
Chapter 2

Bayesian statistics, data sets and

methodology

This chapter begins with some basic and preliminary concepts of Bayesian statis-

tics. We provide a brief detail on the cosmological parameter estimation and the working

process of the Metropolis-Hastings algorithm which is an efficient Monte Carlo Markov

Chain (MCMC) technique for the parameter estimation in cosmology. Then we discuss

various cosmological data from different observations that have been used in constraining

the parameters of the cosmological models throughout this thesis work. We use observa-

tional data from Planck-CMB measurements, BAO measurements,H0 measurement from

Hubble space telescope (HST), and some LSS observations including Planck-Sunyeav-

Zel’dovich (Planck-SZ), Canada France-Hawaii Telescope Lensing Survey (CFHTLenS),

and KiDS-450. We consider different combinations of these data sets for constraining the

considered models, as we will see in the forthcoming chapters. In the final section of this

chapter, we discuss the methodology/codes for the data analysis used in the whole re-

search work and the constraints on the parameters of the ΛCDM model from final Planck

2018 data.
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2.1 Bayesian statistics

With the new developments in technology since the last two decades, a large amount of

observational data are available with great accuracy and precision from various sources

of different physical origins. This trend will be prolonged in the coming future since

several surveys/experiments are currently ongoing. So it becomes important to test the

viability (relevance) of constructed theoretical cosmological models against the available

observational data sets. For this purpose, we use some statistical tools to extract as much

information as possible about the constructed models. There are two approaches to in-

terpret the probability in statistical analysis, namely, the frequentist school and Bayesian

school. In the frequentist school of thought, the probability of an event is defined as the

ratio of the occurrence of the event in a series of trials to the number of total trials in

the series. In the Bayesian school of thought, the probability of an event is defined as

a measure of the degree of belief about happening of the event. The main difference in

two schools of thought is the way of interpreting the probability. In the frequentist school

of thought, the hypotheses and the parameters of the model remains fixed whereas in

the Bayesian approach the probability can be updated with the new information and it

depends on the prior knowledge of the model parameters such as from previous experi-

ments/surveys or a personal point of view. We follow the Bayesian approach in the work

done in this thesis. For more details about Bayesian statistics in context of cosmology,

see [57–60].

2.1.1 Estimation of parameters

The key quantity in Bayesian statistics is the likelihood function usually denoted by

L(d|θ,M) for the given data d = {d1, d2, d3, . . . , dn} and a given model M which

takes the parameter values θ = {θ1, θ2, θ3, . . . , θm}. Assuming that the data measure-

ments are normally distributed about their mean values, the likelihood function up to the
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proportionality is defined as

L(d|θ,M) ∝ exp

(
−χ

2(θ)

2

)
. (2.1)

Under the assumption that the given model is true, the probability density function,

P (θ|d,M) of parameter θ of modelM, given data d, is related to likelihood via Bayes’

Theorem

P (θ|d,M) =
P (d|θ,M)P (θ,M)

P (d,M)
, (2.2)

where the quantity on left side of eq. (2.2) is called the posterior probability (‘posterior’

in short) of the parameter θ, representing our degree of belief on the model parameter

values after we have seen the data d. On the right hand side, the first term in numerator

is the likelihood function, P (d|θ,M), usually denoted by L(θ), in short and gives the

probability of data, given the values of the parameters. The quantity P (θ,M) denotes the

prior probability distribution of the parameter θ, and represent our belief about parameter

values before we observed the data. This quantity quantifies our existing knowledge on

parameter which may be based on past experiments/surveys or on theoretical predictions,

and thus play a significant role in estimation of posterior probability. There is no general

rule for choosing the prior on parameters, and in general the choice of prior falls in three

categories: flat prior, Gaussian prior, and Jeffrey prior. The quantity P (d,M) in denom-

inator of eq. (2.2) is marginal likelihood or the evidence. It has no role in parameter

estimation, and it acts as normalizing constant but plays a significant role in Bayesian

model selection. In the whole work of this thesis, we have used the flat prior on all the

model parameters. For a particular parameter, say θi, defined in the range [a, b], the flat

prior is given as

p(θi) =


1
a−b , a ≤ θi ≤ b

0, elsewhere

(2.3)
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Thus, in the case of flat prior on parameters, Bayes’ theorem (2.2) can be used to write

the posterior probability as follows:

P (θ|d,M) ∝ P (d|θ.M) (2.4)

Therefore, in case of flat prior choice on the model parameters, the posterior probability

information can be achieved directly from the likelihood function.

