Ei=0 (For i=0…7)

Ei=Di-8 (For i=8…..15)

The 6th stage of the shift rotate array has C1=M’i and C2= Mi for 15 instances of AND-

OR corresponding to 15 MSB bits. Since maximum possible length for right shift is 15

bits, no masking is required for 0th bit. Thus 0th bit can be passed directly. Generation of

these masking bits is explained in section 3.6.3. Operation of the 6th stage is explained in

equation (3.26).

For Mi =’0’ and M’i=’1’:

 O0=E0

Oi=Ei (For i=1…..15)

 55

For Mi =’1’ and M’i=’0’:

 O0=E0

Oi=MSB=I15 (For i=1…..15) (3.26)

3.6.2 Programming Unit

Programming unit controls the operation of the five stages of the shift-rotate array. A

schematic circuit diagram of the programming unit is shown in figure 3.10. Input signals

to programming units are TYP, DIR and LGTHx [x=0, 1, 2, 3]. The unit generates

outputs as LSx, LS’x and LRx [x=0,……3] using equations (3.27), (3.28) and (3.29):

LSx = [LGTHx ⊕ DIR] where x= 0,1,2,3 (3.27)

LS’x = not [LGTHx ⊕ DIR] where x=0,1,2,3 (3.28)

LRx = (DIR +TYP) (LGTHx ⊕ DIR) where x= 0,1,2,3 (3.29)

3.6.3 Mask Generator Unit

Mask generator unit controls masking in the last stage of the shift-rotate array. This

module has input signals as TYP, DIR, LGTHx [x=0, 1, 2, 3] and generates outputs Mi [i

=0,……15] and M’i [i =0,……15] using equation (3.30) & (3.31) respectively. For right

shift operation, masking bits are sign extension bits and for left shift they are ‘0’. Sixth

stage of shift-rotate array along with masking unit provides sign extensions of MSB bit

for desired length.

IMx= [DIR.TYP’]. LGTHx, where x= 0,1,2,3

M1= (DIR TYP’ LGTH3). (DIR TYP’ LGTH2). (DIR TYP’ LGTH1).

 (DIR TYP’ LGTH0)

 = IM3.IM2.IM1.IM0 For LGTH=(1111)2=(15)10

 56

M2= IM3.IM2. IM1.IM’0+ M1 For LGTH=(1110)2=(14)10

M3= IM3.IM2. IM’1.IM0+ M2 For LGTH=(1101)2=(13)10

M15= IM’3.IM’2. IM’1.IM0+ M14 For LGTH=(0001)= (01)10

 (3.30)

& M’i = not (Mi) (For i=1…..15) (3.31)

3.6.4 Schematic and Operation

Shift-Rotate array, programming unit and mask generator unit are combined to form a

16-bit barrel shifter. Figure 3.10 shows the schematic diagram of the complete 16-bit

barrel shifter unit. Control inputs for performing different shift and rotate operations are

listed in table 3.12.

Table 3.12 Operation performed by 16-bit barrel shifter

LGTH
Operation DIR TYP

LGTH3 LGTH2 LGTH1 LGTH0

Arithmetic shift left 0 0 p3 p2 p1 p0

Rotate left 0 1 p3 p2 p1 p0

Arithmetic shift right 1 0 p3 p2 p1 p0

Rotate right 1 1 p3 p2 p1 p0

 57

Figure 3.10 Complete barrel shifter unit

3.7 Chapter Summary

In this chapter we present the detailed schematic level design and associated Boolean

logic for the selected multiplier and barrel shifter architectures. The selected signed

multipliers are Baugh Wooley multiplier and Booth encoded Wallace tree multiplier,

while unsigned multipliers are MUX based multiplier and 2×2 cell based multiplier. The

signed multipliers follow the 2’s complement number representation. The selected barrel

shifter architectures are MUX based barrel shifter and Pereira’s barrel shifter. All the

multipliers as well as barrel-shifter architectures are implemented for 4-bit, 8-bit, 12-bit

and 16-bit sizes using four different logic design styles. The details of logic design styles

used for VLSI implementation of these architectures are presented in the next chapter.

 58

CHAPTER 4

DIFFERENT CMOS LOGIC DESIGN STYLES AND
DETRMINATION OF PMOS/NMOS WIDTH RATIO FOR HIGH

SPEED DESIGN

The scalable CMOS technology offers many advantages like more transistors per chip

and improvement in speed besides low power consumption, and large noise margins [1],

[2], [3]. VLSI implementations of a circuit using different CMOS logic design styles

show trade-offs in terms of parameters like transistor count, core layout area, average

power and peak power consumption. The suitability of a particular logic design style for

design is decided by performance, power and cost targets to be achieved. The multiplier

and barrel shifter architectures discussed in chapter 3 are designed for 4-bit, 8-bit, 12-bit

and 16-bit sizes using four different CMOS logic design styles in our explorations. In

this chapter we discuss the fundamentals of the logic design styles considered for

exploration, these logic design styles are categorized as described below.

 Static CMOS logic circuits

• Static logic design style

• TG logic design style

 Dynamic CMOS logic circuits

• Dual rail domino logic design style

• TSPC logic design style

4.1 Static CMOS Logic Circuits [1], [2], [3]

Static logic circuits allow versatile implementations of logic functions based on static or

steady state behavior of simple CMOS structures. Typically a static logic gate generates

its output corresponding to the applied input voltages after a certain time delay, and it

can preserve its output level (or state) as long as the power supply is provided. This

approach, however may require a large number of transistors to implement a function,

and may cause a considerable time delay. In steady state each gate output is connected to

either VDD or GND through a low-resistive path and therefore for a static input, the

output levels are preserved. On the other hand dynamic logic circuits for their operation

rely on temporary storage of logic signal values on the capacitances of circuit nodes.

 59

4.1.1 Static Logic Design Style

The 2-input NOR gate implemented using static logic design style is shown in figure 4.1.

The features of static logic style are listed below.

Figure 4.1 Static logic gate

 Static logic design style is most suitable and widely accepted for many VLSI

circuit implementations due to its important properties like high speed, low

power, large noise margins, no logic degradation and validity of logic design

style at scaled down technologies. Circuits implemented using static logic design

style give negligible static power dissipation, as there is no direct path between

power supply and ground for any of the logic input combinations under steady

state condition.

 A logic gate with fan-in of n requires 2n (i.e n number of N-type and n number of

P-type) devices. Two logic blocks, the N-block and the P-block, form a CMOS

gate. The topology of N-block is the dual of that of the P-block. Since both the

blocks have equal number of transistors, transistor count of gate is large.

 The channel widths of series connected NMOS transistors or PMOS transistors

have to be increased to obtain a reasonable conducting current to drive capacitive

 P Block

N Block

A Y

 VDD

 GND

B

 60

loads. The increase in size of transistors results in a significant area overhead, and

also an increased gate input capacitance, which may lead to high dynamic power

dissipation. The higher gate input capacitance loads the previous stage thereby

increasing the delay. The ratio of PMOS/NMOS transistor widths (β) should be

chosen optimally for achieving higher speed and lower power consumption as

described in section 4.3.

 Static logic gates also exhibit short-circuit currents. However, by sizing

transistors for equal rise and fall times, the short-circuit power component can be

minimized.

 Due to unequal path delays of logic block ⁄ sub-block, the circuit nodes can

spuriously switch before their correct logical value stabilizes. Such transitions

increase the dynamic power consumption of the circuit. Buffers can be inserted at

appropriate locations to equalize path delays.

4.1.2 TG Logic Design Style

TG logic design style presents a class of logic circuits, which use the TG as their basic

building blocks. The CMOS TG switch consists of one NMOS and one PMOS transistor,

connected as shown in figure 4.2. The gate voltages applied to these two transistors are

complementary signals. The CMOS TG switch operates as a bi-directional switch

between the nodes A and B which is controlled by signal C. If the control signal C is

high, both the transistors are turned on and provide a low resistance current path between

nodes A and B. If the control signal C is low, both the transistors are off and the path

between nodes A and B will be an open circuit. Figure 4.2 shows the schematic diagram

of a CMOS TG switch.

Figure 4.2 CMOS TG switch

A B

C

C’

 61

The TG logic shows an advantage over the pass transistor logic in that the output levels

are not degraded [21]. The TG logic design style passes both logic ‘0’ and logic ‘1’

without any degradation. Figure 4.3 shows the different representations of the CMOS TG

switch and its operation.

Figure 4.3 Different representations of CMOS TG switch

The speed of the TG logic design style may degrade drastically compared to static logic

design style when length of the critical path in a circuit becomes too long and no

repeaters are present in the path.

4.2 Dynamic CMOS Logic Circuits [1], [2], [3]

In high density, high performance digital implementations where reduction of circuit

delay and silicon area are major objectives; dynamic logic circuits offer several

advantages. The operation of all dynamic logic gates depends upon the temporary

(transient) storage of charge on circuit node capacitances. This operational property

necessitates the periodic updating of internal node voltage levels, since stored charge on

capacitors cannot be retained indefinitely. Therefore dynamic logic circuits require

periodic clock signals to control charge refreshing.

Input=’0’ Output=strong ‘0’
C

C’

A B

A B

C

C’

A B
C

C’

A B
C

C’

C = 0, C’ = 1

A B

C= 1, C’ = 0
A B

C = 1, C’ = 0

C = 1, C’ = 0
Input=’1’ Output=strong ‘1’

 62

4.2.1 Domino and Dual Rail Domino Logic Design Style

A domino logic implementation is shown in figure 4.4. It consists of a dynamic CMOS

circuit followed by static CMOS inverter. The dynamic circuit consists of a PMOS

precharge transistor, a NMOS evaluation transistor, and a N-logic block, which, in

general, is a series-parallel combination of NMOS transistors activated by the inputs and

implementing the required logic. This circuit style uses a single-phase clock (clk). When

clk=’0’, the dynamic node is pre-charged to VDD and during the evaluation phase, the

dynamic node either remains at VDD or discharges to logic ‘0’. The numbers of cascaded

domino logic gates are limited by the duration of the evaluation clock phase. The

features of domino logic style are listed below.

 In comparison to the static logic, domino logic has a smaller gate input

capacitance (Cin) and smaller output load capacitance (CL) due to the absence of

large sized PMOS transistors.

 Domino gate features faster switching speeds due to reduced load capacitances

owing to lower input gate capacitance (Cin) and smaller output load capacitance

(CL).

 A simple domino gate with a fan-in of n requires n + 2 (i.e. n+1 number of N-

type and one P-type) transistors. However, other transistors may be required to

remove unwanted effects like charge sharing and for gate cascading.

 The disadvantage of simple domino logic is that the gate suffers from the charge-

sharing problem in which the parasitic capacitances at the internal nodes get

coupled to the load capacitance. A weak pull up PMOS transistor connected as

shown in figure 4.4, solves this problem [9]. This requires a static inverter and a

PMOS transistor; the use of a static inverter makes cascading possible. A simple

domino gate without pull up transistor but utilizing a static inverter to avoid

cascading problem may show degradation of logic ‘1’ voltage at the input of

inverter, which may increase its static power consumption.

 The advantage of domino gates as compared to static logic gates is that they do

not show short-circuit power dissipation and glitching problems, since any node

can undergo at most only one transition per clock cycle. The logic also shows the

full voltage swing (i.e. VOL = GND and VOH = VDD) as for the case of static logic.

 63

 However in the circuits designed using domino logic design style, the power

consumption may increase due to higher switching activity as compared to

equivalent static logic circuits, because all the domino nodes are pre-charged to

VDD during each clock cycle. A further increase in power consumption may result

from the highly loaded clock distribution network, which consumes a significant

amount of dynamic power [9].

 In the domino logic gate as shown in figure 4.4, the PMOS transistors do not

appear in series. Also, Cin and CL are smaller as compared to static logic.

Therefore fall times of the domino logic gates will be improved. However, their

rise times depend on combined effect of CL and an additional series transistor

(evaluate transistor) in pull-down path. The decreased CL will tend to decrease

the rise time, while the series transistor will tend to increase the rise time.

 The circuits designed using simple domino logic gates implement only non-

inverting logic functions and are incapable of implementing inverting logic

functions like NAND, NOT, NOR and XOR etc. mainly due to cascading

problem [9].

Figure 4.4 Domino logic gate

Precharge phase Evaluate phase

1

0

clk

N -Logic Block inputs

clk
Evaluate transistor

Precharge transistor Weak PMOS

output

VDD

GND

 64

 The “dual rail domino logic” overcomes the limitations of simple domino logic

design style, since it can also implement inverting logic functions. In almost all

circuit designs inverting logic functions are unavoidable and hence the dual rail

domino logic design style is used instead of the simple domino logic design style.

The dual rail domino schematic cell for 2-input XOR function is shown in figure

4.5.

 The disadvantage of using dual rail domino logic is that the number of transistors

required to implement any logic function will be twice of that required for the

simple domino logic. Thus transistor count is increased, which increases the

power consumption due to increased switching activity. Another disadvantage is

that the circuits designed using dual rail domino logic may increase total length

of interconnects, which may also increase the length of critical path, and

therefore, the propagation delay of the circuit and the layout core area may

increase.

Figure 4.5 Schematic of a 2input XOR cell designed using dual rail domino cell

4.2.2 TSPC Logic Design Style

TSPC logic is one of the high performance dynamic logic circuit design styles which is

distinctly different from the NORA logic design style in that it uses only one clock

signal, which is never inverted. Since the inverted clock signal is not used anywhere in

the system, no clock skew problem exists. Consequently higher clock frequencies can be

 65

achieved for dynamic pipelined operations. The features of TSPC logic style are listed

below.

 TSPC logic supports the high-speed pipelined circuit operation, which increases

the circuit throughput [26], [29]. A circuit designed using the TSPC logic accepts

the inputs every clock cycle and produces the outputs after a fixed number of

clock cycles equal to the latency of the circuit. Since the waiting time to apply

new inputs is reduced as compared to a purely combinational circuit, hence it

shows improved performance. Thus TSPC logic forms an acyclic sequential

circuit.

 Apart from supporting pipelining of operations, an important feature of the TSPC

logic cells is their compactness: normally they occupy much less area as

compared to dual rail domino logic design style.

 All the logic cells in all the stages of the pipelined logic circuit perform the pre-

charge and evaluation logic operations every clock cycle simultaneously and the

clock rate is high (few MHz to GHz) therefore average power consumption and

peak power consumption of the circuit is much higher as compared to other logic

design styles.

The TSPC logic Cell implementation for the logic function Y=A . B is shown in figure

4.6. Table 4.1 explains the summary of operation for TSPC logic circuits.

Table 4.1 Summary of operation

Cell Type CLK=’1’ CLK=’0’
First stage Dynamic evaluation Pre-charge + Dynamic latch
Second stage Dynamic latch Dynamic evaluation

The operation of first stage is explained in table 4.2 and the operation of second stage is

explained in table 4.3.

Table 4.2 Operation of first stage

A B CLK Z Comments
0 0 1 0 Dynamic evaluation
0 1 1 0 Dynamic evaluation
1 0 1 0 Dynamic evaluation
1 1 1 1 Dynamic evaluation
X X 0 Latch Pre-charge + Dynamic latch

 66

Table 4.3 Operation of second stage

Figure 4.6 TSPC logic circuit

4.3 Determination of β Ratio for High-Speed Digital Designs

In CMOS circuit designs, the low mobility (µp) PMOS devices are sized up to attain the

same conduction performance as the high mobility (µn) NMOS devices. The β is an

important ratio in the design of digital circuits using static CMOS logic. The

conventional method of estimating β excludes the effect of several technology

Z CLK Y Comments
0 0 0 Dynamic evaluation
1 0 1 Dynamic evaluation
X 1 Latch Dynamic latch

Evaluation

CLK

Pre-charge OUT

Y

CLK

Precharge

A

B

First stage Second stage

Z

 67

parameters in estimation of β ratio. In this section we discuss a more accurate estimation

of β ratio using relevant technology parameters like thickness of gate oxide (tox),

threshold voltage of NMOS device (Vtn), threshold voltage of PMOS device (Vtp), zero-

bias junction capacitance per unit area of NMOS device (Cj0n), zero-bias junction

capacitance per unit area of PMOS device (Cj0p), side wall zero-bias junction capacitance

per unit length of NMOS device (Cj0swn), side wall zero-bias junction capacitance per

unit length of PMOS device (Cj0swp) and built-in potential of PN junction (PB). β ratios

are computed for 0.5 µm technology and are compared to their values computed using

the conventional method. The β ratio thus computed taking into consideration the above

mentioned other technology parameters improves the inverter threshold or switching

threshold voltage (Vth) by 5% and inverter average propagation delay (τP) by 0.6%.

