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Chapter 3

Steady Analysis of Switching and Reboot De-
lay

“Engineers like to solve problems. If

there are no problems handily

available, they will create their own

problems”.

Scott Adams

3.1 Introduction

Modern technologies heavily depend on the proper functioning of automated machin-
ing systems, which can be observed in many industries like power, communication,
security, manufacturing, etc. Any system or unit is subject to unpredictable failure
due to arbitrary causes like wear and tear, overload, natural or man-made external
causes, etc. and causing loss of efficiency. To control this situation, these systems
require to analyze as a machine repair problem (MRP) via the queueing theoretic
approach and seek to improve its efficiency. The machine repair problem has been
a keen area of interest for several theoreticians (cf. Sztrik and Bunday [165]; Haque
and Armstrong [59]; Shekhar et al. [159]), so it is worthwhile to give an in-depth
overview on such significant works. In this chapter, the reliability characteristics of a
machine repair problem with operating units prone to random failure, and a provision
of mixed spare redundancy have been analyzed to increase the system efficiency and
availability.

Redundancy is the duplication of critical components and functions of a system
with the intent of high reliability of the system, in the form of a backup or fail-safe.
The three types of backup or spare units are hot, warm, and cold which depend on
their failure characteristics. The failure rate of the hot spare unit in standby mode,
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i.e. when it is not in operation, is the same as that of an operating unit, whereas
the failure rate of a cold spare unit in standby mode is zero, i.e. it cannot fail until
it is in the standby state. The warm spare unit is an intermediate case between hot
and cold spare units. The failure rate of a warm spare unit thus lies between that of
an operating unit and zero in standby state. The MRP with spare units provisioning
has been studied by many researchers for different variants (cf. Wang and Sivazlian
[171]; Ke and Wang [99]; Jain et al. [82]). Recently, Kumar et al. [108] investigated
MRP with spare units provisioning under controlled admission policy and unreliable
repairmen.

K-out-of-M : F or a (M−K)-out-of-M : G machining system is an arrangement
with M operating units, where at any time, a minimum of M−K units in working
must be available. If more than K operating units fail, that is if less than M−K

units are working in the system, then the system shuts down completely. Failure of
the system and its units can be caused by a number of reasons, like wear and tear
of machinery, etc. An operating unit may fail during its running time, and a spare
unit may fail in its standby time. In the short mode, the load is distributed over
less than the required number of units. Load sharing by lesser operating units is the
overloading case, where the time-to-failure of the unit is state-dependent, and the
failure rate increases with a decreasing number of operating units due to their fail-
ure. Failed units in the system are repairable, with different repair rates for operating
and spare units following a certain policy. In past, many research papers concerning
the reliability characteristics of k-out-of-n warm spare units provisioning machining
systems have been published (cf. Zhang et al. [204]; Kamalja [89]; Zhang [206]).
Recently, Sutar and Naik-Nimbalkar [163] proposed an inference procedure for the
dependence parameter associated with load sharing effect in k-out-of-n systems with
non-identical components. Eryilmaz [40] obtained an exact and approximate expres-
sion for the survival function of the (k1,k2, ...,km)-out-of-n system having multi-type
components. Ling et al. [123] compared two policies by mean of majorization order
for optimal component allocation in k-out-of-n machining system.

A realistic phenomenon due to which the system is prone to absolute failure is
common cause failure, where the system may fail completely at any state, due to
unavoidable external causes or natural calamities, and is also of interest in current
investigation. A special and fast repair facility is required to recover from a complete
system failure state. Chao [23] derived a product-form solution for queue size dis-
tribution for the network of queues with a possibility of catastrophes at each station.
The redundancy allocation problem was formulated with the objective of maximiz-
ing system reliability in the presence of common cause failures by Ramirez-Marquez
and Coit [146]. In recent, the Bayesian approach was used for statistical analysis of
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common cause failure events in safety assessment (cf. Qiu et al. [143]; Nguyen and
Gouno [134]).