2.1.2 Monte Carlo Markov Chain technique

When the number of parameters in a cosmological models become large, which is usu-

ally the case when considering the extension of the well-known standard model or when

using the observational data containing supporting nuisance parameters (for example,

when using full Planck-CMB data), the evaluation of full likelihood function and hence

the posterior by the usual methods, such as the grid one are not efficient due to the re-

quirement of huge amount of computation time. In such situations, the MCMC methods

are good choices which converge to the region in the parameter space where the likeli-

hood function attains maximum value. A full description of these methods can be seen

in [61, 62]. The MCMC methods are efficient to generate a collection of points in the

parameter space that sample the likelihood function (i.e. the target density), and con-

sequently the posterior probability. It selects the random candidate point in parameter

space in Markovian manner, i.e., the choice of next candidate point is relying only on

the current candidate point, not on the previous sample history. Once the sample for the

posterior using MCMC is obtained, one can calculate various quantities of interest like

mean, variance, and standard deviation, etc. MCMC starts with an initial candidate point

θ with the target density p(θ), and chooses a next candidate point, θ? with target den-

sity value, p(θ?). Then the acceptance of this new candidate point depends on the ratio

of the new and old target density values. The probability distribution which generates

a new candidate point for the chain on the basis of present candidate point, is usually

known as proposal distribution, q(θ?|θ). In most of the cases the proposal distribution is
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considered as Gaussian since it matches to the target distribution. A reversible proposal

distribution q(θ|θ?) can also be defined in a similar manner, which gives a distribution

to reverse the chain. The simplest algorithm which is widely used in MCMC technique

in cosmology is the Metropolis-Hastings (M-H) algorithm [63], based on the Bayesian

statistical approach. In this algorithm, the probability of acceptance of the new candidate

point is given as

p(acceptance) = min

(
1,

p(θ?)q(θ?|θ)

p(θ)q(θ|θ?)

)
. (2.5)

In case of symmetric proposal distribution, i.e., q(θ?|θ) = q(θ|θ?), that means the

chain is reversible. This algorithm is simply known as Metropolis instead of Metropolis-

Hastings, and has the following form:

p(acceptance) = min

(
1,

p(θ?)

p(θ)

)
. (2.6)

The acceptance or rejection of the new candidate point is decided by generating a random

number, say u, from the uniform distribution [0, 1]. The new point will be accepted as a

sample point if u < p(acceptance), otherwise it will be rejected. It is clear from eq. (2.6)

that if the new point θ? has target density p(θ?) higher than the target density p(θ) of the

present point θ, the new point will always be accepted. However, if the target density of

the new point is smaller than the target density of the current point, then the new point

might be accepted or not. If the new point is accepted, then it will be added to the chain

and move for the next point. If the new point is rejected, the process will be repeated.

The MCMC methods play a significant role in cosmology, and are generally applied in

the observational data analysis using the well-known software such as CosmoMC [64]

and Monte Python [65], which are particularly designed for cosmology and astrophysics.

The CosmoMC is written in Fortran language and interfaced with Boltzmann solver code

CAMB [66]. The Monte Python [65] code is written in Python as its name indicates and

interfaced with another Boltzmann solver code CLASS [67]. The working process of

both CosmoMC and Monte Python is based on the Metropolis-Hastings algorithm. The
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subsection (2.3.1) describes the Monte Python and CLASS codes with some more details.

2.1.3 Bayesian model selection

After performing the parameter estimation on the considered model, the next task is to

test the statistical goodness of the model by comparing it with the well-known standard

model. There are two distinct tools for doing the same. One is based on Bayesian infer-

ence such as Bayesian evidence and an approximation of it is called Bayesian Information

Criterion (BIC). The other is based on Information theory such as the Akaike Information

Criterion (AIC). There is also an additional information criterion, Deviance Information

Criterion (DIC) which inherits the properties from both, information theory and Bayesian

methods. It is important to mention that the AIC can be derived in a Bayesian way and

BIC can be derived in a non-Bayesian way, as argued in [68]. Therefore, one should

not think the argument about using AIC versus BIC as a Bayesian versus frequentist ap-

proach. One natural question that immediately comes in mind is that which one is better

among these possible model selection tools. Here, we will restrict ourselves and not

discuss the advantage of one over another tool. For most cosmologists, the Bayesian evi-

dence is the preferred tool but the problem with the Bayesian evidence is in the estimation

of multidimensional integral which requires a lot of numerical computation. Although,

nowadays there are available codes such as CosmoNest which makes this task easier. In

the whole work of this thesis, we use a simple model selection criterion which is widely

used in cosmology, astrophysics, and elsewhere. We use the Akaike information criterion,

AIC [68, 69].

