
Chapter 2

Multi-Server Service System with Impatient
and Bernoulli Scheduled Modified Vacation

2.1 Introduction

In the classical service models, servers are always available. But in many practi-
cal queueing scenarios of service systems, we observe that server(s) may become
unavailable for a random period because of various reasons such as checking for the
maintenance before starting the new job, for reducing the idle time, or simply for tak-
ing a rest. The period of unavailability of the server is known as the server’s vacation.
The vacation queueing theory was developed as a generalization of classical queue-
ing theory in the late 1970s to cover the increasing complexity and inadequacy of the
classical queueing models and several stochastic service systems, namely, telecom-
munication networks, manufacturing system, supply chain systems et cetera. Levy
and Yechiali [168] first introduced the concept of server’ vacation in the waiting line
problem and obtained the Laplace Stieltjes transforms of waiting time of customers,
vacation period of server and occupation period. Later, [63] surveyed the vacation
queueing models and demonstrated an overview of some general decomposition re-
sults with their corresponding methodology. In the context of vacation policies, the
reference books by [251], [252] have valuable contents and references therein. Many
studies on interesting realtime queueing problems with different types of vacation
policies have been done in recent also (cf. [10], [138], [274], [188], [244]) for look-
ing merits and restrictions of server’ vacation.

In this chapter, we consider that at the completion of the vacation, if the server
finds no waiting customer to serve, either the server leaves for a vacation of ran-
dom period again or waits idly for the next arrival to which the server provides the
service immediately, i.e. the server follows Bernoulli scheduled modified vacation
policy. Number of research articles (cf. [43], [45], [184], [300], [294], [186], [324])
have appeared in the literature on the queueing theory in which the server follows
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the single vacation policy. The classical vacation theory with the Bernoulli sched-
ule scheme was first proposed and studied by [134]. Tadj et al. [247] considered a
bulk service queueing model with random set-up time and N-policy under Bernoulli
vacation schedule and suggested an algorithm to allocate the optimal management
policy. Jain and Agrawal [115] analyzed a batch arrival queueing model using mod-
ified Bernoulli schedule vacation under N-policy and determined queue size distri-
bution using the generating function technique. Ke et al. [133] examined M/M/c

retrial queue with Bernoulli single vacation policy as a quasi-birth and death process
and provided the necessary and sufficient condition of system equilibrium. Having
increased applicability in the state-of-the-art strategy, in recent years also several
researchers (cf. [44], [157], [42], [83]) used the concept of Bernoulli scheduled va-
cation policy and provided several numerical illustrations after deriving the explicit
expressions for various system performance measures.

In recent years, queue-based service systems considering customer impatient be-
havior have obtained significant attention of several researchers due to their practical
applications to administration in service systems and e-commerce. It directly affects
goodwill, revenue, satisfaction level in the service system. However, Some works
in the queueing survey consider the impatient behavior of customers with various
vacation policies. In the present chapter, we consider a service model with balking
behavior in which the impatient customer may or may not join the queue depend-
ing on the number of waiting customers present in the service system. Haight [95]
first introduced the balking behavior of customers for an M/M/1 queueing prob-
lem. Haight [96] again proposed the reneging behavior of customers for the sin-
gle server Markovian problem. Later, [9] exhibited a comprehensive analysis of
M/M/1, M/G/1, and M/M/c queue with server’s vacation and customer impa-
tience, where customers’ impatience is due to an absentee of servers upon arrival.
They obtained various closed-form expressions by discussing both single and multi-
ple vacation cases. To show the effect of the change in system parameters on the cost
function, [280] performed the optimal and sensitivity analysis and provided various
numerical experiments for the illustration purpose. Ward [285] surveyed the results
for the GI/GI/N + GI queueing model and studied the reneging behavior of the
corresponding queueing problem in the conventional heavy traffic and Halfin-Whitt
limit regimes. Yang et al. [304] studied the equilibrium balking behavior of the
customers with server breakdown and repair for an Geo/Geo/1 queue and obtained
the stationary distribution of the system with the mean sojourn time for an arriving
customer.

