
Chapter 1

Introduction

1.1 Motivation

The service industry interacts with our lives daily. Services can be defined as deeds,
processes, and performances. The most critical issue for a customer-service system
is to effectively and efficiently deliver the service to the customers. The difference
between expected and perceived service is a reflection of service quality. There are
eight dimensions for quality; they are features, performance, conformance, reliabil-
ity, serviceability, durability, aesthetics, and value. The primary need of the cus-
tomers in the modern service systems is to have a decent satisfaction and experience,
along with added value to be served to them.

The increase in technology and the demand for quality service have caused severe
congestion, delays. Congestion and delays are the escalating negative phenomenon.
Congestion has become a veritable scourge that plagues industrialized sectors and
customer care sectors alike. It affects both customers and servers of service systems,
and as well as reducing economic efficiency. It also has other adverse effects on
policy and society. The disturbing thing is that this expression of modern times has
been intensifying, without any sign of having a limit, thus becoming a nightmare that
threatens the quality of service.

The preceding few years have realized a rapid escalation in the number of cus-
tomers in service sectors, as a result of various factors, such as the increase in the
demand of quality service in socio-techno-economic sectors, the greater availability
of service providers, the relative reduction in delays and blockings and the more ex-
cellent advent of new technology. Congestion has been cumulative in much of the
real-time services, and everything designates that it will endure getting worse, rep-
resenting an undoubted menace to the quality service. Its primary expression is a
progressive drop in service rates, resulting in increases in response time, resource
consumption, other operating costs, and strategic delay, as compared with uninter-
rupted services. Congestion is mainly due to the intensive use of service facility.
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Performance modeling is one framework that can help the service organization to
maintain service quality. Performance modeling plays a vital role in designing, de-
veloping, and characterizing the service system. The measurement and modeling are
the two critical approaches of performance evaluation of the service system, in which
performance modeling based on queueing theory has received significant attention
from several researchers and system analysts. Performance modeling is required to
predict the quality of various service systems such as a computer, communication,
manufacturing, etc. Performance modeling through the queueing-theoretic approach
for the service system gives the insight to ensure whether the appropriate grade of ser-
vice (GoS) is rendered by the system facility in terms of response time. The system
planner can analyze this by considering several alternatives and evaluating various
performance indices by using analytical and computational queueing models.

The problem of congestion prevalent in every sector of day-to-day necessity from
manufacturing to supply, from planning through operational to implementation, from
social to technology and economic, transportation, scheduling, etc. The conges-
tion in any service system is more influencing if there is limitation of resources due
to constraints of facilities, supply, blocking, design, human resources, money, etc.
Customer-oriented, server-oriented, and system-oriented investigation gives a better
insight to system planners for upgrading the grade-of-service (GoS) service facility
in the service system. For optimization perspective, cost analysis by setting appro-
priate cost function has been done in some models to optimize the expected total cost
of the system incurred. The measurement of reliability/availability indices can pro-
vide a basic idea about system’s operating efficiency. Sensitivity analysis has been
facilitated to show the applied nature of the developed models. The possibility and
importance of the investigation done have been featured by illustrative specific prac-
tical justifications. We hope that our work will be helpful in providing alternatives
and optimal choices for improving the quality-of-service (QoS) in various congestion
problems.

The content of the thesis is state-of-the-art for future study on service models
by a research fellow, system managers, analysts, engineers, and practiciners. It in-
cludes various well-studied service model which imitate many real-time problems of
the different service system. It also addresses performance evaluation, optimal de-
sign, comprehensive algorithm, mathematical tools, and cited references. The unique
features of this thesis on optimal analysis of service system include
• Optimal analysis, sensitivity analysis, parametric analysis including in-depth

literature survey and background knowledge on performance evaluation of ser-
vice system.
• Markov chain imbeddable structures.
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• Nature-based optimization techniques for the development of optimal invariant
design.
• Application in understanding the behavior and advantages of the service sys-

tem.

1.2 Objectives of the Thesis

The main objectives of the thesis are to predict and evaluate the performance charac-
teristics of queueing modeling of the service and machining systems and to suggest
optimal design. The whole study will be divided into the following categories
• Identification of new and challenging queueing problems which define realistic

and random service system.
• To implement numerical solution techniques to compute steady or transient

state probabilities.
• Classification and computation of various performance measures of queueing

systems based on customer, server, or system outlook.
• To develop computational algorithms for the analysis of the governing system

numerically. Some classical and meta-heuristic approaches are to be identified
for sensitivity and optimal analysis.
• Recognition of critical parameters in designing of the queueing system or ser-

vice system.

1.3 Queueing Systems

Queues are ubiquitous, which generally form everywhere in our day-to-day life when-
ever the existing demand exceeds the overall capacity of the service facility in any
service system. Usually, a queue is a waiting line of customers (may also include
data, jobs, raw materials, requests, etc.) who require the service from one or more
servers (maybe machines, processors, etc.) at a point of time. The mathematical
study of these queues or waiting lines using the fundamental law of Probability &
Statistics is known as queueing theory. Queueing theory is applied in several conges-
tions and delays management problems, and service systems for modeling purpose.
The queueing systems are prevalent in each service sector, from business to mar-
ket, from manufacturing to repair, from service to process, etc. for making decisions
about the resources needed for providing service to the customers. The queueing the-
ory has its origin in the early twentieth century when Agner Kraup Erlang, a Danish
mathematician, and engineer, published the first research paper (Erlang, 1909) on the
problem of congestion in telephonic exchange.
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Figure 1.1: Block diagram of a basic queueing model.

The concept of queueing theory is extensively used in many service systems, namely,
information technology (IT), computer & communication systems, manufacturing &
repairing systems, supply-chain & scheduling, traffic flow, data processing, and many
other management industries. Therefore, the future development of technology and
management policies can further be upgraded by a comparative study of the past
and present experiences, which will grow the requirements of more in-depth insights
into the rapid advancement of queueing theory. Queues are formed because our
resources are limited. In general, many real waiting situations that occur in our day-
to-day life need to be exposed, as they waste a lot of our time, money, and many
other useful resources. The concept of queueing theory, along with several queueing
terminologies, is extensively used. There are several congestions, blockings, and
delays situations where the term queueing or waiting is considerably used. Therefore,
the performance quality of the service system and the behavior of users ensures to
queue or not to queue.

Since waiting is a dominant part of many service-related operations, it is an es-
sential area of investigation, research, and analysis. Each queueing system has its
advantages and disadvantages, but with no doubt each customer-service system’s
goal is to reduce the waiting time and that customer returns. The main objective of
queueing modeling in service systems is to derive a mathematical model required to
serve customers and use that model to predict some significant quality performance
measures viz, the expected length of the queue, mean-waiting time, et cetera. A basic
queueing model is shown in Fig. 1.1.

The multiple-server waiting line strategy eliminates jockeying behavior. A single-
line, multiple-server system has improved performance in terms of waiting times than
a similar arrangement with a dedicated line for each server. The multiple-line con-
figuration is suitable when skilled servers are used or when waiting space limitations
make a single-line system troublesome. Contrary, the multiple-service line system
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offers the customer the option of selecting his server, but check-out may be consider-
ably slower. There are many conducts to minimize customer wait times. As expected,
one strategy to reduce customer wait time is to diminution the expected service time.
This can be proficient by identifying best practices among all the servers, customers,
system designs, standardizing processes based on best practices, and enhancing train-
ing to guarantee that best practices are followed.

1.4 Applications of Queueing Based Service Systems

The service system consists of a heterogeneous group of services. The services can
be classified into three categories:
• Stagnant personal services
• Substitutable personal services
• Progressive services
Stagnant personal services: These services frequently require direct contact be-

tween the customers and the service provider. Some examples are teaching, live
artistic performance, shopping, etc.. Since the quality of such a service is highly cor-
related with labor time, these services offer low innovation potential and are difficult
to standardize.

Substitutable personal services: Similar to stagnant personal services in char-
acteristics; however, it is likely to substitute for these services with technological
or other alternatives, for example, electronic surveillance systems, household appli-
ances, television broadcasting, computation services, etc. A great leap in productivity
and output in substitutable personal services is provided by technological innovation.

Progressive services: Progressive services can show phenomenal productivity
growth and cost drops initially. This is due to the relatively significant impact of the
first technology-intensive component, for example, communication systems, com-
puter systems, automation, flexible manufacturing system, etc. In this class, produc-
tivity growth is self-extinguishing since, in due course of a productive period, the
relative contribution of the advanced component exceeds that of the first component.
The stagnant nature of the upgraded component dampens productivity growth.

A service system is an arrangement of technology and organizational networks
intended to deliver services that satisfy the needs, wants, or aspirations of customers.
Some common service systems which we observe around us for day-to-day activities
are as follows.
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1.4.1 Flexible Assembly Systems

Assembly is the capstone process for product realization where constituent parts and
subassemblies are integrated to form the final products. As product diversity in-
creases due to the shift from mass production to mass customization, assembly sys-
tems must be intended and operated to handle such high variety.

1.4.2 Fault-tolerant Machining Systems

Fault tolerance refers to the property of a system (computer, network, cloud cluster,
etc.) to remain functioning without interruption when one or more of its units fail.
The objective of developing a fault-tolerant system is to prevent disruptions arising
from a single point of failure, safeguarding the high availability. Fault-tolerant sys-
tems use backup units that automatically take the place of failed units, ensuring no
loss of service. It includes hardware systems, software system, power sources,

1.4.3 Production Systems

The methods, procedure, or arrangement governs with a set of instructions, which
includes all functions required to collect the inputs, process, or reprocess the inputs
and produce the marketable output. It also includes the artificial intelligence mech-
anism necessary to follow those instructions as the system responds to states of the
demand.

