
Chapter 6

Fuzzy Analysis of Heterogeneous Repair Fa-
cilities

“When God pushes you to the edge of

difficulty trust him fully because two

things can happen. Either he’ll catch

you when you fall or he will teach you

how to fly.”

A. P. J. Abdul Kalam

6.1 Introduction

The objective of this chapter is to augment the state-of-the-art analysis of two-operating
units, one-spare unit redundant repairable machining systems. Redundancy acts as
an imperative measure for improving the reliability attributes of engineering systems.
Redundancy is classified as active and passive redundancy, depending on its operat-
ing condition. In active redundancy, the redundant operating units are simultaneously
working in parallel, and in passive or standby redundancy, the spare unit initiates its
working only after the failure of the active operating unit at random epoch. The ac-
tive redundancy and standby redundancy in repairable machining systems have been
examined widely previously (cf. Kumar and Agarwal [104]; Yearout et al. [197];
Trivedi [167]; Haque and Armstrong [59]; Jain et al. [70]). Recently, Shekhar et al.
[159] presented a detailed overview of queueing and reliability analysis of MRP with
active and standby redundancy.

The increased system reliability characteristics can be accomplished by either
enhancing the reliability of each operating unit in the active redundancy or adding
redundant spare units. In active redundancy, all operating units function simultane-
ously, whereas, in standby redundancy, the redundant spare unit will be set into the
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function when the operating unit fails. There are three classifications of standby re-
dundancy: cold, warm, and hot. In cold standby, the redundant unit does not fail
before being set into the full function, whereas, in warm (hot) standby, the spare unit
may fail while it is in the standby state with a failure rate less than (equal to) the
failure rate of the operating unit. In standby redundancy, a switching mechanism is
vital to detect the failed active unit and swap it with the standby unit if it is existing.
This switching mechanism can be perfect, or imperfect at random. Many authors
have contributed in the past on RAMS (reliability, availability, maintainability, and
safety) analysis of the machining system in different frameworks (cf. Amiri and Taril
[6]; Fazlollahtabar and Naini[41]; Salmasnia et al. [150]). Azimi et al. [12] inte-
grated the DOE method and meta-heuristic algorithm to address the non-exponential
redundancy allocation problem in series-parallel k-out-of-n systems with repairable
components. Sadeghi and Roghanian [149] examined the warm standby repairable
machining system with a switching failure mechanism for two cases: repairable and
non-repairable switching failure mechanism. Aslam et al. [10] focused on study-
ing three-component mixture of exponential, Rayleigh, Pareto, and Burr Type-XII
distributions.

In the scenario of multiple repair facilities, if there is a noteworthy contrast in
the working attributes of the repair facilities, the assumptions of identical repair fa-
cility may not be accurate. Major research works consider the homogeneous nature
of multiple repair facilities, which means the same working or repair attributes that
are seldom in practical worth. Multiple repair facilities, heterogeneous in nature,
are exceedingly demandable for modeling purposes in the context of machine repair
problems due to increasing in the multifaceted nature and constancy on the machin-
ing environment. At the instant of activation of a repair facility in multiple heteroge-
neous repair facilities systems, it follows a specific policy, and its modeling requires
special state transition. A few of authors have research on multiple repair facilities,
heterogeneous in nature, for the redundant repairable machining system under differ-
ent assumptions (cf. Larsen and Agarawala [113]; Lin and Kumar [122]; Yamashiro
and Yuasa [190]; Wang and Tie [182]; Jain et al. [81]). Among studies considering
heterogeneous repair facility, Jain et al. [71] derived queue size distribution analyt-
ically by a recursive technique for active and standby redundancy in MRP with N

policy and heterogeneous repairmen. Recently, Shekhar et al. [157] extended Jain et
al. [71] problem for F-policy and determined optimal thresholds N and F for optimal
cost.

Reported research has generally been apprehensive with obtaining measures of
system effectiveness and optimum strategies. Within the context of customary ma-
chine repair problems (MRPs) alluded in the literature above, the inter-failure times
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and repair times are required to follow certain probability distributions with fixed
parameters. This limit restricts the study for the rare problem of exactness. However,
in many practical or real-time applications, the failure pattern and service pattern
are more suitably designated either by subjectively in the etymological terms such
as fast, moderate, slow, vagueness, uncertainty, or approximate estimation of param-
eters rather than by likelihood appropriation. Restated, the inter-failure rates and
service rates are more possibilitic than probabilistic. The slackness with which the
system measures are accounted is revealing of the vulnerability concerning these dis-
tributions. The versatile approach of defining vagueness, linguistic uncertainty, and
estimation of parameters in fuzzy sets and their algebra persuade to develop an al-
ternative method (cf. Zadeh [200]; Holloway [61]; Zimmermann [208]; Buckley et
al. [18]). Zhang and Phillis [203] dealt with a parallel queueing system with two
heterogeneous servers which are assigned customers in a fuzzy fashion. Jowers et
al. [88] conceptualized the simulation of the continuous fuzzy system and broadened
the platform for future research. Recently, Shekhar et al. [158] used parametric non-
linear program for determining α-cut for various system performance characteristics,
and hence the corresponding membership function.