Recently, [219] established the stationary relationship between the number of
customers at different characteristic epochs for an M/G/1 multiple vacation system



2.1. Introduction 49

with balking. For single server Markovian queues with double adaptive working
vacation, [244] studied customers’ equilibrium and social optimal balking behav-
ior. More recently, [126] analyzed both single and multiple vacation policies for a
multi-server balking retrial queue and provided different numerical results for the
comparison of both the vacation policies under optimal operating conditions. For a
single server Markovian queue, [160] studied customers’ equilibrium balking strate-
gies with a single working vacation and vacation interruption. They derived the
Nash equilibrium threshold strategies for fully and partially observable queues and
conducted the sensitivity analysis for equilibrium threshold and equilibrium joining
probabilities by varying the values of several system parameters. In addition, these
researchers also examined the queueing problems with server’s vacation and impa-
tient behavior of the customers (cf. [106], [271], [175]).

From the economical point of view, the customers’ impatience is perceived as a
potential loss of customers and thereby results in the loss of total revenue due to their
negative effect on the prospective financial circumstances of a service system. There-
fore, the consideration of customer’ retention policy acknowledges a requirement for
a better service. Hence, system analysts employ a number of customer retention
schemes to maintain a satisfactory level up to the mark. The concept of retention
of reneged customers was first introduced by [154] for a finite capacity single server
queueing problem and obtained the closed-form expressions of various performance
measures analytically. Kumar and Sharma [150] extended their previous work by
considering the balking strategies of customer and carried out a sensitivity analysis of
the model. Recently, [303] investigated a finite capacity Markovian queueing model
with working breakdown and retention of the impatient customer. They employed
the matrix approach for computing the steady-state probabilities explicitly and for-
mulated a cost function to find the minimal expected cost and optimal service rates.
Kumar and Sharma [151] dealt with an infinite capacity multi-server system with
balking and retention of reneged customers and derived the time-dependent proba-
bilities using Bessel function and generating function technique.

From the literature survey, we note the following research gaps for which no
research article is found: (i) the study of the effect of emergency vacation besides
modified schedule vacation; (ii) retention of reneged customers in a queue-based
service system with different vacation policies; and (iii) determination optimal va-
cation time using the metaheuristic technique. The main objectives of this chapter
are threefold (i) to calculate the steady-state probabilities and various service system
performance characteristics in vector form for which we employ an efficient matrix
method; (ii) to develop the expected cost function for the service system with vaca-
tion to determine the optimal joint values of decision parameters R, µ , µ1 and θ at the
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minimum cost value; (iii) an efficient nature-inspired optimization technique: PSO
has been taken into consideration to depict the optimal operating values of various
system parameters with minimal expected total cost.

The studied model has many applications in commerce sectors like banking, real
estate, e-commerce, e-shopping, IPO, insurance, etc. For better services from service
providers like schemes in real estate, e-shopping, or IPOs of good company, cus-
tomers are overwhelming which may lead to over crowed. The imbalance between
the availability of the products and demands leads the customer reluctance which in-
directly increases the loss of customers, profits, goodwill, etc. To retain the reluctant
customers, the service provider(s) may announce attractive and beneficiary schemes
like discount, gift vouchers, gifts, fun games, etc. In greed for better services and at-
tractive benefits customers may retain in the service system in spite of over-demand
and long waiting. Depending on number of customers, service provider(s) decide the
vacation and service strategies. Having more customers, less service provider(s) take
vacation for lesser duration and provide faster service to avoid the reluctance among
the customers. Our model is also applicable in client-mail service provider having
the additional facility of virus scan.

The remainder of this chapter is consolidated as follows. In section 2.2, we
present the description of the governing finite capacity multi-server service system
with Bernoulli scheduled modified vacation and retaining policy of reneged cus-
tomer. In subsection 2.2.1, we employ the matrix representation of the studied service
system in the closed-form block matrices. Also, we provide the solution algorithm to
obtain the steady-state probabilities in vector form in subsection 2.2.2. Various sys-
tem performance measures are provided in vector form in section 2.3. In section 2.4,
a cost function is developed to obtain the optimal values of several decision parame-
ters at minimal expected cost. For the tractability of the studied model, some special
cases are presented in section 2.5. The metaheuristic optimization technique, namely
particle swarm optimization is implemented to deal with the optimization problem
in section 2.6. Some numerical results are provided to illustrate the optimal analy-
sis and simulation of various system performance measures in section 2.7. Lastly,
section 2.8 gives conclusions and future perspective.

2.2 Problem Formulation and Notations

We consider a finite capacity multi-server service system with Bernoulli scheduled
modified vacation policy and a realistic impatience behavior of customers. There are
R homogeneous servers, arranged in parallel, to facilitate the required service to the
customers in a service system having a capacity of K customers. For an investigation
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purpose, we also consider the following notations and assumptions:

Arrival Process
• The prospective customers join the service system according to the Poisson

process, with the mean rate λ . The arrived customer forms a single queue if all
available servers are busy otherwise customer gets service immediately. The
idle server chooses the customer from the queue on the basis of the sequence of
their arrivals i.e. First ComeFirst Serve (FCFS) service discipline is followed.