1.4.4 Communication Systems

The communication system is a collection of specific communications networks,
transmission systems, relay stations, tributary stations, and data terminal equipment
(DTE), usually proficient in inter-connection and inter-operation to create a unified
system in whole. The components of a communications system serve a common pur-
pose, are technically compatible, use common procedures, respond to controls, and
operate in union.

1.4.5 Computer System

A computer system is customary of unified devices that input, output, process, and
store data and information. In general, computer systems are built around at least one
digital processing device. There are five main hardware components in a computer
system: input, processing, storage, output and communication devices.
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1.4.6 Traffic System

Traffic systems include sensors to measure traffic flows and automatic inter-connected,
guidance systems to manage traffic.

From the aforesaid different types of service systems, it is noticeable that the
queueing system is applicable in all sectors and problems, and customers and servers
may be human beings, data, machines, signals, etc. The congestion, blocking, and
delay can be observed in any service system at any process and need to investi-
gate and schedule properly for getting satisfactory services. It gives the notion
of threshold-based service facility, additional service facility on rent, synchronized
services, time-sharing, processor-sharing, distributive services, buffer, automation,
robotics, breakdowns, replacement, repair, interruption, inspection, interference, bulk
or batch, fork-join queue, optimal design, trade-off between services and waiting, etc.
for investigation and analysis purposes.

1.5 Characteristics of Queueing Systems

Each queueing modeling based service system has its own unique set of characteris-
tics. However, all such systems have the following essential components.

1.5.1 The Population of Prospective Customers

The population of prospective customers is an input source from which the cus-
tomers, who require service from one or more servers depending on types of the
service system, are generated. The most important parameter of the population is its
size, which is the cardinality of the prospective customers, that might need service
at some time instant or the other. Generally, the size is classified as finite or infi-
nite. In practice, when the population size is too large to affect the arrival rate of the
customers is known as infinite, otherwise finite.

1.5.2 Input or Arrival Pattern

The arrival pattern delineates how the customers arrive and join the service system,
i.e. the statistical order by which the customers are generated over time. In general,
it is not possible in advance to observe or identify the actual amount of arriving cus-
tomers in the queue for service. Further, it is also noticed that different inter-arrival
times (time between two successive arrivals) are not the same always. Therefore, the
inter-arrival time can not be treated as a constant, but only as a random variable. In
queueing literature, it is assumed that the inter-arrival times are independent random
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variates that follow some specific probability distribution. This probability distribu-
tion may be approximated by collecting substantial data set of arriving customers.
However, over a considerable time interval, the mean arrival rate remains constant
and denoted by λ . The meantime between arriving customers is the reciprocal of λ ,
i.e.
( 1

λ

)
. Suppose that the probability density function (pdf) of the inter-arrival time

T is f (t). Then, mathematically, the meantime between arrivals is represented as

1
λ
=
∫

∞

0
t f (t)dt (1.1)

Hence, the mean arrival rate (λ ) can be calculated as

λ =
1∫

∞

0
t f (t)dt

(1.2)

1.5.3 System Capacity

The system capacity is defined as the maximum permissible number of customers
that any waiting line can contain. It can be classified as a finite queue or infinite queue
if the total number of customers in the waiting line is finite or infinite, respectively.
When the system capacity is full, newly arrived customers do not enter the system at
that moment and are treated as lost customers forever.

1.5.4 Service Discipline

The process of selecting a customer from the waiting queue for the service is termed
as service discipline. In general, the customers are served following the First Come
First Served (FCFS) service discipline. Depending on the service system, there are
some other service disciplines also which are defined as Last Come First Served
(LCFS), First Come Last Served (FCLS), Service in Random Order (SIRO), et cetera.
Sometimes, the arriving customers are selected on a specific priority basis, i.e. Pri-
ority in Selection, such as the expected waiting time in the system, adequate service
time, cost incurred due to waiting customer, and may more.

1.5.5 Service Mechanism

The service mechanism mainly defines the number of customers who get the service
in one time-period, i.e. a service rate or the service time, which is defined as the time
required to complete the service for a customer. The service time is also random vari-
ates, which follows some probability distribution with some specified parameter(s).
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The distribution can be approximated, or the parameters can be estimated from the
data set of provided services.

In a service system, there is one or more than one server that may be arranged
in series or parallel. If the servers are working in parallel, an arriving customer may
choose any of the idle servers, if any, on his arrival instant. If all the servers are busy
providing the service to the customers then the newly arriving customer will have to
wait up to a specific time in the queue and will be selected for service according to the
service discipline when any of the servers are idle. If the servers provide the service
in series, then the customers get the service from the sequence of service channels
in tandem. In that case, the customer passes from one service channel to another
following a definite rule, and the service is completed as soon as the customer moves
through all the service channels allocated in series. In the tandem queue, customers
may be blocked or starved.

1.5.6 State of the System

The state of the system denotes the total number of customers in the system at any
time instant t, which includes those customers who are in the queue and even present
in ongoing service. During the transitions between states of the system, states ini-
tially have a probability distribution Pn(t), which is time-dependent. But in a suffi-
ciently large interval of time, i.e. after infinite time has elapsed (t→∞) the probabil-
ity distribution may be transformed to a distribution Pn which is independent of time.
At that moment, all the state probabilities are independent of the initial condition. In
other words, one can assert that the system is in equilibrium (statistically stable) or
steady-state is achieved. The distribution of all such state probabilities is described
as the steady-state probability distribution. The state of the system and its probability
distribution provide the platform for transient or steady-state analysis. In practice, to
demonstrate the dynamical behavior of any service system, we perform the transient
analysis.

1.6 Some Important Random Processes

In this section, we delineate a brief description of some significant random processes
used in queueing modeling of service systems. The random process is a probabilistic
process that is used to characterize random events. The definition and properties of
these processes help in understanding the events involved in modeling of the stud-
ied service systems and developing governing precedence relations between states.
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These processes also involve in the computation and analysis of performance char-
acteristics of service systems.

1.6.1 Stochastic Process

Consider a random experiment with a sample space S. If a time function X(t,s);∀t ∈
T , index set, is assigned to each outcome (sample point) s ∈ S, then the family of all
such functions, represented by {X(t,s),s ∈ S, t ∈ T}, is called a stochastic process.
In other words, a stochastic process is known as a collection of random variates
that are indexed by multiple mathematical sets, and each random variate is uniquely
associated with an element in the set. Depending on index set and sample point, the
stochastic process can be classified as:
• Discrete-time, discrete-state stochastic process
• Discrete-time, continuous-state stochastic process
• Continuous-time, discrete state stochastic process
• Continuous-time, continuous state stochastic process
A stochastic process is termed as a deterministic stochastic process if the value of

future observations of any sample function can be predicted precisely from the past
observations or past values.

If the value of the future observations of any sample function cannot be predicted
precisely from previous observations or previous values, then the stochastic process
is called a non-deterministic stochastic process.

1.6.2 Stationary Process

A stationary process is a random process whose probability distribution at a fixed
time instant is the same for all time points. As a result, statistical parameters such
as mean, variance, and the moments, if they exist, do not change over time for the
stationary process.

1.6.3 Markov Process

A Markov process is a random process that holds the Markovian property (memory-
less property), which is defined as the future behavior of the process depends only
on the current observation or current state, and not on the states in the past. Mathe-
matically, a random process {X(t), t ∈ T} is called a Markov process if

P[X(tn+1)≤ xn+1|X(tn) = xn,X(tn−1) = xn−1, · · · ,X(t0) = x0]

= P[X(tn+1)≤ xn+1|X(tn) = xn]
(1.3)
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whenever t0 < t1 < · · ·< tn < tn+1.

1.6.4 Markov Chain

A discrete-state Markov process is called a Markov chain. Thus, a discrete-parameter
Markov chain is defined as a set of random variables {Xn,n≥ 0}with the memoryless
property. i.e. P(Xn+1 = y|Xn = x,Xn−1 = xn−1, · · · ,X0 = x0) = P(Xn+1 = y|Xn = x).
The set of all possible values of the random variables Xi form a countable set Ω called
the state space of the process.

1.6.4.1 Discrete-Time Markov Chain

A Markov chain is called a discrete-time Markov chain if the random variables Xi

take values from the discrete time space. Therefore, any change in the system can be
only possible when the change has been made between these discrete time values.

1.6.4.2 Continuous-Time Markov Chain

If the changes in the system can be made at any time instant within a continuous time
interval, then the Markov chain is defined as a continuous-time Markov chain.

1.6.5 Bernoulli Process

If we can define a countably infinite sequence of random variables {Xn;n= 1,2,3, . . .}
associated with a sequence of Bernoulli trials as

Xn =

1; if thenth Bernoulli trial yields a success

0; if thenth Bernoulli trial yields a failure
(1.4)

with probabilities

P(Xn = 1) = p and P(Xn = 0) = q (1.5)

where 0 < p < 1 and p + q = 1. Then, the collection of such random variables
{Xn;n≥ 1} is defined as a Bernoulli process.
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1.6.6 Binomial Process

Let {Zn;n= 1,2,3, . . .} be a Bernoulli process and Xn denote the number of successes
in the first n independent Bernoulli trials i.e.

Xn = Z1 +Z2 + · · ·+Zn (1.6)

Then {Xn;n = 1,2,3, . . .} is defined as a binomial process.

