
Chapter 2

Methodology

2.1 Statistical Model

Michel Peyrard and Alan Bishop proposed a statistical model of DNA in 1989

[65]. The works by E. Prohofsky and his team [58, 129, 130] provided the basic

principle of making this new model. The main objective of the PB (Peyrard-

Bishop) model is to explain the DNA denaturation. At first, it was limited to the

thermal ensemble, later on, it went to one step further, and DNA denaturation in

force ensemble was included. The model can successfully explain DNA unzipping

for long as well as short DNA chains. It treated the interaction of the nearest

neighbor coupling as a harmonic spring and later the anharmonicity part also

was added by T. Dauxois and since it is known as PBD model (Peyrard-Bishop-

Dauxois) [64]. Several groups have been using PBD model to study the DNA

unzipping process at different framework [18, 38, 131–134].

Basic assumptions in the PBD-model :

• The model works in the center of the mass frame, and it is a quasi-one-

dimensional model.

• The model considers equal reduced mass for every type of base pair. However,

the heterogeneity effect is assimilated in the basic model later on.

• Tha basic PBD model lies in a plane, and it describes the ladder model of

DNA. Later helicoidal geometry is added also [14, 135, 136].

• As the PBD model is interested mainly in DNA unzipping, so the longitudi-

nal movements of bases are not so much significant and their amplitude of
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Chapter 2: Methodology

vibrations are neglected. Hence, the transverse stretching of the hydrogen

bonds between complementary bases is considered exclusively.

(a) DNA as double helix
(b) The ladder structure of DNA that the
PBD model take cares.

Figure 2.1: Graphical presentation of PBD model. DNA double helix is simplified
as a ladder. The filled circle represents the nucleotides, and the arrow shows that
transverse motions are only considered.

2.1.1 Model Hamiltonian

The diagrammatic representation of the PBD model is shown in Figure 2.1(b).

Every base pair holds two chains, each base pair keeps two degrees of freedom.

In the diagram, un represents the displacement of the nth base pair in one chain

and vn represents the displacement of corresponding nth base pair of the second

chain. The displacement of bases is taken from their mean position. The model

represents the hydrogen bonding between the bases in a pair through the Morse

potential. Morse potential was first used to represent the Hydrogen bond in 1985

by E. Prohofsky et al. [129]. The stacking interaction between adjacent base

pairs is represented by a harmonic potential first and later on it is modified as

anharmonic potential. The Hamiltonian of the system is [65, 137, 138],

H =
∑
n

[
1

2
m{u̇2n + v̇2n}+

1

2
k[(un − un+1)

2 + (vn − vn+1)
2] +D(exp[−a(un − vn)]− 1)2

]
(2.1)

In the Hamiltonian equation, m is the effective nucleotide mass of the base pair

and k represents the elasticity of the DNA strand. The parameter D represents
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2.1. Statistical Model

the depth of the potential well, and a represents the inverse of the width of the

potential well. There are two motions of base pairs, one is in-phase, and the other

one is out-of-phase. They are:

xn =
un + vn√

2
; yn =

un − vn√
2

(2.2)

The Hamiltonian can be re-written as,

(2.3)
H =

∑
n

[
{1

2
mẋ2n+

k

2
(xn−xn+1)

2}+{1

2
mẏ2n+

k

2
(yn−yn+1)

2}

+D(exp[−ayn
√

2]− 1)2
]

As it is said in the “Basic assumptions in the PBD-model”, the model is interested

only in the separation of the chains not in the movements of DNA chain as a whole.

Since out-of-phase motion is solely responsible for hydrogen bond stretching; hence,

the equation of Hamiltonian is described by the scalar variable yn exclusively.

Figure 2.2 shows the transverse motion of the hydrogen bonds. So the functional

(a) (b)

Figure 2.2: (a) PBD model is viewed as a one-dimensional monotonic lattice model.
(b) displacements of each nucleotides from their equilibrium positions.

Hamiltonian is written as,

H =
N∑
n=1

[
p2n
2m

+ V (yn)

]
+

N−1∑
n=1

[W (yn, yn+1)] (2.4)

where V (yn) = D(e−ayn − 1)2 and W (yn, yn+1) = k
2
(yn − yn+1)

2

The onsite potential V is function of yn and the stacking potential W is function
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of variable yn and yn+1. The stacking potential is a crucial factor in the Hamil-

tonian. The PB model with this potential harmonic stacking provided a good

value of melting temperature (Tm), but the values were around 150 K more than

actual experimental results [139]. Dauxois et al. [64, 139] modified this harmonic

potential, and a nonlinear term was introduced to describe stacking interactions

more appropriately. The new stacking potential is:

W (yn, yn+1) =
k

2
(yn − yn+1)

2[1 + ρe−b(yn+yn+1)]. (2.5)

The parameter b is the decay constant for stacking interaction, and ρ is a dimen-

sionless parameter. Both these parameters account the range of anharmonicity.