If the usual crisp MRPs are extended to fuzzy MRPs, the governing reliability
models become relatively user friendly in inferencing the decision in the context of
risk and would have even more extensive applications (cf. Kao et al. [91]; Chen [27];
Ke et al. [94]; Huang et al. [65]). Ke et al. [92] used a parametric non-linear pro-
gram for redundant MRP with imperfect coverage and determined the membership
function for mean time-to-failure and availability of the system. Shekhar et al. [154]
also applied a similar approach to determine the membership function of reliability
characteristics for cold standby redundancy with switching failure and reboot. To
broaden applications of reliability analysis in engineering, scientific, and/or manage-
rial aspects, the procedure is proposed to compute membership function of reliability
characteristics using fuzzy parameters for fuzzy MRP with heterogeneous multiple
repair facilities.

Going for the objective of inferring and driving the membership functions of the
reliability characteristic viz. mean time-to-failure (MT T F) and availability of the
system for fuzzy MRPs, this chapter embraces the α-cut approach to decompose a
fuzzy MRP to a family of crisp MRPs. As the α value differs, the parametric pro-
gramming technique is applied to describe that family of crisp MRPs. The solutions
from the parametric programs determine the membership functions of the reliability
measures. To exhibit the legitimacy of the proposed approach; parametric non-linear
program, the numerical outline has additionally given.

A case spurred by a real-life system is considered to exhibit the practical use and
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future scope of the proposed model and methodology. For instance, we encounter
computing systems comprised of two processors for performing computational re-
quests and accomplishing high reliability and execution. Such systems, in general,
are supported with one standby processors to avoid any working hindrance to the ran-
dom failure of any working processor. Since the system is of high performance, two
permanent operators, automatic and/or manual, having different working attributes
are employed to monitor continuously for any system interruption. Examples of such
redundant machining systems are banking systems, electronic switching systems, a
seat reservation systems et cetera.

There are numerous investigations on stochastic models within fuzzy milieus in a
recent literature base. Just a few of these investigations concentrate on redundant re-
pairable systems with fuzzy parameter patterns using parametric non-linear program-
ming. Different from other models in previous studies, the current model provides (i)
heterogeneous multiple repair facilities in MRP (ii) an appropriate estimation value
from uncertain environments, and (iii) a correlation between fuzzy theory and the
conventional method. This chapter is enriched with (i) concept of mathematical
modeling of the problem involved in realistic machining system, (ii) mathematical
concepts of Laplace transform, linear algebra, fuzzy sets and logic, non-linear pro-
gram, probability theory, stochastic process, birth & death process, (iii) reliability
characteristics like mean time-to-failure, availability, hazard rate function, reliability
function, etc., and (iv) computer programming in MATLAB & MAPLE.

This chapter is composed of multiple sections as follows Section (6.2) presents a
detailed model description with assumptions, notations, and mathematical formula-
tion. In section (6.3), the derivation of the reliability characteristics of the repairable
redundant machining system viz. mean time-to-failure and availability of the sys-
tem is presented. In section (6.4), the conventional repairable system is extended in
the fuzzy atmosphere and methodology for determining the corresponding member-
ship functions for reliability characteristics are briefly discussed. In the next section
(6.5), a mathematical non-linear programming approach is framed to determine the
membership functions for the mean time-to-failure (MT T F) and availability of the
system. For the validity of the proposed concept and methodology, a realistic illustra-
tive example is presented, and numerical simulation for varied system parameters is
done in section (6.6). Conclusions are inferred in section (6.7) along with the future
scope of the chapter.
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6.2 Model Description

For modeling the distinguishable multiple repair facilities within a redundant re-
pairable machining system, some assumptions and notations are considered, and the
associated governing equations for the state probabilities are developed. The struc-
ture of the studied system comprises two identical operating units that work indepen-
dently and simultaneously (active redundancy) with the redundancy of a single warm
spare unit under the supervision of two heterogeneous repairmen having distinguish-
able working attributes. Following are some notable assumptions and notations used
for the detailed description of the system:

6.2.1 Failure Process

• The time-to-failure of the operating units follows an exponential distribution
with rate parameter λ .

• The failed operating unit is immediately replaced, with negligible switchover
time, by spare unit, if available. The switched spare unit has the same failure
and operative characteristics as an operating unit on commencing operation.

• The spare unit, warm in nature, may fail before it is installed into the full oper-
ation and is continuously monitored by an automatic failure detection device.
The time-to-failure of warm spare unit follows an exponential distribution with
rate parameter ν (0 < ν < λ ).

• Operating or/and spare unit fail independent of the operating condition of the
other units, and both are repairable. The failed unit is immediately sent to a
repair facility. If any failed unit is undergoing repair, subsequently failed units
must wait in a queue until any repairman is available.

6.2.2 Repair Process

• The time-to-repair of two heterogeneous repairmen is exponentially distributed
with rate parameter µ and β (β < µ) respectively. The repair time is indepen-
dent of the state of the system. The repairman with a faster repair rate is always
preferred.

• When the system is empty, a failed unit is always repaired by the faster repair-
man.
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• If a failed unit arrives at the system and finds that only one repairman is busy,
the failed unit is assigned to the idle repairman immediately regardless of the
rate of the repairman or how long the other repairman has been busy.