On failure of the operating unit, the available spare unit switches to the operating
state with some switching time and the substantial probability of successful switch-
ing. The switching probability (coverage factor) includes the chances of successful
detection, extraction of the location of a failure. To overcome the switching fail-
ure, the system undergoes the prompt reboot process to extract/clear the failed unit.
The concept of imperfect coverage in k-out-of-n machining system was introduced
by Moustafa [131]. Many researchers studied the effect of imperfect coverage on
failure in different point of view with different variants (cf. Trivedi [167]; Wang and
Chiu [178]; Ke et al. [95]; Ke and Liu [96]; Shekhar et al. [155]) Yen and Wang [198]
compared three different configurations with imperfect coverage and spare switch-
ing failures based on system reliability and availability. Kuo and Ke [110] used a
supplementary variable technique to derive steady-state availability of the machining
systems and compared cost/benefit ratio for different repair and service time distri-
bution.

The optimal repair times have wide applications for the management of the fault-
tolerant machining systems. The Newton-quasi method is suitable for the optimal
analysis in the stochastic environment. The basic idea is to estimate subgradient
to yield a search direction. It is proved that the resulting stochastic Newton-quasi
algorithm is able to generate a sequence that converges to the optimal point, under
certain conditions. Many theorists used Newton-quasi method for the optimization
problem in repairable machining systems (cf. Kao and Chen [90]; Wang et al. [176];
Ke et al. [93]). Li et al. [121] extended the spectral conjugate gradient method with
Newton-quasi directions and equations for the unconstrained optimization problem.

From the depth literature survey, the following research gap is clearly identified
that no study has been done in the past on the effect of switching delay and re-
boot delay in the redundant repairable fault-tolerant Markovian machining system
environment with probabilistic common cause failure. The novelty involved in the
present study is the state-of-the-art mathematical modeling of the machining sys-
tem with mixed spare units, common cause failure, switching delay, reboot delay,
load sharing, and state-dependent failure rate. The purpose of the present learning is
threefold: (i) The first objective is to develop the stochastic model of the machining
system with mixed spare units provisioning. (ii) The second aim is to analyze the
effect of various types of failures and delays on the performance of the fault-tolerant
K-out-of-M system. (iii) The third goal is to frame the optimal strategy for maintain-
ing the redundant repairable machining system for the seek of high quality of service
(QoS) or performance.
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A machining system may exist in different modes, namely normal, reboot, short,
and failed. The machining system is in the normal mode when there are M operating
units functioning in the system. If an operating unit fails during the normal mode, a
spare unit is used to replace it, returning the system to normal functioning. If switch-
ing of the spare unit fails, the system enters the reboot mode. In reboot mode, the
system is physically available but is not functioning. The system then tries to restore
normalcy by rebooting at a fast rate and attempts another switching of a spare unit
with the failed operating unit or by repairing it to full functionality. The attempts for
switching continues till all the spare units are exhausted. When less than M units are
functioning in the system, the system is said to be in the short mode. Now, the load
is distributed over the remaining units, causing them to be overloaded. Overload-
ing is an alarming condition wherein the failure rate of the remaining units increases
sharply, with a decreasing number of operating units. If the number of failed units
increases to more than K units, the system shuts down completely and refers as the
failure state of the system. The system may enter the failure mode due to common
cause failure from any state, as well.

A real-life example of the application of this machine repair problem is an elec-
tricity generator grid, supplying power to an area in the city. The generators and the
spare generators are analogous to the operating units and spare units described above,
respectively. These generators may fail due to many reasons like the fatigue of ma-
chinery, high voltage, overloading, etc. Upon failure of a generator, the load is shared
over the remaining units. Then, a spare generator is activated to replace the failed
operating generator. This switching is probabilistic, taking a considerable amount
of time. In case of imperfect switching, the entire grid reboots to attempt another
switching or to detect, extract, and repair of the failed generator. Overloading of the
grid, when less than a certain number of generators are functioning, is equivalent to
the short mode in the failure-prone system.