The static CMOS logic has robustness against voltage and transistor scaling, and it

provides reliable operation at low voltages together with low switching activity as

compared to other logic styles. Static CMOS logic has high noise margins owing to the

presence of a static path from output to the appropriate supply that restores the correct

logic state in the presence of noise. Logic gates in static CMOS are constructed from a

N-block and a P-block. The N-block evaluates the ‘0’ state while the P-block evaluates

the ‘1’ state, where only one of the blocks is conducting at steady state. The main

drawback of static CMOS circuits is the existence of the P-block because of its low

mobility (µp) devices as compared to the NMOS devices (µn). Therefore, PMOS devices

need to be sized up to attain the gate’s performance. The highest noise margin for static

CMOS is conventionally obtained by using a β ratio of
p

n
µ

µ [3], [9], which is also

conventionally taken to provide identical current driving capability for the N and P

networks. If symmetry and noise margins are not of prime concern, then it is possible to

speed up the inverter by reducing the width of PMOS device. Conventionally the best

gate performance is supposed to be achieved with a β ratio of
p

n
µ

µ [3], [9], because,

widening the PMOS improves the tPLH of the inverter but it also degrades the tPHL due to

increased capacitance of next stage. The above result is based on the assumption that

ratio β depends only on the mobilities whereas in reality it depends upon many other

technology parameters. In this analysis we have included the effect of relevant

technology parameters in determining the ratio β. 0.5 µm technology has been

 68

considered for the present study. Section 4.3.1 explains the calculation of β ratio and Vth,

section 4.3.2 describes dependence of β ratios on various technology parameter; section

4.3.3 provides comparison of different β ratios for 0.5 µm technology. Section 4.3.4

provides a comparison of Vth for different β values, section 4.3.5 provides a comparison

of τP for different β ratios.

4.3.1 Calculation of β ratio and Vth

We assume that a static CMOS inverter is driving another identical static CMOS inverter

of same W/L ratio as shown in figure 4.7.

Figure 4.7 A static CMOS inverter driving an identical static CMOS inverter

The load capacitance seen by the first inverter is given by equation (4.1) & (4.2).

WgngpdndpL CCCCCC ++++= 2211 (4.1)

 69

Where, Cdp1 and Cdn1 are equivalent drain diffusion capacitance of PMOS and NMOS

transistors of the first inverter and Cgp2 and Cgn2 are the gate capacitances of the second

inverter. Cw represents the wiring capacitance.

If PMOS devices are β times larger than NMOS devices then:

swpjswnjpjnj

o

eqneqswneqn

oo
o

eqn

ox

nn

DneqswnnDeqndn

nnoxnnngn

WgndnL

gngpdndp

CCCJSWandCCCJ
junctionPNofpotentialinBuiltPB

KfacorequivalentvoltageKK

MJSWMJForVV
VV

K

areaunitpercecapacioxidegateC
NMOSoflengthunitpercecapacioverlap

draingateandsourcegateCGDandCGS
where

CJSWPKCJAKC

LWCWCGSCGDC
where

CCCC

CCCC

0000

12
12

111

2222

21

2211

10,

)5.0(),(
2

tan
tan

00
:

)00(
:

)()1(

&

====
−==

<<==

==−−−
−

−
=

=

−−=

+=

++=

+++=⇒

==

φ

φφ
φ

β

ββ

 (4.2)

The value of β to achieve highest speed of the inverter if symmetry and noise margin are

not of prime concern is given by equation (4.3) [3]

)1(
21 gndn

W
optimum CC

C
r

+
+=β (4.3)

Conventionally, it is assumed that 21 gndnW CCC +<< and therefore, roptimum =β .

eqn

eqp

R
R

rwhere =:

p

n

oxp

oxn
optimum

tntp

C
C

thenVVIf

µ
µ

µ
µ

β ==

= ,||

 (4.4)

 70

The calculation of β given by equation (4.4) is under the assumption that no significant

wiring delay is present and Vtn=|Vtp|. If significant wiring delay is present and Vtn≠|Vtp|

then,

21

21

:

)1()1(

gndn

W

gndn

W
optimum

CC
C

x

where

xr
CC

C
r

+
=

+=
+

+=β

 (4.5)

2

2

)(
)(

tpgsoxp

tngsoxn

VVC
VVC

r
−

−
=
µ
µ

The Vth is an important parameter characterizing the DC performance of the inverter.

Equation (4.6) describes the calculation of Vth [1].

R

tpDD
R

tn

th

K

VV
K

V
V

11

)(1

+

++
= (4.6)

βµ
µ

µ

µ

×
===

oxp

oxn

poxp

noxn

p

n
R C

C

L
WC

L
WC

K
K

Kwhere
)(

)(
:

4.3.2 Dependence of β Ratio on Other Technological Parameters

Equation (4.4) shows that β ratio can be defined in terms of technology dependent

process trans-conductance ratio [44], [45], [46]. While, equation (4.5) shows that β ratio

depends on many other technology parameters like tox, Vtn, Vtp, Cj0n, Cj0p, Cj0swn, Cj0swp,

built-in potential of PN junction (PB) and capacitance per unit area of metal layer. The

technology selected for study is 0.5 µm with the assumption that Cj0n= Cj0p, Cj0swn =

Cj0swp and average interconnect length of 55λ. The lamda values for the 0.5 µm is

selected using MOSIS scalable CMOS (SCMOS) design rules (Revision 8.0), λ=0.3 for

0.5 µm MOSIS, SCN_SUBM, 3.3V technology. Using the model parameters Cw, Cdn1

and Cgn2 are calculated for 0.5 µm technology, which gives the accurate value of β. The

 71

technology parameters are read from respective model files of both NMOS and PMOS

devices for 0.5 µm technology.

4.3.3 Comparison of Different β Ratios for 0.5 µm Technology

Table 4.4 shows the comparison of Cw, Cdn1 and Cgn2, r and β for 0.5 µm technology.

Equation (4.5) shows the ratio β depends on x and r. Table 4.4 shows the calculated

capacitances using appropriate technology parameters. The ratio β given by mobility

ratio
p

n
µ

µ are computed and shown in table 4.5. The values of β shown in table 4.4

are more accurate as compared to those given in table 4.5 and can be used as a basis for

the selection of β for optimization of performance.

Table 4.4 Estimation of β ratio using more accurate method

Technology
Cox

(F/cm2)

VDD

(v)
Keqn

Cw

(fF)

Cdn1

(fF)

Cgn2

(fF)
x r β

0.5 µm 3.59E10-7 3.3 0.6489 1.3959 1.665 3.877 0.252 4.97 2.49

Table 4.5 Estimation of β ratio using conventional method

4.3.4 Comparison of Vth for Different β Ratios

Since the static CMOS inverter has very sharp voltage transfer characteristic, the Vth is

an important parameter characterizing the DC performance of the inverter. The inverter

Vth is computed for three different values of β:

 (i)
p

n
µ

µβ = (ii)
p

n
µ

µβ = and (iii))1(
21 gndn

W

CC
C

r
+

+=β

Table 4.7 shows the comparison of Vth values calculated using the above three

expressions for choosing β values for 0.5 µm technology. Table 4.7 shows the

Technology µnCox (A/V2) µpCox (A/V2) β=Sqrt (µn/µp)

0.5 µm 196.47 E-6 48.74 E-6 2.00

 72

comparison between the calculated and simulated values of Vth using conventional and

the more accurate method.

The ideal value of Vth must be VDD/2 (1.65 V for 0.5 µm technology) for attaining equal

high and low noise margins. Comparing Vth values shows that choosing

)1(
21 gndn

W

CC
C

r
+

+=β gives a better value of Vth for 0.5 µm technology as indicated in

table 4.6.

 Table 4.7 compares the calculated results with simulated results using spice. The table

shows almost 3.5% improvement in Vth for calculated results and almost 5 %

improvement in Vth for simulated results for an inverter designed using 0.5 µm

technology.

Table 4.6 Comparison Vth for three different β ratios calculated using three different

methods

Calculated Vth

Technology
p

n
µ

µβ =

(do not provide higher

speed)

p

n
µ

µβ =

(Conventional

method)

)1(
21 gndn

W

CC
C

r
+

+=β

(More accurate

method)

0.5 µm 1.517 V 1.368 V 1.414 V

Table 4.7 Comparison of Vth using conventional and the more accurate method

Vth

(Conventional method) (More accurate method)

Technology

Calculated Simulation Calculated Simulation

0.5 µm

(VDD=3.3V)

1.368 V 1.4 V 1.414 V

(better)

1.464 V

(better)

 73

4.3.5 Comparison of τP for Different β Ratios

The τP is calculated for both the β ratios using standard τPHL and τPLH relations [1]. Table

4.8 shows the comparison of τP for both β ratios using standard mathematical relations

and through spice simulation. The table shows 1.2 % speed improvement for calculated

results and 0.6 % speed improvement for simulated results of a single inverter designed

using 0.5 µm technology. The spice simulation result shows higher delays due to the

presence of many other real parasitic effects.

Table 4.8 Comparison of τP using conventional and the more accurate method (for
calculated and simulated values)

τP

p

n
µ

µβ =

(Conventional method)

)1(
21 gndn

W

CC
C

r
+

+=β

(More accurate method)

Technology

Calculated Simulation Calculated Simulation

0.5 µm 31.58 ps 92 ps
31.08 ps

(better)

91.5 ps

(better)

The β ratio calculated using conventional method excludes many relevant technology

parameters. A more accurate method for estimating β ratio is presented and compared

against conventional method for 0.5 µm technology. The Vth obtained using β ratio

calculated taking into consideration relevant technology parameters shows almost 5 %

improvement. This method of β estimation also decreases propagation delay.

In this research work β ratio of 2.5 is chosen for standard cell design using static CMOS

logic, CMOS TG logic and TSPC logic to achieve higher speed of logic gates designed

for 0.5 µm technology.

 74

4.4 Sizing of Pre-charge and Pre-discharge Transistors for Domino Logic Design

Style

The domino logic circuits are very popular in the design of high performance processors

because they offer fast switching speeds and reduced area implementations. The domino

logic gates use pre-charge and pre-discharge transistors to charge the intermediate

dynamic node. The size of pre-charge and pre-discharge transistors play an important

role in achieving higher speeds and smaller areas. In this section we present a method for

optimal selection of pre-charge and pre-discharge transistor sizes, based on the amount

of capacitance required to be driven at dynamic nodes of CMOS domino logic gates. The

product term (area×rise-delay) is used as a figure of merit in the selection of pre-charge

transistor size and the product term (area × fall-delay) is used as a figure of merit in the

selection of pre-discharge transistor size.

CMOS domino logic has become a popular logic family and is extensively used in most

state-of-the-art processors due to its high performance capabilities [47], [48]. The static

CMOS gates are slower because at a given time either the pull-up or pull-down network

is activated but the input capacitance of the inactive network also loads the active

evaluation path [9] [49]. Furthermore, the input gate capacitance increases because the

low mobility PMOS transistors are sized up to attain comparable rise and fall delays [9].

Dynamic gates overcome this weakness by eliminating the PMOS transistor blocks and

replacing them with a single pre-charge transistor [47], [49]. The dynamic nodes of

domino logic gates are periodically pre-charged to 95% of VDD or pre-discharged to 5%

of VDD before evaluation in each clock cycle [3]. The sizes of pre-charge and pre-

discharge transistors play an important role in area and speed optimization [50]. The

larger W/L may degrade the area and smaller W/L may lower the speed. In this section

we present a method to optimally select pre-charge transistor size based on product

(area×rise-delay) and pre-discharge transistor size based on product (area× fall-delay).

The pre-charge PMOS and pre-discharge NMOS transistor sizes can be optimally

selected by estimating the load capacitances to be driven by pre-charge and pre-discharge

transistors at dynamic nodes. The dynamic switching power in pre-charge and pre-

discharge operation will also get reduced due to use of optimal transistor sizes [51].

Section 4.4.1 explains the load capacitance estimation for pre-charge or pre discharge

transistor, section 4.4.2 describes the computation of area-delay product, and section

4.4.3 shows the simulation results.

 75

4.4.1 Load Capacitance Estimation for Pre-charge and Pre-discharge Transistors

The domino logic gates considered for estimating load capacitances are shown in figure

4.8. The figure 4.8 (a) shows a domino 2-input AND gate, which can be implemented

using PMOS pre-charge transistor and NMOS evaluation transistor. Figure 4.8 (b) shows

another implementation of domino 2-input AND gate, which uses a NMOS pre-

discharge transistor and PMOS evaluation transistors [3]. The pre-charge transistor

PMOS or the pre-discharge transistor NMOS drives the capacitance at the dynamic node.

These capacitances are given by equations 4.7, 4.8, 4.9 and 4.10.

(a) (b)

Figure 4.8 (a) 2-input AND domino gate (b) another implementation 2-input AND

domino gate

)8.4(:
)7.4(

)(,)(,,1

1arg,1

WinvgninvgppullupdpdnAL

LeprechdpT

CCCCCCwhere
CCC

++++=

+=

Cdp, pre-charge is equivalent drain diffusion capacitance of pre-charge PMOS transistor.

Cdp,pullup is the pull-up drain diffusion capacitance, CdnA is NMOS evaluation transistor’s

drain diffusion capacitance. Cgp,(inv) , Cgn,(inv) are the inverter gate capacitance and CW is

wire capacitance loads to be driven by pre-charge transistor.

 76

)10.4(:
)9.4(

)(,)(,2

2arg,2

WinvgninvgpdpBdpAL

LepredischdnT

CCCCCCwhere
CCC

++++=

+=

Cdn,pre-discharge is equivalent drain diffusion capacitance of pre-discharge NMOS transistor.

CdpA and CdpB are PMOS evaluation transistor drain diffusion capacitances. Cgp,(inv),

Cgn,(inv) are inverter gate capacitance and CW is wire capacitance loads to be driven by

the pre-discharge transistor.

The dynamic node capacitances CL1 and CL2 that exclude drain parasitic capacitance of

pre-charge and pre-discharge transistors are estimated using equations 4.8 and 4.10. The

estimated capacitances CL1 and CL2 are to be replaced in the circuits shown in figure 4.9

(a) and figure 4.9 (b) respectively. The Pre-charge load capacitance is pre-assigned with

an initial condition (ic=0 V) and pre-discharge load capacitance is pre-assigned with an

initial condition (ic=3.3 V). Here, we assume a fixed capacitance of 0.1 pF acting as a

load for the pre-charge and pre-discharge transistors with pre assigned initial conditions

as stated earlier.

Figure 4.9 (a) PMOS driving the estimated capacitance CL1 (b) NMOS driving the

estimated capacitance CL2

4.4.2 Computation of Area Delay Product

The circuit shown in figure 4.9 (a) is simulated for different W/L ratios of PMOS pre-

charge transistor and corresponding products (area×rise-delay) are calculated taking into

account the drain capacitance of the pre-charge transistor besides the estimated

connected load (CL1= 0.1 pF). Similarly, the circuits shown in figure 4.9 (b) is simulated

for different W/L ratios of NMOS pre-discharge transistor and corresponding products

(area×fall-delay) are calculated taking into account the drain capacitance of the pre-

discharge transistor besides the estimated load (CL2= 0.1 pF). Transistor level circuit

 77

simulations are carried out using T-spice from M/s TANNER Research Inc. taking

transistor model parameters of 0.5 µm technology. The channel lengths of NMOS and

PMOS devices are kept fixed equal to the minimum channel lengths Ln=Lp=0.5 µm.

4.4.3 Simulation Result

The simulation is carried out for a fixed load (CL1= CL2=0.1 pF). Figure 4.10 shows the

variation of rise- delay (for charging up to 95% of VDD) with W/L ratio of PMOS

transistor and figure 4.11 shows the variation of product, (area×rise-delay) with change

in W/L ratio of PMOS transistor. Figure 4.12 shows the variation of fall-delay (for

discharging up to 5% of VDD) with W/L ratio of NMOS transistor and figure 4.13 shows

the variation of product, (area × fall-delay) with change in W/L ratio of NMOS

transistor. The Ln and Lp values were kept at 0.5 µm for all simulations.