• When a repairman completes the repair, and there is a queue of failed units,
the next failed unit in the waiting line is immediately allocated to the idle
repairman; thus, the repairman can never be idle when there is a queue of
waiting failed units.

• Once a failed unit is assigned to a repairman for repair, it remains with that
repairman until its repairing is completed.

• Neither repairing jobs cannot be split and processed by both repairmen, nor a
failed unit can be moved from the slower to the faster repairman.
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Figure 6.1: The state transition diagram for reliability analysis

Fig. (6.1) depicts the transition of states with associated rates of the governing
redundant repairable machining system. The state of the system at time t is described
by

I(t)≡Number of operating units in the system.
J(t)≡Number of spare unit in the system.

The stochastic process {I(t), J(t)} represents the continuous time Markov chain
(CTMC) on the state space § = {(i, j) | i = 0,1,2and j = 0,1}. Let P and Q represent
the associated probabilities. Hence, the state probabilities are defined as follows
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P2,1(t) =Probability that there are two operating units and one spare unit in
the system at any instant t.

P2,0(t) =Probability that there are two operating units in the system and failed
units are repaired by faster repairman at any instant t.

Q2,0(t)=Probability that there are two operating units and failed units are
repaired by slower repairman at any instant t.

P1,0(t) =Probability that there are one operating unit in the system at any
instant t.

P0,0(t) =Probability that there is no operating unit in the system at instant t.
Assume that the machining system has two operating units and one spare unit

initially i.e. in state (2,1) so that the initial conditions are P2,1(0) = 1, P2,0(0) = 0,
Q2,0(0) = 0, P1,0(0) = 0, and P0,0(0) = 0. Thus referring to state-transition rate
diagram shown in Fig. (6.1), the states of the system satisfy the following set of
Chapman-Kolmogorov differential-difference equations:

dP2,1(t)
dt

=−(2λ +ν)P2,1(t)+βQ2,0(t)+µP2,0(t) (6.1)

dP2,0(t)
dt

=−(2λ +µ)P2,0(t)+βP1,0(t)+(2λ +ν)P2,1(t) (6.2)

dQ2,0(t)
dt

=−(2λ +β )Q2,0(t)+µP1,0(t) (6.3)

dP1,0(t)
dt

=−(λ +µ +β )P1,0(t)+2λP2,0(t)+(µ +β )P0,0(t)+2λQ2,0(t) (6.4)

dP0,0(t)
dt

=−(µ +β )P0,0(t)+λP1,0(t) (6.5)

6.3 The Reliability Characteristics

6.3.1 Mean Time-to-Failure

The set of differential-difference Eqn. (6.1)-(6.5) describe the governing model in
the previous section can be solved using Laplace transformation to compute the
transient-state probabilities. The definition for the Laplace transformation of the
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state probabilities and their derivatives are given as follows:

P̃i, j(s) =L
(
Pi, j(t)

)
=
∫

∞

0
e−stPi, j(t)dt ∀ i, j

L
(

dPi, j(t)
dt

)
=s P̃i, j(s)−Pi, j(0)

Using defined Laplace transform, the set of governing differential-difference Eqn. (6.1)-
(6.5) is transformed as set of linear Eqn. (6.6)-(6.10) as follows

sP̃2,1(s)−1 =− (2λ +µ)P̃2,1(s)+β Q̃2,0(s)+µP̃2,0(s) (6.6)

sP̃2,0(s) =− (2λ +µ)P̃2,0(s)+β P̃1,0(s)+(2λ +µ)P̃2,1(s) (6.7)

sQ̃2,0(s) =− (2λ +β )Q̃2,0(s)+µP̃1,0(s) (6.8)

sP̃1,0(s) =− (λ +µ +β )P̃1,0(s)+2λ P̃2,0(s)+(µ +β )P̃0,0(s)+2λ Q̃2,0(s)

(6.9)

sP̃0,0(s) =λ P̃1,0(s) (6.10)

The above system of linear Eqn. (6.6)-(6.10) can be solved to yield the state
probabilities in the transformed form as follows

P̃2,1(s) =
(s+β )

(
2λ 2 +(s+µ)(s+5λ +µ +β )

)
+2λ 2 (3s+2λ +µ)

D
(6.11)

P̃2,0(s) =
(2λ +ν)

(
2λ 2 +(s+β )(s+3λ +µ +β )

)
D

(6.12)

Q̃2,0(s) =
2λ µ (2λ +ν)

D
(6.13)

P̃1,0(s) =
2λ (s+2λ +β )(2λ +ν)

D
(6.14)

P̃0,0(s) =
λ 2 (s+2λ +β )(2λ +ν)

D
(6.15)
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where,

D =
(

s
(
s+λ +ν)(s+2λ +β )

)(
2(s+λ )2 + s(−s−λ +µ +β )

+(s+β )
)
×
(
2λ

3 + s(λ +µ)(s+5λ +µ +β )
)
+λ

2(3s+2λ )+ sµ(−s+2λ )
)