In this section, a depth literature review has been done and ascertain the unique-
ness of the model under consideration. The rest contents of this chapter are pre-
sented in the following structure. A detailed description of the system is described in
section (3.2) along with the governing Chapman-Kolmogorov differential-difference
equations and the state probabilities computation. Using steady-state probabilities,
various performance measures are computed in section (3.3). In section (3.4), the
basics of the Newton-Quasi method for optimal analysis are presented. The com-
parative and optimal analysis is done for the variability of performance to varying
parameters of the system in section (3.5). Finally, conclusions are drawn, and the
future scope is discussed in the last sections (3.6).
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3.2 Model Description and State Probabilities

In order to investigate the Markovian analysis of the fault-tolerant redundant re-
pairable machining system via queueing-theoretic approach, the finite Markov model
is developed using birth-death process.

3.2.1 Assumptions and Notations

In this section, a redundant repairable system of the form K-out-of-M : F machin-
ing system considering some assumptions and notations is formulated. The detailed
description of the machining system is as follows:

• The system consists of M operating units working simultaneously in parallel
and independently with the provision of Y cold spare units and S warm spare
units. For the standard functioning of the system, M operating units are re-
quired.

• The lifetimes of operating units and warm spares are exponentially distributed
with rate λ and ν respectively.

• Whenever the operating unit fails, it is automatically replaced by the available
spare unit. There is also a possibility that a spare unit may fail before it is
used in operation and hence, it is continuously monitored with the automatic
system. It is assumed that all the warm spare units are used exhaustively before
the cold spare units.

• After the failure of the operating unit, the switching of spare unit to the op-
erating state may be probabilistic in nature with the probability of successful
switching ρ . The time-to-switching follows exponential distribution with pa-
rameter τ . Hence, if the switching succeeds then the failed operating unit is
replaced by the available spare unit in time which is exponentially distributed
with the rate ρ

τ
.

• In case of the switching failure of the spare unit, the system opts to reboot with
time which is also exponentially distributed with the rate of 1−ρ

τ
. In reboot

state, the system is physically available but not in the working state (normal
mode). The time-to-reboot follows an exponential distribution with rate σ

which is to be very high so that no other event can take place during system
reboot period.
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• The load is shared with M operating units in normal mode and continues until
there are at least M−K units in the system in short mode. The lesser num-
ber of operating units also increases the chances of overloading making the
remaining operating units more vulnerable to the failure. Hence, The system
is operable until the failure of K operating units in the short mode. In short
mode, operating unit fails with exponentially distributed time-to-failure with
state-dependent mean rate Λn, where n denotes the number of failed operating
units in short mode.

• The system not only fails due to failure of units but it may also fail due to
some external unavoidable reasons collectively termed as common cause fail-
ure. The time-to-failure of the system due to common cause failure is expo-
nentially distributed with a mean rate of λC.

• Henceforth, there is always a pre-arrangement of repair facility consisting of
two repairmen. Following an exponential distributed repair times, repairman
1 repairs the failed operating unit with the rate of µ1 while the repairman 2
repairs failed spare unit with the rate of µ2.

• When the system is in shut down state, the special repair is facilitated and a
repair time follows an exponential distribution with rate parameter µC.

All events are independent to state of the others. Fig. (3.1) depicts the state transition
diagram with inflow and outflow rates for studied machine repair problem.

3.2.2 Chapman-Kolmogorov Equation

For the Markovian modeling, the notations adopted to describe the different states of
the machine repair model at any instant t are as follows.

I (t)≡ Number of operating units in the system at time t

J (t)≡ Number of cold spare units in the system at time t

K (t)≡ Number of warm spare units in the system at time t

F(t)≡ The system is in failed state at time t
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Figure 3.1: The state transition diagram
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{I (t),J (t),K (t)∪F(t)} is a continuous-time Markov chain. At any instant t, the
state probabilities are defined as

Pi, j,k(t) = Prob(I (t) = i,J (t) = j,K (t) = k and system is in normal or short state)

Qi, j,k(t) = Prob(I (t) = i,J (t) = j,K (t) = k and system is in reboot state)

PF(t) = Prob(system is in failed state)

As t→∞, the system tends to stable condition and the governing Chapman-Kolmogorov
forward difference equation in terms of inflow, outflow rates and state probabilities
are as follows

Case 1: The warm spare units are utilized first on the failure of operating unit
with perfect switching and random switching delay.