1.6.7 Counting Process

A random process {X(t); t ≥ 0} is defined as a counting process if X(t) denotes the
total number of events that have occurred in the interval (0, t] and must satisfy the
following conditions

(i) X(t)≥ 0 and X(0) = 0
(ii) X(t) takes only integer values

(iii) X(t) is monotonic non-decreasing, i.e. X(s)≤ X(t) if s < t

(iv) X(t)−X(s) is equal to the number of events that have occurred in the interval
(s, t)

Moreover, a counting process X(t) is said to have independent increments if the
events that occur in disjoint time intervals are independent to each other.

1.6.8 Poisson Process

A counting process X(t), which characterizes the number of occurrences of a specific
event in the interval (0, t], is called a Poisson process with mean rate of occurrences
λ if it satisfies the following postulates

(i) X(0) = 0
(ii) X(t) has independent and stationary increments

(iii) P[{X(t +∆t)−X(t)}= 1] = λ∆t +o(∆t)

(iv) P[{X(t +∆t)−X(t)} ≥ 2] = o(∆t)

Specifically, if λ is constant, Poisson process is known as homogeneous Poisson pro-
cess. While the Poisson process for which λ is a function of time, are characterized
as non-homogeneous Poisson process.

1.6.9 Renewal Process

Suppose Xn be the interval between the (n− 1)th count and nth count of a count-
ing process {X(t); t ≥ 0}. Let {Xn;n = 1,2, . . .} be a sequence of non-negative and
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independently & identically distributed (iid) random variable with mean µ . Then
{X(t); t ≥ 0} is defined as a renewal process.

1.6.10 Birth and Death Process

Mathematically, a continuous-time Markov chain X(t) with state space Θ= {0,1,2, . . .}
is called a birth and death process if the following axioms are satisfied

P[X(t +h)−X(t) = k|X(t) = n] =



λnh+o(h); k = 1, n≥ 0

µnh+o(h); k =−1, n≥ 1

1− (λn +µn)h+o(h) k = 0, n≥ 1

0; otherwise

(1.7)

where λ0, λ1, λ2, . . . are positive constants called birth rates, µ1, µ2, . . . are positive
constants called death rates and

lim
h→0

o(h)
h

= 0 (1.8)

1.6.11 Quasi-Birth and Death Process

A Markov chain with the state-space

Θ =
{
( j,n);1≤ j ≤ n j & n≥ 0

}
(1.9)

is known as quasi-birth and death process, where the state space is divided into dif-
ferent levels and phases, s.t. the level n has n j phases for each n. In a quasi-birth and
death (QBD) process, the transitions are allowed between the adjacent states only.
Therefore, a QBD process can be observed as a generator matrix in following way

Q =



A0 B0 0 0 · · ·
C1 A1 B1 0 · · ·
0 C2 A2 B2 · · ·
0 0 C3 A3 · · ·
...

...
...

... . . .


where, each sub-matrix Bn can be obtained by the transitions from nth level to (n+

1)th level for n≥ 0. Similarly, the sub-matrices Cn can be generated by balancing the
transitions from nth level to (n−1)th level for n≥ 1 while the diagonal sub-matrices
Cn are encoded within the nth level for n≥ 0.
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1.6.12 Chapman-Kolmogorov Theorem

Suppose {Xn;n ≥ 0} be a homogeneous Markov chain with transition matrix P =

[pi j] obtained using the state probabilities and n-step transition probability matrix
P(n) = [p(n)i j ], where

p(n)i j = Pr[Xn = j|X0 = i] and p(1)i j = pi j (1.10)

Then
(i) P(n+m) = P(n)P(m)

(ii) P(n) = Pn, i.e. the nth-step transition matrix is equal to the nth power of the
one-step transition matrix P.

1.6.13 Chapman-Kolmogorov Equations

Utilizing the memoryless property of the Poisson process, the developed equations

Pi, j(t + s) =
∞

∑
n=0

Pi,n(t)Pn, j(s) (1.11)

are defined as the Chapman-Kolmogorov differential-difference equations. These
equations states that in order to move towards from state i to j at time instant t, X(t)

moves to state k in time t and then from k to j in the remaining time s.

1.7 Finite and Infinite Queueing Systems

In literature, the queueing models are classified based on the capacity of the service
system and the size of the population of prospective customers. If the size (capac-
ity) of the service system is finite, then it is called a finite capacity service system
otherwise infinite capacity service system. The population of potential customers in
the service system is also defined as the calling population of prospective customers.
The population of prospective arrivals may be finite or infinite, depending on the
different environments of service systems. In a finite population service system,
the arrival pattern of potential customers depends on the state of the system which
generates more complicated and complex computations. In other words, the arrival
rate of customers is influenced by the population in the system, which is generally
be viewed as a closed system. Whereas, in the case of infinite population service
systems, incoming customers are independent of the cardinality and states of other
customers, as a result of which it is mathematically described as a tractable model.
Usually, these are characterized as an open system. In such queueing models, each
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state defines the different possibilities and connected to the other states in different
ways. The queueing-based state-transition diagrams of basic finite capacity and finite
population queueing models are pictured in next subsections.

1.7.1 Finite Capacity Queueing System

In classical queueing theory, the finite capacity queueing models are classified in the
following two categories depending on number of service providers

1.7.1.1 Single Server Finite Capacity Queueing Model

In this queueing scenario, the service system can permit or accommodate only a finite
number of customers (K) in the system. If a customer arrives and the queue capacity
is full, then the customer has to leave the system without waiting in queue. Therefore,
on the basis of this assumption, the mean arrival rate is

λn =

λ ; n = 0,1,2, . . . ,K−1

0; n = K,K +1,K +2, . . .
(1.12)

and the mean service rate is

µn = µ; n = 1,2,3, . . . (1.13)

0 1 n K − 1 K

λ λ λ λ λ λ

µ µ µ µ µ µ

Figure 1.2: State transition diagram of a single server finite capacity queueing based ser-
vice system.

Now, by balancing the input and output flow between the transitions in Fig. 1.2 and
employing the postulates of the Poisson process, the differential-difference equations
over the time t of the governing queueing modeling based service system are derived
as

dP0(t)
dt

=−λP0(t)+µP1(t) (1.14)

dPn(t)
dt

=−(λ +µ)Pn(t)+λPn−1(t)+µPn+1(t); 1≤ n≤ K−1 (1.15)

dPK(t)
dt

=−µPK(t)+λPK−1(t) (1.16)
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In a long run, i.e. in equilibrium (as t → ∞), all the state probabilities attain steady-
state as

lim
t→∞

Pn(t) = Pn; n = 0,1,2, . . . ,K (1.17)

Using the recursive algorithm, the solution of above mentioned system of differential
equations is obtained as

Pn = ρ
nP0; n = 0,1,2, . . . ,K (1.18)

where, ρ =

(
λ

µ

)
and P0 =

(1−ρ)

(1−ρK+1)
; ρ 6= 1. Thus,

Pn =


ρn(1−ρ)

(1−ρK+1)
; n = 0,1,2, . . . ,K & λ 6= µ

0; n = K +1,K +2, . . .
(1.19)

When traffic intensity is equal to one, i.e. λ = µ , the probability distribution is de-
fined as

Pn =


1

(K +1)
; n = 0,1,2, . . . ,K

0; n = K +1,K +2, . . .
(1.20)

1.7.1.2 Multiple Server Finite Capacity Queueing Model

The present queueing model comprises with R servers, where R > 1, wherein the
system can accommodate at most K customers in waiting. Thus the mean arrival rate
is represented as

λn =

λ ; n = 0,1,2, . . . ,K−1

0; n = K,K +1, . . .
(1.21)

and the mean service rate is

µn =

nµ; n = 0,1,2, . . . ,R−1

Rµ; n = R,R+1, . . .
(1.22)
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0 1 R K − 1 K

λ λ λ λ λ λ

µ 2µ Rµ Rµ Rµ Rµ

Figure 1.3: State transition diagram of a multiple server finite capacity queueing based
service system.

Now, using the state transition diagram in Fig. 1.3, the governing Chapman-Kolmogorov
differential-difference equations in transient state are depicted as

dP0(t)
dt

=−λP0(t)+µP1(t) (1.23)

dPn(t)
dt

=−(λ +nµ)Pn(t)+λPn−1(t)+(n+1)µPn+1(t); 1≤ n≤ R−1 (1.24)

dPn(t)
dt

=−(λ +Rµ)Pn(t)+λPn−1(t)+RµPn+1(t); R≤ n≤ K−1 (1.25)

dPK(t)
dt

=−RµPK(t)+λPK−1(t) (1.26)

In the equilibrium state, the probability distribution of the state of the system in
steady-state is derived as

Pn =


ρn

n!
; n = 0,1,2, . . . ,R−1
ρn

R!R(n−R) ; n = R,R+1, . . . ,K

0; n = K +1,K +2, . . .