2.1.4 Akaike information criterion

The AIC has been widely applied in cosmological and astrophysical problems and it is

relatively simple to use since it requires only the maximum likelihood function of the

model. The AIC is defined as

AIC = −2 lnLmax + 2N, (2.7)
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where Lmax is the likelihood function of the model evaluated at the set of model param-

eters which maximize the likelihood and N is the total number of free parameters in the

model. Under the further assumption that the distribution of errors follows a Gaussian

distribution, the above equation reduces to

AIC = χ2
min + 2N, (2.8)

where χ2
min is the usual chi-squared evaluated at the maximum likelihood estimate of the

model parameters. For the statistical comparison, the AIC difference between the model

under study and the reference model (the best-fit model concerning which comparison has

to be done) is calculated. This difference in AIC values can be interpreted as the evidence

in favor of the candidate model (the model under study) over the reference model. It has

been argued in [70] that one model can be considered statistically better concerning others

if the AIC difference between the two models is greater than a threshold value ∆threshold.

According to the thumb rule of AIC, ∆threshold = 5 is the universal threshold value (the

minimum AIC difference value [71]) to assert strong statistical support in favor of a model

compared to other, regardless the properties of the model considered for comparison.

Thus, an AIC difference of 5 or more between two models favors the model with smaller

AIC value.

2.2 Observational data analysis

2.2.1 CMB anisotropy measurement

As mentioned in the previous chapter, the CMB radiation was first discovered by Penzias

and Wilson in 1965 [72], with uniform temperature coming from all directions of the

sky. Very soon with the advancement in technology, it was observed that there is a very

tiny difference in the temperature of the CMB photons coming from any two random

directions, called the temperature anisotropy. Many cosmologists in the 80’s predicted

the CMB anisotropy by looking back in time from the present observed inhomogeneous
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structure to the decoupling epoch. They calculated that it should be at least of the order

10−6 to form clusters of galaxies observed today. At that time, due to a lack of techni-

cal instruments, the measurement of this temperature anisotropy was a challenging task

among the cosmological community.

In the period of the 90’s, several efforts were made via various experiments to detect the

anisotropies in CMB. The first success was achieved in 1992 by the National Aeronautics

and Space Administration (NASA) satellite, COsmic Background Explorer (COBE) em-

bedded with an interferometer of great sensitivity [73]. The average amplitude of the tem-

perature was measured as ' 10−5 by the COBE satellite which mapped the anisotropies

in all parts of the sky. This anisotropy measurement was in good agreement with the

theoretical estimations. The angular resolution of the COBE experiment was very small

(about a few degrees only), due to which anisotropies observed around one degree or

less than that became smooth in the detector. Thus, COBE was successful in measuring

the CMB spectrum only on those wavelengths which were larger than the sound hori-

zon at decoupling, hence it did not provide any probe of the acoustic oscillations. After

the COBE, several new experiments were designed with the high angular resolution, to

measure the power spectrum at smaller wavelengths than the sound horizon at decou-

pling. The angular power spectrum at small wavelengths is required for observing the

acoustic peaks. In 2000, the first acoustic peak was observed by two ground-based bal-

loon experiments, namely BOOMERanG [74, 75] (a US-Italian-Canadian balloon) and

MAXIMA [76, 77]. These experiments received great attention from cosmologists in

the direction of CMB measurements. After COBE, the NASA satellite, Wilkinson Mi-

crowave Anisotropy Probe (WMAP) [78, 79] and the Planck satellite operated by Euro-

pean Space Agency (ESA) have measured CMB anisotropies. These satellite experiments

have provided a high-resolution map of the full sky in addition to ground-based experi-

ments. Nowadays, Planck is the most promising experiment which provides an excellent

measurement of anisotropies in the CMB temperature.
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2.2.2 Planck mission and data release

Planck experiment is designed for the measurement of spectra of anisotropies in CMB

up to a percent level of accuracy and precision. It was started on 14th May 2009, and it

continuously observed the whole sky from 2009 to 2018. The final Planck CMB 2018

data is released, and this mission is over. The whole data sets together with various other

things like source catalogs and CMB maps are publicly available for users. These can

be extracted from the Planck Legacy Archive website [80]. For more details about the

Planck mission, its main goal and technical instrumentation, see the recent article [81].

