
Chapter 5

Fuzzy Analysis of Unreliable Repair Facility

“All human things are subject to

decay, and when fate summons,

Monarchs must obey”

Mac Flecknoe

5.1 Introduction

Many physical and biological phenomena can be signified in terms of an assemblage
of individuals, customers or data governed by the competition of the two basic ran-
dom mechanisms of birth and death like neutron multiplication, nuclear collision cas-
cades, epidemics and ecology, bacterial growth, genetics, telecommunications, com-
puter networks, broadcasting, etc. In the day-to-day, it is observed that the machining
system gets congested, and the service delay in the machining system increases like
communication delay, processing delay, transmission delay, queueing delay, retrans-
mission delay, etc. The knowledge of the relationship between congestion and delay
is essential for designing the congestion control machining system.

Queueing theory provides the theoretical platform to understand the relation-
ship between birth, death, and waiting delay systematically. Queues are ubiquitous.
The classical queueing model M/M/1 refers to a single server system having neg-
ative exponential arrivals and service time with infinite capacity and infinite source
(cf.Kleinrock [103]; Gross et al. [55]). This is the most fundamental queueing model
and the most widely used system for the analysis and understanding of the practi-
cality of congestion or waiting line problems. The M/M/1 is a good approximation
for a large number of queueing systems in service-related applications. Vijayashree
and Janani [169] obtained an explicit expression for the time-dependent system size
probabilities of the single server Markovian queueing model using Laplace transform
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and generating function techniques. But, this solution cannot handle the dynamic be-
havior of governing parameters.

The idea of the catastrophe occurring at haphazard, leading to obliteration of all
customers, units, or data there in the machining system and the temporary inactiva-
tion of the service facilities until a new arrival of the customer, unit, or data, is not
unusual in many service systems (Ammar [8]). This phenomenon is prominent in
the presence of unwanted customers, units, or viruses having the characteristic to re-
move all the regular customers, units, or data in the machining system or may occur
from outside the machining system from another service facility. It has enormous
applications in many areas, especially in computer and communication systems, in-
dustries, biosciences, and population genetics. In the real-world, catastrophes appear
in numerous situations in practice, for instance, in the production line, in the service
industries, in the health care system, in population genetics, in the transportation
network, in the telecommunication industry, etc. Artalejo [9] gave a comprehensive
survey on a queueing system with a catastrophe. The effect of a catastrophe on ser-
vices in many applications was studied in recent research articles (cf. Crescenzo et
al. [37]; Atencia and Moreno [11]; Kumar et al. [106]; Kumar et al. [107]). Ku-
mar [109] developed a stochastic queueing model for a catastrophe cum restoration
queueing system with correlated batch arrivals and general service time distribution.
Baumann and Sandmann [15] studied for the multi-dimensional Markov chains or
generator matrix with block tridiagonal transition probability involved in a queue-
ing system with random catastrophe. Various time-dependent performance measures
were computed for a varying catastrophe intensity cum restorative Markovian queue-
ing model with finite capacity by Bura and Kumar [20]. All researchers considered
static queueing optimization problem in which characteristic would not change over
time. It is generally seldom in practical purpose.

Dimon and Economon [38] derived the explicit expressions and computational
schemes for various performance descriptors of the single server queue with the
catastrophe that occurred according to a Poisson process and types of reneging.
Goswami [54] obtained the steady-state probabilities using the displacement operator
method for discrete-time queueing systems with two heterogeneous servers subject to
catastrophe. Including the non-stationary birth-death process with catastrophe in the
queueing systems M(t)/M(t)/1 and M(t)/M(t)/∞, various applications were pro-
vided by Giorno et al. [53]. Mulatier [34] studied for critical catastrophe in a nuclear
reactor by investigating the spatial behavior of the fluctuations in confined geometry.
Dharmraja et al. [36] used jump-diffusion approximations of the continuous-time
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Ehrenfest model that defined over the integers and subjected to catastrophe occur-
ring at a constant rate, which led to the Ornstein-Uhlenbeck process with catastro-
phe. Dharmaraja and Kumar [35] obtained explicit time-dependent probabilities of
system size for a Markovian queueing system with heterogeneous servers and catas-
trophes. There was a wide gap that all researches and catastrophe considered its rate
of occurrence static and derived steady-state or transient expressions for associated
performance measures. No research article has been found in the literature for its
dynamic behavior or its fuzzy analysis.