Variation of rise delay w ith respect to
W/L variation of PMOS for CL1'=0.1pF

0

2000

4000

6000

0 10 20 30 40

(W / L) p

Series1

Variation of area-rise delay product with
(W/L)p

900

950

1000

1050

1100

1150
1 4 7 10 13 16 19 22 25 28

(W/L)p

A
re

a
*r

is
e-

de
la

y

Series1

Figure 4.10 Variation of rise- delay Figure 4.11 Variation of (area×rise-delay) product

Variation of fall-delay with respect to
(W/L)n variation of NMOS for CL2'=0.1pF

0

500

1000

1500

0 10 20 30 40

(W/L)n

Tf Series1

Variation of area fall delay product with
(W/L)n

280
300
320
340
360
380
400

1 4 7 10 13 16 19 22 25 28

(W/L)n

ar
ea

*f
al

l d
el

ay

Series1

Figure 4.12 Variation of fall-delay Figure 4.13 Variation of (area × fall-delay) product

Figure 4.11 shows that the product (area×rise-delay) is minimum at a particular W/L

ratio (≈5.5) of PMOS pre-charge transistor for (CL1=0.1 pF). The transistor sizes smaller

than this value have lower speed and the transistor sizes greater than this value have

larger area without significant contribution to speed. The optimal W/L selection varies

with the amount of capacitance to be driven at dynamic node (CL1) as given by equation

(4.8). For given capacitive load at dynamic node, the increase of W/L ratio of PMOS

 78

pre-charge transistor beyond an optimum point has little speed advantage, mainly due to

increase in the self parasitic capacitance load of the PMOS pre-charge transistor in

comparison to the estimated load to be driven (CL1). Figure 4.13 show that product

(area×fall-delay) is minimum at a particular W/L ratio (≈3) of NMOS pre-discharge

transistor for (CL2=0.1 pF). Transistor sizes smaller than this value reduce speed and

transistor sizes greater than this value increase area without any significant contribution

to speed. Optimal W/L selection varies with the amount of capacitance to be driven at the

dynamic node (CL2) as given by equation (4.10). For a given capacitive load at the

dynamic node, the increase in W/L ratio of the NMOS pre-discharge transistor beyond

an optimum point has little speed advantage-mainly due to increase in the self parasitic

capacitance load of NMOS pre-discharge transistor in comparison to the estimated load

to be driven (CL2).

The optimal selection of pre-charge PMOS and pre-discharge NMOS transistor sizes in

CMOS domino logic circuits can be achieved by estimating the load capacitances at the

dynamic nodes to be driven by the pre-charge and the pre-discharge transistors. The

transistor sizes with minimum product terms (area×rise-delay) and (area×fall-delay) are

suitable candidates for an optimized design. Increase in the size of these transistors

beyond the optimal point increases the device area without significant improvement in

speed due to self-parasitic capacitance loading effect. The suggested technique can be

effectively used in digital circuit design using domino logic gates to achieve faster and

compact designs. In this research work the W/L ratio of pre-charge PMOS transistor in

the dual rail domino logic cell design is kept same as the W/L ratio of the top NMOS

transistor as shown in figure 4.14, because increase in the size of these transistors beyond

this optimal point increases the device area without significant improvement in the speed

due to self-parasitic capacitance loading effect. The cell implements Y=A.B.C; the

lower NMOS transistors in the cascade of a domino logic cell are graded in size, to

improve its transient response [1].

 79

Figure 4.14 Design of a domino logic cell

4.5 Chapter Summary

This chapter presents the fundamentals of the logic design styles considered for level

implementation of schematic level designs. These logic design styles are static CMOS

logic and dynamic CMOS logic. Static CMOS logic design styles are static logic and TG

logic while, dynamic CMOS logic design styles are dual rail domino logic and TSPC

logic. It also looks at the problem of transistor sizing for these logic design styles to

maximize their performance. These techniques and approaches have been used in the

subsequent circuit level implementations of the schematics.

W/L=6

W/L=9

W/L=12

W/L
=3

W/L
=3

W/L
=3

W/L=7.5

CLK

A

B

C

Y

W/L
=3

VDD

GND

PMOS

NMOS

NMOS

NMOS

NMOS

PMOS

PMOS

NMOS

GND

VDD

 80

CHAPTER 5

STUDY OF NBTI DEGRADATION IN DIGITAL LOGIC CIRCUITS

USING VERILOG HDL

NBTI is identified as one of the most critical reliability concerns for nanometer scale

digital integrated circuits. Degradation occurring in PMOS devices is the most critical as

it decides the lifetime of CMOS devices in deep sub micron technologies. Research on

NBTI is active only within the community of device and reliability physics and leading

industrial companies are developing their own models and tools to handle this effect. In

this chapter we develop and present a Verilog HDL based switch level circuit modeling

technique that incorporates the device-level NBTI modeling to dynamically model the

growth of NBTI effect in transistor switches and its evolutionary impact on circuit

performance with time. A one bit full adder circuit is used as vehicle to demonstrate the

technique. The circuit model describes basic static CMOS logic gates using switch level

Verilog description, which also incorporates the model for computing the change in

threshold voltage (∆Vt) and delay (tp) of PMOS devices after every NBTI stress phase

and recovery phase. NBTI stress can be computed by knowing the time for which

particular PMOS transistor remains under negative bias (i.e Vgs<0). Higher modules can

be described hierarchically using these basic gates. In this study, a set of random input

vectors corresponding to 0.5 years of operation (15768000 random vectors, changing

every second) is applied to the digital circuit in order to observe the effect of NBTI

degradation on threshold voltage shift of all PMOS devices. The techniques for

estimating the degradation in the switching speed of the circuit are also discussed.

It has been reported [52], [53] that NBTI occurring in PMOS devices has emerged as a

key reliability degradation issue which affects the lifetime of CMOS devices. The

degradation in NMOS devices is far less as compared to that in PMOS and is hence

neglected in the presented analysis. NBTI manifests as an increase in the threshold

voltage and consequent decrease in drain current and trans-conductance of PMOS

transistors [52], [53]. NBTI degradation increases threshold voltage by about 25 to 30%

in 10 years [54]. The degradation exhibits power law dependence with time, which can

be described using reaction-diffusion model. When a negative gate to source voltage is

applied, it initiates a field-dependent reaction at the Si/SiO2 interface that generates

 81

interface traps by breaking the passivated Si–H bonds, which release hydrogen. The

released hydrogen diffuses away from the interface, leaving behind a positively charged

interface state (Si+), which is responsible for the increase in threshold voltage [53]. On

removing the applied stress the Si-H bond reforms, which recovers of threshold voltage

[54]. Gate sizing can tolerate the NBTI degradation in digital circuits, by assigning

delay degradation margins to the transistors, so that the expected circuit delay would not

exceed the original design specification before the end of the specified lifetime of the

circuit [55].

The CAD tools for modeling and managing the NBTI degradation are not widely

available due to this effect’s complexity and emerging status [33]. Presently research

work on NBTI is actively pursued only within the community of device and reliability

physicists and leading industrial companies do develop their models and tools to handle

this effect [33], [34]. Furthermore, the first order estimation of NBTI degradation on

digital logic circuits at the logic level is based on the probability that PMOS transistors in

the circuit will be affected by NBTI stress. A stress is the condition when a negative gate

to source voltage is applied to the PMOS transistor, the probability of being stressed is

non-uniform among PMOS transistors in a circuit [52]. Such methods based on

probability are less accurate. In this chapter we suggest a more accurate method using

widely available Verilog HDL tool to individually compute the Vt degradation of all

PMOS devices. The design can be re-simulated with modified Vt. Since timing

verification of complete circuit through simulation requires large computational effort,

the circuit delay can also be computed by including the PMOS transistor’s Vt

degradation on the longest path (critical path) in the logic network. Since longest path

in the logic circuit can change over time, the top 10% of the longest paths can be

considered for simulation [52] [53]. This chapter presents the model of a 1-bit full adder

using Verilog HDL. This switch level model also incorporates necessary description to

compute the change in threshold voltage (∆Vts & ∆Vtr) and the delay (tp) of all PMOS

devices due to NBTI stress. It also presents a comparative study of Vt degradation for all

the PMOS devices when input vectors corresponding to 0.5 years of operation are

applied to the circuit. The computational model used for NBTI degradation process is

described in Section 5.1. Section 5.2 describes the incorporation of NBTI degradation

model in Verilog simulation. Verilog simulation results estimating NBTI degradation for

1-bit full adder are described in section 5.3

 82

5.1 Model for NBTI Degradation

The predictive model of PMOS NBTI effect enables efficient design examination within

the standard CAD environment [33]. For a PMOS device there are two phases of NBTI.

In phase-I the NBTI stress condition is reached when a negative voltage is applied

between the gate and source terminals of a PMOS device (i.e. when Vg=0, Vgs=-VDD). In

phase-II the NBTI degradation is recovered (i.e. when Vg= VDD, Vgs=0), this phase is

referred to as recovery phase. Change in threshold voltage under dynamic NBTI stress or

recovery condition is given by equation (5.1) and equation (5.2), which are together

taken as the predictive model given in reference [33]. This model provides a solid basis

for the tool development. The dynamic NBTI behavior for 90 nm technology node using

appropriate technology data is analyzed below.

trth

Vthts

VVwhere
VV

∆=∆

+∆+=∆

0

2
0

1/2
0 v

:
)1.5(]) t-(t [K : Phase stressIn δ

tsth

vthtr

VVwhere
VV

∆∆

∆=∆

=

−

0

00

:
(5.2)])/t t-(t -[1)(: Phaserecovery In ηδ

Where, Kv represent the rate of generation of interface trap levels, ∆Vth0 represents initial

deviation in threshold voltage before device’s stress or recovery phase, δV accounts for

non-H based mechanisms like oxide and other charge residues trapped in Si-SiO2

interface (=5 mv) and η is empirical constant (=0.35).

]exp[]/exp[)](/1[)(tA K 0ox v KT
EEEVVVVVC aoxthgsdsthgsox −••−−−•= α

Where, A is an empirical constant, tox is the thickness of oxide layer in nanometer

regime, Cox is capacitance per unit area of oxide layer, Vds & α account for sub threshold

leakage effect which alleviates NBTI stress (since Eox at the drain end is smaller than at

the source end), Eox is electric field experienced by oxide layer. Note that E0 is intrinsic

electric field in the oxide and Ea is activation energy, which are technology independent

characteristics of the reaction.

 83

3

3-6-
ox

2

7-

14-

ox ox

5.03

10461.38
)8.03.1(

11]
)(

[1

 1.3
1

103691.10.810 2.343 Vth) - (VgsC

cm / F 2.343

10 1.5

108.8543.97

 /t
5.1

//101.8 A

ox

−

−

×=
×

−=
−

−⇒

=
=

×=××=⇒

=
×

×∗
=

=
=

×=

thgs

ds

ds

ox

VV
V

VV

C
nmt

CnmV

α

α

µ

ε

3

19

23

0

a

0

0

oxthgsox

1015.9)027.0/13.0exp()/exp(

027.0
106.1

323*1038.1KT

K323 50273 T
eV 0.13 E

44.14)2/34.5exp()/exp(
MV/cm 2.0 E

 MV/cm 5.34
7- /1.5e0.2) - (1

)/tV - (V E

−

−

−

×=−=−∴

=
×

×
==⇒

=+=

=
==⇒

=
=
=
=

KTE

V
q

kT

EE

a

ox

8333-3

0ox v

1088.11015.944.1410461.38103691.15.1108.1

]exp[]/exp[)](/1[)(tA K
−−−− ×=×••×•×••×=

−××−−−∗=⇒ KT
EEEVVVdsVVC aoxthgsthgsox α

Putting these values equation (5.1) reduces to equation (5.3) and equation (5.2) reduces

to equation (5.4). Equation (5.3) gives ∆Vts, which is the accumulated variation in Vt

after stress phase, and equation (5.4) gives ∆Vtr, which is accumulated variation in Vt

after recovery phase. These variations accumulate for all the stress and recovery cycles.

 84

The value of Vt after any stress or recovery can be obtained by adding accumulated

changes to Vt value at the beginning. Note that the ∆Vts is function of time and different

technologies give different final values for ∆Vts, hence final value of ∆Vts is independent

of frequency [33].

)3.5(
005.0)(1088.1 25.08

tstts

trots

VVV
VttV

∆+=⇒

+∆+−×=∆ −

trt

ts

VV
t

tt
V

∆+=⇒

−
−−∆=∆

tr

0
tr

V

(5.4)]
)(35.0

1)[005.0(V

The propagation delay of the device is calculated using alpha-power law MOSFET

model [56], as given in equation (5.5),

() ()
)5.5(

||1
1

|| 3.1
ttDD

DD
p VVV

VCt
−

=
−

⋅= α

Where, VDD is the supply voltage (VDD =1V) ; α is a technology based constant (α

=1.3) and for normalized delay the C =1 pF, hence delays are in pico seconds. The Vt is

the degraded threshold voltage of the PMOS after any stress or recovery phase. Thus,

decrease in Vt of PMOS will increase delay of PMOS.

5.2 Incorporation of NBTI Degradation Model in Verilog Simulation

In our study, a 1-bit full adder is considered. Similar modeling can be done for any other

combinational or sequential circuit to study the NBTI effect. The full adder circuit is

implemented hierarchically i.e. a 1-bit full adder is implemented using two 2-input XOR

gates and three 2-input NAND gates. The 2-input XOR gate is implemented using four

2-input NAND gates, as shown in figure 5.1. Each 2-input NAND gate has static CMOS

 85

implementation. Thus, the 2-input NAND gate is the basic building block for the whole

circuit.

(a)

(b)

Figure 5.1. (a) Full Adder schematic (b) XOR gate schematic

A Verilog code has been written to describe the 1-bit full adder. A NAND gate is

modeled using switch-level model, which also incorporates the description for

computing the change in threshold voltage (∆Vts and ∆Vtr) and the delay (tp) of PMOS

devices after any stress or recovery phase. Inside each NAND gate module, the time for

which each of the PMOS switch is getting stressed (i.e. time for each gate input signal

remains logic ‘0’) is found and then ∆Vts and ∆Vtr is calculated using equation (5.3) and

equation (5.4). Now, accumulated change in ∆Vts is added to value Vt at the beginning to

get the new threshold voltage. The Verilog code for NAND2 gate is as shown below:

XOR_0

NAND_0
1

2
3

1

2
3

sum

b
a

NAND_1
1

2
3

NAND_2

1

2

3

XOR_1

3

cin

1

2

cout

NAND_1
1

2
3

out=A XOR B

In1
In2

NAND_0
1

2
3

NAND_2
1

2 3

NAND_3
1

2

3

 86

module my_nand (out,in1,in2);

output out;

input in1,in2;

wire w;

real

vt1=0.2,vt2=0.2,k=0.0000000188,vt1s,vt1r,vt2s,vt2r,dv1s,dv2s,dv1r,dv2r,delay1,delay2;

 //threshold voltage Vt and change in threshold voltage dv=∆V

time t1_in1,t2_in1,t1_in2,t2_in2,dt_in1,dt_in2; //time variables

supply1 pwr;

supply0 gnd;

pmos (out,pwr,in1),

(out,pwr,in2); //switch-level modelling with static CMOS implementation

nmos (out,w,in1),

(w,gnd,in2);

initial

begin

 dv1r=0;

 dv1s=0;

 dv2r=0;

 dv2s=0;

 end

 always @ (negedge in1)

t1_in1 = $time; //noting the time when PMOS1 get stressed

always @ (posedge in1)

begin

t2_in1 = $time; //noting the time when PMOS1 is relieved from stress

dt_in1 = t2_in1 - t1_in1; //calculating the time for which PMOS1 remains stressed

dv1s = ((((k*k)*((dt_in1)**0.5))+(dv1r*dv1r))**0.5+0.005); // dv1s=∆Vts

dv1r = ((dv1s-0.005)*(1-(0.35*(dt_in1/t2_in1))**0.5)); // dv1r=∆Vtr

 87

vt1s = vt1 + dv1s; //degraded Vt = original Vt + (change in Vt= ∆Vts)

vt1r = vt1 + dv1r; //degraded Vt = original Vt + (change in Vt= ∆Vtr)

 delay1 = 1/((1-vt1r)**1.3); //delay for the PMOS1 taking C=1 pF, alpha=1.3

end

always @ (negedge in2)

t1_in2 = $time; //noting the time when PMOS2 get stressed

always @ (posedge in2)

begin

t2_in2 = $time; //noting the time when PMOS2 is relieved from stress

dt_in2 = t2_in2 - t1_in2; //calculating the time for which PMOS1 remains stressed

dv2s = ((((k*k)*((dt_in2)**0.5))+(dv2r*dv1r))**0.5+0.005); // dv2s=∆Vts

 dv2r = ((dv2s-0.005)*(1-(0.35*(dt_in2/t2_in2))**0.5)); // dv2r=∆Vtr

vt2s = vt2 + dv2s; //degraded Vt = original Vt + (change in Vt= ∆Vts)

vt2r = vt2 + dv2r; //degraded Vt = original Vt + (change in Vt= ∆Vtr)

 delay2 = 1/((1-vt2r)**1.3); //delay for the PMOS1 taking C=1 pF, alpha=1.3

end

endmodule

Hierarchical modeling is used to describe XOR gate and 1-bit full adder. The final Vt of

each PMOS device can be read after every input vector application. These input vectors

are generated randomly in the test bench and applied to the design under simulation after

every 1 sec and simulated for a period of 0.5 years and corresponding degradation in Vt

and delays are obtained through simulation. The simulation tool used is “Modelsim”

from Mentor Graphics. Since the ∆Vts is function of time, the value of ∆Vts

corresponding to warranty period can be found and used for robust circuit design to meet

the specification.