Planck Collaboration regularly releases the data and a series of associated papers. Its first

release of data and related papers came in 2013 [82, 83]. The constraints on standard

cosmological parameters as well as the other various derived parameters and their related

physics can be seen in [84]. Planck collaboration released second data and related papers

in 2015 [85]. In this release, the E-mode polarization through the TE cross-correlation

and the EE auto-correlation spectra were included in the likelihood [86], and hence the

cosmological results and power spectra were improved [32]. The final results from the

full Planck mission were released in 2018 [87]. In this release, the reionization optical

depth was measured with high precision as compared to Planck 2015 results, due to the

improved measurements of polarization on large scale. This precise measurement of opti-

cal depth significantly improved the constraints on other correlated parameters [88]. The

likelihood codes of the final Planck mission were not publicly available during the prepa-

ration of this thesis. A list of Planck collaboration publications: including Planck 2018

results, Planck 2015 results, Planck 2013 results, Planck intermediate, and early results,

and many others can be found at [89]. It is important to mention that some cosmolog-

ical parameters show the degeneracy (i.e., different parameters have similar effects on

the CMB spectrum) with the CMB data alone. To break the parameter degeneracy, some

supplementary cosmological probes such as BAO, HST, SNe Ia, etc. are usually used

with CMB data. We will discuss about the supplementary data sets used in this thesis in

later subsections.

43



Chapter 2

2.2.3 CMB power spectrum

It is well known that the small initial perturbations in matter and radiation components

have evolved from very early Universe to present observable Universe. The inhomo-

geneities in the matter have evolved due to the gravitational instabilities in matter distri-

bution and formed the observed structures in the Universe such as galaxies, galaxy clus-

ters, superclusters, etc. The same initial fluctuations have also created the anisotropies

in the radiation which we observe today in the CMB radiation coming from all parts of

the sky. Since the photons energy density, (hence the fluctuations in it) is related to the

temperature via ργ ∝ T 4. Thus, by measuring the temperature across the whole sky one

can easily find the anisotropies in the CMB photons [1]. The temperature anisotropy of

photons can be defined as

Θ(n̂) =
T (n̂)− T̄

T̄
, (2.9)

where Θ is the temperature perturbation, n̂ denotes the unit vector along the line of

sight, and T̄ denotes the temperature of CMB, which is determined by averaging the

temperature on the sky from all directions. It is given as

T̄ =
1

4π

∫
dΩn̂T (n̂), (2.10)

where dΩn̂ represents the infinitesimal solid angle in a direction n̂. The temperature

perturbation Θ(n̂) in eq. (2.9) can be expressed in terms of spherical harmonics, Ylm as

follows:

Θ(n̂) =
∞∑
l=0

l∑
m=−l

almYlm(n̂), (2.11)

where alm’s are the complex constant coefficients. With the help of basic definitions and

relations of spherical harmonics with Legendre polynomials, the alm’s can be expressed

in terms of temperature multipoles, Θl, as follows:

alm = −(i)l
∫

d3~k

2π2
Ylm(k̂)Θl(t0, ~k), (2.12)
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where k̂ stands for unit wave vector. The spherical harmonics can be interpreted physi-

cally as the angular scale θ ∼ π/l. They can be modeled as the Fourier series over the

surface of a sphere. Thus, a particular value of l represent the function over a particu-

lar portion on the sphere, for instance, l = 0 refers to a function on the whole sphere,

l = 1 over the three axes of the sphere and so on. Thus, for large l, spherical harmonics

vary on small scales, and alm’s describe the amplitude of temperature fluctuations at each

location in the Universe. It is also known that the mean of the temperature fluctuations

over the whole sky vanishes. So the quantity of interest which needs to be estimated is

the variance which does not vanish. The two-point correlation function of the alm can be

expressed in terms of the primordial curvature power spectrum:

〈almal′m′〉 = δll′δmm′

[
1

2π2

∫
dk

k
Θl(t0, k)PR(k)

]
, (2.13)

which represents that average has been taken over many realizations of random processes.

The term given in square bracket is the theoretical angular power spectrum, Cl which is

only function of multipoles l, not of the orientation m due to the statistical isotropy. The

theoretical angular power spectrum can be written as follows

Cl =
1

2π2

∫
dk

k
Θl(t0, k)PR(k). (2.14)

ThisCl is of great importance and provides all necessary information about a model of the

Universe which is contained in the temperature map of CMB. The relation between the

measured temperature fluctuation or perturbation, Θ(n̂) and the angular power spectrum,

Cl is given as follows:

〈Θ(n̂)Θ(n̂′)〉 =
∞∑
l=0

(2l + 1)

4π
ClPl(n̂.n̂′), (2.15)

wherePl(n̂.n̂′) are the Legendre polynomials. Since we have observations of anisotropies

of CMB only in one realization (i.e., in our observable Universe), it is natural to expect
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that the observed power spectrum will differ from the theoretical one which is averaged

over many realizations. Hence, the square |alm|2 will not be exactly equal to Cl and

there should be some scattering around Cl. The scattering around Cl can be reduced

considerably because for any fixed l, the statistical distribution of |alm|2 does not depend

on the orientation, m. Hence, for any fixed l, the quantity which should be very closer to

underlying Cl is the average of all observed coefficients |alm|2, given as

Cobs
l =

1

(2l + 1)

l∑
m=−l

|aobs
lm |2. (2.16)