On inverting P̃2,1(s), P̃2,0(s), Q̃2,0(s), P̃1,0(s) and P̃0,0(s) to P2,1(t), P2,0(t), Q2,0(t),
P1,0(t) and P0,0(t) respectively by Laplace inverse, the state probabilities of the ma-
chining system at time t are obtained. Suppose Z be the continuous random variable
representing time-to-failure of the machining system and P0,0(t) represents the prob-
ability that there is no working unit in the system, i.e., the system fails at or before
time t. Thus, reliability function of the machining system can be expressed as:

RZ(t) = 1−P0,0(t), t ≥ 0 (6.16)

Using the theory of reliability, the failure density Z(t) can be derived as:

Z(t) =−dRz(t)
dt

=−d(1−P0,0(t))
dt

=
dP0,0(t)

dt
(6.17)

The Laplace transform of the failure density in Eqn. (6.17) can be written as Z̃(s) =

s P̃0,0(s)−P0,0(0). Hence, mean time-to-failure (T ) of the machining system can be
derived as:

T =−dZ̃(s)
ds

∣∣∣∣
s=0

=
2λ
(
8λ 2−µ2 +6β (λ +µ)+β 2)+(ν +µ)(2λ +β )(3λ +µ +β )

2λ 2 (2λ +β )(2λ +ν)
(6.18)

6.3.2 Availability of the System

In this subsection, the availability behavior of the repairable redundant machining
system is discussed by accomplishing a governing system of linear equations for the
steady-state of the stochastic process shown in Fig. (6.2)
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Figure 6.2: The state transition diagram for availability analysis

Hence, the Chapman-Kolmogorov balance equations in terms of steady-state
probabilities are as follows

(2λ +ν)P2,1 =βQ2,0 +µP2,0 (6.19)

(2λ +µ)P2,0 =βP1,0 +(2λ +ν)P2,1 (6.20)

(2λ +β )Q2,0 =µP1,0 (6.21)

(λ +µ +β )P1,0 =2λP2,0 +(µ +β )P0,0 +2λQ2,0 (6.22)

(µ +β )P0,0 =λP1,0 (6.23)

The steady-state probabilities also satisfy the normalizing condition

P2,1 +P2,0 +Q2,0 +P1,0 +P0,0 = 1 (6.24)

On solving the set of linear Eqn. (6.19)-(6.23) for P21, P2,0, Q2,0, P1,0 and P0,0 using
the normalizing condition Eqn. (6.24), we have

P2,1 =
µ β (4λ +µ +β )(µ +β )

(2λ +ν)(2λ +β )
(

λ 2 +(λ +µ +β )2
)
+µ β (µ +β )(4λ +µ +β )

(6.25)

P2,0 =
β (2λ +ν)(2λ +µ +β )(µ +β )

(2λ +ν)(2λ +β )
(

λ 2 +(λ +µ +β )2
)
+µ β (µ +β )(4λ +µ +β )

(6.26)
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Q2,0 =
2λ µ (2λ +ν)(µ +β )

(2λ +ν)(2λ +β )
(

λ 2 +(λ +µ +β )2
)
+µ β (µ +β )(4λ +µ +β )

(6.27)

P1,0 =
2λ (2λ +ν)(2λ +β )(µ +β )

(2λ +ν)(2λ +β )
(

λ 2 +(λ +µ +β )2
)
+µ β (µ +β )(4λ +µ +β )

(6.28)

P0,0 =
2λ 2 (2λ +ν)(2λ +β )

(2λ +ν)(2λ +β )
(

λ 2 +(λ +µ +β )2
)
+µ β (µ +β )(4λ +µ +β )

(6.29)

Thus, an explicit expression of the availability of the machining system (A) is com-
puted as.

A =
(µ +β )((2λ +ν)(2λ +β )(2λ +µ +β )+µ β (4λ +µ +β ))

(2λ +ν)(2λ +β )
(

λ 2 +(λ +µ +β )2
)
+µ β (µ +β )(4λ +µ +β )

(6.30)

6.4 The Fuzzy Redundant Repairable System

The kernel of the present study is to encompass the efficacy of redundant repairable
machining systems with heterogeneous repair facilities by incorporating linguistic
vagueness, approximation in the estimation, uncertainty in intrinsic system parame-
ters. In this section, the system parameters are allowed to follow fuzzy specifications
to obtain a broad platform for the analysis of uncertainty and vagueness. The ap-
proximation, vagueness and uncertainty of failure rate of an operating units (λ ), the
failure rate of spare unit (ν), service rate of faster repairman (µ) and service rate of
slower repairman (β ) can be represented by the fuzzy sets λ̃ , ν̃ , µ̃ and β̃ respectively
with associated respective membership functions η

λ̃
(u), ην̃(v), ηµ̃(w) and η

β̃
(x).
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Hence, the following fuzzy sets represented as ordered pair are delineated

λ̃ = {(u,η
λ̃
(u)) | u ∈U} (6.31a)

ν̃ = {(v,ην̃(v)) | v ∈V} (6.31b)

µ̃ = {(w,ηµ̃(w)) | w ∈W} (6.31c)

β̃ = {(x,η
β̃
(x)) | x ∈ X} (6.31d)

where U , V , W and X are the crisp universe of discourse of the system parameters
namely the failure rate of an operating unit & spare unit and the service rate of a
faster repairman & slower repairman respectively.