5.3 Verilog Simulation Results Showing NBTI Degradation for 1-bit Full Adder

Initially, the |Vt| of all the PMOS switches is set to 0.2 V. The initial delay tp obtained

with this value of Vt is 1.336 psec. Then after applying input vectors corresponding to

0.5 years of operation to the 1-bit full adder, we observed the threshold voltages shifts

 88

and delay changes of all the PMOS switches of 1-bit full adder. Table 5.1 shows the

increment in Vt’s and delay (tp’s) of the 22 PMOS devices of 1-bit full adder.

Table 5.1 Degradation in Vt and propagation delay for all PMOS devices in a 1-bit full

adder

S. No Level 01 Level 02 PMOS |Vt| (after 0.5 years)

Delay (after 0.5 years)

ps

1 P-1 0.212377 1.35274

2
NAND-0

P-2 0.212377 1.35274

3 P-1 0.212377 1.35274

4
NAND-1

P-2 0.212377 1.35274

5 P-1 0.212376 1.35274

6
NAND-2

P-2 0.212376 1.35274

7 XOR-0 P-1 0.212377 1.35274

8
NAND-0

P-2 0.212377 1.35274

9 P-1 0.212377 1.35274

10
NAND-1

P-2 0.212377 1.35274

11 P-1 0.212376 1.35274

12
NAND-2

P-2 0.212376 1.35274

13 P-1 0.210848 1.34935

14
NAND-3

P-2 0.210848 1.34935

15 XOR-1 P-1 0.212377 1.35274

16
NAND-0

P-2 0.212377 1.35274

17 P-1 0.212377 1.35274

18
NAND-1

P-2 0.212377 1.35274

19 P-1 0.210848 1.34935

20
NAND-2

P-2 0.210848 1.34935

21 P-1 0.21169 1.35121

22
NAND-3

P-2 0.21169 1.35121

The degradation in the switching speed of the circuit can be computed by re-simulating

the circuit with modified Vt. The circuit delay can also be computed by simulating the

PMOS transistors on the longest path (critical path) in the logic network in order to

reduce computational effort [52], [57]. Since longest path in the logic circuit can change

over time, the top 10% of the longest paths can be considered for estimation.

 89

NBTI is one of the most critical reliability issues for deep sub micron technology. In this

chapter we presented a new simple method to study NBTI degradation of any digital

circuit using Verilog HDL. Since the research on NBTI is active only within the

community of the device and reliability physicists and leading industrial companies

develop their own models and tools to handle this effect, such NBTI study using Verilog

HDL provides an open general method for modeling and estimation of NBTI degradation

in CMOS circuits implemented using nanometer scale technologies. The degradation in

Vt of all PMOS devices in the circuit can be obtained using Verilog HDL switch level

modeling. Simulation result shows the degradation in the Vt of all PMOS devices in 1-bit

full adder. The technique to compute degradation in the switching speed of the circuit

has also been discussed.

5.4 Chapter Summary

This chapter presents NBTI degradation in nanometer scale digital VLSI circuits, which

is identified as one of the most critical reliability concerns more recently discovered. The

chapter studies the theoretical device level models and proposes a technique for

incorporation of NBTI degradation in given circuit using switch level Verilog

description. The developed technique has been used to dynamically simulate NBTI

degradation in a full adder modeled using static CMOS logic design style. The NBTI

degradation study for different data path elements like signed multiplier (i.e Baugh

Wooley multiplier and Booth encoded Wallace tree multiplier), unsigned multiplier (i.e.

MUX based and 2×2 cell based multiplier) and barrel shifter architectures (i.e MUX

based barrel shifter and Pereira’s barrel shifter) designed using different logic design

style is reserved as future scope of the work.

 90

CHAPTER 6

 VLSI IMPLEMENTATION AND SIMULATION RESULTS OF DIFFERENT

MULTIPLIERS AND BARREL SHIFTER ARCHTECTURES

In this chapter a comparison of VLSI implementation results of different architectures

chosen for study for data path elements including signed multiplier (i.e Baugh Wooley

multiplier and Booth encoded Wallace tree multiplier), unsigned multiplier (i.e. MUX

based and 2×2 cell based multiplier) and barrel shifter (i.e MUX based barrel shifter and

Pereira’s barrel shifter) is presented.

A cell library consisting of functional cells was defined. Corresponding to the functional

cell library, three different schematic libraries were designed using static logic, TG logic

and dual rail domino logic design styles using the basic design principles. Three different

physical versions of each schematic library were developed by respectively sizing the

W/L ratios of the NMOS transistor to values of 3, 5 and 7. As discussed in chapter 1 the

W/L values smaller than 3 were also experimented with but not considered further as

they resulted in parasitic dominated slower speeds due to weak drives of transistors and

were not considered good candidates for high performance. All the physical library

versions were implemented in 0.5 µm, N-well CMOS process (SCN_SUBM,

lambda=0.3) of MOSIS.

 The layout assemblies for the 4-bit, 8-bit, 12-bit and 16-bit multiplier and barrel shifter

circuits were carried out using these cell libraries and automatic placement and routing

tool LEDIT (SPR) from M/s Tanner Research Inc [35], [36]. The generated layouts were

then simulated after parasitic extraction using circuit simulator, ELDO spice. Supply

voltage VDD was kept at 3.3 V.

The performance parameters and design attributes for comparison were propagation

delay, average power, maximum power, leakage power, transistor count, core layout

area, routing length and number of vias.

 91

6.1 Comparison Between Baugh Wooley Multiplier and Booth Encoded Wallace
Tree Multiplier Implementations

Table 6.1 (a), 6.1 (b) and 6.1 (c) show the comparison of the Baugh Wooley signed

multiplier and the Booth encoded Wallace tree signed multiplier.

Comparison of the two architectures shows that the Baugh Wooley multiplier is much

faster than the Booth encoded Wallace tree multiplier and consumes much less power

due to fewer numbers of transistors and smaller layout area. The routing length and

number of vias are also much smaller in Baugh Wolley multiplier implementation. The

Baugh Wolley multiplier implementation features smaller leakage power as compared to

Booth encoded Wallace tree multiplier due to its smaller transistor count.

For the Baugh Wooley multiplier architecture the implementations using TG logic design

style and domino logic design style result in much larger delay and power as compared

to static logic design style implementation because routing length is increased for these

implementations.

By comparison in Booth encoded Wallace tree multiplier the TG logic design style

implementation is slightly faster and consumes lower power as compared to static logic

implementation, since it has almost comparable routing length, but the domino logic

design style implementation is slower and consumes more power compared to static

logic design style mainly due to much larger routing length and use of many simpler

logic cells in the design implementation.

The increasing of sizes of devices does not show appreciable improvements in delay and

only increases the core layout area and power consumption.

 92

Table 6.1 (a) Performance and Characteristics of Baugh Wooley and Booth encoded
Wallace tree multiplier for W/L=3

Multiplier Architecture Type
Baugh Wooley Booth encoded Wallace tree Size Performance Indices

Static TG Domino Static TG Domino
τ (ns) 9.33 19.07 20.18 19.15 17.35 32.64
Average Power (mw) at 20 MHz 4.52 14.61 22.65 27.949 17.96 24.32
Max Power (mw) 192.19 2455.28 1653.71 177.25 403.77 4085.4
Leakage Power (nW) 29.719 134.79 54.69 231.15 215.00 1265.5
Transistor Count 8404 9862 13790 15288 14664 27312
Core Area (mm2) 16.40 32.17 77.65 44.17 58.56 156.98
Total Routing Length (mm) 1005 1778 5117 2335 2750 9436

16-bit

No. of Via 2524 2428 5586 8266 7717 17211
τ (ns) 6.87 13.92 14.99 18.08 10.00 30.102
Average Power (mw) at 20 MHz 2.50 7.91 12.34 9.71 11.50 23.82
Max Power (mw) 113.55 1228.47 916.46 106.57 410 2329.8
Leakage Power (nW) 22.05 78.62 35.6 119.74 128.93 28.81
Transistor Count 4692 5502 7686 9298 8838 16450
Core Area (mm2) 8.40 17.46 37.44 23.56 30.42 75.18
Total Routing Length (mm) 503.54 914 2495 1110 1335 4446

12-bit

No. of Via 1380 1424 3161 4837 4664 10299
τ (ns) 4.43 8.79 10.072 13.49 8.49 21.78
Average Power (mw) at 20 MHz 1.089 3.29 5.286 2.66 4.94 10.93
Max Power (mw) 55.53 494.12 398.62 59.9 145.44 1082.4
Leakage Power (nW) 8.16 32.77 16.67 28.97 62.55 17.11
Transistor Count 2068 2422 3374 4622 4186 7846
Core Area (mm2) 2.99 6.13 14.71 9.69 11.20 30.66
Total Routing Length (mm) 159.28 264.51 889.86 420.015 467.20 1730.48

8-bit

No. of Via 617 596 1425 2161 2049 4791
τ (ns) 2.02 3.69 5.33 6.32 7.03 12.13
Average Power (mw) at 20 MHz 0.2739 0.59 1.197 0.44 2.43 3.59
Max Power (mw) 18.64 93.29 93.94 30.56 81.95 372.9
Leakage Power (nW) 2.79 8.31 0.465 17.16 22.19 7.75
Transistor Count 532 622 854 1638 1474 2738
Core Area (mm2) 0.73 1.39 3.04 2.790 3.38 8.36
Total Routing Length (mm) 29.81 50.022 145.10 109.604 125.33 413.67

4-bit

No. of Via 142 129 364 712 657 1647

 93

Table 6.1 (b) Performance and Characteristics of Baugh Wooley and Booth encoded
Wallace tree multiplier for W/L=5

Multiplier Architecture Type
Baugh Wooley Booth encoded Wallace tree Size Performance Indices

Static TG Domino Static TG Domino
τ (ns) 9.25 18.47 18.67 14.24 16.12 31.85
Average Power (mw) at 20 MHz 7.49 23.79 36.63 83.14 27.46 64.68
Max Power (mw) 322.67 3724.37 2762.18 311.22 660.82 6303
Leakage Power (nW) 37.16 214.69 32.07 281.64 357.47 2681
Transistor Count 8404 9862 13790 17404 14664 27312
Core Area (mm2) 16.09 37.12 87.43 53.24 59.91 172.81
Total Routing Length (mm) 947.69 2134.5 5564.03 2447.05 2553.89 10027

16-bit

No. of Via 2457 2414 5536 7999 7888 17213
τ (ns) 6.86 13.51 14.09 14.85 9.26 28.63
Average Power (mw) at 20 MHz 4.158 12.86 20.07 58.59 18.34 37.87
Max Power (mw) 191.03 1898.98 1580.25 259.59 470.50 3851
Leakage Power (nW) 23.74 119.51 38.50 402.81 214.26 43.68
Transistor Count 4692 5502 7686 10530 8838 16450
Core Area (mm2) 8.52 17.55 43.04 26.66 31.62 93.46
Total Routing Length (mm) 484.61 872.9 2711 1195.14 1278.41 5356

12-bit

No. of Via 1385 1354 3136 4697 4582 10202
τ (ns) 4.42 8.54 9.52 11.10 8.39 20.57
Average Power (mw) at 20 MHz 1.815 5.4 8.64 7.79 8.20 17.35
Max Power (mw) 93.91 796.28 672.98 105.92 243.33 1778
Leakage Power (nW) 10.13 52.40 26.77 151.76 104.53 17.78
Transistor Count 2068 2422 3374 5120 4186 7846
Core Area (mm2) 3.05 6.76 16.11 10.78 13.30 37.72
Total Routing Length (mm) 155.66 285.95 889.8 458.57 496.58 1840.9

8-bit

No. of Via 615 612 1421 2122 2117 4770
τ (ns) 2.03 3.6 5.07 6.01 6.95 11.46
Average Power (mw) at 20 MHz 0.462 0.99 2.00 1.38 4.04 5.77
Max Power (mw) 31.21 148.10 162.89 52.21 134.79 613
Leakage Power (nW) 4.48 13.46 2.71 27.80 37.22 10.16
Transistor Count 532 622 854 1804 1474 2738
Core Area (mm2) 0.79 1.56 3.54 3.29 3.92 9.95
Total Routing Length (mm) 33.13 51.81 150.32 120.71 132.10 443.6

4-bit

No. of Via 159 141 372 715 668 1585

 94

Table 6.1 (c) Performance and Characteristics of Baugh Wooley and Booth encoded
Wallace tree multiplier for W/L=7

Multiplier Architecture Type
Baugh Wooley Booth encoded Wallace tree Size Performance Indices

Static TG Domino Static TG Domino
τ (ns) 9.15 18.22 18.65 13.83 15.89 30.98
Average Power (mw) at 20 MHz 10.42 37.09 50.75 157.44 38.42 88.20
Max Power (mw) 461.93 4861.99 3789.06 438.83 1163.78 8943
Leakage Power (nW) 65.01 287.45 28.53 620.57 501.43 2095
Transistor Count 8404 9862 13790 17404 14664 27312
Core Area (mm2) 18.18 36.71 911.24 54.69 61.38 189.53
Total Routing Length (mm) 1086.3 1849.2 5569.79 2543.18 2558.43 10700

16-bit

No. of Via 2445 2446 5629 7856 7696 17309
τ (ns) 6.77 13.31 14.02 14.69 9.01 27.62
Average Power (mw) at 20 MHz 5.77 17.84 27.97 29.46 25.38 60.67
Max Power (mw) 274.42 2557.17 2112.69 188.21 649.40 5286
Leakage Power (nW) 39.22 165.72 30.12 391.18 300.42 40.14
Transistor Count 4692 5502 7686 10530 8838 16450
Core Area (mm2) 8.96 18.77 44.07 26.60 32.62 98.20
Total Routing Length (mm) 475.13 897.33 2657.5 1151.38 1353.37 5434

12-bit

No. of Via 1382 1363 3102 4651 4531 10276
τ (ns) 4.38 8.41 9.48 11.10 8.32 19.97
Average Power (mw) at 20 MHz 2.508 7.47 11.96 14.86 11.46 23.92
Max Power (mw) 135.53 1073.62 928.09 147.88 333.09 2488
Leakage Power (nW) 11.64 71.92 5.19 134.30 146.28 18.16
Transistor Count 2068 2422 3374 5120 4186 7846
Core Area (mm2) 3.45 7.17 17.13 11.19 13.77 38.41
Total Routing Length (mm) 166.12 288.03 934.8 457.45 522.34 1876.5

8-bit

No. of Via 606 574 1376 2190 2089 4790
τ (ns) 2 3.55 4.96 6.00 6.91 11.34
Average Power (mw) at 20 MHz 0.6435 1.39 2.78 2.72 5.62 8.03
Max Power (mw) 43.79 204.33 226.10 74.10 185.65 867
Leakage Power (nW) 4.16 18.62 1.35 84.17 51.91 6.90
Transistor Count 532 622 854 1804 1474 2738
Core Area (mm2) 0.78 1.62 3.56 3.20 4.04 11.27
Total Routing Length (mm) 31.40 51.12 145.35 112.12 129.98 524.6

4-bit

No. of Via 136 134 358 678 682 1652

 95

6.2 Comparison Between MUX Based Multiplier and 2×2 Cell Based Multiplier

Implementations

Tables 6.2 (a), 6.2 (b) and 6.2 (c) show the comparison of the unsigned multipliers i.e.