(1.27)

Employing the normalization condition,
K

∑
n=0

Pn = 1, we get

P0 =

1++
R−1

∑
n=1

ρn

n!
+ρ

R

{
1−
(

ρ

R

)K−R+1}
R!
(
1− ρ

R

)

−1

;
(

ρ

R

)
6= 1 (1.28)

1.7.2 Finite Population Queueing System

In this section, we analyze a particular type of queueing model based on the finite
population of the service system. It is also known as machine repair model or ma-
chine interence problem in the queueing literature. For the modeling purpose, sup-
pose a machining system has K machines and has R repairmen working in parallel.
Let, the time-to-failure of a machine is identically and exponentially distributed ran-
dom variable with parameter λ , and the time-to-repair by each of the repairman for
the failed machine is exponentially distributed with parameter µ . Suppose there are
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n failed machines in the repair facility, i.e. either under repair or waiting to be re-
paired at any instant, then (K−n) are functioning well in the system. Therefore, the
effective failure rate is λn = (K−n)λ ; n = 0,1,2, . . . ,K−1, and the effective repair
rate µn is defined as

µn =

nµ; n = 1,2, . . . ,R−1

Rµ; n = R,R+1, . . . ,K
(1.29)

0 1 R K − 1 K

Kλ (K − 1)λ (R− 1)λ Rλ 2λ λ

µ 2µ Rµ Rµ Rµ Rµ

Figure 1.4: State transition diagram of a basic machine repair model.

The differential-difference equations in the transient-state can be formulated by bal-
ancing the input and output flow in the Fig. 1.4 as

dP0(t)
dt

=−KλP0(t)+µP1(t) (1.30)

dPn(t)
dt

=−((K−n)λ +nµ)Pn(t)+(K−n+1)λPn−1(t)

+(n+1)µPn+1(t);1≤ n≤ R−1
(1.31)

dPn(t)
dt

=−((K−n)λ +Rµ)Pn(t)+(K−n+1)λPn−1(t)+RµPn+1(t);

R≤ n≤ K−1
(1.32)

dPK(t)
dt

=−RµPK(t)+λPK−1(t) (1.33)

Using the concept and results of birth and death process, the queue-size distribution
in the steady-state (for a long run as t→ ∞) is computed as

Pn =



(
K
n

)
ρ

nP0; n = 1,2, . . . ,R−1

K!
(K−n)!R!Rn−R ρ

nP0; n = R,R+1, . . . ,K

0; otherwise

(1.34)

where

P0 =

[
R−1

∑
n=0

(
K
n

)
ρ

n +
K

∑
n=R

K!ρn

(K−n)!R!Rn−R

]−1

(1.35)



1.8. Performance Measures 19

1.8 Performance Measures

In practice, many generic performance measures are utilized to show the capability
of working and the quality performance of a service system. Using the fundamental
law of queueing modeling, system designers and scholars can compute these system
performance measures for a given service system and utilize it in decision making.
These performance measures are quite interrelated, and each assumes increased im-
portance in a particular context. Next, we provide some primary system performance
measures of service systems, which is indicative of its competitive status in the real
world congestion problems. The performance measures of a queueing based service
system is defined in terms of properties of one or more of the following stochastic
(random) processes

{N(t); t ≥ 0}, {Nq(t); t ≥ 0}, {Wj; j ∈ N}, and {D j; j ∈ N} (1.36)

We are concerned primarily with the long-run behavior (t → ∞), where the per-
formance measures are defined as limits that are averaged over either time or cus-
tomers. Next, we define some generic performance measures for a queueing based
service system, which are divided into two categories namely, customer-oriented,
and system-oriented.

1.8.1 Customer-Oriented

From the customer’s point of view, the performance of any service system is usu-
ally examined in terms of several constraints such as computation time, how much
quicker the better results are achieved, et cetera. Some of them are defined as follows

• Waiting Time:

It is defined as a period for which customers have to wait to get start their ser-
vice in the system. The waiting time of the customer is further classified in two
classes

– Average waiting time in the system:

It is defined as the overall waiting time of customers that they spend in
the system.

WS = lim
n→∞

1
n

n

∑
j=1

WS j (1.37)
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– Average waiting time in the queue:

It is defined as the waiting time of customers that they spend in the wait-
ing queue to get begin his service.

WQ = lim
n→∞

1
n

n

∑
j=1

WQ j (1.38)

• Elapsed Time

A customer is interested in the elapsed time between the states of service ini-
tialization and service completion. In the breakdown state of the system, the
elapsed time is also referred to as response time of the server.

• Turnaround Time

Turnaround time is the elapsed time for the batch arrival and batch service
queueing based service systems.

1.8.2 System-Oriented

The customer specifically focuses on individual service progress through the service
system, while the system itself makes it more useful than collective behavior and
adopts a global view of situations. System analysts are more interested in the follow-
ing indices

• Expected length of the service system

The expected length of the service system is defined as the average number of
waiting customers in the system.

LS = lim
t→∞

1
t

∫ t

0
N(x)dx (1.39)

• Expected length of the queue (mean queue length)

Similarly, the expected length of the queue is defined as the average number of
waiting customers in the queue.

LQ = lim
t→∞

1
t

∫ t

0
Nq(x)dx (1.40)

• Average number of customers in service
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It is defined as the mean number of those customers for which the server pro-
vides the service or who present in the ongoing service.

LO = lim
t→∞

1
t

∫ t

0
Ns(x)dx (1.41)

• Server utilization

The server utilization is defined as a fraction of time during which the server
is busy.

US =
LO

R
(1.42)

• Throughput of the system

The throughput of the system (τp) is defined as the mean number of customers
whose job is completed in a unit time interval, i.e. the effective departure rate.
In equilibrium condition, the throughput of the system is equal to the effective
arrival rate

τp = λeff (1.43)

• System Reliability

The reliability of the system is the probability that the system will work prop-
erly without interruption over the time interval [0, t). Mathematically, if f (t)

is defined as the probability density function of the time-to-failure (T ) of the
system, then the reliability of the system is defined as

RY (t) =
∫

∞

t
f (t)dt (1.44)

• System Availability

The system availability is defined as the probability that the system is working
properly at time instant t.

• Maintainability or Serviceability

The maintainability of the system is the probability of performing a success-
ful repair action. In other words, the rate by which the system can be re-
paired/maintained.

In the above-defined closed expressions, the measures LS, LQ, LO, and US are the av-
erages over time, whereas the measures WS, and WQ are the averages over customers,
and R be the number of identical servers in parallel in the service system.
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1.9 Solution Techniques

When the service system is in the design phase, the sensitivity analysis of the design
parameters is needed with the transient solution; else, if service system is in equi-
librium, the optimal analysis is required with steady-state solution. The transient or
steady-state solution of governing system of differential-difference equations can be
computed using following numerical and analytical solution techniques.

1.9.1 Transient Solution

The transient solution of the system of differential equations is the solution, which is
obtained by combining all the boundary conditions and the particular solution of the
problem. In the transient state, the value of the system parameters is influenced with
the passes of time. There are some standard solution techniques, which provide an
efficient solution of highly nonlinear and complex queueing problems.

1.9.1.1 Laplace Transformation

The Laplace transformation technique is extensively used in queueing modeling of
service systems for deriving and analyzing solutions of systems of differential equa-
tions. Mathematically, for the real-valued function f (t), Laplace transformation in
terms of variable s is

F(s) =
∫

∞

0
f (t)e−stdt (1.45)

where the function f (t) is integrable and defined for all t ≥ 0. With Laplace transfor-
mation, the system of differential equations changes to the system of linear equations.
Using key formulae and employing the inverse-Laplace transformation, the transient
solution of queueing models can easily be determined.

1.9.1.2 Runge-Kutta Method

Let us consider a initial value problem

dy(t)
dt

= f (t,y); y(t0) = y0 (1.46)
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where y(t) is a function of variable t, which we would like to approximate. Suppose
h be the step-size, then

yn+1 = yn +
h
6
(K1 +2K2 +2K3 +K4) (1.47)

s.t. tn+1 = tn +h (1.48)

where

K1 = h f (tn,yn) (1.49)

K2 = h f
(

tn +
h
2
,yn +

K1

2

)
(1.50)

K3 = h f
(

tn +
h
2
,yn +

K2

2

)
(1.51)

K4 = h f (tn +h,yn +K3) (1.52)

Using the iterative procedure of the Runge-Kutta method of fourth-order, we can
obtain the transient solution of the governing system of differential equations of the
queueing modeling based service system to examine the dynamical behavior at time
instant t.

1.9.2 Steady-State Solution

If, in a sufficiently large interval of time, the states of the system are independent of
the initial conditions i.e. the characteristics of the system remains unchanged con-
cerning lower and higher values of time t. Then, the system is called in the steady-
state. Usually, the steady-state of the system is obtained after some time-period of
the initialization of the process. In queueing literature, there are several techniques
to calculate the desired solution of queueing problems in a steady-state.

1.9.2.1 Successive Over-Relaxation Method

The successive over-relaxation (SOR) method is extensively used in queueing litera-
ture as a variant of the Gauss-Seidel method to compute the solution of a system of
linear equations numerically. The convergence rate of SOR is comparatively higher
than the other solution techniques. These methods are designed for higher-order
computation by human-made calculators. The SOR method is used to solve a system
of linear equations AX=B that is derived by extrapolating the standard Gauss-Seidel
method.