It is easy to show that for Gaussian alm’s

〈(Cobs − Cl)2〉 =
C2
l

2l + 1
. (2.17)

This reveals a fundamental uncertainty (scattering) between the theoretical and observed

Cl’s. This is called the cosmic variance. For small values of l, variance would be large

which means that shape of the true underlying Cl’s is not precisely known at low multi-

poles. See the CMB temperature power spectra in Figure 2.1 which is extracted from final

Planck-CMB 2018 results [88]. All length scales on CMB are quantified by the wave

number k, so instead of using Θ(n̂), it is useful to consider Θ(k), which is the Fourier

transform of Θ(n̂). Therefore, in the Fourier space the power spectrum can be expressed

as follows

〈Θ(k)Θ(k′)〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈ξ(k)ξ(k′)〉|Tl(k)|2 (2.18)

=

∫
d3k

(2π)3
P′(k)|Tl(k)|2,

where ξ(k) is the initial condition and Tl(k) is the transfer function, solution to the evolu-

tion equation of density of each component of the Universe. The second line follows from

two point correlation, 〈ξ(k)ξ(k′)〉 = (2π)3PR(k)δ3(k − k′), where PR(k) is the primor-

dial power spectrum. It involves just two perturbative parameters, namely, the amplitude
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Figure 2.1: CMB temperature power spectrum from Planck-2018 data. The blue line
shows theoretical ΛCDM spectrum from Planck TT, TE, EE + lowE + lensing likelihoods
in the upper panel. In the lower panel residual is shown with respect to ΛCDM.

of scalar perturbation As and the spectral tilt ns. It is expressed as follows

PR(k) = As

(
k

k?

)ns−1

, (2.19)

where k? stands for pivot scale at the time of recombination. If ns = 1, then spectrum is

called scale invariant in which case the primordial power spectrum will give only a shift

in the amplitude of power spectrum of CMB. In the case, when ns 6= 1, the tilting in

primordial power spectrum can influence the scale dependence in the power spectrum of

CMB. After equating eq. (2.18) to the Fourier transform of eq. (2.15) and then integrating

over all angles on the sky, we find the connection between the Cl and transfer function of

the photon,

Cl =
2

π

∫
dkk2PR(k)|Tl(k)|2. (2.20)
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The calculation of the CMB power spectrum needs a highly complex numerical code to

include various physical processes that occurred when CMB formed. There are some

numerical codes available, like CAMB, CLASS, etc. which can be used to calculate the

temperature power spectrum. The characteristic features of the power spectrum depend

on the provided initial conditions at the time of CMB production. These features also

depend on the energy content available before and after the recombination. Thus, the

CMB power spectrum not only contains the information of the very early Universe but

also provides a way to estimate the current amount of matter-energy contents present in

the Universe today. Various possible effects of the cosmological parameters on the spectra

can be easily explained with the understanding of the evolution of the perturbations with

a background FLRW cosmology.

2.2.4 Matter power spectrum

The matter power spectrum describes the density contrast, i.e., the difference between

the local density and average density of the Universe. The matter power spectrum is

different from the CMB power spectrum with the fact that there is no competitive force

(like radiation pressure in case of CMB spectrum) to counteract the gravitational force of

matter. Due to this reason, there is no oscillatory pattern in the matter power spectrum,

and it is a smooth curve for the variations of galaxies counts on different length scales.

The matter power spectrum can be defined as the Fourier transform of the two-point

correlation function of matter density. The two-point correlation function can be defined

as the probability of relating a function, say in our case the density perturbation, δm to

another function, δ′m at a spatial distance ~x. It is usually denoted by 〈δmδ′m〉, and defined

as

ξ(~x1, ~x2) = 〈δm(~x1)δ′m(~x2)〉, (2.21)

where the average is taken over a large number of such configurations in space. It is

positive if the density perturbation is expected to have the same sign at both locations,

~x1 and ~x2, and negative for an overdensity at one and under density at the other. Thus
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it probes how density fluctuations at different locations are correlated with each other.