A fuzzy number, normal and convex fuzzy set, is viewed as an extension of a
regular, real number in the sagacity of vagueness, uncertainty. It refers to a allied
set of possible values instead of single certain value, where each possible value has
its own weight between 0 and 1. Hence, fuzzy number is special case of a convex,
normalized fuzzy set on the real line. Calculations with fuzzy numbers allow the
incorporation of uncertainty on parameters, properties, geometry, initial conditions,
etc. Let r(u,v,w,x) denote the reliability characteristic of interest of studied redun-
dant repairable machining system. Since λ̃ , ν̃ , µ̃ and β̃ are fuzzy numbers r̃(λ̃ , ν̃ ,
µ̃, β̃ ) is also a fuzzy number. Following Zadeh’s extension principle, the member-
ship function of the desired reliability characteristics r̃(λ̃ , ν̃ , µ̃, β̃ ) is derived as:

ηr̃(λ̃ ,ν̃ ,µ̃,β̃ )(z) = sup
Ω

min{η
λ̃
(u),ην̃(v),ηµ̃(w),ηβ̃

(x) | z = r(u,v,w,x)} (6.32)

For the studied redundant MRP with heterogeneous multiple repair facilities, the
reliability characteristics r are derived as mean time-to-failure in Eqn. (6.18) and
availability of the system in Eqn. (6.30). Thus, the membership grade functions
ηT̃ (z) for mean time-to-failure and ηÃ(z) for availability of the system respectively,
are

ηT̃ (z) = sup
Ω

min{η
λ̃
(u),ην̃(v),ηµ̃(w),ηβ̃

(x) | z = rT (u,v,w,x)} (6.33)

and

ηÃ(z) = sup
Ω

min{η
λ̃
(u),ην̃(v),ηµ̃(w),ηβ̃

(x) | z = rA(u,v,w,x)} (6.34)

where,

rT (u,v,w,x) =
(w+ v)(2u+ x)(x+3u+w)+2u

(
8u2 +6ux−w2 +wx+ x2)

2u2 (2u+ x)(2u+ v)
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rA(u,v,w,x) =
(w+ x)((2u+ v)(2u+ x)(w+ x+2u)+ xw(w+ x+4u))

(2u+ v)(2u+ x)
(

u2 +(w+ x+u)2
)
+ xw(w+ x)(w+ x+4u)

with
Ω = {u ∈U,v ∈V,w ∈W,x ∈ X | u > 0,v > 0,w > 0,x > 0}

The derived membership grade functions are not in explicit form and their practical
applicability is very difficult. The imagination of membership’s shapes and inference
of any property is very typical and rarely judged. To overcome this difficulty, para-
metric non-linear programs based on the extension principle are employed and steps
are described in the next section.

6.5 Parametric Non-Linear Programs

Parametric non-linear programs (NLPs), mathematical programming techniques, are
generated to find the α-cuts of r̃(λ̃ , ν̃ , µ̃, β̃ ) based on the Zadeh’s extension prin-
ciple. To structure the membership function ηr̃(λ̃ ,ν̃ ,µ̃,β̃ )(z) of the desired reliability
characteristics r̃ in the comprehensible and customary form, Zadeh’s approach (cf.

Zadeh [200]) espoused that depends on α-cuts of r̃. The α-cuts of λ̃ , ν̃ , µ̃ , and β̃ as
different levels of crisp confidence intervals are demarcated as follows

λ (α) = [uL
α ,u

U
α ] =

[
min
u∈U
{u | η

λ̃
(u)≥ α},max

u∈U
{u | η

λ̃
(u)≥ α}

]
(6.35a)

ν(α) = [vL
α ,v

U
α ] =

[
min
v∈V
{v | ην̃(v)≥ α},max

v∈V
{v | ην̃(v)≥ α}

]
(6.35b)

µ(α) = [wL
α ,w

U
α ] =

[
min
w∈W
{w | ηµ̃(w)≥ α},max

w∈W
{w | ηµ̃(w)≥ α}

]
(6.35c)

β (α) = [xL
α ,x

U
α ] =

[
min
x∈X
{x | η

β̃
(x)≥ α},max

x∈X
{x | η

β̃
(x)≥ α}

]
(6.35d)

Therefore, the bounds of these crisp intervals can be designated as functions of
α as: uL

α = minη
−1
λ̃

(α), uU
α = maxη

−1
λ̃

(α), vL
α = minη

−1
ν̃

(α), vU
α = maxη

−1
ν̃

(α),

wL
α = minη

−1
µ̃

(α), wU
α = maxη

−1
µ̃

(α), xL
α = minη

−1
β̃

(α) and xU
α = maxη

−1
β̃

(α).

Hence, u ∈ λ (α), v ∈ ν(α), w ∈ µ(α) and x ∈ β (α) can be replaced by u ∈ [uL
α ,u

U
α ],

v ∈ [vL
α ,v

U
α ], w ∈ [wL

α ,w
U
α ] and x ∈ [xL

α ,x
U
α ] respectively. Consequently, the studied

fuzzy redundant repairable MRP can be transformed to a family of conventional MRP
with different α-cut sets.