When the DNA is in zipped state then yn = 0, and the force constant becomes

k(1 + ρ). The force constant starts to decrease from k(1 + ρ) to k according to

the two interacting base pair’s stretching. This decrease of force constant delivers

large entropy and that helps the unzipping process of DNA. The outcome of this

PBD model showed good agreement with experimental results, and the transition

per se was preferably sharp. In his paper, T. Dauxois [64] has shown that how

anharmonicity of stacking helps to get a sharp transition in the PBD model.

2.1.2 Partition Function

Using the model Hamiltonian the canonical partition function is calculated, and

through this partition function (Zc) the essential thermodynamics properties can

be studied. The partition function of the system :

Z =
1

hN

∫ N∏
n=1

{dyndpn exp (−βH)} = ZpZc, (2.6)

The partition function holds momentum part (Zp) and configurational part(Zc).

The number N says about the number of base pairs in the DNA chain. The

parameter β = 1
kBT

. The momentum part can be integrated through Gaussian

integral and for the N number of base pairs it is :

Zp =

∫ ∞
−∞

[
N∏
n=1

dpn exp{−β
[
p2

2m

]
}

]

Zp = (2πmkBT )N/2, (2.7)
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The configurational part of the partition function is :

Zc =

∫ ∞
−∞

[
N−1∏
n=1

dyn exp{−β [W (yn, yn+1) + V (yn)]}

]
dyNV (yN), (2.8)

The Zc part of the partition function holds the coupled terms so the solution of

this part is not straight forward. If we want to follow the standard TI(Transfer

Integral) method then the solution would follow these steps:

A kernel K(yn, yn+1) is defined to solve it [140].

K(yn, yn+1) = exp [−βH(yn, yn+1)] (2.9)

It is evident that for the homogeneous chain, K(x, y) = K(y, x). Zc can then be

written as :

Zc =

∫ ∞
−∞

N∏
n=1

dynK(yn, yn+1) (2.10)

Following the periodic boundary condition,we can write :

Zc =

∫ ∞
−∞

N∏
n=1

dy1dy2....dyNK(y1, y2)K(y2, y3).....K(yN , y1) (2.11)

Integral equation is introdued now and we are able to write,∫
dyK(x, y)φ(y) = λφ(x) (2.12)

There is a assumption that should be taken now on the basis of the two facts

K(x, y) > 0 and the symmetry of the kernel.

‖K(x, y)‖=
[∫ ∞
−∞

∫ ∞
−∞
{K(x, y)}2

]1/2
<∞ (2.13)

the integral equation holds positive Hilber Schmidt type kernel [141] so positive

eigenvalues and orthonormal eigenfunctions are supposed to be the two aspect of

it. Let us consider the eigenvalues are λi and the corresponding eigenvectors are

φi then∫
dxφn(x)φm(x) = δnm and

∞∑
n=1

φn(x)φn(y) = δ(x− y). (2.14)
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The kernel K(x, y) can be written [141] ,

K(x, y) =
∑
n

λnφn(x)φn(y) (2.15)

Now we put the K(x, y) into Eq.2.11 and implement the orthonormality conditions

(Eq.2.14). Then the configurational partition becomes,

Zc =
∞∑
n=1

λNn (2.16)

For the open boundary condition the Zc is :

Zc =
∑
n

(∫
dyφn(y) exp

{
−βV (y)

2

})2

λN−1n (2.17)

Through diagonalizing the output matrices in Eq.2.9, the eigenvalues and corre-

sponding eigenstates can be determined.

There are some technical issues that we have to address in the standard TI(Transfer

Integral) method. The TI method asks for the unbound property of all the on-site

potentials through the existence of Eq.2.13. On the contrary, the Morse potential

in the Hamiltonian is bound [142] therefore, it violates the condition of Eq.2.13.

So the kernel that we define in Eq.2.9 does not fall under the category of a Hilbert-

Schmidt type kernel and it becomes a singular kernel for which integration limit

would be [−∞,+∞;−∞,+∞]. The properties of this kernel lead to the diver-

gence of the partition function. if we have to use the TI method, an upper limit

of yn has to be set up. This upper bound will limit the kernel on a finite space [a,

b ; a, b], so that its norm exists.

If the heterogeneity is introduced in the sequence, then the calculation of partition

function is not so straight forward like homogeneous sequence. For the heteroge-

neous sequence the nth site may not be the same nature as its n−1 and n+1 sites.