Due to statistical homogeneity, ξ(~x1, ~x2) does not depends on individual points, but on

the difference of coordinates ~x1 − ~x2 of random locations. Thus, the correlation function

depends only on the length scale of interest, not on location and direction. The power

spectrum of density fluctuation δm is defined as follows:

〈δm(t,~k)δ?m(t, ~k′)〉 = δD(~k − ~k′)P (t, k), (2.22)

where δD is the 3D dirac delta function which is constrained by ~k = ~k′, and P (t, k)

is the matter power spectrum of δm(~x) which is function of magnitude of wave vector

due to statistical isotropy. From eq. (2.22), it is clear that if there are lots of very over

and under dense regions in the matter distribution, the power will be large and in case of

smooth distribution it will be small. Under the assumption of Gaussian initial conditions

and up to the limit where perturbations remain linear, the power spectrum at a given time

can be expressed as a product of primordial spectrum and square of the relevant transfer

function. Assuming a power-law primordial spectrum, the power spectrum can be given

as

P (t, k) =
2π2

k3
As

(
k

k?

)ns−1

δ2
m(t, k), (2.23)

where δm(t, k) is called transfer function. Hence the evolution of transfer function pro-

vides us the cosmological information encoded in the matter power spectrum. Figure 2.2

(extracted from [90]) shows the power spectrum of galaxy distribution. There are devia-

tions in the curve which indicate that dynamics of the Universe have changed with time.

Also, we can see that at large scales (small values of k), fluctuations are very weak which

means that galaxy distribution is very close to homogeneous. The power spectrum has

dimension of (length)3 (or k−3), most often it is written in the combination k3P (k)/2π

which is a dimensionless quantity indicating clumpiness on scale k.
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Figure 2.2: Matter power spectrum from luminous red galaxies SDSS sample (in black
color) and the main SDSS sample (in magenta color). Solid and dashed lines respectively
denote the theoretical prediction for ΛCDM model and non-linear corrections. The onset
of non-linear corrections is clearly visible for k & 0.09 h/Mpc (vertical line).

2.2.5 Baryonic acoustic oscillations measurements

BAOs are the acoustic waves in the tightly coupled photon-baryon fluid before the time

of recombination. Before recombination, due to the Thomson scattering between photons

and baryons, they were tightly coupled to each other. The competition between photons

pressure and gravity of baryons leads to acoustic waves, which have traveled in plasma

till the time of recombination. Once the photons decoupled from the baryons just after

recombination, they have propagated freely in the remaining expansion history of the

Universe, and thus carry the information of very early Universe. The distance traveled

by acoustic waves before the time of recombination (where they have frozen) set a char-
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acteristics scale in the distribution of perturbations, which we call sound horizon. These

waves leave imprints in the distribution of radiation, seen today as anisotropies in CMB,

and also in the clusters of galaxies. This was first detected by authors in [91] in 2005

and since then BAOs are accepted as one of the major independent probes in the ob-

servational cosmology. The BAO signal has been further measured by different redshift

surveys such as Six-Degree Field Galaxy Survey (6dFGS), SDSS, and Baryonic Oscil-

lations Spectroscopy Survey (BOSS), etc. These survey estimate the following distance

ratio

ξ =
rs(zdrag)

Dv(z)
, (2.24)

where rs(zdrag) denotes the comoving sound horizon at drag epoch (i.e., when baryons

became dynamically decoupled from photons), and is defined as

rs(zdrag) =

∫ zini

zdrag

c2
s

dt

a
. (2.25)

Dv(z) is defined in such a manner that it will be suitable for the analysis of spherically

averaged two point statistics,

Dv(z) =

(
(1 + z)2 cz

d2
A(z)

H(z)

)1/3

, (2.26)

where dA(z) is the angular diameter distance defined as

dA(z) =
c

1 + z

∫ zdec

0

dz′

H(z)
. (2.27)

The BAO measurements are normally given in form of the ratio rs(zdrag)/Dv(zBAO).

Here, we use four probes of BAO measurements: the Six Degree Field Galaxy Survey

(6dFGS): rs/Dv(zeff = 0.106) = 0.327 ± 0.015 [92], the Main Galaxy Sample of Data

Release 7 of Sloan Digital Sky Survey (SDSS-MGS): Dv(zeff = 0.15)/rs = 4.47± 0.16

[93], the LOWZ and CMASS galaxy samples of Data Release 11 of the Baryon Oscilla-

tion Spectroscopic Survey (BOSS- LOWZ) and BOSS-CMASS: Dv(zeff = 0.32)/rs =
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8.47± 0.17 and Dv(zeff = 0.57)/rs = 13.77± 0.13, respectively [94].