MUX based and 2×2 cell based multiplier.

Comparison of these two architectures shows that the MUX based multiplier architecture

is slower as compared to the 2×2 cell based multiplier but it consumes lesser power and

features reduced transistor count, smaller core layout area and reduced routing length.

This shows that MUX based multiplier architecture is inherently slower.

In both MUX based and 2×2 cell based multiplier architectures the implementations

using the TG logic design style show larger delay and power consumption as compared

to the static logic implementation mainly due to larger routing lengths and increased

number of vias. On the other hand the domino logic design style implementation shows

comparable or slightly improved delay performance at the cost of large power

consumption, this may be due to the use of more complex logic cells and hierarchical

approach followed in designing these architectures.

Increasing the sizes of devices does not show appreciable improvement in delays but

only results in larger core layout areas and power consumption.

 96

Table 6.2 (a) Performance and characteristics of MUX based and 2×2 cell based
multiplier for W/L=3

Multiplier Architecture Type

MUX based 2×2 Cell based Size Performance Indices
Static TG Domino Static TG Domino

τ (ns) 14.15 38.35 13.81 10.94 17.48 10.82
Average Power (mw) at 20 MHz 22.05 54.63 24.26 31.58 67.67 43.89
Max Power (mw) 623.46 2956.48 1841.31 543.34 4097.19 2620.89
Leakage Power (nW) 53.34 120.32 68.03 64.02 288.42 127.87
Transistor Count 10168 8758 15678 16032 21744 29232
Core Area (mm2) 23.76 33.86 99.81 35.07 75.87 178.41
Total Routing Length (mm) 1386.71 1861.1 6651.38 2101.75 4015.68 11509.3

16-bit

No. of Via 3452 3795 8331 5704 5594 12596
τ (ns) 11.67 21.95 10.86 7.8 13.74 8.64
Average Power (mw) at 20 MHz 7.12 19.98 14.22 16.83 35.34 23.62
Max Power (mw) 363.56 1599.63 1083.68 342.90 2227.56 1447.11
Leakage Power (nW) 31.86 73.39 33.12 43.16 156.09 76.89
Transistor Count 6048 5286 9382 8668 11806 15918
Core Area (mm2) 12.68 16.99 50.6 17.86 36.32 88.79
Total Routing Length (mm) 692.22 814.45 3160.92 997.09 1838.01 5708.2

12-bit

No. of Via 2063 2059 4833 3073 2997 6791
τ (ns) 9.01 12.31 8.00 4.52 12.25 5.65
Average Power (mw) at 20 MHz 1.77 8.09 7.637 17.82 13.78 9.57
Max Power (mw) 197.85 769.16 534.67 463.35 833.52 608.94
Leakage Power (nW) 15.13 37.19 5.18 7.623 65.34 14.74
Transistor Count 2952 2646 4622 3588 4926 6678
Core Area (mm2) 4.75 6.88 19.18 6.26 13.84 31.30
Total Routing Length (mm) 230.07 315.08 1115.12 317.53 605.51 1881.6

8-bit

No. of Via 976 980 2524 1390 1370 3034
τ (ns) 6.41 8.36 5.93 2.92 6.22 3.92
Average Power (mw) at 20 MHz 0.134 1.83 2.015 1.08 2.15 1.79
Max Power (mw) 51.24 237.93 159.31 66 197.04 123.98
Leakage Power (nW) 4.16 11.86 5.37 0.38 12.40 3.99
Transistor Count 880 838 1398 652 934 1302
Core Area (mm2) 1.19 1.93 4.75 0.98 2.05 4.04
Total Routing Length (mm) 47.69 66.26 215.35 42.68 72.92 196.17

4-bit

No. of Via 249 250 657 237 260 593

 97

Table 6.2 (b) Performance and characteristics of MUX based and 2×2 cell based
multiplier for W/L=5

Multiplier Architecture Type
MUX based 2×2 Cell based Size Performance Indices

Static TG Domino Static TG Domino
τ (ns) 13.50 36.05 12.57 11.16 17.96 9.9
Average Power (mw) at 20 MHz 57.158 63.80 40.42 52.14 107.74 68.93
Max Power (mw) 1092.77 4729.06 3158.46 933.53 6047.99 4343.22
Leakage Power (nW) 150.24 194.49 77.10 136.45 467.94 280.7
Transistor Count 10196 8758 15678 16032 21744 29232
Core Area (mm2) 24.96 39.21 108.12 39.63 83.34 177.28
Total Routing Length (mm) 1450.89 2048.8 7001.75 2297.2 4346.8 11514.2

16-bit

No. of Via 3443 3784 8217 5731 5700 12472
τ (ns) 11.08 21.27 10.18 10.86 14.02 8.15
Average Power (mw) at 20 MHz 18.69 32.77 23.75 27.06 56.22 37.19
Max Power (mw) 616.16 2595.57 1942.58 534.69 3230.36 2372.7
Leakage Power (nW) 88.82 119.33 42.88 65.34 254.76 29.40
Transistor Count 6068 5286 9382 8668 11806 15918
Core Area (mm2) 13.30 19.18 55.34 18.53 37.50 87.18
Total Routing Length (mm) 755.77 874 3348.87 1007.3 1790.62 5591.8

12-bit

No. of Via 1980 1979 4899 3105 3007 6706
τ (ns) 8.69 11.88 7.57 5.47 12.45 5.17
Average Power (mw) at 20 MHz 4.64 13.25 12.72 11.88 21.97 15.18
Max Power (mw) 299.01 1259.30 936.23 259.47 1322.20 1004.45
Leakage Power (nW) 42.59 60.20 11.97 24.68 128.04 14.52
Transistor Count 2952 2646 4622 3588 4926 6678
Core Area (mm2) 4.89 8.24 23.85 6.93 14.69 32.00
Total Routing Length (mm) 227.18 332.47 1342.11 344.73 608.54 1905.06

8-bit

No. of Via 958 981 2676 1380 1441 2979
τ (ns) 6.30 8.12 5.59 3.09 6.05 4.15
Average Power (mw) at 20 MHz 0.355 2.99 3.40 1.64 3.48 2.41
Max Power (mw) 87.63 389.04 280.91 87.15 293.32 206.77
Leakage Power (nW) 11.51 19.33 3.32 7.05 9.37 5.18
Transistor Count 884 838 1398 652 934 1302
Core Area (mm2) 1.23 2.06 5.12 1.09 2.19 4.80
Total Routing Length (mm) 50.74 65.08 224.15 44.69 73.17 209.71

4-bit

No. of Via 264 250 669 251 244 589

 98

Table 6.2 (c) Performance and characteristics of MUX based and 2×2 cell based

multiplier for W/L=7
Multiplier Architecture Type

MUX based 2×2 Cell based Size Performance Indices
Static TG Domino Static TG Domino

τ (ns) 13.25 36.51 12.12 10.77 18.01 9.86
Average Power (mw) at 20 MHz 110.04 87.69 55.42 71.28 150.26 94.05
Max Power (mw) 1528.38 6217.71 4361.28 1300.36 8082.12 6036.42
Leakage Power (nW) 299.24 271.05 86.90 176.91 650.43 434.9
Transistor Count 10196 8758 15678 16032 21744 29232
Core Area (mm2) 25.19 34.97 115.56 39.27 85.88 183.39
Total Routing Length (mm) 1485.99 1786 7005.00 2176.5 4485.9 11294.4

16-bit

No. of Via 3416 3405 8071 5616 5594 12112
τ (ns) 10.92 21.32 9.91 10.9 16.47 8.07
Average Power (mw) at 20 MHz 36.08 45.49 32.92 36.96 77.90 50.49
Max Power (mw) 862.07 3547.97 2618.94 751.54 4349.61 3305.44
Leakage Power (nW) 178.12 166.76 52.68 97.41 352.11 49.5
Transistor Count 6068 5286 9382 8668 11806 15918
Core Area (mm2) 13.66 19.75 65.01 19.78 41.48 99.13
Total Routing Length (mm) 726.21 886 3702.14 1072.9 1863.56 5499.2

12-bit

No. of Via 1989 2007 4836 3108 3025 6693
τ (ns) 8.60 11.72 7.53 5.52 12.01 5.22
Average Power (mw) at 20 MHz 9.07 18.35 17.52 13.53 30.50 20.98
Max Power (mw) 418.24 1734.28 1293.75 312.44 1804.79 1402.07
Leakage Power (nW) 43.23 84.16 16.59 35.97 147.84 21.45
Transistor Count 2952 2646 4622 3588 4926 6678
Core Area (mm2) 5.61 8.38 23.57 7.20 14.60 33.10
Total Routing Length (mm) 260.4 347.84 1190.83 349.32 583.30 1754.2

8-bit

No. of Via 1054 1060 2551 1371 1422 3004
τ (ns) 6.24 8.01 5.56 3.14 5.94 3.7
Average Power (mw) at 20 MHz 0.686 4.15 4.73 2.15 4.84 3.92
Max Power (mw) 122.50 539.66 388.48 110.15 428.63 286.50
Leakage Power (nW) 23.31 26.97 7.43 10.42 25.97 6.40
Transistor Count 884 838 1398 652 934 1302
Core Area (mm2) 1.32 2.10 5.86 1.10 2.35 5.41
Total Routing Length (mm) 49.45 64.24 267.04 44.06 69.62 224.68

4-bit

No. of Via 250 250 680 228 244 590

 99

6.3 Comparison Between MUX Based Barrel Shifter and Pereira’s Barrel Shifter

Implementations

Tables 6.3 (a), 6.3 (b) and 6.3 (c) show the comparison of the cores of barrel shifter

circuit using MUX based and Pereira’s design approaches.

Comparison of the two architectures given in tables 6.3 (a), 6.3 (b) and 6.3 (c) shows that

MUX based barrel shifter architecture is faster as compared to Pereira’s barrel shifter,

but transistor count, core layout area and routing length are much larger for MUX based

barrel shifter architecture. This shows that MUX based barrel shifter architecture is

inherently faster.

On the power count, MUX based architecture implemented using TG logic design style

shows the lowest power consumption for bit widths of 4, 8 and 12. However, for the bit

width of 16, Pereira’s architecture implemented using static logic features lower power

consumption.

In MUX-based architecture the implementation using TG logic design style is faster as

compared to static logic implementation due to decrease in routing length, but domino

implementation is much slower as compared to static logic implementation due to

increase in routing length and use of many simpler logic cells in the design.

Pereira’s architecture shows a comparable performance for static implementation and TG

implementation, but performance is degraded in domino implementation due to increased

routing length and use of many simpler logic cells in the design

Increasing the sizes of devices does not show appreciable improvement in delay and on

the contrary shows larger core layout areas and increased power consumption.

 100

Table 6.3 (a) Performance and characteristics of MUX based and Pereira’s barrel shifter
for W/L=3

Barrel shifter Architecture Type
MUX based Pereira’s Size Performance Indices

Static TG Domino Static TG Domino
τ (ns) 1.163 0.721 4.28 4.95 4.85 8.40
Average Power (mw) at 20 MHz 7.18 2.27 22.26 1.328 1.428 5.72
Max Power (mw) 65.87 276.26 1665.51 37.23 278.43 668.18
Leakage Power (nW) 65.75 28.78 64.34 41.39 24.07 2273
Transistor Count 12108 6054 18162 2042 2050 4588
Core Area (mm2) 28.34 23.38 106.44 4.91 5.88 16.66
Total Routing Length (mm) 1901.42 1732.41 8053.4 266.7 292.21 988.9

16-bit

No. of Via 4316 4459 10192 1307 1225 2880
τ (ns) 1.10 0.675 3.65 4.85 4.79 6.76
Average Power (mw) at 20 MHz 0.61 0.76 12.60 1.076 1.416 4.35
Max Power (mw) 53.94 208.57 1156.87 27.82 233.58 524.35
Leakage Power (nW) 62.38 14.41 45.43 18.69 33.59 1704
Transistor Count 9840 4920 13626 1610 1618 3580
Core Area (mm2) 20.19 17.21 64.244 3.59 4.62 12.09
Total Routing Length (mm) 1297.00 1184.07 5083.4 175.26 225.73 743.08

12-bit

No. of Via 3324 3400 7360 898 936 2137
τ (ns) 1.04 0.629 3.09 4.17 4.06 5.47
Average Power (mw) at 20 MHz 0.37 0.22 4.66 0.537 0.841 2.25
Max Power (mw) 34.00 125.90 408.85 18.51 127.35 280.55
Leakage Power (nW) 14.96 8.51 17.75 5.81 4.43 1135
Transistor Count 2988 1494 4482 880 884 1948
Core Area (mm2) 5.09 4.30 17.496 1.86 2.32 5.98
Total Routing Length (mm) 322.09 296.57 1356.9 88.20 101.47 346.05

8-bit

No. of Via 1048 1092 2538 497 504 1144
τ (ns) 0.51 0.209 2.35 3.18 3.09 4.38
Average Power (mw) at 20 MHz 0.06 0.042 1.06 0.223 0.324 0.89
Max Power (mw) 10.15 35.70 100.08 9.24 59.39 111.57
Leakage Power (nW) 18.91 1.12 4.33 3.20 0.62 567
Transistor Count 732 366 1098 364 355 802
Core Area (mm2) 1.09 0.94 3.35 0.652 0.76 2.035
Total Routing Length (mm) 59.73 57.30 237.4 24.89 29.82 107.4

4-bit

No. of Via 255 266 635 175 168 446

 101

Table 6.3 (b) Performance and characteristics of MUX based and Pereira’s barrel shifter
for W/L=5

Barrel shifter Architecture Type
MUX based Pereira’s Size Performance Indices

Static TG Domino Static TG Domino
τ (ns) 0.994 0.669 3.77 4.38 4.70 7.05
Average Power (mw) at 20 MHz 13.25 3.58 35.25 1.64 2.37 8.95
Max Power (mw) 106.96 420.15 2771.99 46.76 288.3 1148.71
Leakage Power (nW) 329.34 33.56 107.92 58.27 59.04 3835
Transistor Count 12108 6054 18162 2042 2050 4588
Core Area (mm2) 28.46 26.58 126.75 5.60 6.52 17.71
Total Routing Length (mm) 2037.5 1820.6 9683.6 270.2 296.74 969.57

16-bit

No. of Via 4266 4554 10445 1212 1183 2924
τ (ns) 1.00 0.609 3.70 4.35 4.53 6.45
Average Power (mw) at 20 MHz 0.98 0.60 19.77 1.27 2.49 6.83
Max Power (mw) 88.32 325.83 1920.2 35.27 373.89 895.66
Leakage Power (nW) 1229.44 32.50 56.63 33.35 46.41 2876
Transistor Count 9840 4920 13626 1610 1618 3580
Core Area (mm2) 20.58 18.71 81.37 4.44 4.87 12.91
Total Routing Length (mm) 1303.7 1220.9 5875.05 218.10 222.39 718.98

12-bit

No. of Via 3324 3432 7274 920 941 2188
τ (ns) 1.01 0.578 2.82 3.75 3.87 5.20
Average Power (mw) at 20 MHz 0.60 0.38 7.55 0.645 1.37 3.62
Max Power (mw) 55.95 192.27 679.04 23.43 224.27 445.31
Leakage Power (nW) 478.23 14.61 22.67 1.89 25.90 1916
Transistor Count 2988 1494 4482 880 884 1948
Core Area (mm2) 5.34 4.80 22.50 2.00 2.52 6.76
Total Routing Length (mm) 320.41 314.03 1622.06 87.36 103.48 383.5