To overcome this issue there are different approaches that have been proposed

like Cule [143] suggested to treat the heterogeneity as quench disorder. Y Zhang

et al. [140] suggested extended transfer matrix approach (ETMA). With open

boundary condition the matrix multiplication method can address the calculation

of partition function [38, 132, 144]. The crucial task of choosing proper cut-offs

for the integration has been introduced by T S Van Erp et al. [145]. A large

cut-off can increase the probability of the complete denaturation of a finite chain.

This probability comes to be one in the limit of infinite cut-off. This signifies the

18



2.1. Statistical Model

same divergent issue of Eq.2.8. A double-stranded ensemble was introduced in the

numerical calculations of partition function by T S Van Erp et al. [145] to avoid

this divergent issue. Their group-work showed an upper cut-off of ≈ 144 Å and a

lower cut-off of -0.4 Å for a set of model parameters at T = 300 K. To calculate

partition function, we generate matrices using Eq.2.10 and multiply the obtained

matrices one by one. The integration in the Eq.2.8 can be written as:

Zc =

∫ ∞
−∞

exp

(
−βV (y1)

2

)
dy1

N−1∏
n=1

dyn exp

[
−β

2
{V (yn) + V (yn+1)

+ 2W (yn, yn+1)}
]

exp

(
−βV (yN)

2

)
dyN

(2.18)

After the proper cut-offs, the next task is to discretise the integral. In order to

get a precise value of melting temperature (Tm) we have observed that Gaussian

quadrature is the most effective quadrature. We have found that discretization

of the space with 900 points(this is the dimension of the matrix 900×900 also) is

sufficient to get an accurate value of Tm [146].

Once we calculate the partition function, then we can calculate the other thermo-

dynamic properties through the partition function. For finding out the melting

temperature Tm, we have to calculate specific heat because the peak of the specific

head is the melting temperature point of the DNA chain. So first we calculate free

energy (Helmholtz free energy of the system) per base pair then it will proceed

toward entropy S and finally specific heat Cv using the following relations,

f(T ) = −1

2
kBT ln (2πmkBT )− kBT

N
lnZc. (2.19)

S(T ) = − ∂f
∂T

(2.20)

Cv(T ) = −T ∂
2f

∂T 2
. (2.21)

2.1.3 Limitations of the PBD model

Although the PBD model has the ability to illustrate the denaturation process

of DNA chain delightfully still, the model can not be said as a complete model.

It allows to study both homogeneous and heterogeneous sequence of long as well

as short DNA chain, notwithstanding it ignores many structural and dynamical

features of DNA chain. The model is a quasi-one-dimensional model, so it ignores
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the real three-dimensional structure of the molecule. The water and the solution

effects are considered as the background effect [20]. The model under-estimate

the entropy of the dsDNA since it ignores the entropy which is due to the motion

of the dsDNA strand. The effect of hydration of open base pairs is also an issue

in the model. Researchers have been trying to overcome these issues of the PBD

model [38, 133, 147, 148].

2.2 Molecular Dynamics

Molecular dynamics (MD) is an algorithm to study the dynamics of atoms and

molecules for a fixed time period. The trajectories of these atoms and molecules

in phase space as a function of time which belong to the same ensemble, are calcu-

lated through the MD simulation. The forces that act on the atoms or molecules

are either taken from the classical potential frame or from the quantum potential

frame, and these two approaches separate classical and quantum molecular dy-

namics. Statistical mechanics plays an important role in MD calculation since it

deals with the microscopic parameters, and through these parameters, it gives the

observable macroscopic properties. In the late of 1950s, it was proposed within

the field of theoretical physics, and later it has been started to apply in all the

branches of general science research mostly in chemical physics, materials science,

and biological sciences.

2.2.1 Classical Molecular Dynamics

We are interested mainly in the classical molecular dynamics, and in classical MD,

the Newton equation of motion play the role to calculate the dynamics of the

system. To know the position of each atom with respect to time we have to solve

the newton’s equation of motion, and that is,

Fi = miai = mi
d2ri
dt2

(2.22)

where mi is the mass of the ith atom and ai is the acceleration so it can be written

to d2ri
dt2

. The force on each atom can be written in terms of potential energy,

Fi = −∂V
∂ri

. (2.23)
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2.2. Molecular Dynamics

The accuracy of the MD simulation mainly depends on how accurately we con-

sider every potential energy that acts on the system. The potential energy and

initial coordinates of the system generate a new set of coordinates and a force

that is acting on the new set of coordinates. Repetition of the procedure makes

the trajectory depending on how the system will evaluate with time. There is

another mathematical expression required now, which instructs how the particles

are supposed to interact. In the MD simulation, this mathematical functional

form is called the Force field. The force field dwells on the interatomic potentials

and the set of parameters that belong to these potentials. The parameters have

been defined in the force field by mechanical calculations or through fitting the

experimental data. There are many force fields depending on the details of the

simulation system. If we want to write down a typical expression of a force field,

then it holds two types of interaction energy, and they are Ebonded and Enonbonded.