2.2.6 Hubble space telescope measurement

In our analyses, we also include Hubble constant measurement from HST as a supple-

mentary probe to the main Planck-CMB data. We use the measurement of present Hub-

ble parameter from low redshift via cosmic distance ladder. This direct and local mea-

surement of H0 is about 3.4σ far away from the value of H0 = 66.93 ± 0.62 Km s−1

Mpc−1, extrapolated from Planck-CMB measurement within the framework of standard

ΛCDM model [32]. The earlier determination of the Hubble constant from HST [95] was

H0 = 73.8 ± 2.4 Km s−1 Mpc−1 with systematic errors, corresponding to a 3.3% un-

certainty. This large uncertainty has been reduced from 3.3% to 2.4% by using the Wide

Field Camera 3 (WFC3) on the HST, and also by other improvements. In this thesis work,

we use recent 2.4% determination of local value of Hubble constant, H0 = 73.24± 1.74

Km s−1 Mpc−1 from HST measurement [39]. Recently, an improved local measurement

of the Hubble constant, H0 = 73.48 ± 1.66 Km s−1 Mpc−1 using distance ladder tech-

nique from HST is reported in [96], which is 3.7σ far away from Planck-CMB measure-

ment of H0. The year-wise measurement of H0 from different measurements is shown

in Figure 2.3, where the vertical bars represent errors in the measurements. The figure is

extracted from the ESA webpage [97].

2.2.7 Large scale structure probes

The large scale probes provide strong tools to understand the abundance of present matter

density and the density fluctuations in the Universe.

1. Planck Sunyaev-Zel’dovich survey

The Sunyaev-Zel’dovich effect [98] is defined as the inverse Compton scattering of CMB

photons by the hot gas along the line of sight. This becomes important when the line of

sight passes through a galaxy cluster. The galaxy cluster counts are the powerful tools

applicable in SZ surveys performed by Atacama Cosmology Telescope (ACT) [99], the

South Pole Telescope (SPT) [100] and Planck satellite. The number of clusters and their
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Figure 2.3: Year-wise measurement of H0 from various measurements as mentioned in
the legend.

evolution is very sensitive to today’s matter density and the present amplitude of density

fluctuations, characterized by σ8. Also, it is known that primary CMB anisotropy provides

the fluctuation at the time of recombination. Therefore, the difference of the fluctuation

at two epochs can be treated as a test for the evolution of the perturbation from the time of

recombination till today. A detailed description of Planck-SZ measurement and related

physics can be seen in [43]. In this thesis work, we use the following constraint:

S8 ≡ σ8

(
Ωm

0.27

)0.30

= 0.782± 0.010

2. Canada-France-Hawaii telescope lensing survey

CFHTLenS is the largest weak gravitational lensing survey. It provides a way to under-

stand gravitational deformations in the images of the distant galaxies due to the cosmic

LSS. The coherent image distortions, detected in the observed images of galaxies, can be
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measured only statistically by averaging over many sources. The weak lensing signal as

a function of redshift is sensitive to the growth of structure, and hence indirectly sensitive

to the expansion of the Universe as well as the gravitational attraction of various matter

density components of the dark sector like DM, DE, neutrinos, etc. In this thesis work,

we employ the following constraint from CFHTLenS, weak lensing survey [42]:

S8 ≡ σ8

(
Ωm

0.27

)0.46

= 0.774± 0.040.

3. Kilo degree survey-450

The weak gravitational lensing provides a promising way to understand the spatial and

temporal distribution of the matter densities of various components of the dark sector.

However, the tiny coherent image distortions of background sources caused by the differ-

ential deflection of light by foreground masses can only be studied statistically for a large

number of sources. Hence, wide-field surveys covering large volume of sky are required

for improving the precision of the lensing measurements. For more detailed information

about the weak lensing measurements, we refer the reader to see [45, 101, 102]. In this

thesis work, we use the following constraint from KiDS-450 [44]:

S8 ≡ σ8

(
Ωm

0.27

)0.50

= 0.651± 0.058.

2.3 Methodology

We implement the constructed models in Boltzmann solver code CLASS which is inter-

feced with parameter inference code Monte Python. From Monte Python code which is

based on Metropolis-Hastings algorithm, a Monte Carlo Markov Chain sampling tech-

nique, to get MCMC samples on the model parameters. We choose flat (uniform) prior

to all the standard ΛCDM parameters as well as extended model parameters in the whole

work of the thesis. We use the Planck-CMB 2015 data as the main data set together with

some supplementary geometric and LSS probes (as discussed above) in various combi-
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nations. To check the convergence of the Monte Carlo Markov Chains, we use Gelman-

Rubin criterion [103], according to which 1 − R should be less than 0.03 (ideally 0.01),

for all the model parameters. For analyzing the obtained samples, we use the Python

package GetDist. In the following two subsections, we have given a brief detail about the

CLASS and Monte Python codes, and the minimal set of parameters of standard ΛCDM

model, their respective values from Planck 2018 results.