The coefficient matrix A in the matrix equation can be decomposed in terms of
the diagonal pattern D, and strictly upper & lower triangular forms U , L respectively
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as

A = (D+L+U) (1.53)

In terms of weighted average (relaxation factor), the matrix equation can be trans-
formed as

(D+ωL)X = ωB− [ωU+(ω−1)D]X; ω > 1 (1.54)

and for the (n+1)th approximation, the expression is converted into

X(n+1) = (D+ωL)−1
(

ωB− [ωU+(ω−1)D]X(n)
)
= LωA(n)+ e (1.55)

1.9.2.2 Gauss Elimination Method

In this method, the unknowns are eliminated by combining all the equations such
that the n equations with n unknowns are reduced to an equivalent upper triangular
system, which is further solved by employing the backward substitution method.
Now, consider a system of linear equations with three equations and three unknowns

a11x1 +a12x2 +a13x3 = b1 (1.56)

a21x1 +a22x2 +a23x3 = b2 (1.57)

a31x1 +a23x2 +a33x3 = b3 (1.58)

Now, using the appropriate substitution and recursive algorithm, we get the following
results

a(1)11 x1 +a(1)12 x2 +a(1)13 x3 = b(1)1 (1.59)

a(2)22 x2 +a(2)23 x3 = b(2)2 (1.60)

a(3)33 x3 = b(3)3 (1.61)

The obtained system is in the form of an upper triangular matrix, which can be solved
efficiently using the backward substitution method.
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1.9.2.3 Matrix Inverse Method

We can also find the solution of the system of linear equations

a11x1 +a12x2 +a13x3 = b1 (1.62)

a21x1 +a22x2 +a23x3 = b2 (1.63)

a31x1 +a23x2 +a33x3 = b3 (1.64)

by employing the matrix inverse method (only if the coefficient matrix is non-singular).
Suppose A = [ai j] be the coefficient matrix obtained by the above system of equa-
tions. The system of linear equations can easily be expressed in matrix form as

AX = B (1.65)

where X is the vector of all unknown variables, and B is the constant matrix.
If A is a non-singular then on pre-multiplying the matrix equation by A−1 both

sides, we get

(
A−1)AX =

(
A−1)B[

A−1A
]

X =
(
A−1)B

IX =
(
A−1)B

Therefore, we get the relation

X =
(
A−1)B (1.66)

1.9.2.4 Newton’s Method

In optimization theory, Newton’s method is an iterative method to determine the
roots of a twice-differentiable function. These roots are also referred as the station-
ary points. For the mathematical formulation, suppose g be a twice-differentiable
function, and the second-order Taylor series expansion of the function g around xn

is

g(xn +h) = g(xn)+h
{

d
dx

g(x)
}

x=xn

+
h2

2!

{
d2

dx2 g(x)
}

x=xn

(1.67)
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Initially, we require a small value of h, such that (xn +h) is a stationary point of the
function g. Now, using the Taylor expansion as an approximation, we get

0 =
d

dh

(
g(xn)+h

{
d
dx

g(x)
}

x=xn

+
h2

2!

{
d2

dx2 g(x)
}

x=xn

)

=

{
d
dx

g(x)
}

x=xn

+h
{

d2

dx2 g(x)
}

x=xn

Therefore, we get

h =−
{

d
dxg(x)
d2

dx2 g(x)

}
x=xn

(1.68)

provided the approximation by the Taylor series expansion is reasonably accurate,
then an increasing value of h should yield very close to the stationary points of the
function g. If the function g satisfies all the assumptions, then

x1 = x0−
{

g(x)
d
dxg(x)

}
x=x0

(1.69)

and the whole process is repeated as

xn+1 = xn−
{

g(x)
d
dxg(x)

}
x=xn

(1.70)

until a sufficiently more accurate value is achieved.

1.10 Optimization Techniques

In the modernization of queueing-based engineering and industrial problems, the
evolutionary algorithms, and nature-inspired optimization techniques are broadly
used because they can determine the solutions of highly complex problems in a sig-
nificant manner. The primary deriving force to develop nature-inspired optimization
techniques is that the traditional linear and nonlinear optimization techniques are
unable to search the optimal solution for such complex issues efficiently. Most of
the heuristic and metaheuristic algorithms have been inspired by the physical and
biological behavior of animals and used Darwins̀ theory of survival of fittest. Over
the last decade, these optimization algorithms have been effectively applied in many
real-time decision-making problems such as queueing problems, telephony, com-
puter and communication systems, inventory and production systems, scheduling
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problems, Combinatorial & numerical optimization, et cetera. Some major heuris-
tic and metaheuristic optimization techniques that are used throughout the research
work are briefly explained in the next subsections.

1.10.1 Quasi-Newton Method

The main drawback of Newton’s method is to estimate the second-order derivative
matrix for which the user has to employ computationally difficult approach. New-
ton’s approach can be applied when first derivatives exist. Therefore, to overcome
this limitation, a quasi-Newton method is prospectively developed. Usually, it is an
arduous task to calculate the analytic expressions of several system design param-
eters associated with the cost optimization problem of a queueing modeling based
service system. Thus, we calculate the solution of optimization problems numeri-
cally by implementing non-classical optimization techniques. One of the most pop-
ular optimization techniques is the quasi-Newton algorithm, which is broadly used
in queueing literature. The quasi-Newton method makes possible to find the optimal
cost of the system under optimal operating conditions. We globally search the values
of system design parameters until the optimal value of cost optimization problem is
achieved. We initialize the values of decision parameters in a vector form Ω0. In the
next phase, we compute the gradients of the cost function numerically with respect to
decision parameters and hence, the Hessian matrix is formulated. The quasi-Newton
method finds the global minimum of expected cost function in the search domain.
The pseudo-code of quasi-Newton (QN) method is given as follows

Quasi-Newton method: Pseudo code
Input: Input parameters, initial value Ω(0) = (x1,x2, . . . ,xn)

T , tolerance ε .
Output: Approximate the solution (x̂1, x̂2, . . . , x̂n)

T and calculate the value of
objective function f (x̂1, x̂2, . . . , x̂n).

Step 1: Interpolate the initial trial solution Ω(0) and calculate f (Ω(0)).

Step 2: while
∣∣∣ ∂ f

∂x1

∣∣∣> ε or
∣∣∣ ∂ f

∂x2

∣∣∣> ε , . . . , or
∣∣∣ ∂ f

∂xn

∣∣∣> ε do steps 3–4.

Step 3: Compute the gradient of objective function ~∇ f (Ω) =[
∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xn

]T
. Also, compute the Hessian matrix

H(Ω) =



∂ 2 f
∂x2

1

∂ 2 f
∂x1 ∂x2

· · · ∂ 2 f
∂x1 ∂xn

∂ 2 f
∂x2 ∂x1

∂ 2 f
∂x2

2
· · · ∂ 2 f

∂x2 ∂xn
...

... . . . ...
∂ n f

∂xn ∂x1

∂ n f
∂xn ∂x2

· · · ∂ 2 f
∂x2

n

at point ~Ωi.
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Step 4: Update the trial solution Ω(i+1) = Ω(i)−
[
H(Ω(i))

]−1 ~∇ f (Ω(i)). end
Step 5: Output

1.10.2 Direct-Search Method

Direct-search is a technique for solving optimization problems having discrete deci-
sion parameters. The direct-search method does not require the value of the deriva-
tive (gradient) of the function, which has to be optimized. The direct-search algo-
rithm searches the solution locations around the current solution position, where the
value of the objective function is less than the value at the current solution point in
minimization problem or more for maximization problem. The pseudo-code of the
direct-search method is as follows

Direct-Search Method: Pseudo-code
Input: Input system parameters.
Output: Approximate the solution (x∗1,x

∗
2, . . . ,x

∗
n) and compute the value of

objective function f (x∗1,x
∗
2, . . . ,x

∗
n).

Step 1: Range the values of (x∗1,x
∗
2, . . . ,x

∗
n)

Step 2: Set a intial trial solution.
Step 3: if the solution diverges, back to step 2 end if
Step 4: if f (x∗1,x

∗
2, . . . ,x

∗
n)< f ∗

Step 5: f ∗ = f (x∗1,x
∗
2, . . . ,x

∗
n)

Step 6: end if
Step 7: Output f ∗ = f (x∗1,x

∗
2, . . . ,x

∗
n)

1.10.3 Particle Swarm Optimization

Swarm intelligence is a modern intelligence optimization technique inspired by the
essential information and biological behavior of animals, particularly birds and fishes.
With swarm intelligence, birds & insects in the flock, bees in colonies and fishes in
the school, other animals in a group communicate with each other, and members
socialize in their territories while searching for food in a specific area. Swarm intel-
ligence models are developed on decentralization, communication, and cooperation
between the individuals of colonies. The mutual interaction is essential and emerges
as a sophisticated global behavior, which is the base of swarm intelligence. Opti-
mization techniques based on swarm intelligence have primarily been employed and
found much more efficient over traditional optimization issues and challenges in ev-
ery sphere of real-time applications.

In this section, the basic idea of the working process of the PSO algorithm is
explained. The concept of the PSO algorithm is first proposed by American social
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psychologist James Kennedy and engineer Russel Eberhart [67], having inspired by
the social behavior of a group of birds/fish schooling. The PSO algorithm works
on the notion of exploration and exploitation with a population of particles in the
feasible search space. In PSO, each particle has its inherent velocity and position
with which they move randomly within the search space. Also, the movement of
every particle is influenced by its local/personal best (p-best) and global/common
best (g-best) positions in the solution space. Suppose that Vi and Si are the velocity
and the position vector of the ith particle respectively. The velocity component is
updated using the following recursive formula

Vt+1
i = Vt

i +κ1ϕ1(G
∗−St

i)+κ2ϕ2(S
∗(t)
i −St

i) (1.71)

wherein, κ1 and κ2 are the learning coefficients having standard value 2 for each,
ϕ1 and ϕ2 are two random vectors having each entry between the range [0,1). The
position updating formula for the ith particle is characterized as

St+1
i = St

i +Vt+1
i (1.72)

But to control the exploration and exploitation among particles, there is a requirement
of an inertia function ω2(t) which is introduced by [234] in the PSO algorithm. So,
the improved velocity updating formula is given by

Vt+1
i = ω2Vt

i +κ1ϕ1(G
∗−St

i)+κ2ϕ2(S
∗(t)
i −St

i) (1.73)

The standard value of the inertia function ω2(t) has been found in the literature to be
between 0.5 to 0.9. The pseudo-code of the PSO algorithm is given below
Particle Swarm Optimization: Pseudo-code

Input: Input parameters, population size, learning parameters.
Output: Approximate solution (x∗1,x

∗
2, . . . ,x

∗
n) and the value of objective

function f (x∗1,x
∗
2, . . . ,x

∗
n).