To derive the membership function of reliability characteristics

ηr̃(z) = min(η
λ̃
(u),ην̃(v),ηµ̃(w),ηβ̃

(x))
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using Zadeh’s extension principle, it is essential that at least one of the following
cases to be hold such that z = r(u,v,w,x) satisfies ηr̃(z) = α:

Case (i) :
(

η
λ̃
(u) = α,ην̃(v)≥ α,ηµ̃(w)≥ α,η

β̃
(x)≥ α

)
Case (ii) :

(
η

λ̃
(u)≥ α,ην̃(v) = α,ηµ̃(w)≥ α,η

β̃
(x)≥ α

)
Case (iii) :

(
η

λ̃
(u)≥ α,ην̃(v)≥ α,ηµ̃(w) = α,η

β̃
(x)≥ α

)
Case (iv) :

(
η

λ̃
(u)≥ α,ην̃(v)≥ α,ηµ̃(w)≥ α,η

β̃
(x) = α

)
This can be consummated using parametric NLP techniques. To compute the lower
and upper bounds of the α-cut of ηr̃(z) for the respective cases (i)− (iv), the NLPs
are

(r)Li
α = min

Ω
r(u,v,w,x) (6.36a)

(r)Ui
α = max

Ω

r(u,v,w,x) ; i = 1,2,3,4 (6.36b)

The definition of λ (α), ν(α), µ(α) and β (α) implies that u ∈ λ (α), v ∈ ν(α), w ∈
µ(α) and x ∈ β (α) can be substituted with u ∈ [uL

α ,u
U
α ], v ∈ [vL

α ,v
U
α ], w ∈ [wL

α ,w
U
α ]

and x ∈ [xL
α ,x

U
α ] respectively. For given 0 < α2 < α1 ≤ 1, the following inclu-

sion relation [uL
α1
,uU

α1
]⊆ [uL

α2
,uU

α2
], [vL

α1
,vU

α1
]⊆ [vL

α2
,vU

α2
], [wL

α1
,wU

α1
]⊆ [wL

α2
,wU

α2
] and

[xL
α1
,xU

α1
] ⊆ [xL

α2
,xU

α2
] is hold. This also entails that the α-cuts frame a nested struc-

ture with respect to α , hence, the lower bounds Eqn. (6.36-a) and the upper bounds
Eqn. (6.36-b) have the same smallest and largest element respectively. To evaluate
the membership function ηr̃(z), it suffices to discover the left and right shape func-
tions of ηr̃(z), which is equivalent to finding the lower bound (r)L

α and upper bound
(r)Uα of the α-cuts of the r̃, which can be amended as:

(r)L
α = min

Ω
r(u,v,w,x)

s.t. uL
α ≤ u≤ uU

α , vL
α ≤ v≤ vU

α , wL
α ≤ w≤ wU

α and xL
α ≤ x≤ xU

α

(6.37a)

(r)Uα = max
Ω

r(u,v,w,x)

s.t. uL
α ≤ u≤ uU

α , vL
α ≤ v≤ vU

α , wL
α ≤ w≤ wU

α and xL
α ≤ x≤ xU

α

(6.37b)

At least one of u, v, w or x must trace the limits of their α-cuts to palcate the condition
ηr̃(z) = α . This mathematical program is a conventional mathematical models with
boundary constraints and proceeds itself to the systematic study of how the optimal
solutions change with uL

α , uU
α , vL

α , vU
α , wL

α , wU
α , xL

α and xU
α as α differs over (0,1].

The optimal modeling is a special case of parametric NLPs. The crisp intervals
[(r)L

α ,(r)
U
α ] derived in Eqn. (6.37) represents the α-cuts of r̃. Hence for 0 < α2 <
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α1 ≤ 1, we have (r)L
α1
≥ (r)L

α2
and (r)Uα1

≤ (r)Uα2
due to r̃’s convexity in nature. In

other words, (r)L
α increases and (r)Uα decreases as α increases. Consequently, the

membership function ηr̃(z) can be found from Eqn. (6.37) in systematical steps.
If both (r)L

α and (r)Uα are invertible with respect to α , then a left shape function
L(z) = [(r)L

α ]
−1 and a right shape function R(z) = [(r)Uα ]

−1 can be expressed, from
which the membership function ηr̃(z) is structured as:

ηr̃(z) =


L(z), (r)L

α=0 ≤ z≤ (r)L
α=1

1, (r)L
α=1 ≤ z≤ (r)U

α=1

R(z), (r)U
α=1 ≤ z≤ (r)U

α=0

(6.38)

For the complex cases, the values of (r)L
α and (r)Uα cannot be solved analytically.