− [Mλ +Sν +λC]PM,Y,S +µ1PM−1,Y,S +µ2PM,Y,S−1 +µCPF = 0 (3.1)

− [Mλ +(S− k)ν +λC +µ2]PM,Y,S−k +(S− k+1)νPM,Y,S−k+1

+
ρ

τ
PM−1,Y,S−k+1 +µ1PM−1,Y,S−k +µ2PM,Y,S−k−1 = 0;1≤ k ≤ S−1 (3.2)

Case 2: On exhaust of warm spare units, the cold spare units are utilized on the
failure of operating unit with perfect switching and random switching delay.

− [Mλ +λC +µ2]PM,Y,0 +νPM,Y,1 +
ρ

τ
PM−1,Y,1 +µ1PM−1,Y,0 +µ2PM,Y−1,0 = 0

(3.3)

− [Mλ +λC +µ2]PM,Y− j,0 +
ρ

τ
PM−1,Y− j+1,0 +µ1PM−1,Y− j,0

+µ2PM,Y− j−1,0 = 0; 1≤ j ≤ Y −1 (3.4)

Case 3: On the exhaust of warm and cold spare units, the number of operating units
are reducing on the failure of operating unit.

−
[

λC +
1
τ
+µ1

]
PM−1,Y,S +MλPM,Y,S = 0 (3.5)
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Case 4: The warm spare units are utilized on the failure of operating unit with im-
perfect switching.

−
[

λC +
1
τ
+µ1

]
PM−1,Y,S−k +MλPM,Y,S−k +σQM−1,Y,S−k+1 = 0; 1≤ k ≤ S (3.6)

Case 5: On exhaust of warm spare units, the cold spare units are utilized on the
failure of operating unit with imperfect switching.

−
[

λC +
1
τ
+µ1

]
PM−1,Y− j,0 +MλPM,Y− j,0 +σQM−1,Y− j+1,0 = 0; 1≤ j ≤ Y −1

(3.7)

Case 6: On imperfect switching, the system opts the reboot process.

−σQM−1,Y,S−k +
ρ̄

τ
PM−1,Y,S−k = 0; 0≤ k ≤ S (3.8)

−σQM−1,Y− j,0 +
ρ̄

τ
PM−1,Y− j,0 = 0; 1≤ j ≤ Y −1 (3.9)

Case 7: On exhaust of warm and cold spare units, the number of operating units are
reducing on the failure of operating unit in safe mode and load sharing is distributed
among remaining operating units.

− [Λ0 +λC +µ2]PM,0,0 +
ρ

τ
PM−1,1,0 +µ1PM−1,0,0 = 0 (3.10)

− [Λ1 +λC +µ1]PM−1,0,0 +Λ0PM,0,0 +σQM−1,1,0 +µ1PM−2,0,0 = 0 (3.11)

− [Λi +λC +µ1]PM−i,0,0 +Λi−1PM−i+1,0,0 +µ1PM−i−1,0,0 = 0; 2≤ i≤ K−1
(3.12)

− [ΛK +λC +µ1]PM−K,0,0 +ΛK−1PM−K+1,0,0 = 0 (3.13)
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Case 8: The failed state of the system which may be due to less number of the re-
quired number of operating units or common cause failure.

−µCPF +ΛKPM−K,0,0 +λC

[
S

∑
k=0

(
PM,Y,S−k +PM−1,Y,S−k

)]

+λC

[
Y−1

∑
j=0

(
PM,Y− j,0 +PM−1,Y− j,0

)]
+λC

K

∑
i=0

PM−i,0,0 = 0 (3.14)

For above defined state probabilities, the normalizing condition is

∑
i

∑
j
∑
k

Pi, j,k +∑
i

∑
j
∑
k

Qi, j,k +PF = 1∀ i, j,k (3.15)

3.2.3 The Steady-State Solution

For the steady-state solution, the system of simultaneous linear equations Eqn’s (3.1)-
(3.14) can be represented in matrix form as

AP = 0 (3.16)

Here A is a square matrix of order 3Y +3S+K+2 whose elements are the coefficient
of state probabilities Pi, j,k and Qi, j,k, P is column vectors of unknown state probabil-
ities and 0 be a null vector of suitable dimension. By imposing the normalizing
condition in Eqn. (3.15) in matrix form as

Pe = 1 (3.17)

where e is a vector of 1’s, the above system of linear equations Eqn. (3.16) can be
expressed as

CP = B (3.18)

where C is the same matrix as A except each element in the last row is replaced by
1 and B is a column vector having zero elements except the last element which is
replaced by 1. The system of linear Eqn. (3.18) given in matrix form has been solved
to obtain the steady-state probabilities using the Gauss elimination extended numer-
ical technique SOR method with over-relaxation parameter value 1.25 in MATLAB
software.