Step 1: Population Initialization: find the positions Si of n particles.
Step 2: Find G∗ (common best) from { f (S1), f (S2), . . . , f (Sn)}.
Step 3: while (t < MaxGeneration) or(stop criterion)

for loop over all the n particles and all d dimensions.
Step 4: Find new velocity vector for the ith particle Vt+1

i .
Step 5: Find new positions for the ith particle St+1

i = St
i + Vt+1

i .
Step 6: Evaluate cost function at new positions St+1

i .
Step 7: Find the current best for each particle S∗i .

end for
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Step 8: Update global best G∗.
t→ t +1
end while

Step 9: Output final results S∗i and G∗ .
Step 10: Output optimal value of the objective function: f ∗ at G∗.

1.10.4 Cuckoo Search Algorithm

Cuckoo search algorithm takes inspiration of brood parasitic behavior wherein natu-
ral phenomenon is mapped to an optimization problem in the following way
• Each cuckoo which behaves as a search agent lays only one egg in the nest

randomly. The randomly chosen nest refers to a solution to the problem.
• In each generation, some fixed number of eggs are taken to the next generation.

The best solution is determined by evaluating fitness function at the current
solution point for all agents.
• The host bird identifies cuckoo’s egg in its nest with probability pa. For op-

timization algorithm, this is called switch probability with which exploration
and exploitation, both are executed.
• Positions of nests are adjusted in the local area such that eggs in these nests try

to be best among all. It is defined as an exploitation step in the cuckoo search
algorithm.
• The host bird is likely to leave the nest and make a new nest somewhere ran-

domly. In this way, exploration for a new solution is done when some agents
can not find a better solution in the neighborhood.

Local and global random walks and their behavior are significant concerns of this
algorithm. This algorithm is based on a balanced combination of a local random
walk and the global explorative random walk, controlled by a switching parameter
pa. The local random walk can be written as

xt+1
i = xt

i +Θ1 κ⊗H(pa−ϖ)⊗ (xt
j− xt

k) (1.74)

where xt
j and xt

k are two different solutions selected randomly by random permuta-
tion, H(u) is a Heaviside function, ϖ is a random number drawn from a uniform
distribution, and κ is the step size. Here, ⊗ means the entry-wise product of two
vectors.

As we have discussed earlier, global convergence is responsible for its efficiency
and a wide range of applications. The global random walks of the cuckoo search
algorithm are governed by Lévy flights. Isotropic random walks simulate such a
population-based algorithm, but a significant step size in random walks are less likely
because tails of the distribution function decrease exponentially. Lévy flights give
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very intuitive random walks, which actually, animals, birds, and insects follow in
any survival technique like searching food. Due to the power characteristics of Lévy
distribution (1.76), it is heavy-tailed, which allows significant step sizes more than
what normal distribution does.

xt+1
i = xt

i +Θ1L f (κ,ω1) (1.75)

where

L f (κ,ω1) =
ω1Γ(ω1)sin(πω1

2 )

κ(1+ω1)π
; κ � κ0 > 0 (1.76)

Here Θ1 > 0 is the step size scaling factor. It should be determined depending on the
characteristics scale of the problem. We use Θ1 =O( Ξ

10), where Ξ is the characteristic
scale of the problem of interest. These global optimization step would ensure that
the solution would not get trapped in some local optimum.

In Mantegna’s algorithm [310], the step length κ can be calculated by

κ =
u

|ℵ| 1
ω

(1.77)

where u and ℵ are drawn from normal distributions i.e. u ∼ N(0,σ2
u ) and ℵ ∼

N(0,σ2
v )

where

σu =

 Γ(1+ω1)sin(πω1
2 )

Γ

[
(1+ω1)

2

]
ω1 2{(ω1−1)/2}


1

ω1

, σv = 1 (1.78)

The distribution for κ obeys the expected Lévy distribution for |κ| ≥ |κ0|, where κ0

is the smallest step. In principle, |κ0| � 0, but in reality κ0 can be taken as a sensible
value such as κ0 = 0.1to1. The pseudo-code for the cuckoo search via Lévy flights
for optimizing arbitrary function is as follows
Cuckoo Search Algorithm: Pseudo-code

Input: Fixed value of system parameters, population size, switching parame-
ter.
Output: Approximate the solution (x1,x2, . . . ,xn) and compute corresponding

value of the objective function f .
Step 1: Objective function f (x); x = [x1,x2, . . . ,xd]

T and initialize the
population of n host nests xi

while (t < MaxGeneration) or (Stop criterion)
Step 2: Get a cuckoo randomly
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Step 3: Generate a solution by Lévy flights
Step 4: Evaluate its solution quality or objective value
Step 5: Choose a nest among n nests randomly

if ( fi < f j)

Replace j by the new solution i

end
Step 6: A fraction (pa) of worse nests are abandoned
Step 7: Generate new solutions and keep best solutions (or nests with
quality solutions)
Step 8: Rank the solutions and find the current best
Step 9: Update t← t +1
end while

Postprocess results and visualization

1.10.5 Bat Algorithm

Modern optimization techniques are often nature-inspired, typically based on swarm
intelligence and biological behavior of animals. Each species, in general, has unique
characteristics for survival as fittest ones. The ways for inspiration are miscellaneous,
and therefore the algorithms can be of many different types. However, all these algo-
rithms tend to utilize some specific characteristics for formulating the key updating
formulae. Metaheuristics like particle swarm optimization and genetic algorithms
can be very convenient, but still, they have some drawbacks in dealing with com-
plex and multimodal optimization problems. One significant improvement is the bat
algorithm (BA), which was first introduced by Yang [308] in 2010. Bat algorithm
is an agent-based optimization technique inspired by the bio-sonar or echolocation
characteristics of microbats.

Most of the microbats are insectivores in food habits. Microbats typically use a
sonar technique called echolocation to detect prey or victims, and explore and locate
their roaming crevices, even in the dark region. These bats produce a high pulse
sound and listen to the resonance that produces back from the surrounding objects.
Their pulses differ in physical values depending on the different species and can be
interrelated with their hunting strategies. Most of the bats generally adopt a short
frequency-modulated signal to roam through about an octave while the others more
often use constant frequency signals for echolocation. Their signal bandwidth fluc-
tuates with species and usually increases by using more harmonics. Studies demon-
strate that microbats utilize the time delay from the emission and detection of the
echo, the diversity of time interval between their two ears, and the loudness varia-
tions of the echoes to develop a three-dimensional dynamic image and scenario of the
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surrounding. Also, they distinguish between distance and orientation of the object,
the type of prey, and even the moving speed of the victim, such as small insects.

Based on the mentioned characteristics and depiction of echolocation, the bat
algorithm works with the following three idealized rules

(i) All bats use the echolocation to detect the distance from a food source and
also have the knowledge to distinguish between foods/victims and background
barriers.

(ii) Bats fly randomly in the surroundings with velocity Vi at position Si and pro-
duce fixed frequency fi pulse. They can automatically regulate the frequency
(or wavelength) of their emitted pulses and change the rate of pulse emission
(ri) correspondingly in the range between 0 and 1, depending on the proximity
of their target.

(iii) Though the loudness can vary in a variety of ways, we consider that the loud-
ness varies from a large (positive) L0 to a minimum value Lmin.

In addition to these assumptions, for simplicity, the frequency f is taken in a
range [ fmin, fmax] corresponding to a range of wavelengths [λmin,λmax]. Therefore,
with the help of the above mentioned assumptions, the updated equations for fre-
quency fi, position Si and velocity Vi are as follows

fi = fmin +( fmax− fmin)ϑ (1.79)

Vt+1
i = Vt

i +
(
St

i−S∗
)

fi (1.80)

St+1
i = St

i +Vt+1
i (1.81)

where
• ϑ ∈ [0, 1] is a uniformly distributed random vector.
• fi is the frequency that ith bat emits and fmin, fmax are the lower and upper

bounds of frequencies, respectively.
• Vt

i is the velocity of ith bat after t generations.
• St

i is the position of ith bat after t generations.
• S∗ is the current best position (solution) of the fitness function among all the n

bats.
After selecting a solution among the current best solutions, for the local search, we
use the random walk for each bat. Hence, the new position updating formula is
generated locally and is expressed as

Snew = Sold + ε L(t) (1.82)

where ε ∈ [−1,1] is a random number and L(t) = 〈Lt
i〉 is the average loudness of all
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the bats at time instant t. Now to control the step size, we provide the scaling param-
eter ρ to avoid overshooting or undershooting the search space. The new position
updating formula is rewritten as

Snew = Sold +ρ εt L(t) (1.83)

where the value of εt is taken from the Gaussian normal distribution N(0,1), and ρ

is a scaling factor having standard value 0.01.
The pseudo code of bat algorithm is as follows

Bat Algorithm: Pseudo code
Input: Input parameters, initialize the bat population Si and Vi;(i= 1,2, . . . ,n).
Output: The global best solution (S∗ = [x̂1, x̂2, . . . , x̂n]

T ) and its analogously
minimum functional value fmin = min{ f (S1), f (S2), . . . , f (Sn)}.