This entails that an explicit-form of membership function for r̃ cannot be formulated.
Hence, the numerical values for (r)L

α and (r)Uα at different possibility levels α can
be summarized to protray the approximate shapes of L(z) and R(z). That is, the set
of intervals

{
[(r)L

α ,(r)
U
α ] | α ∈ [0,1]

}
shows the shape of membership ηr̃, although

the exact membership function expression is not known explicitly. The membership
function for mean time-to-failure and availability of the redundant repairable ma-
chining system can be determined in a similar manner by considering r(u,v,w,x) as
a respective explicit expression rT and rA. Since the redundant repairable machin-
ing system reliability characteristics are characterised by membership functions, the
values preserve completely all the fuzziness, vagueness, uncertainty, etc. of the gov-
erning parameters like failure rate of an operating unit, the failure rate of a spare unit,
the repair rate of faster repairman and the repair rate of a slower repairman. However,
users or analysts may prefer in general a certain or definite single crisp value for a
reliability characteristic rather than a fuzzy set. For seeking the required crisp value,
the fuzzy values of the reliability characteristics are defuzzified using Yager‚s rank-
ing index method (cf. Yager [189]; Ghasemi et al. [52]). Since Yager‚s method holds
the property of area compensation, this strategy is embraced to change fuzzy values
of reliability attributes into crisp ones. Appropriate estimations of system attributes
are ascertained as

O(E[Λ]) =
∫ 1

0
(E[Λ])L

α
+(E[Λ])U

α
2dα (6.39)

where E[Λ] is a convex fuzzy number and
(
(E[Λ])L

α
,(E[Λ])U

α

)
is the associated α-

cut. Note that this method is a robust ranking technique that possesses the properties
of compensation, linearity, and additivity (cf. Fortemps and Roubens [44]).
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6.6 Illustrative Example and Numerical Results

A real-life example of computing system having redundancy of one spare processor
(unit) is deliberated besides active redundancy of two operating processors (units)
for emergence use at failure of any operating processors to demonstrate the practi-
cal usage of the proposed fuzzy repairable system and methodology under view of
reliability theory. The computing system is monitored by two operators having het-
erogeneous caliber of rectifying the failed processor. For measuring efficiency and
effectiveness of the machining system, the reliability characteristics: mean time-
to-failure and availability of the system are most potential indices. Suppose the
failure rate of operating/spare processors and the repair rate of faster/slower oper-
ator are fuzzy in nature to define the involved vagueness and uncertainty. The re-
spective rate parameters which are trapezoidal fuzzy number are as follows λ̃ =

[0.6,0.8,1,1.2], ν̃ = [0.1,0.2,0.3,0.4], µ̃ = [3,4,5,6] and β̃ = [1,1.5,2,2.5]. For pre-
specified α(α ∈ [0,1]), defuzzification process has been executed to get crisp confi-
dence interval. Consequently, crisp interval corresponding to given fuzzy number are
as follows

[
uL

α ,u
U
α

]
= [0.6+0.2α,1.2−0.2α],

[
vL

α ,v
U
α

]
= [0.1+0.1α,0.4−0.1α],[

wL
α ,w

U
α

]
= [3+α,6−α] and

[
xL

α ,x
U
α

]
= [1+0.5α,2.5−0.5α]. Next, it is palpable

to note that the reliability characteristics viz. mean time-to-failure and availability of
the system attain their minimum value when u = uU

α ,v = vU
α ,w = wL

α and x = xL
α and

their maximum value when u = uL
α ,v = vL

α ,w = wU
α and x = xU

α .

6.6.1 The Fuzzy Mean Time-to-Failure

From the Eqn. 6.37(a) and 6.37(b) for r = rT , the left limit and right limit of crisp
interval for the α-cut of fuzzy mean time-to-failure (T̃ ) are derived as follows

(T )L
α =

5
4

(
293α3 +4048α2 +21300α +120784

(28−5α)(34+α)(−6+α)2

)
(6.40a)

(T )Uα =
5
4

(
293α3−6975α2 +60534α−282312

(13+5α)(−42+α)(3+α)2

)
(6.40b)

Obviously the function (T )U
α

and (T )L
α

is invertible in nature, that yields the mem-
bership function:

ηT̃ (z) =


L(z); 37745

8568 ≤ z≤ 5857
644

1; 5857
644 ≤ z≤ 285575

11808

R(z); 285575
11808 ≤ z≤ 6535

91

(6.41)
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The functional form of membership functions L(z) and R(z) are tedious to express.
The graphical shape of the membership function is depicted in Fig. 6.3(i).

The fuzzy mean time-to-failure T̃ has two noteworthy associate crisp quantities
to be noted. First, at the possibility level α = 0, the support of T̃ ranges from 4.4053
to 66.1316; this demonstrates that, though the mean time-to-failure is fuzzy, it is
incomprehensible for its values to fall below 4.4053 or surpass 66.1316. Second, the
α-cut at plausibility level α = 1 contains the values from 9.0947 to 24.9329, which
are the most conceivable values for the mean time-to-failure.