In the next section, the performance indices for the machining system are estab-
lished in terms of the state probabilities.
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3.3 Performance Measures

The system physiognomies can be characterized by deriving the performance mea-
sures in terms of the steady-state probabilities. These measures play a substantial
role in achieving the high performance and can be used as valuable tools by the sys-
tem managers and industrial engineers for the enhancement of the grade of service
(GoS) by predicting the preventive requirements and queueing indices of the con-
cerned redundant machining system. Some performance measures are classified as
follows

3.3.1 State Probabilities

• The probability that the system is in a normal state

P(N) =
S

∑
k=0

(
PM,Y,S−k +PM−1,Y,S−k

)
+

Y−1

∑
j=1

(
PM,Y− j,0 +PM−1,Y− j,0

)
+PM,0,0

(3.19)

• The probability that the system is in a down state

P(D) =
S

∑
k=0

QM−1,Y,S−k +
Y−1

∑
j=1

QM−1,Y− j,0 (3.20)

• The probability that all spare units are exhausted

P(S) =
K

∑
i=1

PM−i,0,0 (3.21)

3.3.2 Expectation

• Expected number of failed units in the machining system

E(N) =
S

∑
n=1

n
(
PM,Y,S−n +PM−1,Y,S−n+1 +QM−1,Y,S−n+1

)
+

Y+S

∑
n=S+1

n
(
PM,Y+S−n,0 +PM−1,Y+S−n+1,0 +QM−1,Y+S−n+1,0

)
+

Y+S+K

∑
n=Y+S+1

n
(
PM+Y+S−n,0,0

)
(3.22)
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• Expected number of spare units in the machining system

E(S) =
S

∑
n=0

(
Y+S−n

)(
PM,Y,S−n +PM−1,Y,S−n +QM−1,Y,S−n

)
+

Y+S−1

∑
n=S+1

(Y +S−n)
(
PM,Y+S−n,0 +PM−1,Y+S−n,0 +QM−1,Y+S−n,0

)
(3.23)

• Expected number of operating units in the machining system

E(O) =
S

∑
n=0

M
(
PM,Y,S−n +PM−1,Y,S−n +QM−1,Y,S−n

)
+

Y+S−1

∑
n=S+1

M
(
PM,Y+S−n,0 +PM−1,Y+S−n,0 +QM−1,Y+S−n,0

)
+

Y+S+K

∑
n=Y+S+1

(M+Y +S−n)PM+Y+S−n (3.24)

• Expected delay time

E(D) =
E(N)

T T
(3.25)

3.3.3 Queueing Measures

• The throughput of the machining system

T h = µCPM,Y,S +µ1

(
S

∑
k=0

PM−1,Y,S−k +
Y−1

∑
j=1

PM−1,Y− j,0 +
K

∑
i=1

PM−i,0,0

)

+µ2

(
S

∑
k=0

PM,Y,S−K−1 +
K

∑
i=1

PM−i,0,0

)
(3.26)

• Availability of the machining system

Av = 1−PM,Y,S−
(

S

∑
k=0

QM−1,Y,S−k +
Y−1

∑
j=1

QM−1,Y− j,0

)
(3.27)

• Machine availability

MA = 1− E(N)

M+Y +S
(3.28)
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• Failure frequency of the machining system

FF = ΛKPM−K,0,0 +λC

[
S

∑
k=0

(
PM,Y,S−k +PM−1,Y,S−k

)]

+λC

[
Y−1

∑
j=0

(
PM,Y− j,0 +PM−1,Y− j,0

)]
+λC

K

∑
i=0

PM−i,0,0 (3.29)