8-bit

No. of Via 1031 1097 2514 504 502 1152
τ (ns) 0.517 0.205 2.28 2.89 3.14 3.98
Average Power (mw) at 20 MHz 0.10 0.071 1.76 0.26 0.52 1.44
Max Power (mw) 17.55 60.80 166.43 11.52 97.14 201.92
Leakage Power (nW) 110.53 2.24 5.21 7.99 10.51 957
Transistor Count 732 366 1098 364 355 802
Core Area (mm2) 1.11 1.10 4.65 0.67 0.84 2.25
Total Routing Length (mm) 60.86 57.71 282.26 24.85 30.47 111.7

4-bit

No. of Via 246 275 623 173 167 451

 102

Table 6.3 (c) Performance and characteristics of MUX based and Pereira’s barrel shifter
for W/L=7

Barrel shifter Architecture Type
MUX based Pereira’s Size Performance Indices

Static TG Domino Static TG Domino
τ (ns) 1.02 0.631 3.56 4.77 4.53 6.28
Average Power (mw) at 20 MHz 19.37 4.84 48.13 2.3 3.31 12.15
Max Power (mw) 148.48 559.31 3869.87 81.43 454.81 1644.20
Leakage Power (nW) 1127.10 47.19 110.73 22.42 82.36 5157
Transistor Count 12108 6054 18162 2042 2050 4588
Core Area (mm2) 29.58 26.49 128.29 5.94 6.86 19.36
Total Routing Length (mm) 1963.67 1770.7 9465.7 287.3 320.36 1054.35

16-bit

No. of Via 4282 4480 10271 1222 1243 2927
τ (ns) 0.98 0.598 3.45 4.45 4.45 6.13
Average Power (mw) at 20 MHz 1.36 0.90 27.14 1.8 3.48 9.40
Max Power (mw) 122.9 432.63 2679.3 57.79 528.19 1210.8
Leakage Power (nW) 1184.99 41.17 64.73 47.15 67.09 3868
Transistor Count 9840 4920 13626 1610 1618 3580
Core Area (mm2) 22.76 18.71 84.66 4.33 5.03 14.03
Total Routing Length (mm) 1444.3 1200.5 5913.02 195.93 218.74 748.9

12-bit

No. of Via 3276 3386 7266 945 941 2170
τ (ns) 0.948 0.541 2.75 3.66 3.81 5.00
Average Power (mw) at 20 MHz 0.82 0.58 10.29 0.67 1.90 4.98
Max Power (mw) 77.81 263.01 947.69 30.82 301.54 637.46
Leakage Power (nW) 947.89 21.38 27.12 6.26 35.93 2578
Transistor Count 2988 1494 4482 880 884 1948
Core Area (mm2) 5.83 4.85 22.98 2.16 2.49 7.10
Total Routing Length (mm) 349.56 300.8 1619.51 96.43 104.33 391.9

8-bit

No. of Via 1032 1106 2554 488 472 1146
τ (ns) 0.501 0.201 2.15 2.83 2.96 3.91
Average Power (mw) at 20 MHz 0.15 0.095 2.41 0.36 0.73 2.00
Max Power (mw) 24.40 77.92 232.25 19.04 133.45 296.10
Leakage Power (nW) 117.23 3.16 7.10 9.29 34.66 1288
Transistor Count 732 366 1098 364 355 802
Core Area (mm2) 1.22 1.14 4.82 0.72 0.88 2.56
Total Routing Length (mm) 61.13 58.16 275.35 25.22 29.63 123.4

4-bit

No. of Via 248 276 629 157 156 453

 103

6.4 Comparison of Different Barrel Shifter Architectures for TSPC Logic Design

Style

Table 6.4 shows the comparison of different barrel shifter architectures implemented

using TSPC logic design style. The TSPC logic design style shows pipelining behavior

between two logic cells. The depth of circuit in terms of logic cells decides the number

of clock cycles required to obtain correct output. In this circuit we may force the input

every clock cycle, thereby improving the throughput of the circuit.

The performance parameters and attributes for comparison are number of clock cycles,

average power, maximum power, leakage power, transistor count, core layout area,

routing length and number of vias.

Table 6.4 shows the TSPC logic implementation for MUX based barrel shifter and

Pereira’s barrel shifter, which take almost equal clock cycles to generate correct output.

The MUX based barrel shifter and Pereira’s barrel shifter circuits are fully pipelined

working at the clock speed of 500 MHz. The comparison shows that Pereira’s

implementation is better in terms of transistor count, core layout area, total routing length

and number of vias.

 104

Table 6.4 Performance and characteristics of MUX based and Pereira’s barrel shifter for
TSPC logic

Barrel shifter Architecture Type (TSPC Logic)
MUX based (500MHz) Pereira’s 1(500MHz) Size Performance Indices

W./L=3 W/L=5 W/L=7 W./L=3 W/L=5 W/L=7
No of Cycles 7 7 7 6 6 6
Average Power (mw) at 500 MHz 173.28 302.59 424.31 37.95 63.03 87.12
Max Power (W) 2.66 4.38 6.09 0.528 0.861 1.194
Leakage Power (uW) when clk=1 10.43 18.04 29.00 71 83.6 79.06
Transistor Count 16144 16144 16144 2294 2294 2294
Core Area (mm2) 46.67 48.65 52.43 4.46 4.58 5.05
Total Routing Length (mm) 3170.6 3232.8 3153.0 267.15 254.51 271.57

16-bit

No. of Via 5399 5431 5344 1096 1099 1107
No of Cycles 7 7 7 6 6 6
Average Power (mw) at 500 MHz 93.67 161.85 223.87 39.6 65.34 91.41
Max Power (w) 1.94 3.11 4.36 0.4488 0.7128 1.039
Leakage Power (uW) when clk=1 5.67 7.88 11.97 59.86 70.48 66.65
Transistor Count 12112 12112 12112 1958 1958 1958
Core Area (mm2) 31.26 41.41 33.60 3.55 3.81 4.24
Total Routing Length (mm) 1981.9 1905.8 1998.8 191.14 201.8 218.34

12-bit

No. of Via 3854 3802 3915 867 902 885
No of Cycles 6 6 6 5 5 5
Average Power (mw) at 500 MHz 49.09 84.72 117.63 21.05 34.55 48.21
Max Power (W) 0.68 1.08 1.50 0.234 0.396 0.590
Leakage Power (uW) when clk=1 4.00 6.64 9.90 34.80 40.97 38.75
Transistor Count 3984 3984 3984 1091 1091 1091
Core Area (mm2) 8.55 9.62 9.81 1.70 1.87 2.02
Total Routing Length (mm) 536.7 567.8 585.9 93.62 99.20 95.01

8-bit

No. of Via 1329 1327 1376 482 490 463
No of Cycles 5 5 5 4 4 4
Average Power (mw) at 500 MHz 13.63 23.72 32.76 10.78 17.65 24.58
Max Power (W) 0.14 0.274 0.371 0.099 0.168 0.247
Leakage Power (uW) when clk=1 1.91 2.10 3.14 14.85 17.48 16.53
Transistor Count 976 976 976 481 481 481
Core Area (mm2) 1.89 1.98 2.15 0.63 0.698 0.772
Total Routing Length (mm) 103.99 101.13 103.50 31.05 31.55 33.66

4-bit

No. of Via 327 329 324 188 198 184

6.5 Chapter Summary

This chapter presents the layout level implementation results of different architectures of

chosen data path elements including signed multiplier (i.e Baugh Wooley multiplier and

Booth encoded Wallace tree multiplier), unsigned multiplier (i.e. MUX based and 2×2

cell based multiplier) and barrel shifter architectures (i.e MUX based barrel shifter and

Pereira’s barrel shifter). The layout assemblies for the 4-bit, 8-bit, 12-bit and 16-bit

multiplier and barrel shifter circuits were carried out using different high performance

logic design styles and transistor sizes. The conclusions drawn are very useful for

practicing designers since it describes the results after architectural exploration, logic

design style exploration and transistor size exploration and physical design level

exploration.

 105

CHAPTER 7

CONCLUSION AND SCOPE OF FURTHER WORK

7.1 Conclusion

The thesis presents an exploratory study of the different high performance architectures

for important data path elements including signed multipliers, unsigned multipliers and

barrel shifters for 4-bit, 8-bit, 12-bit and 16-bit configurations. It also discusses the

results of different VLSI logic design style based implementations of these architectures

which include signed multiplier (i.e Baugh Wooley multiplier and Booth encoded

Wallace tree multiplier), unsigned multiplier (i.e. MUX based and 2×2 cell based

multiplier) and barrel shifter architectures (i.e MUX based barrel shifter and Pereira’s

barrel shifter). The general comparison of performance and attributes like average power,

maximum power, leakage power, transistor count, core layout area, routing length and

number of vias for different architectures implemented using different logic design styles

and different device sizes shows that:

 For the case of signed multipliers, for any operand size (4-bit, 8-bit, 12-bit and

16-bit) and for any logic design style (static, TG, domino) Baugh Wooley

multiplier is significantly faster than the Booth encoded Wallace tree multiplier

and consumes much less power due to fewer number of transistors required and a

smaller core area. The Baugh Wooley multiplier implementation also shows

smaller leakage power compared to Booth encoded Wallace tree multiplier due to

its smaller transistor count.

 For the case of unsigned multipliers, for any operand size (4-bit, 8-bit, 12-bit and

16-bit) and for any logic design style (static, TG, domino) MUX based multiplier

architecture is slower as compared to 2×2 cell based multiplier architecture, but

consumes lesser power and features reduced transistor count, a smaller core area

and reduced routing length.

 For the case of barrel shifters, for any operand size (4-bit, 8-bit, 12-bit and 16-bit)

and for any logic design style (static, TG, domino) MUX based barrel shifter

architecture is faster as compared to Pereira’s barrel shifter architecture; but the

transistor count, core layout area and routing length are much larger for MUX

based barrel shifter architecture as compared to Pereira’s architecture. This shows

that MUX based barrel shifter architecture is inherently faster. On the power

 106

count MUX based architecture implemented using TG logic design style shows

the lowest power consumption for bit widths of 4, 8 and 12. However, for the bit

width of 16, Pereira’s architecture implemented using static logic design style

features lower power consumption.

 The multiplier and barrel shifter VLSI implementations using TG logic design

style may show speed advantage as compared to static logic design style

implementation only when the total routing length is smaller or comparable with

the static logic implementation. The average power, maximum power and

leakage power for TG implementation are architecture dependent.

 The multiplier and barrel shifter VLSI implementations using dual rail domino

logic design style may be faster compared to static logic implementation only

when more complex logic cells are used in design and total routing length is not

too large compared to static logic implementation. The improvement in speed

may be obtained at the cost of increased average power consumption; hence the

designer needs to be careful of this aspect.

 The multiplier and barrel shifter designs using simple dual rail domino logic cells

show increased propagation delay due to one additional transistor in evaluate path

and due to weak pull up transistor, which increases the contention current during

evaluation. Another reason for increase in propagation delay for dual rail domino

implementation using simple cells is the increased routing complexity and

increased total routing length. Power consumption may also increases in simple

domino gate based implementation due to higher switching activity than in

equivalent static logic gate because all the domino nodes are pre-charged to VDD

during each clock cycle. The large total routing length also demands larger power

consumption. The core layout area is more due to increased transistor count and

increased total routing length.

 The static logic is most suitable for data path VLSI circuit implementation even

for the circuits designed with simpler logic cells and longer critical paths.

 TSPC logic circuits give correct operation up to frequency of 500 MHz in our

implementation but leakage power and average switching power is high because

of much higher switching activity as compared to other CMOS logic design

styles. Maximum power is also too large for TSPC circuits.

 Increasing the sizes of device does not show appreciable improvement in circuit

delay and only features increased core area and power consumption.

 107

Based on our research results a ready reckoner for selection of architecture and logic

design style for high-speed signed multipliers is shown in table 7.1. Similar reckoners for

unsigned multipliers and barrel shifters are shown in tables 7.2 and 7.3 respectively.

Table 7.1 Ready reckoner for high-speed signed multipliers

Bit Width
Attributes

4-bit 8-bit 12-bit 16-bit

Low power
Baugh Wooley

(static)

Baugh Wooley

(static)

Baugh Wooley

(static)

Baugh Wooley

(static)

High speed
Baugh Wooley

(static)

Baugh Wooley

(static)

Baugh Wooley

(static)

Baugh Wooley

(static)

Smallest area
Baugh Wooley

(static)

Baugh Wooley

(static)

Baugh Wooley

(static)

Baugh Wooley

(static)

Table 7.2 Ready reckoner for high-speed unsigned multipliers

Bit Width
Attributes

4-bit 8-bit 12-bit 16-bit

Low power
MUX based

(static)

MUX based

(static)

MUX based

(static/domino)

MUX based

(static/domino)

High speed
2×2 cell based

(static)

2×2 cell based

(static/Domino)

2×2 cell based

(static/ domino)

2×2 cell based

(domino)

Smallest area
2×2 cell based

(static)

MUX based

(static)

MUX based

(static)

MUX based

(static)

Table 7.3 Ready reckoner for high-speed barrel shifters

Bit Width
Attributes

4-bit 8-bit 12-bit 16-bit

Low power
MUX-based

(TG)

MUX based

(TG)

MUX based

(static/TG)

Pereira’s

(static)

High speed
MUX-based

(TG)

MUX-based

(TG)

MUX-based

(TG)

MUX-based

(TG)

Smallest area
Pereira’s

(static)

Pereira’s

(static)

Pereira’s

(static)

Pereira’s

(static)

 108

For the NBTI, which is identified as one of the most critical reliability concerns for

nanometer scale digital integrated circuits, we have presented a Verilog HDL based

general technique to model the circuit performance degradation due to NBTI. As an

example we have presented the NBTI degradation study for a 1-bit full adder circuit

using Verilog HDL. The degradation in Vt of all PMOS devices in the circuit can be

obtained using Verilog HDL switch level modeling. Simulation result shows differing

NBTI degradation in the Vt of different PMOS devices in a 1-bit full adder. Techniques

to compute consequent degradation in circuit switching speed due to NBTI have also

been indicated.

7.2 Scope of Further Work

An extensive design space exploration is necessary to meet performance, power and area

trade-offs for data path elements such as signed/unsigned multipliers and barrel shifters.

Based on our study a CAD tool can be developed for signed/unsigned multiplier and

barrel shifter which will accept operand size and architecture type as an input and

generates a cell/gate level HDL net-list in terms of predefined basic cells/gates. Such

cell/gate level net-list then can be fed to commercial synthesis tools offering RTL to

GDSII flow to generate VLSI implementation corresponding to the selected architecture

type and selected operand size. Such a tool will be very useful for practicing designers in

order to select an appropriate implementation out of many possible implementation

options in view of the requirements of performance, power and area for any technology

node, and across technology nodes.

While the thesis has studied only the multiplier and barrel shifter circuits in a systematic

manner to understand optimal design approaches for high performance design of these

blocks, similar studies need to be carried out for other elements such as divider circuit,

special function units computing trigonometric functions, statistical functions,

mathematical functions and other specialized functions required in a host of application

environments. Based on such studies, a similar CAD tools for the optimal synthesis of

these functions/blocks can be developed. Also NBTI degradation effect can be

incorporated in the evaluation of designs. Such tools can add a great deal of value to the

hardware software co-design approaches required in embedded real time system

developments and research in re-configurable computing systems being carried out

globally at this point of time.

 109

REFERENCES
[1] Sung-Mo Kang and Yusuf Leblebici, “CMOS digital integrated circuits,” Tata

McGraw-Hill Publishers, New Delhi, Third Edition, 2003.

[2] Neil H.E. Weste and K. Eshraghian, “Priniciples of CMOS VLSI design,” Tata

McGraw-Hill Publishers, New Delhi, Second Edition, 1998.

[3] Rabaey, J. M, Anantha Chandrakasan and Borivoje Nikolic, “Digital integrated

circuits,” Prentice Hall of India Pvt Ltd, 1996.

[4] Huy T. Nguyen and Abhijit Chatterjee, “Number-splitting with shift and add

decomposition for power and hardware optimization in linear DSP synthesis,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, VOL. 8, NO. 4, pp.

419-424, August 2000.

[5] John P. Uyemura, “Introduction to VLSI circuits and systems,” John Wiley and

Sons, Inc. 2002.