Step 1: Initialize the frequencies fi, pulse rates ri and loudness Li.
while t < Max number of iterations

Step 2: Generate new solutions by adjusting frequency.
Step 3: Update velocities and locations/solutions [eqn’s(1.79)–(1.81) ].

if (rand > ri)
Select a solution among the best solutions.
Generate a local solution around the selected best solution.

end if
Step 4: Generate a new solution by flying randomly.

if (rand < Li & f (Si)< f (S∗))
Accept the new solutions.
Increase ri and reduce Li.

end if
Step 5: Rank the bats and find the current best S∗.

end while

1.11 Some Basic Terminologies

The three main keywords around which the entire queueing modeling depend are
customer, queue, and server. The meaning of these words is reasonably self-evident.
Depending on behaviors and characteristics, several queueing models are developed
in the literature. Some of the customers and server-based characteristics which we
have taken into consideration in the present study are classified as follows
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1.11.1 Customers Behavior

Usually, the customers behave impatiently in the waiting queue in the following man-
ners
• Balking:

Whenever the newly arriving customer finds the server busy or unavailable due
to vacation, breakdown or any other reasons, he leaves the system without en-
tering into it due to the high impatient. The random behavior of customer is
defined as a balking which governs with some probability. In other words, the
newly arriving customer may not like to wait in a queue due to lack of time or
space or otherwise.

• Reneging:

The customer, who joins the queue, but is abandoned from the waiting line
after waiting for some time impatiently in the system, is known as a reneged
customer in queueing modeling. It directly points the server efficiency, system
satisfaction level, and customer loss.

• Collusion:

When some customers collaborate, but only one of them joins the queue is
defined as the collusion behavior of the customer. For example, in a cinema
ticket counter one person enters the waiting queue and purchase the tickets for
all his friends.

• Jockeying:

Whenever the arriving customer joins a queue and then switches to another
waiting queue in parallel to reduce his waiting time is defined as the jockeying
behavior of the customer. This situation generally occurs in the supermarket.

1.11.2 Server’s Behavior

1.11.2.1 Unreliable Server

Sometimes the server also breaks down due to continuous working and being busy for
a long time. It is defined as an unreliable characteristic of the server, and state-ot-art
of better service system is to repair or replace immediately to ensure the uninter-
rupted service.
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1.11.2.2 Server’s Vacation

In classical queueing modeling, generally, we assume that the servers are always
available for providing the service whether there is no waiting customer. But in
practice, continuous service seems to be uneconomical and impractical in global
modernization. To overcome this limitation, a new perception is introduced in the
queueing literature in which some times these servers may become unavailable for a
while. That time-period is known as servers vacation. Some times these servers may
opt a secondary service rather than altogether terminating his primary service. This
phenomenon is defined as the working vacation of the server. In queueing theory,
these vacations and working vacation policies are classified in following strategical
class as
• N-Policy Vacation:

In queueing modeling based service systems, if the server becomes unavailable
at the end of a busy period and resumes to provide the service to the waiting
customer(s) when the length of the queue reaches a threshold number N, then
it is known as N-policy vacation of the server.

• Single Vacation:

In the strategic service-management of service systems, the server may become
unavailable deliberately for some time due to a variety of reasons like taking
rest, reducing work stress, rejuvenating the efficiency, minimize the expected
cost, etc. The random period during which the server is unavailable in the sys-
tem is defined as a vacation of the server. In the single vacation policy, the
server opts for the vacation only for one time. On returning from the vacation
if the server finds no waiting customer for seeking service, he waits idly in the
system otherwise provides the service to the waiting customer.

• Multile Vacation:

According to this policy, a server leaves for a vacation of a random duration
when there is no customer for service in the service facility. On return from the
vacation, if he finds an empty queue, he takes another vacation and continues
this process until he finds at least one waiting customer in the system after the
end of vacation duration.

• Bernoulli Vacation:

In this policy, after the end of a vacation, the server decides whether to leave
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for another vacation of random duration with some probability or continue to
provide the service to the waiting customer in the system with the complemen-
tary probability.

• Variant Vacation Policy:

In the variant vacation policy, the server takes a vacation whenever the system
becomes empty. However, the server can take vacations at most m times if the
system remains empty after the end of the vacation. This vacation policy is
defined as a particular case of both single and multiple vacation policies.

• Working Vacation:

In the working vacation policy, the server works with a slower service rate
rather than complete termination of his service during the vacation period.

• Single Working Vacation:

In the single working vacation policy, at the end of a working vacation, if there
is no waiting customer in the service facility to be served, the server stays in
the system idle and is ready for providing the service to the new arrivals.

• Multiple Working Vacation:

In this policy, at the end of a vacation period, if the server does not find any
customer in the system, he repeatedly takes the working vacation of random
duration otherwise provides the service to the waiting customer, if any, in the
system with the normal service rate.

• Synchronous and Asynchronous Vacation:

In a multi-server queueing modeling based service system, if all the servers
take the vacations together at the same time, then the vacation policy is called
the synchronous vacation policy. Whereas, in the asynchronous vacation pol-
icy, each server takes the vacations individually and independently to other
servers.
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1.12 Literature Review

1.12.1 Development of Queueing Theory

The history of queueing theory and its concepts is nearly 110 years old, when A K
Erlang (cf. [73]) published a research paper in 1909 titled “The Theory of Proba-
bilities and Telephone Conversions” in which a telephone system could be designed
as a Poisson call input that represents the random arrival, exponential or continuous
holding (service) time of a call, and a single or multiple channels. Later, Erlang en-
riched the literature with many essential concepts and techniques, such as the notion
of classical equilibrium condition, method of writing the balance equations, and op-
timization of a queueing system. During the early 1930s, [209], [210] investigated
queueing systems in finite-time intervals. At that time, many theorists showed inter-
est in these types of problems, and many general models are developed that could be
used in more complex situations. Hence, at the beginning of the 1940s, theoretical
analysis of queue-based service systems increased substantially with the advent of
operations research.

Queueing theory, as an identifiable body of literature, was primarily defined by
the fundamental research ideas in the 1950s and 1960s. The first textbook on the
subject, “Queue, Inventories, and Maintenance” was written by [197] in 1958. After
that, in 1961, [218] wrote one of the most famous books in queueing literature, “Ele-
ments of Queueing Theory with Applications”. Kovalenko [144] presented a survey
of developments of mathematical research in queueing theory from the period 1964
to 1970. Since the 1970s, with the advent of new processes in manufacturing, the
applications of queueing theory result, and the development of new techniques have
occurred at a phenomenal rate. With the several emerging concepts of queueing
and service systems, [143] provided a book “Queueing System” in 1976. In 1992,
[30] reported open queueing network models of manufacturing systems. Later, [87],
[3], and others discussed several queueing characteristics in their work. In addition,
extensive research work has been done on queue-based service systems in various
frameworks over the years. The literature on service systems has been vast. Here, we
restrict the thesis works to the development of queue-based service systems, which
are strictly related to our investigation on performance and optimization analysis us-
ing several critical queueing terminologies in service systems.
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1.12.2 Customer Impatient

Queueing systems with impatient customers appear in many service models of our
day-to-day life, such as emergency rooms in hospitals, inventory systems having stor-
age of perishable goods, telephonic calls at telephone switchboard, et cetera. Due
to the widespread use of queueing models, a large number of researchers have con-
tributed in this direction and achieved many significant results. Palm [202] first intro-
duced the reneging behavior of calls in telephonic transmission. Haight [95] was the
first researcher to introduce the notion of the balking behavior of customers in queue-
ing models. Keilson [135] investigated a general bulk queueing model with balking
as a Hilbert problem. Rao [215] analyzed a single server queueing model with balk-
ing and reneging under the assumption of general service distribution. Barrer [27],
[28] formulated a queueing problem with the impatient behavior of customers in
processing systems under ordered processing. For a homogeneous queueing sys-
tem, [198] provided the explicit expressions of queue-size distribution using general
service distribution and discouragement. Dekok and Tijms [57] investigated a single-
server queueing system with Poisson input and the general service times. Varshney
et al. [269] analyzed a general input and general service-time distribution and an-
alyzed several closed-form expressions for system performance measures using the
diffusion approximation approach. Al seedy [5] envisaged a queueing model with
phase-type service and impatient. Gupta [90] demonstrated the interrelationship be-
tween the concepts balking and reneging. Again, [91] considered the state-dependent
queueing problem with the balking and reneging of customers. Using the terminolo-
gies of balking and reneging, [56] proposed a queueing model with the customer’s
loss in multi-server queues.

Shawky [226] provided the analytical solution to the finite population machine
repair model with balking, reneging, and spare provisioning. Wen [287] evaluated
the token-tray/weighted queueing time for near window on-demand system consid-
ering the concept of discouragement. Al Seedy [6] suggested a transient solution
technique for a non-truncated two server queueing model involving balking behavior
and additional server for long waiting lines. Ke [125] analyzed operating character-
istics of a M[X ]/G/1 system with a variant of vacation policies and impatient using
a supplementary variable technique. Wu and Ke [289] proposed an efficient com-
putational solution technique for the multi-server system with impatient customers.
Ammar [12] studied the single server Markovian queueing system with balking and
reneging, and provided several closed-form expression through busy period analysis.
Recently, [179] formulated the stability condition for an infinite capacity Markovian
queue with a single unreliable service station and impatient customers utilizing the
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matrix-analytic approach. Yassen and Tarabia [311] developed an infinite Markovian
queueing system using the concept of balking and reneging, where the system may
be used under repair for server failure. More recently, [151] proposed a model to
study the infinite capacity queueing system with Poisson input, exponential service
time distribution and retention of reneged customers.