3.3.4 Expected Total Cost

The prime objective of the present learning is to determine the optimal design pa-
rameters in order to minimize the incurred value of the expected total cost. Now, the
expected cost function is developed by considering the repair facility (rates) (µ1,µ2)

as a decision variables and various cost elements involved in different activities. The
cost elements associated with different activities are considered to be linear and de-
fined as follows

CH : Holding cost for each failed unit in the system

CS: Cost incur for each spare unit in the system

CO: Cost incur for each operating unit in the system

C1: Cost involved in providing the service with rate µ1

C2: Cost involved in providing the service with rate µ2

C3: Cost involved in providing the service with rate µC

• Hence, the expected total cost is defined as

E(TC) =CHE(N)+CSE(S)+COE(O)+C1µ1 +C2µ2 +C3µC (3.30)

3.4 Newton-Quasi Method

The Newton-quasi method is the procedure used to find local maxima and minima
of the functions, as an alternative to Newton’s method when Newton’s method is not
suitable due to the complexity of the function. The Newton-quasi method is used
if the Hessian is unattainable or is too computationally complex at every iteration.
Newton’s method requires the Hessian for finding extrema. The search for an ex-
tremum of a scalar-valued function is nothing else than the quest for the zeroes of the
gradient of that function, Newton-quasi method is readily suitable to find extrema of
a function.
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Newton-quasi methods are centred on Newton’s method to explore the station-
ary point of a function, where the gradient is zero. Newton’s method assumes that
the function can be locally approximated as a quadratic in the region around the
optimum, and uses the first and second derivatives to find the stationary point. In
Newton-quasi methods, the Hessian matrix does not necessarily to be computed.
The Hessian is updated by evaluating successive gradient vectors instead.

The Newton-quasi method is the variable-metric method used in optimization
exploit following property. If g is the gradient of f , then searching for the zeroes of
the vector-valued function g corresponds to the examination for the extrema of the
scalar-valued function f ; the Jacobian of g now becomes the Hessian of f . The main
difference is that the Hessian matrix is a symmetric matrix, unlike the Jacobian when
searching for zeroes.

In the chapter, the expected total cost is a uni-modal function but complex in
nature. The first and second derivatives of expected total cost with respect to sys-
tem parameters are not readily computable since it depends on system parameters
intrinsically. On fixing the system parameters, the expected total cost is function of
decision variables. The Newton-quasi method is employed to global search (µ1,µ2)

until the minimum value of E(TC(µ1,µ2)), say E(TC(µ∗1 ,µ
∗
2 )), is attained. The cost

minimization problem can be illustrated mathematically as

TC (µ∗1 ,µ
∗
2 ) = minimize

µ1,µ2
TC (µ1,µ2) (3.31)

The essence of the Newton-quasi method is to find a search direction in each itera-
tion. Different step length along this direction for a better solution is used until the
tolerance is small enough. Define the vector ~Ω = [µ1,µ2]

T and the respective gradi-
ent vector ~∇TC(~Ω) which consists of ∂TC

∂ µ1
and ∂TC

∂ µ2
. Next, the Newton-quasi method

is employed to find the global minimum expected cost and corresponding decision
variables by using the following steps:

Step 1. Let ~Ω0 = [µ1,µ2]
T

Step 2. Set the initial trial solution for ~Ω0 and compute TC(~Ω0)

Step 3. Compute the cost gradient~∇TC(~Ω) = [∂TC/∂ µ1,∂TC/∂ µ2]
T |~Ω0

and the cost
Hessian matrix

H(~Ω) =

 ∂ 2TC
∂ µ2

1

∂ 2TC
∂ µ1µ2

∂ 2TC
∂ µ1µ2

∂ 2TC
∂ µ2

2


Step 4. Find the new trial solution

~Ωn+1 = ~Ωn−
[
H
(
~Ωn

)]−1
~∇TC

(
~Ωn

)
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Step 5. Set n = n+1 and repeat steps 2−4 until∣∣∣∣∂TC
∂ µ1

∣∣∣∣< ε1 and
∣∣∣∣∂TC

∂ µ2

∣∣∣∣< ε2

where ε1 = ε2 = 10−7 are the tolerances.