[6] Russell Henning and Chaitali Chakrabarti, “An approach to switching activity

consideration during high level, low power design space exploration,” IEEE

Transactions on Circuits and Systems-II, Analog and Digital Signal Processing,

VOL. 49, NO. 5, pp. 399-351, May 2002.

[7] David I Cheng, Kwang-Ting Cheng, Deborah C. Wang and Malgorzata Marek-

Sadowska, “A hybrid methodology for switching activities estimation,” IEEE

Transactions on Computer Aided Design of Integrated Circuits and Systems,

VOL.17, NO. 4, pp. 357-365, April 1998.

[8] D.A, Pucknell and K. Eshraghian, “Basic VLSI design system and circuits,”

Prentice Hall of India Pvt Ltd, 1994.

[9] Mohab Anis, Mohamed Allam and Mohamed Elmasry, “Impact of technology

scaling on CMOS logic styles,” IEEE Transactions on Circuits and Systems-II,

Analog and Digital Signal Processing, VOL. 49, NO. 8, pp. 577-587, August 2002.

[10] V. Chanramouli, Erik Brunvand and Kent F. Smith, “Self-timed design in GaAs-

case study on a high-speed, parallel multiplier,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, VOL. 4, NO. 1, pp. 146-149, March 1996.

[11] Adel S. Sedra and Kenneth C. Smith, “Microelectronic circuits,” Oxford

University Press, New York, Fifth Edition, 2004.

 110

[12] W. Qinghong, C.Y. Roger and Bradely S. Carlson, “LILA: Layout generation

for iterative logic arrays,” IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, VOL. 14, NO. 11, pp. 1359-1369, November 1995.

[13] L. Wanhammar, “DSP integrated circuits,” Addison–Wesley, Wokingham,

England, pp. 475-482, 1999.

[14] P. Kornerup, “A systolic, linear-array multiplier for a class of right-shift

algorithms,” IEEE Transactions on Computers, VOL. 43, NO. 8, pp. 892-898,

August 1994.

[15] L. Ciminiera and Paolo Montuschi, “Carry-save multiplication schemes without

final addition,” IEEE Transactions on Computers, VOL. 45, NO. 9, pp. 1050-1055,

September 1996.

[16] Kiamal Z. Pekmestzi, “Multiplexer-based array multipliers,” IEEE Transactions

on Computers, VOL. 48, NO.1, pp. 15-23, January 1999.

[17] Shivaling S. Mahant Shetti and Poras T. Balsara, “High performance low power

multiplier using temporal tiling,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, VOL. 7, NO. 1, pp. 121-124, March 1999.

[18] Uwe Sparmann and Sudhakar M. Reddy, “On the effectiveness of residue code

checking for parallel two’s complement multipliers,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, VOL. 4, NO. 2, pp. 227-239, June 1996.

[19] Shyue Kung, Lu, Jen-Cuan Wang and Cheng-Wem Wu, “C-testable design

techniques for iterative logic array,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, VOL. 3, NO. 1, pp. 146-152, March 1995.

[20] W. Zhongde, Graham A. Jullien and William C. Miller, “A new design

technique for column compression multipliers,” IEEE Transactions on Computers,

VOL. 44, NO. 8, pp. 962-970, August 1995.

[21] Hesham A., Al-Twaijry and Michael J. Flynn, “Technology scaling effects on

multipliers,” IEEE Transactions on Computers, VOL. 47, NO. 11, pp. 1201-1215,

November 1998.

[22] Jalil Fadavi Ardekani, “M*N Booth encoded multiplier generator using

optimized Wallace trees,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, VOL. 1, NO. 2, pp. 120-125, June 1993.

[23] Vojin G. Okhlobdzija and David Villeger, “Improving multiplier design by

using improved column compression tree and optimized final adder in CMOS

 111

technology,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

VOL. 3, NO. 2, pp. 292-301, June 1995.

[24] Behrooz Parhami, “High speed area efficient multiplier design using multiple

valued current mode circuits,” IEEE Transactions on Computers, VOL. 45, NO. 5,

pp. 637-638, May 1996.

[25] Shoji Kawahito, Makoto Ishida, Tetsuro Nakamura, Michitaka Kameyama and

Tatsuo Higuchi, “High speed area efficient multiplier design using multiple valued

current-mode circuits,” IEEE Transactions on Computers, VOL. 43, NO. 1, pp. 34-

42, January 1994.

[26] Dinesh Somasekhar and V. Visvanathan, “A 230-MHz half-bit level pipelined

multiplier using true single-phase clocking,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, VOL. 1, NO. 4, pp. 415-422, December 1993.

[27] Debabrata Ghosh, “Design and realization of high-performance wave-pipelined

8×8 bit multiplier in CMOS technology,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, VOL. 3, NO. 1, pp. 36-48, March 1995.

[28] Pascal C. H. Meier, Rob A. Rutenbar and L. Richard Carley, “Exploring

multiplier architecture and layout for low power,” Custom Integrated Circuits

Conference, Sandiago, CA, USA, Proceedings of IEEE, 1996.

[29] R. Pereira, J.A. Michell and J.M. Solana, “Fully pipelined TSPC barrel shifter

for high speed applications,” IEEE Journal of Solid State Circuits, VOL. 30, NO.6,

pp. 686-690, June 1995.

[30] G. M. Tharkan and S.M.Kang, “A new design of a fast barrel switch network,”

IEEE Journal of Solid State Circuits, VOL. 27, NO. 2, pp. 217-221, February 1992.

[31] B. Zhu, J.S. Suehle, J.B. Bernstein and Y. Chen, “Mechanism of dynamic NBTI

of pMOSFETs,” IRW Final Report, 2004.

[32] S. Aota, S. Fuji, Z. W. Jin, Y. Ito, K. Utsumi, E. Morifuji, S. Yamada, F.

Matsuoka, and T. Noguchi, “A new method for precise evaluation of dynamic

recovery of negative bias temperature instability,” Proceedings of lEEE International

Conference on Microelectronic Test Structures, VOL. 18, April 2005.

[33] Rakesh Vattikonda, Wenping Wang and Yu Cao, “Modeling and minimazation

of PMOS NBTI effect for robust nanometer design,” Design Automation

Conference, July 2006.

 112

[34] Sarvesh Bhardwaj, Wenping Wang, Rakesh Vottikonda, Yu Cao and Sarma

Vrudhula, “Predictive modeling effect of the NBTI effect for reliable design,”

Custom Integrated Circuits Conference, Sandiago, CA, USA, Proceedings of IEEE,

September 1996.

[35] Tanner Tools, L-EditTM User’s Manual version 6, Tanner Research, Inc., 1996.

[36] Tanner Tools, T-Spice ProTM User’s Manual version 4, Tanner Research, Inc.,

1996.

[37] Paul Chauduri, “Computer organisation and design,” Prentice Hall of India

Private Limited, 1994.

[38] C.W Chiou, L.C. Fin, F.H.Chou and S.F.Shu, “Low complexity finite field

multipliers using irreducible trinomials,” Electronics Letters, VOL. 39, NO. 24,

November 2003.

[39] John D. Carpinelli, “Computer systems organization & architecture,” Pearson

Education Asia, 2001.

[40] Gensuke Goto, Tamio Sato, Masso Nakajima and Takao Sukemura, “A 54*54

regularly structurd tree multiplier,” IEEE Journal of Solid State Circuits, VOL. 27,

NO. 9, pp. 1229-1235, September 1992.

[41] Gensuke Goto, Atsuki Inoue, Ryoichi Ohe, Shoichiro Kashiwakura, Shin

Mitarai, Takayuki Tsuru and Tetsuo Izawa, “A 4.1-nS compact 54*54-b multiplier

utilizing sign-select Booth encoders,” IEEE Journal of Solid State Circuits, VOL. 32,

NO.11, pp. 1676-1681, November 1997.

[42] Jerry D. Daniels, “Digital design from zero to one,” John Wiley and Sons, Inc.

1996.

[43] Richard F. Tinder, “Engineering digital design,” Academic Press, 2001.

[44] Ingvar Aberg, Cait Ní Chleirigh, and Judy L. Hoyt, “Ultra-thin body strained Si

and SiGe heterostructure on insulator MOSFETs,” IEEE Transactions on Electron

Devices, VOL. 53, NO. 5, pp. 1021-1029, May 2006.

[45] D. A. Antoniadis, I. Aberg, C. Nı´ Chleirigh, O. M. Nayfeh, A. Khakifirooz and

J. L. Hoyt, “Continuous MOSFET performance increase with device scaling: The

role of strain and channel material innovations,” IBM Journal of Research &

Development. VOL. 50, NO. 4, pp. 363-376, July 2006.

[46] Indranil De and Carlton M. Osburn, “Impact of super-steep-retrograde channel

doping profiles on the performance of scaled devices,” IEEE Transactions on

Electron Devices, VOL. 46, NO. 8, pp. 1711-1717, August 1999.

 113

[47] Min Zhao and Sachin S. Sapatnekar, “Dual monotonic domino gate mapping

and optimal output phase assignment of domino logic,” IEEE International

Symposium on Circuits and Systems, VOL. 2, pp. 309-312, 2000.

[48] P. Srivastava, A. Pua and L. Welch, "Issues in the design of domino logic

circuits," Great Lakes Symposium on VLSI, pp 108-113, 1998.

[49] David Harris and M.A. Horowitz, “Skew tolerant domino circuits,” IEEE

Journal of Solid State Circuits, VOL. 32, NO. 11, pp. 1702-1711, November 1997.

[50] Shrirang K. Karandikar and Sachin S. Sapatnekar, “Technology maping for SOI

domino logic incorporating solutions for the parasitic bipolar effect,” IEEE

Transactions on Very Large Scale Integration (VLSI) VOL. 11, NO. 6. December

2003.

[51] Shang-Jyh Shieh and Jinn-Shyam Wang, “Design of low power domino circuits

using multiple supply voltages,” IEEE International Conference on Electronics,

Circuits and Systems, VOL. 2, pp. 711-714, 2001.

[52] Xiangning Yang, Eric Weglarz and Kewal Saluja, “On NBTI degradation

process in digital logic circuits,” 20th International Conference on VLSI Design,

2007.

[53] M.A. Alam and S. Mahapatra, “A comprehensive Model for PMOS NBTI

degradation,” Elsevier Journal of Microelectronics Reliability, pp 71-81, 2005.

[54] Sanjay V. Kumar, Chris H. Kim and Sachin S. Sapatnekar “NBTI aware

synthesis of digital circuits,” Design Automation Conference 2007, San Diego, CA,

USA, June 2007.

[55] Xiangning Yang and Kewal Saluja, “Combating NBTI degradation via gate

sizing,” Proceedings of the 8th International Symposium on Quality Electronic

Design, 2007.

[56] Takayasu Sakurai and A. Richard Newton, “Alpha-power law MOSFET model

and its applications to CMOS inverter and other formulas,” IEEE Journal of Solid

State Circuits, VOL. 25, pp 584-594, April 1990.

[57] Bipul C. Paul, Kunhyuk Kang, Haldun Kufluoglu and Muhammad A. Alam,

“Impact of NBTI on the temporal performance degradation of digital circuits,” IEEE

Electron Device Letters, VOL. 26, NO. 8, pp- 560-562, August 2005.

 114

APPENDIX A1

TABLE A1.1: BASIC CELLS USED FOR DIFFERENT MULTIPLIERS AND BARREL SHIFTERS FOR DIFFERENT LOGIC DESIGN

STYLES

STANDARD/BASIC CELLLS

Logic

design style
BAUGH WOOLEY

MULTIPLIER

BOOTH ENCODED

WALLACE TREE

MULTIPLIER

MUX-BASED

MULTIPLIER

2×2 CELL BASED

MULTIPLIER

MUX BASED

BARREL

SHIFTER

PAREIRAS

BARREL SHIFTER

Static

CMOS

INV_static

AND2_static

FA_static

MUX2-1_static_ABCHG

INV_static

NAND2_static

NOR2_static

XOR2_static

OR2_static

AND2_static

MUX2-1_static

XOR2_static

OR3_static

OR2_static

FA_static

AND2_static

AND3_static

INV_static

NAND2_static

NOR2_static

FA_static

MUX2-1_static

XOR2_static

OR3_static

OR2_static

INV_static

AND2_static

AND3_static

 115

TG

INV_static

AND2_TG

FA_TG

MUX2-1_TG_ ABCHG

INV_static

NAND2_TG

NOR2_TG

XOR2_TG

OR2_TG

AND2_TG

MUX2-1_TG

XOR2_TG

OR3_TG

OR2_TG

FA_TG

AND2_TG

AND3_TG

INV_static

NAND2_TG

NOR2_TG

FA_TG

MUX2-1_TG

XOR2_TG

OR3_TG

OR2_TG

INV_static

AND2_TG

AND3_TG

DOMINO
AND2_DOMINO

FA_DOMINO

MUX2-1_DOMINO_

ABCHG

XOR2_DOMINO

OR2_DOMINO

AND2_DOMINO

MUX2-1_DOMINO

XOR2_DOMINO

OR3_DOMINO

OR2_DOMINO

FA_DOMINO

AND2_DOMINO

AND3_DOMINO

AND2_DOMINO

OR2_DOMINO

FA_DOMINO

MUX2-

1_DOMINO

XOR2_DOMINO

OR3_DOMINO

OR2_DOMINO

AND2_DOMINO

AND3_DOMINO

 116

TSPC MUX2-1_TSPC

AND3_TSPC

AND_OR_TSPC

BASICMODULE_TSPC

INV_Static

INV_BUF_TSPC

LATCHINV_TSPC

LATCH_TSPC

OR3_TSPC

OR2INV_TSPC

NAND2_TSPC

NOR2_TSPC

NOT_TSPC

XOR2_Static

AND2INV_TSPC

OR_AND_TSPC

 117

APPENDIX A2

A2.1 LAYOUT DESIGN FLOW
The design of physical layout is very tightly linked to overall circuit performance (area,

speed, power dissipation) since the physical structure directly determines the trans-

conductance of the transistors, the parasitic capacitances and resistance and obviously,

the silicon area, which is used for a certain function.

The initial phase of layout design can be simplified significantly by the use of stick

diagrams or symbolic layouts. Then the actual layout is done using the design rules.

Functionality and performance
specification

Circuit Topology

Estimate parasitic Capacitances

Initial sizing of transistor

Stick Diagram Layout

Mask Layout Design

Design Rule check (DRC)

Circuit & Parasitic Extraction

Circuit Simulation

Resize and
Modify

OK

 118

A2.2 STICK DIAGRAMS

Stick level in VLSI Design is an abstraction between transistor schematic level and

layout level. Stick diagrams assist in planning for layout drawing quickly and easily.

They need not be to scale. Also designing complete layout in terms of rectangles can be

overwhelming so first we will draw stick diagrams. It is a representation of the layout. In

stick diagram we capture layer topology of layout proposition through lines (sticks) of

different colors. It is a metric free notation and therefore does not show exact placement,

transistor sizes, wire lengths, wire widths and tub boundaries.

(a) Transistors

A transistor exists where a poly-silicon stick crosses either an N diffusion stick (NMOS

transistor) or a P diffusion stick (PMOS transistor).

Note that there is no difference in the construction of a transistor source and a transistor

drain. The source is determined as the source of conductors (electrons for NMOS / holes

for PMOS) when current flows through the channel. In some pass transistor circuits, the

source and drain may swap over during use.

(b) Implied Connections and Crossovers:

When two sticks of the same color meet or cross there is always a connection between

them. When two sticks of different colors meet or cross there is no implied connection

between them.

 119

The N and P diffusions may not cross each other. Where poly silicon crosses diffusion a

transistor is formed.

(c) Contact cut or Via:

A connection may be explicitly defined using a filled black circle. A connection is

allowed when just one layer of insulator separates mask layers. This connection is

defined as a "contact cut". Thus P diffusion may connect to Metal1 but not directly to

Metal2.

In a process if “stacked contacts” are permitted then we may draw a contact between

non-adjacent conductors; e.g. between Poly and Metal3, in which case the connection to

intermediate layers (Metal1 and Metal2) is implied.

 120

(d) Taps

The tap represents a connection to N-well or P-well. A tap is defined using an unfilled

black square. Here there will be only one conductor crossing the square (Metal1 power

or ground rail).