In a modern automatic congestion control machining system, an intelligent sys-
tem is required to interface between increasing demands of performance, product
quality, material consumption, hierarchical information, scheduling, supervision, fault
detection, diagnosis, etc. The fuzzy system is a powerful tool to understand partly
incomplete, vague, and imprecise information in the high-level automatic control ma-
chining system. Specifically, in many practical applications, the statistical informa-
tion of arrival or service of the customers, units, or data may be obtained subjectively
or more suitably described by linguistic terms such as fast, moderate, or slow, rather
than probabilistic in the automatic control machining system. The arrival rate of the
customer, unit, or data and service rate of the server or machine cannot be adjudged
exactly. Fuzzy queues are much more realistic than commonly used crisp queues to
analyze the machining system when parameters are described in terms of possibility
rather than probability. FM/FM/1 denotes a single-machine (server) queueing sys-
tem with fuzzified inter-arrival time and service time. The inter-occurrence time of
catastrophe is also fuzzified to make the studied queueing system more possibilistic.
To deal with imprecise information in the making decision, Bellman and Zadeh [16]
and Zadeh [200] introduced the concept of fuzziness. Fuzzy queues involved in
different real-life systems have been discussed by several researchers (cf. Li and
Lee [120]; Buckley [19]; Negi and Lee [133]; Kao et al. [91]). Buckley [18] gave a
survey on the fuzzy queue in detail. Performance measures of fuzzy queues having a
fuzzy random event like arrival, service, catastrophe is fuzzy as well. Among these
researches in literature, no research article has been found on a fuzzy catastrophe.

To conserve the fuzziness of input information completely, the fuzzy performance
measure should also be described by a membership function rather than a crisp value.
A mathematical programming approach is used to derive the membership function
of the system performance measures of the queueing system with fuzzy parameters.
The underlying idea is to apply the concept of α-cut and Zadeh’s extension prin-
ciple (cf. Zadeh [200]; Yager [188]; Zimmermann [208]; Chen [27]). Kurano et
al. [112] found Pareto optimal policy for maximizing the infinite horizon fuzzy ex-
pected discounted reward overall stationary policies under some partial order. On the
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basis of Zadeh’s extension principle, mixed-integer nonlinear programs, which pa-
rameterized by the possibility level α , was formulated by Chen [25] to compute the
lower and upper bounds of the minimal expected total cost per unit time at α and de-
scribed the membership function of the minimal expected total cost per unit time of
the fuzzy objective value. Pardo and Fuente [138] expressed the standardized profit
functions as membership functions, which completely kept the uncertainty of the ini-
tial information when the service time was fuzzy with different levels of possibility
ranging from the pessimist case to the optimistic. Ahmed and Sardar [1] proposed
an approximate but convenient method for solving fuzzy linear programming with
a fuzzy non-negative technical coefficient and without using the ranking functions.
Gupta et al. [56] considered the allocation problem of repairable components for a
parallel-series system as a fuzzy multi-objective nonlinear programming optimiza-
tion problem. Murthy [3] developed a fuzzy programming model with quadratic
membership functions for the solution of a multi-objective problem. Recently, Garg
and Ansha [49]; Garg [51]; Garg [47]; Garg [50] highlighted new applications of
fuzzy theory and developed various types of new fuzzy numbers and their arith-
metic. Inspiring from previous findings, the methodology is developed to determine
the membership function of fuzzy performance measures of the studied machining
system in a fuzzy environment.

The classical queueing models with catastrophes are comprehensively deliber-
ated as mentioned in the literature review; however, there is no work on fuzzy queue
with fuzzy catastrophe. On this observation in literature, the state-of-the-art fuzzy
queue FM/FM/1 is proposed with a fuzzy catastrophe in this chapter, i.e. the nov-
elty of the present chapter is to study stochastic process with the fuzzy environment
in a systematic manner for a better insight of dynamic behavior of the system. The
proposed model deals with the dynamic behavior of catastrophe and other events.
It describes the model’s uncertainty and subjective ambiguity in a better fashion.
The proposed methodology covers a wide range of sensitivity or strategic planning.
Along with this line, the purpose in current study is to investigate a pair of mathemat-
ical programs which are formulated to calculate the lower and upper bounds of the
α-cut of the fuzzy machining system performance measures. The membership func-
tions of the fuzzy machining system performance measures are derived numerically
by enumerating different values of α . The advantage of the present study is three-
fold: (1) System designers and learners can understand the importance of the fuzzy
environment to deal with dynamics of service system, engineering system, etc. and
their modeling. (2) The results directly provide a sensitive range of the studied ma-
chining system, which may help system analysts to identify crucial parameters and
their rates. (3) Research in new front can also be enhanced by learning the proposed
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methodology.
The description of a classical M/M/1 machining system with a catastrophe and

its performance indices is presented in section (5.2). In section (5.3), the key idea of
the procedure to determine fuzzy parameter patterns is delineated using parametric
non-linear programming. An illustrative example is discussed in detail in the next
section (5.4). Extensive numerical computations of the system characteristics with
MATLAB have been performed to show the role played by the involved fuzzy arrival,
fuzzy departure, and fuzzy catastrophe in section (5.5). Finally, current and future
directions of research and application of the classical model are discussed in the last
section (5.6).

5.2 Model Description

The single machine (server) classical M/M/1 model is considered with catastrophe
having infinite capacity and infinite source of prospective customers, units, or data.
The inter-arrival time of the customer follows an exponential distribution with pa-
rameter λ and service time for the customer by the machine (server) also follows an
exponential distribution with parameter µ . The random catastrophe leads to force to
abandon all waiting customers, units, or data in the machining system instantly and
makes the service facility inoperative until the new customer, unit, or data arrives
follow Poisson process. The inter-occurrence time of catastrophe follows an expo-
nential distribution with parameter γ . The state transition diagram of the governing
model is depicted in Fig. (5.1)

0 1 2 ... n-1 n n+1 ...