Step 6. Find the global minimum value TC
(
~ΩT

n

)
= TC (µ1,µ2)

3.5 Numerical Result

The analytical results of the redundant repairable machining system performance
measures are not sufficient to establish the worthiness of the developed model. To
explore the practical applicability of the proposed repairable Markov model with
switching and reboot delay, several numerical experiments are executed in MATLAB
and the results are presented in Tables (3.1)-(3.5) and Figs. (3.2)-(3.8). For that
purpose, numerical experiments with following default value of system parameters
M = 10; Y = 3; S = 4; K = 2; λ = 0.5; λC = 0.02; ν = 0.3; µ1 = 2; µ2 = 5; µC = 10;
ρ = 0.5; τ = 0.2; σ = 25 are performed.

Fig. (3.2) presents the variability of the expected number of failed units in the
machining system E(N) with respect to system parameters. As the failure rates (λ ,ν)
of units increase, the values of E(N) increases, which is an obvious result. The same
trends are also noted for the increased number of units (M,S) in the system and
the threshold K. To check the high value of E(N), better corrective measures are
recommended since it decreases for higher value repair rates (µ1,µ2), as well better
preventive measures like the low probability of switching failure (1− ρ) and low
switching time (τ). Since the system fails with common cause failure, E(N) is not
much affected with λC and µC. The reboot process is also substantial in extracting
the failed unit for repair.

The apparent results for the availability of the machining system Av are observed
in Fig. (3.3) in which Av decreases for the higher rate of failure of units and com-
mon cause (λ ,ν ,λC) and increases with increased repair rate (µ1,µ2,µC). It is also
inferred from Fig. (3.3) that suitable preventive measures are critical over the ex-
pensive arrangements of operating units and spare units. Prompt reboot, instant
switching, and low switching failure probability are expected for better preventive
measures.

Fig. (3.4) depicts the variation of the throughput of the machining system T h for
the different values of system parameters. Throughput of the machining system T h

is defined as the expected number of repaired units in the machining system. For the
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efficient corrective measures, higher throughput of the machining system is urged,
which can be achieved with better service facilities like the higher value of repair
rates (µ1,µ2,µC), prompt switching and reboot (ρ,τ,σ). The results of Fig. (3.4)
support today’s expectation and intention.

From the different sets of system parameters, the relation between machine avail-
ability MA and system parameters are established, and the results are depicted in
Fig. (3.5). Fig. (3.6) displays the changes in the value of failure frequency FF for
the different value of the system parameters. These performance measures are also
critical in decision making for corrective, predictive and preventive maintenance and
result in Fig. (3.5) & Fig. (3.6) will be helpful for system analysts.

Besides the assumed default system parameters value for Figs. (3.2)-(3.6), for
cost analysis, the following unit cost elements CH = 80; CO = 30; CS = 15; C1 = 15;
C2 = 5; C3 = 50 are also considered for computing the expected total cost. The
expected total cost incurred in the machining system should be optimal with some
constraints of availability of the system and system parameters. For that purpose,
expected total cost function E(TC) is defined in terms of various cost elements and
states of the system. In Fig. (3.7), the surface plot of E(TC) are presented for various
combinations of system parameters. It reveals how the expected total cost is reduced
with maintaining the expected grade of quality of service (QoS). It is obvious that
expected total cost increases with number of units in the system and incurs more
cost for better service which is also depicted in Fig. (3.7). Hence, there is necessity
for finding the optimal repair facility, so the Newton-quasi method is employed for
determining optimal decision parameters.

For the optimal analysis or employing the Newton-quasi method, it is necessary
to check the nature of the expected total cost function E(TC) with respect to decision
variables and obviously it should be convex. For that purpose, in Fig. (3.8), contour
plot for expected total cost with respect to decision parameters µ1 and µ2 is depicted
for the following default parameters M = 15; Y = 5; S = 8; K = 6; λ = 0.5; λC =