If connection is from a power rail then it is N-Well Tap, otherwise if the connection is

from a ground rail then it is a Substrate Tap.

(e) Combined Contacts & Taps

We can often save space by using a combined contact and tap. Here the tap shares the

same Active Area as the contact. A combined contact and tap is defined using a filled

black square instead of a filled black circle as shown for the source contact.

A combined contact and tap can only be used where the end of a diffusion stick

coincides with a contact to the power or ground rail.

 121

(f) Stick Diagram Color Code

P diffusion : Yellow/Brown

Metal1 : Blue

N diffusion : Green

Metal2 : Magenta/Purple/ Gray

Polysilicon : Red

Metal3 : Cyan/Light Blue

Contacts & Taps : Black

A2.3 Layout Layer Representation

 122

A2.4 DESIGN RULES

The physical mask layout of any circuit to be manufactured using a particular process

must conform to a set of geometric constraints , which are generally called layout

design rules. These rules usually specify the minimum allowable line widths for

physical objects on-chip such as metal and polysilicon interconnects or diffusion

areas, minimum feature dimensions, and minimum allowable separations between

two such features

(i) Intra-Layer Design Rules

(ii)Via’s and Contacts

 123

(iii) Table of design rules:

Table A2.1 Design rules
 Rules Size

1
Active area rules

 Minimum active area width

 Minimum active area spacing

3λ

3λ

2

Polysilicon rules

 Minimum polywidth

 Minimum gate extension of poly

over active

 poly-active edge spacing

(Poly outside active area)

 Minimum poly-active edge

spacing(poly inside active area)

2λ

2 λ

2λ

2λ

3

Metal rules
 Minimum metal width

 Minimum metal spacing

3λ

3λ

4

Contact rules

 Poly contact size

 Minimum poly contact spacing

 Minimum poly contact to poly

edge spacing

 Minimum poly contact to metal

edge spacing

 Minimum poly contact to active

edge spacing

 Active contact size

 Minimum active contact spacing

(on the same active region)

2λ

2λ

1λ

1λ

3λ

2λ

2λ

 124

 Minimum active contact to active

edge spacing

 Minimum active contact to metal

edge spacing

 Minimum active contact to poly

edge spacing

 Minimum active contact spacing

(on different active regions)

1λ

1λ

3λ

6λ

A2.5 Cell Heights for Different Cells

The heights of cells for different logic design styles and different W/L size of transistors
are presented in table A2.2. These heights are in terms of λ. Where λ=0.3 µm.

Table A2.2

Name W/L=3 W/L=5 W/L=7
Static CMOS 73.5 75 85.5

TG 75 85 95
Domino 78 96 107
TSPC 76 85 99

 125

APPENDIX A3

A3.1 HP05.md (Model Parameter File)

* MOSIS PARAMETRIC TEST RESULTS
*
* RUN: N5BO VENDOR: HP-NID
* TECHNOLOGY: SCN05H FEATURE SIZE: 0.5 microns
*
*
*INTRODUCTION: This report contains the lot average results obtained by MOSIS from
*measurements of MOSIS test structures on each wafer of this fabrication lot.
* SPICE parameters obtained from similar measurements on a selected wafer are also attached.
*
*COMMENTS: Hewlett Packard CMOS14TB.
*
*
*TRANSISTOR PARAMETERS W/L N-CHANNEL P-CHANNEL UNITS
*
* MINIMUM 0.9/0.60
* Vth 0.68 -0.90 Volts
*
* SHORT 15/0.60
* Vth 0.61 -0.88 Volts
* Vpt 11.4 -9.4 Volts
* Vbkd 11.4 -9.5 Volts
* Idss 396 -188 uA/um
*
* WIDE 15/0.60
* Ids0 10.5 1.6 pA
*
* LARGE 5.4/5.4
* Vth 0.69 -0.95 Volts
* Vjbkd 11.5 -10.1 Volts
* Ijlk -19.2 8.1 pA
* Gamma 0.60 0.49 V^0.5
*
* Delta length 0.14 0.09 microns
* (L_eff = L_drawn-DL)
* Delta width 0.44 0.32 microns
* (W_eff = W_drawn-DW)
* K' (Uo*Cox/2) 72.1 -22.0 uA/V^2
*
*COMMENTS: Delta L varies with design technology as a result of the different
* mask biases applied for each technology. Please adjust the delta L
* in this report to reflect the actual design technology of your
* submission.
* Design Technology Delta L
* ----------------- -------
* SCN_SUBM (lambda=0.3), CMOSH,
* HP_CMOS14TB no adjustment
* SCN (lambda=0.35) add 0.1 um
*
*
*FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS
* Vth Poly >15.0 <-15.0 Volts
*

 126

*
*
*
*PROCESS PARAMETERS N+DIFF P+DIFF POLY METAL1 METAL2 METAL3 UNITS
* Sheet Resistance 2.1 2.0 1.9 0.07 0.07 0.03 ohms/sq
* Width Variation -0.36 -0.29 -0.04 0.16 -0.04 -0.30 microns
* (measured - drawn)
* Contact Resistance 2.3 2.2 2.2 0.82 0.87 ohms
* Gate Oxide Thickness 94 angstroms
*
*
*CAPACITANCE PARAMETERS N+DIFF P+DIFF POLY METAL1 METAL2 METAL3 UNITS
* Area (substrate) 546 929 92 47 15 11 aF/um^2
* Area (poly) 59 18 11 aF/um^2
* Area (metal1) 37 14 aF/um^2
* Area (metal2) 33 aF/um^2
* Area (N+active) 3684 aF/um^2
* Area (P+active) 3500 aF/um^2
* Fringe (substrate) 195 234 aF/um
* Fringe (N+active) 105 aF/um
**
*
* N5BO SPICE LEVEL3 PARAMETERS
*
**

.MODEL NMOS NMOS LEVEL=3 PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=1
+ VTO=0.6566 DELTA=6.9100E-01 LD=4.7290E-08 KP=1.9647E-04
+ UO=546.2 THETA=2.6840E-01 RSH=3.5120E+01 GAMMA=0.5976
+ NSUB=1.3920E+17 NFS=5.9090E+11 VMAX=2.0080E+05 ETA=3.7180E-02
+ KAPPA=2.8980E-02 CGDO=3.0515E-10 CGSO=3.0515E-10
+ CGBO=4.0239E-10 CJ=5.62E-04 MJ=0.559 CJSW=5.00E-11
+ MJSW=0.521 PB=0.99
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is 4.1080E-07
.MODEL PMOS PMOS LEVEL=3 PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=-1
+ VTO=-0.9213 DELTA=2.8750E-01 LD=3.5070E-08 KP=4.8740E-05
+ UO=135.5 THETA=1.8070E-01 RSH=1.1000E-01 GAMMA=0.4673
+ NSUB=8.5120E+16 NFS=6.5000E+11 VMAX=2.5420E+05 ETA=2.4500E-02
+ KAPPA=7.9580E+00 CGDO=2.3922E-10 CGSO=2.3922E-10
+ CGBO=3.7579E-10 CJ=9.35E-04 MJ=0.468 CJSW=2.89E-10
+ MJSW=0.505 PB=0.99
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is 3.6220E-07

A3.2 mHP_nS5.ext (Layout Parasitic Extraction Definition File)

File: mHP_nS5.ext
For: Extract definition file
Vendor: MOSIS/HP
Technology: 0.5u (Lambda = 0.30um) / N-well (SCN3M_SUBM) Sub-Micron
Technology File: mHP_nS5.tdb
Copyright © 1991-2001 Tanner EDA, A Division of Tanner Research, Inc.
All Rights Reserved

This file will work only with L-EDIT Version 7 and greater.
**

connect(n well wire, ndiff, ndiff)

 127

connect(subs, pdiff, pdiff)
connect(allsubs, subs, subs)
connect(ndiff, Metal1, Active Contact)
connect(pdiff, Metal1, Active Contact)
connect(poly wire, Metal1, Poly Contact)
connect(Metal1, Metal2, Via1)
connect(Metal2, Metal3, Via2)
connect(LPNP emitter, pdiff, LPNP emitter)
connect(LPNP collector, pdiff, LPNP collector)

NMOS transistor with poly1 gate
device = MOSFET(
 RLAYER=ntran;
 Drain=ndiff, AREA, PERIMETER;
 Gate=poly wire;
 Source=ndiff, AREA, PERIMETER;
 Bulk=subs;
 MODEL=NMOS;
)

PMOS transistor with poly1 gate
device = MOSFET(
 RLAYER=ptran;
 Drain=pdiff, AREA, PERIMETER;
 Gate=poly wire;
 Source=pdiff, AREA, PERIMETER;
 Bulk=n well wire;
 MODEL=PMOS;
)

PNP transistor
device = BJT(
 RLAYER=LPNP ID, AREA;
 Collector=LPNP collector;
 Base=n well wire ;
 Emitter=LPNP emitter;
 Substrate=allsubs;
 MODEL=PNP;
 NominalArea = 1.0;
)

Linear capacitor using Cap-Well
device = CAP(
 RLAYER=Cap-Well Capacitor, AREA;
 Plus=poly wire;
 Minus=ndiff;
 MODEL=;
)

NMOS capacitor
device = CAP(
 RLAYER=NMOS Capacitor, AREA;
 Plus=poly wire;
 Minus=ndiff;
 MODEL=;
)

PMOS capacitor
device = CAP(
 RLAYER=PMOS Capacitor, AREA;
 Plus=poly wire;
 Minus=pdiff;
 MODEL=;
)

Poly resistor
device = RES(

 128

 RLAYER=Poly Resistor;
 Plus=poly wire;
 Minus=poly wire;
 MODEL=;
)

N Diffusion resistor
device = RES(
 RLAYER=N Diff Resistor;
 Plus=ndiff;
 Minus=ndiff;
 MODEL=;
)

P Diffusion resistor
device = RES(
 RLAYER=P Diff Resistor;
 Plus=pdiff;
 Minus=pdiff;
 MODEL=;
)

N Well resistor
device = RES(
 RLAYER=N Well Resistor;
 Plus=n well wire;
 Minus=n well wire;
 MODEL=;
)

Bonding Area Capacitance
 device = CAP(
 RLAYER=Pad Comment, AREA;
 Plus=Metal1;
 Minus=allsubs;
 MODEL=;
)

Diodes
device = DIODE(
 RLAYER=diode pdiff, AREA;
 Plus=pdiff;
 Minus=n well wire;
 MODEL=Dpdiff;
 NominalArea = 1.0;
) IGNORE_SHORTS

device = DIODE(
 RLAYER=diode ndiff, AREA;
 Plus=subs;
 Minus=ndiff;
 MODEL=Dndiff;
 NominalArea = 1.0;
) IGNORE_SHORTS

Lateral Diode
device = DIODE(
 RLAYER=diode_lat, AREA;
 Plus=pdiff;
 Minus=ndiff;
 MODEL=D_lateral;
 NominalArea = 1.0;
) IGNORE_SHORTS

 129

BRIEF BIOGRAPHY OF CANDIDATE

Abhijit R. Asati received his B.E. degree in electrical engineering from Amravati

University, India (1996). He worked in 1100 MW thermal power station at Koradi,

Nagpur from 1996 to 1997. From 1997 to 2000 he served as as a faculty member at the

Visveswarya national Institute of technology, Nagpur. In the year 2000 he joined M.E.

program in microelectronics at BITS, Pilani, India. After completing M.E. program he

joined as faculty member in electrical and electronics engineering group of BITS, Pilani.

He has published several papers in the area of microelectronics and VLSI design.

Candidate is pursuing research in the area of microelectronics and VLSI design.

BRIEF BIOGRAPHY OF SUPERVISOR

Dr Chandra Shekhar is Director of Central Electronics Engineering Research Institute

(CEERI), pilani, - a constituent national laboratory of the council of Scientific and

Industrial Research (CSIR). He received UNESCO/ROSTSCA Young Scientist Award

in 1986 for contributions in the area of Informatics and Applications of Computers in

Scientific Research and Merit Award as a Project Leader of the UNDP Project - ``Design

of ASICs'' on CEERI Foundation Day-1988. His research interests are VLSI Design and

Design Methodologies, Analog IC Design and Mixed Signal Design, Processors and

Application Specific Processors (Architecture and Design), CAD for VLSI, Physics and

Modeling of MOS Devices, VLSI System Applications. He is a fellow member of many

professional societies like IETE, Indian Physics, Association, Semiconductor Society of

India, Indo-French Technical Association and has played many other professional roles.

He has published more than 60 research papers (contributed and invited) in various

reputed international/national journals and conferences. He designed the country's first

dedicated full-custom LSI processor chip - 16-bit processor for pulse-width modulation

(PWM) control of variable frequency AC drives. His research groups designed a serial

data communication controller VLSI semi-custom chip and in CDOT's RAX and

MAXtelephone switches, also the nation's first general-purpose microprocessor chip - a

Motorola 68010 equivalent. He Pioneered the spreading of the new high-productivity

state-of-the-art hardware description language based VLSI design methodology in the

country. Currently he is working on the design of two application specific VLSI

processors and an embedded system based on these processors (to be realized throughs

FPGAs) to convert Hindi text into speech.

 130

LIST OF PUBLICATIONS

Journals:

[1] Abhijit Asati and Chandra Shekhar, “Comparison of trans-conductance ratio (β) for a

high speed inverter design,” ICFAI University Journal of Electrical & Electronics

Engineering. VOL. II, NO. 1, pp. 7-13, 2009.

[2] Abhijit Asati and Chandra Shekhar, “A high speed pipelined dynamic circuit

implementation using modified TSPC logic design style with improved performance,”

International Journal of Recent Trends in Engineering, VOL. 1, NO. 3, pp. 191-194,

June 2009.

[3] Abhijit Asati and Chandra Shekhar, “Digital CMOS high-speed level shifter design,”

International Journal of Computers Information Technology and Engineering, VOL. 3,

NO. 1, pp. 1-3, January-June 2009.

[4] Abhijit Asati and Chandra Shekhar, “Sizing of pre-charge and pre-discharge

transistors for domino logic design style,” International Engineering and Technology

(IETECH), Journal of Communication Techniques, VOL. 3, NO. 1, pp. 1-4, 2009.

[5] Abhijit Asati and Chandra Shekhar, “A 16×16 MUX based multiplier design using

optimized static CMOS logic style,” International Journal of Electronic Engineering

Research, VOL. 1, NO. 1, pp. 53-61, 2009.

[6] Abhijit Asati and Chandra Shekhar, “VLSI Implementation of a high performance

barrel shifter architecture using three different logic design styles,” International Journal

of Recent Trends in Engineering, VOL. 2, NO. 7, pp. 22-26, November 2009.

Conferences:

[1] Abhijit Asati and Chandra Shekhar, “An improved high speed fully pipelined 500

MHz 8×8 Baugh-Wooley multiplier design using 0.6 µm CMOS TSPC logic design

style,” IEEE Region 10 Colloquium and 3rd International Conference on Industrial and

Information Systems (ICIIS-2008), IIT Kharagpur, India, December 2008.

[2] Abhijit Asati and Chandra Shekhar, “An optimized approach for a CISC

microprocessor design using micro coded controller technique,” International

Conference on Wireless and Embedded systems (WECON-2008), Rajpura, India,

October 2008.

 131

[3] Abhijit Asati and Chandra Shekhar, “A high-Speed hierarchical, 16*16 array of array

multiplier design,” IEEE, International Conference on Multimedia, Signal Processing

and Communication Technologies (IMPACT), A.M.U. Aligarh, India, March 2009.

 [4] Abhijit Asati and Chandra Shekhar, “Digital CMOS high-speed level shifter design,”

International Conference on VLSI and Communication (ICVCom), Santgitts College of

Engineering, Kottayam, India, April 2009.

[5] Abhijit Asati, S.K.Sahoo and Dr. Chandra Shekhar, "Selection of optimum device

size and trans-conductance ratio for high speed digital CMOS inverter design for a

given fan out load," IEEE International Conference On Emerging Trends In

Engineering and Technology, (ICETET-09), Nagpur, India, December 2009.

[6] Abhijit Asati and Dr. Chandra Shekhar, "A purely MUX based high speed barrel

shifter design," International conference on Advances in Computer Vision and

Information Technology, (ACVIT-09), Aurangabad, India, December 2009.