From an economic point of view, customer impatience can be seen as a potential
loss of customers. Thus, more and more organizations and industries are adopting
efficient strategies by which impatient customers remain in the system. Therefore,
inspired by this fact, new queueing terminology in literature, the retention of re-
neged customers, was proposed by [153]. Again, [150] extended their previous work,
considering the balking behavior of customers. Sharma and Kumar [225] proposed
steady-state solutions to a single server finite capacity queue with feedback and re-
tention of reneged customers. Again, [154] established the transient and steady-state
solutions to a multi-server finite capacity queueing model with impatient, and reten-
tion of reneged customers and performed a cost analysis for building an economic
system. Recently, the optimal analysis of a finite capacity queueing model with
working breakdown and retention of reneged customers is executed by [303]. Kumar
et al. [152] studied two-heterogeneous servers’ queueing problems with retention
of reneged customers and provided some customer and server-oriented measures of
effectiveness.

In the queueing literature, a significant number of research papers exist to deal
with abandonment in queueing systems. However, there are only limited research
papers in the literature to classify customers’ abandonment behavior in different en-
vironments. For the detailed information and excellent study on the abandonment
policy, readers can refer the following research papers and references therein (cf.

[17], [68], [61], [60]). Sometimes, impatient customers abandon the system simul-
taneously rather than independently. The phenomenon of simultaneous abandon is
defined as synchronized abandonment and is new terminology in literature, which
was first introduced in 2009 by [2]. For the significant note on synchronized reneg-
ing, we refer the articles [70], [71], [123].

In designing a queue-based service system, the assumptions for arrival and ser-
vice patterns can be made such that the system can work smoothly to achieve produc-
tion goals despite unexpected failures of the system. It has been observed that after
a fixed threshold level, newly arrived customers may not be allowed to join due to
the capacity constraints of the service system. In the context of real-life applications,
arrival control is one of the cost-effective as well as efficient managerial approaches
that can be used under the constraints of the capacity of the service system. To con-
trol the arriving customers in the finite capacity service system, the admission control
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policy based on the threshold level was first proposed by [92]. Tadj and Chaudhary
[246] presented a comprehensive review of the literature to show the optimal design
and control of queueing systems. A recursive approach to a controllable queueing
model with a general arrival pattern was provided by [278] using the supplementary
variable technique. Extensive works on controllable admission policy with many
queueing variants are done in past (cf. [281], [301], [39], [111], [105], [108], [227]).
Recently, [176] provided the reliability investigations of a k-out-of-n:F system under
the regime of repair-rate differentiation policy. To develop a fault-tolerant machining
system, [109] envisaged a Markovian queueing system with a working vacation and
randomized arrival control policy.

1.12.3 Feedback

Sometimes, even after receiving the primary service, the customers are not satisfied
with the service, the customer may reattempt with some probability to be completely
satisfied or may leave the system with the complementary probability. It is defined as
a feedback policy in the queueing literature. Many of the real-life queueing problems
can be seen as feedback queues such as manufacturing processes, data transmission
in networking, computers and communication systems, supply-chain management, et
cetera. Finch [76] first presented a paper “Cyclic queues with feedback” for the ter-
minal server, in which the author introduced the concept of feedback policy. Takacs
[248] provided the steady-state probability distribution and the closed expressions
for the expected waiting time of a customer of a single server queue with feedback.
Delbrouck [58] considered a single channel feedback queueing system with batch
arrivals, bulk service, and the queue-dependent service time. Arya [18] proposed
a queueing system with two homogeneous servers, which are connected in series
with a shared server. Montazer [196] studied a multi-servers’ queueing system with
feedback and determined customers’ waiting time distribution and the static process.
Garg [82] provided the probability of a fixed number of arrivals and departures for
specific feedback queueing models. The Bernoulli feedback has also been intro-
duced for polling models by [253]. Kalyanraman et al. [122] proposed the numerical
scheme to determine the average waiting time of the customer in the system. Madan
and Rawwash [190] considered a feedback queueing model for optional server vaca-
tions with bulk arrival. Using a matrix-geometric method, [19] calculated the state
probabilities for the service systems in call centers. Transient-state queue size dis-
tributions and their Laplace transformation function were obtained by [239]. The
approximation methods were developed by [194] to calculate several characteristics
of the studied queueing system with feedback. Thombare et al. [258] used the round-
robin algorithm for fair use of CPU in a queue with feedback policy in the first line
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and SJF in the next waiting line to reduce the average waiting time. Recently, [35]
presented the mathematical analysis for the Markovian feedback queueing model
with impatient and Bernoulli scheduled vacation interruption. With the general ser-
vice distribution, [141] delineated a feedback queueing system with a multi-class of
customers and derived the functional equations for the stationary distribution of the
queue size.

In the queueing literature, the concept of a breakdown server and its unreliable
characteristics have been considered and studied extensively, but our main objective
in this thesis is to provide a multidisciplinary view on the unreliable service char-
acteristics of a service provider. Usually, it is assumed that the service provided by
the server is successful and satisfactory at every instant. But, in real-time applica-
tions, the hypothesis may not be correct. Inspiring from this fact, a new terminology,
unreliable service, has been introduced in the queueing literature by [205]. In this
policy, the occurrence of unsuccessful service is neither because of the servers’ fault,
nor due to the customer, i.e., service failure instances occur due to some external and
environmental shocks. Recently, [204] extended previous work [205] to an infinite
capacity queueing model with a working vacation of the server. In the developed
model, the authors employed the matrix-geometric technique to provide a closed-
form expression of several system performance measures.

1.12.4 Vacation Policies

Since inception from Erlang’s early work based on modeling of telephonic traffic
systems, queueing theory and its modeling has been significantly developed mani-
fold over nearly 110 years. Due to its extensive practical applications in many ser-
vice fields, queueing theory has been one of the most active research areas in opera-
tions research, management science, and industrial engineering over the past several
decades. Some preliminary research work related to queueing systems is relevant to
queueing modeling with the vacation of the server. Cooper [52] firstly conferred a
research work on queues placed in cyclic order, in which the service-times of serving
other waiting lines could be considered as a service interruption of the queue un-
der consideration. However, some significant and useful research results on vacation
queueing systems were published in the second half of the twentieth century. Levy
and Yechili [168] first introduced the concept of servers’ vacation, which represents
the duration of server work on some complementary projects. Later, several research
results on vacation queueing models were published ([54], [77], [64], [65], [66]).

Takagi [249] gave a systematic treatment of the exhaustive service vacation model
with the general service-time distribution. Kella [136] proposed a more general va-
cation policy, wherein, at service completion instant, if there are waiting customers



1.12. Literature Review 43

in the system, the server starts serving customers; otherwise, the server takes a vaca-
tion with probability p and enters the idle period with the complementary probability
(1− p). If p = 1, it corresponds to the multiple vacation policy, and when p = 0, it
corresponds to the single vacation policy. Later, [260] presented another generalized
form of multiple and single vacation policies. A batch arrival queueing model with
a single vacation policy is studied by [164]. Tian et al. [261] proposed some con-
ditional stochastic decomposition results for a muti-server queue with server vaca-
tion. A discrete-time Geo/G/1 queueing model is envisaged by [327] with multiple
adaptive vacation. A mathematical analysis of queues with a single vacation was
presented by [325]. Madan and Al-Rub [191] investigated a single server queue with
optional phase-type server vacations based on a single vacation policy. Gupta and
Sikdar [94] computed queue length distributions in MAP/G/1/N queue under single
and multiple vacations. A short survey on vacation queueing models was presented
by [132]. To analyze the vacation queueing models, the optimal operating policies
in Markovian and Non-Markovian environment were used by many researchers and
scientists (cf. [129], [315], [180], [243], [324]).

Yadin and Noar [297] was first to introduce the concept of N-policy of the server,
with which the server shuts down when there is no customer in the system, and turns
on the server if the number of waiting customers in the system reaches a threshold
value N. Later, the concept of N-policy is used with several vacation queueing mod-
els ([100], [25], [223], [32], [263], [250], [163], [16], [161]). The recent researches
on the N-policy for the server in service system have been observed in the following
works (cf. [267], [316], [117], [283], [236], [116], [41], [20]), and references therein.

The upgraded generalization of vacation policies is working vacation policy, un-
der which the vacationing server provides service at a lower service rate rather than
stopping service completely. Due to reasonable assumptions, it has been extensively
used in a wide range of applications like network service, mail services, web ser-
vice, file transfer service, and many more. The concept of working vacation policy
was first conceptualized by [222] for a single server queueing system. Later, [292]
extended the result of [222] for general service distribution. Kim et al. [142] exam-
ined the queue-size distribution of a queueing system with Poisson arrival and gen-
eral service times with working vacation policy. Liu et al. [185] demonstrated the
stochastic decomposition results for a single server Markovian queue with a work-
ing vacation. Li et al. [169] analyzed a M/G/1 queue with an exponential working
vacation regime. For a batch arrival queueing system with a single working vaca-
tion, [295] provided some closed-form expressions employing the matrix analytic
approach. Later, [21] generalized the work of [295] to multiple working vacation
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policy. Several researchers and scholars investigated queueing problems with multi-
ple and single working vacation policy in the past (cf. [221], [89], [212], [171], [88],
[137]).