λ λ λ λ λ λ λ

µ+ γ µ µ µ µ µ µ

γ
γ

γ
γ

γ
γ

Figure 5.1: The State transition diagram

Let state of the system N(t) be defined as number of the customers, units or data
in the machining system at any instant t. Hence, Pn(t) represents the probability that
there are n customers, units or data in the machining system at time t. Using birth and
death process and balancing the inflow and outflow rates, the Chapman-Kolmogorov
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differential-difference equations of the governing model are given as follows

dP0(t)
dt

=−λP0(t)+µP1(t)+ γ (1−P0(t))

dPn(t)
dt

=−(γ +λ +µ)Pn(t)+λPn−1(t)+µPn+1(t); n = 1,2,3....
(5.1)

with initial condition that there is no customer, unit, or data in the machining system
at time t = 0, i.e., P0(0) = 1 and Pn(0) = 0,n = 1,2, . . . . Using product type solution
method (Kumar and Arivudainambi [105]), the obtained steady-state probabilities
Pn; n = 0,1,2,3, . . . under the normalizing condition

∞

∑
n=0

Pn = 1

is as follows

Pn = (1−ρ)ρn; n = 0,1,2,3, . . . (5.2)

where

ρ =

[
(λ + γ +µ)−

√
(λ + γ)2 +µ2 +2µγ−2λ µ

]
2µ

(5.3)

Using above derived steady-state probabilities Pn;n = 0,1,2,3, ... and Little formula
(Gross et al. [55]), the following system performance characteristics are developed
as follows

• The expected number of the customers, units or data in the machining system
(L)

L =

[
λ + γ +µ−

√
(λ + γ)2 +µ2 +2 µ γ−2λ µ

]
[

µ−λ − γ +

√
(λ + γ)2 +µ2 +2 µ γ−2λ µ

] (5.4)

• The expected number of the customers, units or data in the queue (Lq)

Lq =

[
λ + γ +µ−

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

]2

2µ

[
µ−λ − γ +

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

] (5.5)
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• The expected waiting time of the customers, units or data in the machining
system (W )

W =

[
λ + γ +µ−

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

]
λ

[
µ−λ − γ +

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

] (5.6)

• The expected waiting time of the customers, units or data in the queue (Wq)

Wq =

[
λ + γ +µ−

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

]2

2λ µ

[
µ−λ − γ +

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

] (5.7)

• The probability that there is no customer, unit or data in the machining system
(P0)

P0 =

[
µ−λ − γ +

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

]
2µ

(5.8)

• The variance of the number of the customers, units or data in the machining
system (σ2)

σ
2 =

2µ

[
λ + γ +µ−

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

]
[
µ−λ − γ +

√
γ2 +2γ λ +2 µ γ +λ 2−2λ µ +µ2

]2 (5.9)

5.3 The Fuzzy System and Parametric NLPs

To increase the applicability of the studied classical M/M/1 machining system with
catastrophe, the fuzzy description of the system parameters are allowed. Suppose
the catastrophe rate of the machining system γ , arrival rate of the customer, unit,
or data λ , and the service rate of the arrived customer, unit, or data µ are approxi-
mately known and can be exemplified by the fuzzy sets γ̃, λ̃ , and µ̃ respectively. Let
ηγ̃(w),ηλ̃

(x), and ηµ̃(y) symbolize the membership functions of γ̃, λ̃ , and µ̃ respec-
tively, then the fuzzy sets are defined as

γ̃ = {(w,ηγ̃(w)) | w ∈W}
λ̃ = {(x,η

λ̃
(x)) | x ∈ X}

µ̃ = {(y,ηµ̃(y)) | y ∈ Y}
(5.10)
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where W , X , and Y are the crisp universal sets of the catastrophe rate of the ma-
chining system, arrival rate of the customer, unit, or data, and the service rate of the
waiting customer, unit, or data respectively. Let f (w,x,y) denotes the desired system
characteristic of interest of study i.e. expected number of the customers, units, or
data in the machining system (L), expected number of the customers, units or data in
the queue (Lq), expected waiting time of the customers, units or data in the machin-
ing system (W ), expected waiting time of the customers, units, or data in the queue
(Wq), Probability that there is no customer, unit, or data in the machining system
(P0) and variance of the state of the system (σ2). Since γ̃, λ̃ , and µ̃ are fuzzy num-
bers, f (γ̃, λ̃ , µ̃) is also a fuzzy number. Following Zadeh’s extension principle (cf.
Zadeh[200]; Parde[141]), the membership function of the desired machining system
characteristic F = f (γ̃, λ̃ , µ̃) is defined as

η f (γ̃,λ̃ ,µ̃)(z) = sup
Ω

min{ηγ̃(w),ηλ̃
(x),ηµ̃(y) | z = f (w,x,y)}

s.t. Ω = {w ∈W,x ∈ X ,y ∈ Y | w > 0,x > 0,y > 0} .
(5.11)

The membership function in Eqn. (5.11) is not in the understandable form for
practical use and it is very hard to imagine its shape. Parametric non-linear programs
(NLPs), mathematical programming techniques, are developed to find the α-cuts of
f (γ̃, λ̃ , µ̃) based on the extension principle.