2.3.1 CLASS and Monte Python

CLASS [67] is a well-known Boltzmann solver code written in scientific language ‘C’,

and is commonly used by the cosmological community. It is very flexible, user-friendly

and freely available for users. It can be easily generalized to implement any non-minimal

extension of the ΛCDM model. It is used for parameter estimation of various cosmolog-

ical models, and also to produce various types of power spectra. This code is refined and

updated from time to time with the implementation of new cosmological theories by the

team of code developers. In my thesis work, we have used the latest version-2.6.3 and

version-2.7.1 of CLASS code. Monte Python [65] code is written in high-level language

Python, easy to read and modify, and interfaced with Boltzmann solver code, CLASS. It

is based on MCMC sampling: Metropolis-Hastings algorithm, used for parameter infer-

ence in cosmology. The Monte python code is designed with the option to use different

sampling techniques (usually called methods in code), to explore the parameter space.

These include Metropolis-Hastings (default method), Nested Sampling, Cosmo Hammer,

etc. Monte Python is inbuilt with predefined likelihoods of many cosmological data sets,

and one can define new likelihoods by adding only a few lines in Python. The format

of output chains produced by Monte Python code is the same as the format of output

chains produced by the CosmoMC code. Therefore, these samples can be analyzed by

the GetDist python package or with any other customized code.
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2.3.2 Minimal parameter set of the ΛCDM model

The minimal parameter set for a spatially flat (curvature, k = 0) ΛCDM model is given

as

PΛCDM = {ωb, ωcdm, θs, As, ns, τreio}. (2.28)

Here, ωb ≡ Ωbh
2 is today’s physical baryon density; ωcdm ≡ Ωcdmh

2 is today’s physical

cold DM density; θs is the ratio of sound horizon and the angular diameter distance at

decoupling. As and ns, both are perturbative parameters representing the amplitude of

primordial scalar perturbations (sometime also called primordial curvature perturbations)

at pivot scale k? = 0.05 Mpc−1 and scalar spectrum power-law index (or tilt of the pri-

mordial spectrum) at pivot scale k? = 0.05 Mpc−1, respectively, and τreio is the optical

depth to reionization. The parameters can be re-scaled in order to avoid large steps in the

computation and save computation time. This minimal set of parameters is constrained

by Planck CMB data alone, and also together with other complementary probes such

as BAO, HST, etc. to reduce error bars and to remove degeneracy between parameters.

The constraints at 68% CL on six baseline parameters from the latest Planck-CMB [88]

(2018) data are displayed in the Table 2.1. Other cosmological parameters are related to

Parameter Planck (TT,TE,EE+LowE+Lens)
ωb 0.02237± 0.00015
ωcdm 0.1200± 0.0012
100 θs 1.0411± 0.0003

log(1010As) 3.044± 0.014
τreio 0.0544± 0.0073
ns 0.965± 0.004

Table 2.1: Constraints on the parameters of ΛCDM model at 68% CL from Planck-2018
final release.

these six baseline parameters and hence can be derived with the help of these parameters.

The constraints on some derived parameters at 68% CL from Planck CMB 2018 are given
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below. The fractional matter density reads

Ωm = Ωb + Ωcdm = 0.3153± 0.0073,

which immediately gives the fractional DE density (in case of spatially flat Universe)

ΩΛ = 0.6847± 0.0073.

The present Hubble parameter and amplitude of present matter density fluctuation are

respectively given as

H0 = 67.36± 0.54 Km s−1Mpc−1, and σ8 = 0.811± 0.006.

Some additional free parameters of this concordance model are kept fixed to their stan-

dard (default) values, but in principle they can be varied to extend the base model. An

incomplete list of such free parameters include equation of state of DM (wdm = 0, default

value) and DE (wde = −1, default value); sum of the neutrino mass (
∑
mν = 0.06eV,

default value); effective number of relativistic species (Neff = 3.046, default value); and

spatial curvature (Ωk = 0, default value). In this thesis work, the spatial curvature is set to

its default value, Ωk = 0 since it is supported by many observations. The possible exten-

sions of the standard ΛCDM model, which are investigated in this thesis work and will be

discussed in detail in forthcoming chapters, are briefly explained below. In the next chap-

ter (Chapter 3), we investigate a coupling between DM and photons where the DM decays

into photons throughout the cosmic expansion history of the Universe in the presence of

a constant as well as a time-varying DE equation of state via Chevalier-Polarski-Linder

(CPL) parameterization. In Chapter 4, we study extended or generalized DM parame-

ters: a time-varying equation of state of DM with a constant non-zero sound speed in the

presence of a cosmological constant type DE as well as a time-varying DE equation of

state via CPL parameterization. In Chapter 5, we investigate a non-gravitational coupling

between dark sector components: DM and DE.
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