0.02; ν = 0.3; µ1 = 2; µ2 = 10; µC = 10; ρ = 0.5; τ = 0.2; σ = 25; CH = 80;
CO = 30; CS = 15; C1 = 15; C2 = 5; C3 = 50 and infer that E(TC) is convex in
nature. For the illustration of convergent nature of the Newton-quasi method, two
illustrative examples are taken into consideration with following default parameters
M = 15; Y = 5; S = 8; K = 6; λ = 0.5; λC = 0.02; ν = 0.3; µC = 10; ρ = 0.5;
τ = 0.2; σ = 25; CH = 80; CO = 30; CS = 15; C1 = 15; C2 = 5; C3 = 50 and different
initial guess value of decision parameters µ1 = 2; µ2 = 10 in Table (3.1) and µ1 = 6;
µ2 = 8 in Table (3.2). Table (3.1) & Table (3.2) summarize the step value of decision
variables, corresponding expected total cost, rate of change of cost with parameters.
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The following stopping criterion of iterative procedure is assumed

Tol = max
(∣∣∣∣∂E(TC(µ1,µ2))

∂ µ1

∣∣∣∣ , ∣∣∣∣∂E(TC(µ1,µ2))

∂ µ2

∣∣∣∣)
with tolerance limit 10−7. It is perceived from Tables (3.1 & 3.2) that the Newton-
quasi method converges to same optimal decision values even it initiates with differ-
ent initial guesses.

For Tables (3.3)-(3.5), the default parameters are set as follows M = 15; Y = 5;
S = 8; K = 6; λ = 0.5; λC = 0.02; ν = 0.3; µC = 10; ρ = 0.5; τ = 0.2; σ = 25;
CH = 80; CO = 30; CS = 15; C1 = 15; C2 = 5; C3 = 50 with initial guess µ1 = 2;
µ2 = 8 for iteration. Tables (3.3)-(3.5) comprise the results of optimal repair rates
(µ∗1 ,µ

∗
2 ) and corresponding optimal expected total cost E(TC(µ∗1 ,µ

∗
2 )) and other

performance measures through the Newton-quasi method for different sets of sys-
tem parameters. In Table (3.3), different combinations of (M,Y,S,K) are taken and
find that higher value of repair rates is required if the system has more operating and
spare units. For different set of system parameters (λ ,λC,ν ,µC), from Table (3.4),
it is observed that if units are more prone to failure with higher rate, better repair
rate is required for achieving optimum service conditions. It is obvious results and
support methodology used and analysis done herein. Similar kind of results are also
tabulated in Table (3.5) for the system parameters (ρ,τ,σ). As ρ increases, opti-
mal repair rate for operating/spare unit increases with decreased expected total cost.
Decremental trends in the value of repair rates and expected total cost are observed
for the increased value of τ . Negligible change is observed with reboot process since
reboot is independent event to service.

From the in-depth comparative and optimal analysis, the following inferences are
recommended.

• As preventive measures, too many spare units facility is not always beneficial.
Prompt switching and reboot play a very vital role in maintaining a high grade
of service.

• As corrective measures, the optimal repair rates must be maintained to avoid
the idleness or extra cost incurred in service.

• Periodic maintenance is recommended to avoid the units/system failure, switch-
ing failure, which directly affects the performance of the machining system.
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3.6 Conclusion

In the present model, the Markovian analysis has been done for the K-out-of-M : F

redundant repairable machining system with the support of mixed spare units facing
independent failure, switching failure, state-dependent failure, and common cause
failure. Some real-time phenomena, like reboot delay, controlled parameter, etc.
have also been incorporated. The governing Chapman-Kolmogorov equations have
been formulated and solved by employing the SOR method to obtain the steady-
state probabilities. Various performance characteristics for comparative and optimal
analysis have been developed, and exhaustive experimental illustrations have carried
out. This model can be used for application in various machining systems in different
industries like power generation, communications, etc. The studied research problem
takes into account many realistic phenomena and provides an informative outlook
on the process of increasing the efficiency of automated machining systems. These
systems have great importance in modern technology, and it is essential to optimize
their performance for the advancement of the respective industries.

The present study may be extended with consideration of unreliable repairmen,
additional repairmen, more realistic policies like a vacation, N, D, or T policy, setup
time, etc. The impatience behavior of caretakers of failed units can also be incor-
porated with the present study to increase model insight for dealing with the more
realistic problem. Researchers can look forward to some metaheuristics optimization
techniques for complex systems.
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Figure 3.8: Contour of expected total cost wrt µ1 and µ2