To re-express the membership function η f (γ̃,λ̃ ,µ̃)(z) of the desired machining sys-

tem characteristics F̃ in the comprehensible and customary form, Zadeh’s approach
is employed that depends on α-cuts of F̃ . The α-cuts of γ̃, λ̃ , and µ̃ as crisp intervals
are demarcated as follows

γ(α) = [wL
α ,w

U
α ] =

[
min
w∈W
{w | ηγ̃(w)≥ α},max

w∈W
{w | ηγ̃(w)≥ α}

]
λ (α) = [xL

α ,x
U
α ] =

[
min
x∈X
{x | η

λ̃
(x)≥ α},max

x∈X
{x | η

λ̃
(x)≥ α}

]
µ(α) = [yL

α ,y
U
α ] =

[
min
y∈Y
{y | ηµ̃(y)≥ α},max

y∈Y
{y | ηµ̃(y)≥ α}

] (5.12)

The constant catastrophe rate of the machining system, arrival rate of the customer,
unit, or data, and the service rate of the waiting customer, unit, or data by a machine
shown as intervals when the membership function are no less than a given possibility
level α . Therefore, the bounds of these intervals can be designated as functions of α

as
wL

α = minη
−1
γ̃

(α), wU
α = maxη

−1
γ̃

(α)
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xL
α = minη

−1
λ̃

(α), xU
α = maxη

−1
λ̃

(α)

yL
α = minη

−1
µ̃

(α), xU
α = maxη

−1
µ̃

(α)

Since the membership function defined in Eqn (5.11) is parametrized by α , the α-
cuts of F̃ is used to construct its membership function.

To derive the membership function ηF̃(z) = min(ηγ̃(w),ηλ̃
(x), and ηµ̃(y)) using

Zadeh’s extension principle, it is essential that at least one of the following cases to
be hold such that z = f (x,y,z) satisfies ηF̃(z) = α .

Case(i) :
(

ηγ̃(w) = α,η
λ̃
(x)≥ α,ηµ̃(y)≥ α

)
Case(ii) :

(
ηγ̃(w)≥ α,η

λ̃
(x) = α,ηµ̃(y)≥ α

)
Case(iii) :

(
ηγ̃(w)≥ α,η

λ̃
(x)≥ α,ηµ̃(y) = α

)
This can be consummated using parametric NLP techniques. The NLPs to find

the lower and upper bounds of the α-cut of ηF̃(z) for the respective cases (i)-(iii) are

(F)Li
α = min

Ω
f (x,y,z) (5.13a)

(F)Ui
α = max

Ω

f (x,y,z) ; i = 1,2,3 (5.13b)

The definition of γ(α),λ (α), and µ(α) in Eqn. (5.12) implies that w ∈ γ(α),x ∈
λ (α), and y ∈ µ(α) can be substituted with w ∈ [wL

α ,w
U
α ],x ∈ [xL

α ,x
U
α ], and y ∈

[yL
α ,y

U
α ] respectively. For given 0 < α2 < α1 ≤ 1, we have [wL

α1
,wU

α1
] ⊆ [wL

α2
,wU

α2
],

[xL
α1
,xU

α1
] ⊆ [xL

α2
,xU

α2
], and [yL

α1
,yU

α1
] ⊆ [yL

α2
,yU

α2
] (cf. Zimmermann[208]). This also

implies that the α-cuts form a nested structure with respect to α , hence, the lower
bounds Eqn. (5.13-a) have the same smallest element and the upper bounds Eqn. (5.13-
b) have the same largest element. To evaluate the membership function ηF̃(z), it suf-
fices to discover the left and right shape functions of ηF̃(z), which is corresponding
to finding the lower bound (F)L

α and upper bound (F)Uα of the α-cuts of the F̃ , which
can be amended as

(F)L
α = min

Ω
f (x,y,z)

s.t. wL
α ≤ w≤ wU

α , xL
α ≤ x≤ xU

α and yL
α ≤ y≤ yU

α

(5.14a)

(F)Uα = max
Ω

f (x,y,z)

s.t. wL
α ≤ w≤ wU

α , xL
α ≤ x≤ xU

α and yL
α ≤ y≤ yU

α

(5.14b)

At least one of w,x, or y must touch the boundaries of their α-cuts to satisfy
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ηF̃(z) = α . This mathematical model is a conventional mathematical programs with
boundary constraints and advances itself to the methodical study of how the opti-
mal solutions change with wL

α ,w
U
α ,x

L
α ,x

U
α ,y

L
α , and yU

α as α varies over (0,1]. The
optimality modelling is a special case of parametric NLPs (Gal [45]).

The crisp intervals [(F)L
α ,(F)Uα ] derived in Eqn. (5.14) represents the α-cuts of

F̃ . Hence for 0 < α2 < α1 ≤ 1, we have (F)L
α1
≥ (F)L

α2
and (F)Uα1

≤ (F)Uα2
due to

F̃’s convexity (cf. Zimmermann [208]). In other words, (F)L
α increases and (F)Uα de-

creases as α increases. Consequently, the membership function ηF̃(z) can be found
from Eqn. (5.14) in systematical steps.