Ebonded = Ebond + Eangle + Edihedral

Enonbonded = Eeletrostatic + EvanderWalls

So a typical force field looks like this,

V =
∑
bonds

1

2
kb(r − r0)2 +

∑
angles

1

2
ka(θ − θ0)2 +

∑
torsions

Vn
2

[1 + cos(nφ− δ)]

+
∑

improper

Vimp +
∑
LJ

4εij

(
σ12
ij

r12ij
−
σ6
ij

r6ij

)
+
∑
elec

qiqj
rij

,

(2.24)

where the first four potentials are respectively bond stretching, angle bending,

and dihedral and improper torsions so they are basically represent bonded inter-

actions and the last two potentials show repulsive (Coulombic interactions) and

Van der Waals interactions (Lennard-Jones potential) therefore they represent the

nonbonded interactions(see fig.2.3). Finite-size can cause problems with boundary

effects in MD simulation also. Periodic boundary conditions (PBC) are used to

solve this boundary effect problem. PBC can make the system an infinite one

though the periodicity effects. If any corner atom which is not fit in the box and

leaves the simulation box by right-hand face, then according to PBC, that atom

is supposed to appear in the next simulation box by the left-hand face.

The next part is the algorithms. We have already said that the equation of motion

can not be solved without numerical technique. So discretization of the trajectory

21



Chapter 2: Methodology

Figure 2.3: Typical potential terms in a force field. Figures are taken from [1]

is the first step then use an integrator to proceed over small time steps like,

ri(t0)→ ri(t0 + ∆t)→ ri(t0 + 2∆t)→ .........ri(t0 + n∆t)

If we follow the Taylor expansion with a starting time t0 and a known initial

positions, positions and forces then we can proceed to time t0 + ∆t as we have

discussed above. The Taylor expansion as follows:

ri(t0 + ∆t) = ri(t0) +
dri(t0)

dt
∆t+

1

2

d2ri(t0)

dt2
∆t2 +O(∆t3) (2.25)

Now for better numerical precision, Verlet proposed that let add the Taylor ex-

pansion for ri(t0 + ∆t) and ri(t0 −∆t) then odd powers will be cancelled and the

output is,

ri(t0 + ∆t) + ri(t0 −∆t) = 2ri(t0) + ai(t0)∆t
2 +O(∆t4) (2.26)

Therefore the velocities can be written as,

vi(t0) =
1

2∆t
[ri(t0 + ∆t)− ri(t0 −∆t)] (2.27)

And the velocity-Verlet algorithm says,

ri(t0 + ∆t) = ri(t0) + vi(t0)∆t+
1

2
ai(t0)∆t

2 (2.28)
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vi(t0 + ∆t) = vi(t0) +
1

2
[ai(t0) + ai(t0 + ∆t)] ∆t (2.29)

Those algorithms are reasonably accurate and therefore they are a good choice as

integrators for an MD simulation.

Since the MD simulation research has been moving from simple to more and more

complicated systems, hence the force field also has been developing accordingly.

There are some popular force fields: CHARMM [149],AMBER [150],GROMOS

[151], OPLS [152],and COMPASS [153]. These force fields are continuously devel-

oping, so there are many versions of each force field that are available for us.

In addition to those general force fields, there are also some specific interaction

potentials that also play a role in MD simulation. The water model is a great

example of this because of its importance [154]. There are many models that have

been developed, and they have their own strengths and weaknesses [155]. Vega

et al. has shown a comparison results among five popular water models(TIP3P,

TIP4P, TIP5P, SPC, SPC/E) in their research work [156].

2.2.2 Limitations of the MD simulations

Like every method, MD also has some limitations. When we want to use a tech-

nique, then it is good to be aware of the limitations of this technique. Despite

all the shortcomings, classical MD can be considered mature [157]. Microsecond

simulation is done still simulation time-scales is an issue, and developing computer

power is the pathway to it. Active research is going on to get longer-timescale sim-

ulation results, and it will be possible through algorithmic improvements, parallel

computing, and developing specialized hardware. The next limitation that we face

is force field accuracy. Force fields are written by considering many approxima-

tions, but researchers have been trying to improve over the last decade, but still,

there are many limitations.
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