6.6.2 The Fuzzy Availability of the System

Similarly, from the Eqn. 6.37(a) & 6.37(b) for r = rA, the α-cut of availability Ã are

(A)L
α
=

5
(
885α4 +15164α3 +110596α2 +465856α +698624

)
4385α4 +75164α3 +572788α2 +2196992α +3767296

(6.42a)

(A)U
α
=

16545
(
295α4−8993α3 +110250α2−662364α +1565352

)
4836655α4−147315577α3 +1838937042α2−10914260000α +25942109976

(6.42b)

It is apparent that the above functions are invertible. Hence, the membership function
in shape form is

ηÃ(z) =


L(z); 13645

14716 ≤ z≤ 51645
52933

1; 51645
52933 ≤ z≤ 4155028575

418172024

R(z); 4155028575
418172024 ≤ z≤ 108705

108887

(6.43)

The corresponding shape of the membership function of the fuzzy availability of the
machining system is depicted in Fig. (6.3)(ii). From Fig. (6.3)(ii), for the possibility
level α = 1, the scope of the availability is approximately [0.9757, 0.9925], which
demonstrate that it is irrefutably possible that the availability of the machining system
falls in this interval, although it is imprecise. For the likelihood level α = 0, the scope
of the availability of the machining system is approximately (0.9272,0.9981). This
signposts that the availability of the machining system cannot surpass 0.9981 or fall
underneath 0.9272.
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6.6.3 Numerical Result

For the tractability of the proposed non-linear program for computing the member-
ship function of the reliability characteristics, the simulation of the machining sys-
tem with a different set of fuzzy numbers of the governing system parameters is
performed. Besides the default value of trapezoidal fuzzy number for fuzzy sys-
tem parameters for illustrative example previously, some varied set of fuzzy numbers
corresponding to fuzzy system parameters are considered for conducting the numer-
ical simulation. These fuzzy numbers are tabulated in Table (6.1) and trapezoidal in
shape. The varied shape of the membership functions are displayed in Figs. (6.4)-
(6.7) and corresponding support and core are summarized in Tables (6.2)-(6.5).

From Fig. (6.4), it is noticeable that the shape of the membership function of
mean time-to-failure and availability of the machining system is analogous for all
different fuzzy number corresponding to the fuzzy failure rate of the operating unit.
The informative values of support and core are summarized in Table (6.2). A higher
possibility of the failure of operating units decreases the possibility of mean time-
to-failure and availability of the machining system. It is obvious and validates the
present modeling. Restrictive failure may increase the availability of the machining
system that may be achieved with proper preventive and predictive maintenance.

Fig. (6.5) depicts the shape of the membership function of the reliability charac-
teristics, namely mean time-to-failure and availability of the machining system for a
different set of the fuzzy failure rate of the spare unit (ν̃). The corresponding support
and core of the fuzzy set are tabulated in Table (6.3). It illustrates that failure of spare
unit in the inactive state does not alter much in mean time-to-failure and availability
of the machining system. But, it is necessary to vigilant for its state for a high grade
of standby redundancy.

Fig. (6.6) portrays the shape of the membership function of mean time-to-failure
and the availability of the machining system corresponding to the different fuzzy
numbers which represent the vagueness of the service rate of a faster repairman.
The corresponding most likely range of possible value of mean time-to-failure and
availability of the machining system and most prevalence value are tabulated in Table
(6.4) as support and core respectively. It prompts that the higher possible range of
service rate increases the possibility of the availability of the machining system and
mean time-to-failure. It is an obvious result. The support and core give quick insight
to the system designer to set an appropriate service facility.

The similar kind of shape of membership function and observations for the fuzzy
service rate of slower repairman are summarized in Fig. (6.7) and Table (6.5). This is
also useful for an analyst to discover the appropriate design of the machining system.
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These results correspond to the vagueness, uncertainty, assumptions, error in
the estimation of system parameters to reliability characteristics viz. mean time-to-
failure and availability of the machining system, and broaden the range of decision
on knowing a sensitivity of different reliability characteristics. The support and core
give the direct view of the maximum possible range and most likely range of desired
systems. The current results and study directly benefit in system design and provide
knowledge for the formulation and analysis of any real-time service system.

6.7 Conclusion

Redundant repairable MRP has been valuable in the machining framework. More-
over, a multiple-heterogeneous-repairmen repair facility in fuzzy MRPs is consid-
erably more reasonable in many practical and realistic situations. This chapter ap-
plies the concepts of α-cut and Zadeh’s extension principle to construct the member-
ship function of mean time-to-failure and availability of the machining system using
paired non-linear programming models. The presented methodology in the chapter
can be extended similarly to derive membership functions of the corresponding fuzzy
reliability and queueing measures. The α-cuts of the membership functions are eval-
uated, and their corresponding interval limits inverted to achieve explicit closed-form
expressions for the system performance characteristics. Regardless the exact function
is not known explicitly, the set of intervals {

[
r(u,v,w,x)L

α ,r(u,v,w,x)
U
α

]
| α ∈ (0,1]}

can portray the shape of ηr̃(λ̃ ,ν̃ ,µ̃,β̃ )(z). Applying fuzzy sets hypotheses for inves-
tigating fuzzy queueing problems can provide more information for administrative
decision-making. It can easily be applied to the generalized MRP with any number
of operating and spare units and non-Markovian MRPs. It can also be viewed for
MRP with unreliable repairmen, switching failure of spare units, coverage failure,
reboot & recovery, non-identical operating units, or catastrophe, etc.
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Figure 6.3: Membership grade function for reliability characteristics for illustrative
example

 

Figure 6.4: Membership grade function for reliability characteristics for varied λ̃
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Figure 6.5: Membership grade function for reliability characteristics for varied ν̃

 

Figure 6.6: Membership grade function for reliability characteristics for varied µ̃
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Figure 6.7: Membership grade function for reliability characteristics for varied β̃