If both (F)L
α and (F)Uα are invertible with respect to α , then a left shape function

L(z) = [(F)L
α ]
−1 and a right shape function R(z) = [(F)Uα ]

−1 can be expressed, from
which the membership function ηF̃(z) is structured as

ηF̃(z) =


L(z); (F)L

α=0 ≤ z≤ (F)L
α=1

1; (F)L
α=1 ≤ z≤ (F)U

α=1

R(z); (F)U
α=1 ≤ z≤ (F)U

α=0

(5.15)

For the complex cases, the values of (F)L
α and (F)Uα cannot be solved analytically.

This implies that an explicit-form of membership function for F̃ cannot be derived.
Hence, the numerical solutions for (F)L

α and (F)Uα at different possibility levels α

can be collected to structure the approximate shapes of L(z) and R(z). That is, the
set of intervals

{
[(F)L

α ,(F)Uα ] | α ∈ [0,1]
}

shows the shape of ηF̃ , although the exact
function is not known explicitly.

Since the anticipated machining system characteristics of the studied fuzzy queue
with the fuzzy catastrophe are designated by membership functions, the values pre-
serve all the fuzziness involved in the catastrophe rate of the machining system, the
arrival rate of the customer, unit, or data and the service rate of a waiting customer,
unit, or data by a machine (server). From the application point of view, the system
analyst may seek a crisp concrete value for a certain system characteristic rather than
a fuzzy set (cf. Yager [188]). For this purpose, the fuzzy values are defuzzified
for system characteristics using Yager’s raking index method. Since Yager’s method
possesses the property of area compensation, this method is adopted to transform
the fuzzy values of the system characteristics into crisp value. Suitable values of the
desired machining system characteristics are calculated as

O(E[Λ]) =
∫ 1

0

(E[Λ])L
α
+(E[Λ])U

α

2
dα (5.16)

where E[Λ] is a convex fuzzy number and
(
(E[Λ])L

α
,(E[Λ])U

α

)
is the α-cut of E[Λ].
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Note that this method is a robust ranking technique that possess the properties of
compensation, linearity and additivity.

5.4 Numerical Example

To understand the complete procedure of the proposed method to derive membership
functions of various desired machining system characteristics of the fuzzy queue with
fuzzy catastrophe, a realistic example is illustrated in this section. Let the catastrophe
rate of the machining system, arrival rate of the customer, unit, or data, and service
rate of the waiting customer, unit or data by machine (server) are trapezoidal fuzzy
numbers and represented by

γ̃ = [0.005,0.010,0.015,0.020]

λ̃ = [0.2,0.3,0.4,0.5]

µ̃ = [0.5,0.6,0.7,0.8]

First, it is easy to find analogy of Eqn. (5.12) as [wL
α ,w

U
α ] = [0.005+0.005α,0.020−

0.005α], [xL
α ,x

U
α ] = [0.2+0.1α,0.5−0.1α], and [yL

α ,y
U
α ] = [0.5+0.1α,0.8−0.1α].

From the previous experiences about the machining systems, it is obvious that when
w = wL

α , x = xU
α , and y = yL

α the desired machining system characteristics of fuzzy
queue like L, Lq, W , Wq, and σ2 attain their maximum value, and when w = wU

α ,
x = xL

α , and y = yU
α they attain their minimum value. The probability that there is

no customer, unit, or data in the system P0 attains its maximum and minimum value
when w = wU

α , x = xL
α & y = yU

α and w = wL
α , x = xU

α & y = yL
α respectively. Analo-

gous to Eqn. (5.14)(a)-(b), the α-cuts of fuzzy system characteristics of fuzzy queue
L̃, L̃q, W̃ , W̃q, P̃0, and σ̃2 given by Eqn. (5.17)-(5.22) respectively. Obviously, the in-
verse function of these α-cuts must exist analytically with respect to α for obtaining
the membership function of these machining system characteristics which analogy
to Eqn. (5.15), otherwise, one can opt numerical approach for the same.
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[L]Lα =

[
51
50

+
39α

200
−
√

16016−88α−79α2

200

]
[

29
50

+
α

200
+

√
16016−88α−79α2

200

] (5.17a)

[L]Uα =

[
201
200

+
α

200
−
√

1601α2 +402α +401
200

]
[

39α

200
− 1

200
+

√
1601α2 +402α +401

200

] (5.17b)

[Lq]
L
α =

[
51
50

+
39α

200
−
√

1001
2500

− 11α

5000
− 79α2

40000

]2

2
(

4
5
+

α

10

)[
29
50

+
α

200
+

√
1001
2500

− 11α

5000
− 79α2

40000

] (5.18a)

[Lq]
U
α =

[
201
200

+
α

200
−
√

401
40000

+
201α

20000
+

1601α2

40000

]2

2
(

1
2
+

α

10

)[
39α

200
− 1

200
+

√
401

40000
+

201α

20000
+

1601α2

40000

] (5.18b)

[W ]Lα =

[
51
50

+
39α

200
−
√

16016−88α−79α2

200

]
(

1
5
+

α

10

)[
29
50

+
α

200
+

√
16016−88α−79α2

200

] (5.19a)

[W ]Uα =

[
201
200

+
α

200
−
√

1601α2 +402α +401
200

]
(

1
2
− α

10

)[
39α

200
− 1

200
+

√
1601α2 +402α +401

200

] (5.19b)
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[Wq]
L
α =

[
51
50

+
39α

200
−
√

1001
2500

− 11α

5000
− 79α2

40000

]2

2
(

4
5
+

α

10

)(
1
5
+

α

10

)[
29
50

+
α

200
+

√
1001
2500

− 11α

5000
− 79α2

40000

]
(5.20a)

[Wq]
U
α =

2

[
201
200

+
α

200−
√

1601α2 +402α +401
200

]2

(
1− α2

25

)[
39α

200
− 1

200
+

√
1601α2 +402α +401

200

] (5.20b)

[P0]
L
α =

1(
4
5
+

α

10

) [ 29
100

+
α

400
+

√
16016−88α−79α2

400

]
(5.21a)

[P0]
U
α =

1(
1
2
+

α

10

) [39α

400
− 1

400
+

√
1601α2 +402α +401

400

]
(5.21b)

[σ2]Lα =

2
(

4
5
+

α

10

)[
51
50

+
39α

200
−
√

16016−88α−79α2

200

]
[

29
50

+
α

200
+

√
16016−88α−79α2

200

]2 (5.22a)

[σ2]Uα =

2
(

1
2
+

α

10

)[
201
200

+
α

200
−
√

1601α2 +402α +401
200

]
[

39α

200
− 1

200
+

√
1601α2 +402α +401

200

]2 (5.22b)

The membership function of the various desired fuzzy machining system char-
acteristics of the fuzzy queue L̃, L̃q, W̃ , W̃q, P̃0, and σ̃2 are derived as follows in
Eqn. (5.23)-(5.28) from above α-cuts since they all are invertible. These algebraic
expression of membership functions also represent the shape function of the cor-
responding fuzzy system characteristics. Figs. (5.2)-(5.7) depict the shape of the
membership function of the desired fuzzy system characteristics L̃, L̃q, W̃ , W̃q, P̃0,
and σ̃2 respectively of the studied fuzzy queue with fuzzy parameters γ̃ , λ̃ , and µ̃

along with two notable informative characteristics: support and core. The overall
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shape turn out as expected.

ηL̃(z) =



LL̃(z);
523

1638
≤ z≤ 1120

2323

1;
1120
2323

≤ z≤ 2125
1209

RL̃(z);
2125
1209

≤ z≤ 761
80

(5.23)

where,

LL̃(z) =
4
(
z2 +31z−10

)
(z2 + z+20)

RL̃(z) =

(
−z2− z+100

)
(z2 +41z+20)

ηL̃q
(z) =



LL̃q
(z);

220
2847

≤ z≤ 367
2340

1;
367

2340
≤ z≤ 1127

1006

RL̃q
(z);

1127
1006

≤ z≤ 5199
604

(5.24)

where,

LL̃q
(z) =

4
[
−10z2 +284z−200+15

√
4z4 +100z3 +777z2 +1764z

]
[20z2 +59z+400]

RL̃q
(z) =

[
−60z2−2161z−2000+20

√
4z4 +428z3 +12257z2 +42436z

]
[20z2 +821z−400]

ηW̃ (z) =



LW̃ (z);
902
565
≤ z≤ 2258

1405

1;
2258
1405

≤ z≤ 2843
647

RW̃ (z);
2843
647

≤ z≤ 761
40

(5.25)
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where,

LW̃ (z) =

[
z−5+

√
9z2 +1230z−1975

]
z

RW̃ (z) =

[
2z+205−

√
9z2 +830z+40025

]
z

ηW̃q
(z) =



LW̃q
(z);

1100
2847

≤ z≤ 367
702

1;
367
702
≤ z≤ 2417

863

RW̃q
(z);

2417
863

≤ z≤ 5199
302

(5.26)

where,

LW̃q
(z) =

[
Q
6z

+

(
432z2 +15048z−20519

)
6zQ

− (12z+59)
6z

]

RW̃q
(z) =

[
−(2z−821)

6z
+
(

1+ I
√

3
)( P

12z
− 19

(
16z2 +1192z+36739

)
12zP

)]

ηP̃0
(z) =



LP̃0
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1638
2161

≤ z≤ 2323
3443

1;
2323
3443

≤ z≤ 2417
863

RP̃0
(z);

2417
863

≤ z≤ 5199
302

(5.27)

where,

LP̃0
(z) =

4
(
−40z2 +29z+1

)
(20z2− z+1)

RP̃0
(z) =

(
−100z2− z+1

)
(20z2−39z−1)
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η
σ̃2(z) =



L
σ̃2(z);

1543
3663

≤ z≤ 671
939

1;
671
939
≤ z≤ 3136

647

R
σ̃2(z);

3136
647

≤ z≤ 9999
100

(5.28)

where,

L
σ̃2(z) =

[
4z−100+60

√
4z+1

]
(z+20)

R
σ̃2(z) =

(z−100)
[
−z+20

√
4z+1

]
[z2−1600z−400]

and

P =
3
√

1792z3 +317760z2 +24R+26739012z+582943661

Q = 3
√

(819072z2 +24S−1331748z+1918621)

R =

√√√√(−43200z6−8924064z5−806458908z4−37101519060z3

−751870882275z2−3353823679500z−529530750000

)

S =

√√√√(−139968z6−14626656z5 +675169668z4−8313831900z3

+31788168525z2−41870119500z+21389250000

)

The crisp intervals for the fuzzy machining system characteristics L̃, L̃q, W̃ ,
W̃q, P̃0, and σ̃2 at different probabilistic level α can also be determined from the
respective equation of membership functions Eqn. (5.23)-(5.28) or the respective
Figs. (5.2)-(5.7). Fig. (5.2) prompts two vital information for the expected num-
ber of the customers, units, or data in the machining system (L). First, the support
of L̃ ranges from 0.3193 to 9.5125. Though the expected number of the customers,
units, or data in the machining system (L) is fuzzy, this observation indicates that it
is impossible for its values to fall below 0.3193 or exceed 9.5125. Second, the core
of L̃, α-cut at α = 1, contains the values from 0.7049 to 1.7577, which are the most
possible values for the L. The similar results are also observed from Fig. (5.3) for
the expected number of the customers, units, or data in the queue (Lq) with support
ranges from 0.0773 to 8.6076 and core which ranges from 0.2915 to 1.1203.

Fig. (5.4) sketches the shape of the membership function of W̃ , fuzzy expected
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waiting time of the customer, unit, or data in the machining system. For the possibil-
ity level α = 0, the range of the W is approximately [1.5965,19.0250]. This indicates
that the expected waiting time of the customer, unit, or data in the machining sys-
tem cannot exceed 19.0250 or fall below 1.5965. For the possibility level α = 1,
the range of W is approximately [2.3498,4.3941], which indicates that it is possible
that the W falls in this interval, although it is imprecise. Figs. (5.5) -(5.7) depict the
vital information for the expected waiting time of the customer, unit, or data in the
queue (Wq), the probability that there is no customer, unit, or data in the machining
system (P0) and variance of the state of the machining system (σ2) respectively as
shape function along with corresponding support and core. Overall, in a nutshell, it
is observed that the proposed method of NLPs of fuzzy systems in a studied machin-
ing system is giving vital information precisely for the status of the customer (unit
or data), machine (server), and machining system. The present range of machining
system parameters γ , λ , and µ illustrate low expected waiting time as estimated.

5.5 Numerical Result

The tractability and implementation of the suggested method are demonstrated by
computing the various machining system characteristics with respect to a diverse
set of fuzzy numbers of system parameters. The trends of machining system per-
formance characteristics based on the numerical experiments have been displayed
graphically. By conducting a numerical experiment, the sensitivity of machining
system characteristics by varying values of different parameters is explored in Ta-
ble (5.1).

Figs. (5.8)-(5.13) and corresponding Table (5.2)-(5.7) summarize the results of
sensitivity and depict the shape of membership function of machining system char-
acteristics namely expected number of the customers, units or data in the machining
system (L), expected number of the customers, units, or data in the queue (Lq),
expected waiting time of the customer, unit or data in the machining system (W ),
expected waiting time of the customer, unit, or data in the queue (Wq), probability
that there is no customer, unit, or data in the machining system (P0) and variance of
the state of the machining system (σ2) respectively with respect to governing system
parameters like fuzzy catastrophe rate of the machining system (γ̃), fuzzy arrival rate
of the customer, unit, or data (λ̃ ) and fuzzy service rate of the machine (server) (µ̃).
For Figs. (5.8)-(5.13) and Table (5.2)-(5.7), the default trapezoidal fuzzy number of
machining system parameters are fixed as in Table (5.1). From Fig. (5.8), it is clear
that the shape of membership function of the expected number of customers, units, or



190 Chapter 5. Fuzzy Analysis of Unreliable...

data in the machining system (L) is analogous for all different fuzzy numbers corre-
sponding to γ̃ , λ̃ , and µ̃ . The informative values for support and core are summarized
in the corresponding Table (5.2). Fig. (5.8) and Table (5.2) illustrate that how better
service rate and restricted arrival rate improve the expected number of the customers,
units, or data in the machining system. Fig. (5.9) and Table (5.3) summarize the ob-
servation for membership function of expected number of customers, units, or data
in the queue (Lq). The rough shape of membership function ηL̃q

looks alike for a
different set of fuzzy numbers for fuzzy parameters. From both the extreme levels of
possibility α = 0 and α = 1, it is clear that the value of the expected number of the
customers, units, or data waiting in the queue can be made lower with maintaining
good services facility. Figs. (5.10)-(5.11) and corresponding Tables (5.4)-(5.5) com-
prises the variability in shape and characteristics of membership function of W̃ and
W̃q respectively. For possibility level α = 0, wide different extreme value of

W̃
{
(19.0250,19.0250,4.7154,8.2328);(19.0250,8.0000,19.0250,8.0000);

(19.0250,19.0250,17.2848,15.3605)
}

and

W̃q

{
(17.2152,17.2152,2.7625,6.3151);(17.2152,6.4000,17.2152,6.4000);

(17.2152,17.2152,15.4922,13.5909)
}

are observed for different fuzzy numbers of fuzzy system parameters λ̃ , µ̃ , and γ̃

respectively. This indicates that the machining system characteristics will not ex-
ceed these limits. Figs. (5.12) shows that membership functions of probability that
there is no customer, unit, or data in the machining system look-alike for different
sets of fuzzy numbers of machining system parameters. This seems that ηP̃0

is the
trapezoidal fuzzy number for system parameters. The corresponding Table (5.6) for
support and core indicates a wide range of possible value of P0 for a different set of
fuzzy numbers. The membership function for the fuzzy variance of the state of the
machining system is depicted in Figs. (5.13), and corresponding support and core
are tabulated in Table (5.7). Figs. (5.13) and Table (5.7) prompt a very narrow range
and less variability in most possible value of variance. Thus, this sensitivity illus-
trates that the analysis results provide vital information to system managers in the
decision-making. If the manager specifies the range of the expected value of ma-
chining system characteristics with possibility value of arrival of the customer, unit,
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or data and catastrophe, the desired service rate range can also be readily determined.
In a comparison of findings in the literature, a wide range of uncertainty and am-

biguity are covered in illustration and numerical experimentation. The current study
provides the more sensitivity of parameters in inter- and intra- values all parameters.
The analytic results, graphical depiction, and tabular secularization are provided si-
multaneously to enrich a glance. The derived results also provide the platform for
the new extension in the machining system, queueing system and other optimization
problems as well in simpler fashion. The current findings enrich the literature of
fuzzy theory and queueing theory for a new type of problem with a better methodol-
ogy for future research.

5.6 Conclusion

The extended classical M/M/1 queueing system for fuzzy parameters and fuzzy
catastrophe are represented more accurately. The derived analytic result and pro-
posed process are more useful for system designers. In this work, the state-of-the-art
procedure is presented to derive membership function of various machining system
performance indices of the fuzzy queue with the fuzzy catastrophe, which might ar-
rive either from outside the machining system or from some other service station.
Specifically, a catastrophe is an event that occurs at random times and produces the
instant clearing of the machining system from customers, units, or data, i.e., aban-
doning all services. So that each catastrophe event causes a jump of the process from
the current state to zero states. In present study, we have nonetheless used the α-cut
approach to translate the fuzzy problem into a conventional crisp interval problem
along with an illustrative example. The key ingredient for our study is the sensitivity
of machining system characteristics of the fuzzy queue with fuzzy parameters be-
sides the proposed method. The proposed model retains the essential aspects of the
classical queueing model under a fuzzy environment, and as such, it offers valuable
insights for randomness, vagueness, or fuzziness into the behavior of membership
function of the machining system characteristics. The modeling and analysis of ma-
chining systems with catastrophes may be used to study the migration processes with
catastrophes and computer networks with virus infections or a reset order.

This chapter can be extended with the amendment of varying catastrophe inten-
sity in destroying a different number of the customers, units, or data at a time or
restoration, which governed with a fuzzy number. Different types of fuzzy numbers
(cf. Garg and Ansha [49]; Garg [51]; Garg [50]) can also experiment for the definition
of uncertainty and linguistic ambiguity in the broadening aspect for fuzzy parame-
ters. Some variant of real-time customer’s behavior and just-in-time service quality
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can also be studied in the fuzzy environment using the proposed methodology and
non-linear program. This methodology can also depict uncertainty and ambiguity
behavior of other optimization problems and management problems like inventory,
reliability, supply chain, etc.
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Figure 5.2: The membership function (ηL̃) of the fuzzy expected number of the
customers,units, or data in the machining system (L)

 

Figure 5.3: The membership function (ηL̃q
) of the fuzzy expected number of the

customers, units, or data in the queue (Lq)

 

Figure 5.4: The membership function (ηW̃ ) of the fuzzy expected waiting time of the
customer, unit, or data in the machining system (W )
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Figure 5.5: The membership function (ηW̃q
) of the fuzzy expected waiting time of the

customer, unit, or data in the queue (Wq)

 

Figure 5.6: The membership function (ηP̃0
) of the fuzzy probability that there is no

customer, unit, or data in the machining system (P0)

 

Figure 5.7: The membership function (η
σ̃2) of the fuzzy variance of the state of the

machining system (σ2)
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 Figure 5.8: The sensitivity of the membership function (ηL̃) wrt to fuzzy machining
system parameters
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 Figure 5.9: The sensitivity of the membership function (ηL̃q
) wrt to fuzzy machining

system parameters
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 Figure 5.10: The sensitivity of the membership function (ηW̃ ) wrt to fuzzy machining
system parameters
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 Figure 5.11: The sensitivity of the membership function (ηW̃q
) wrt to fuzzy machining

system parameters
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 Figure 5.12: The sensitivity of the membership function (ηP̃0
) wrt to fuzzy machining

system parameters
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 Figure 5.13: The sensitivity of the membership function (η
σ̃2) wrt to fuzzy machining

system parameters