Service Process
• The service times of customers are considered as identically and independently

distributed and follow an exponential distribution with state-dependent mean-
time 1

µ
and 1

µ1
, (µ < µ1) depending on the number of customers waiting in

the service system. On finding more than R customers in the service system,
servers switch to the faster service rate to reduce the overload of the service
system, which is referred to as a state-dependent queue-based service system.

Impatience Behavior
• If a newly arriving customer finds waiting customer(s) are queueing up in the

service system, the customer may either balk without taking service with prob-
ability ξ or enter in the service system with the complementary probability ξ̄ .
• If the customer does not get service till random waiting period then the cus-

tomer may exhibit an impatience behavior and may renege from the service
system without being served with probability p1 or may retain in the service
system for the quality or extra beneficiary service with the complementary
probability q1. This random waiting time before reneging follows an exponen-
tial distribution with the meantime 1

ζ
. This is referred to as the retention of the

reneged customer.
Vacation Policy
• At the point of service completion of any customer, if the server has no cus-

tomer to serve, the server leaves for a vacation of the random time period which
also follows an exponential distribution with the state-dependent meantime 1

θi

where i(≤ R) represents a number of servers on vacation.
• At the end of the vacation, if the server finds a lesser number of customers

then available servers, he may opt for another vacation of random duration
with probability p2 or may join and remain idle in the service system with
the complementary probability q2. This is referred to as Bernoulli’s scheduled
modified vacation.
• The server may also take a vacation of the random time interval in an emer-

gency during the busy period without completing the ongoing service to the
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waiting customer. The occurrence of the emergent situation at which servers
may opt emergency vacation follows a Poisson process with the mean rate δ

and vacation time also follows an exponential distribution with meantime 1
θi

.
• The vacation time of the server is forcefully curtailed shortly if more servers

are on vacation using pressure coefficient to balance a load of customers to
avoid excessive loss due to their impatience behavior. The effective state-
dependent mean vacation time 1

θi
is defined in term of pressure factor (ψ) and

number of servers on vacation (i) where θi is expressed as:

θi =

(
iθ +

{
i(R+ i+1)

R+ i

}ψ

θ

)
; 1≤ i≤ R,ψ > 0

The pressure factor represents the degree to which the parameter of vacation is
affected by the number of servers on vacation. The parameter θ is reciprocal
of the meantime of random vacation duration when there is no pressure of
more customers and fewer servers, i.e. all servers are available for providing
the service.

All processes and events are repeated all over again and independent to the states of
the other.

In this chapter, we furnish the steady-state analysis of the multi-server state de-
pendent service system with Bernoulli modified vacation policy and retention of the
reneged customer. For this purpose, we characterize various system performance
measures in terms of steady-state probabilities. The states of the governing service
model are defined by the pair

Θ≡ {( j,n); j = 0,1, · · · ,R and n = 0,1, · · · ,K}

where the subscript j represents the number of available servers and n denotes the
number of customers in the service system. In the steady-state condition, we use the
following notation

Pj,n ≡Probability that there are n customers in the service system and (R− j) servers

are on vacation

where, j = 0,1, · · · ,R and n = 0,1, · · · ,K.
The matrix-analytic method is a widely used approach to calculate the stationary

distribution of a Markov chain having repeating structure after some point. It is a
useful tool for constructing stochastic models and computing their probability distri-
bution. The matrix-analytic method was first introduced by [200] to explore various
features of the embedded Markov chain of many queueing problems.
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2.2.1 Matrix Representation

For applying the matrix-analytic method, we define the probability vector Πn; n =

0,1, · · · ,K, a row vector whose jth element is the steady-state probability Pj,n; j =

0,1, · · · ,R, i.e. Πn = [P0,n,P1,n, · · · ,PR,n]. The corresponding block-tridiagonal struc-
ture of the transition rate matrix Q of the continuous-time Markov chain (CTMC) is
represented as follows

Q =



A0 B0 0 · · · 0 0 0 · · · 0 0
C1 A1 B1 · · · 0 0 0 · · · 0 0
0 C2 A2 · · · 0 0 0 · · · 0 0
...

...
... . . . ...

...
... · · · ...

...
0 0 0 · · · AR BR 0 · · · 0 0
0 0 0 · · · CR+1 AR+1 BR · · · 0 0
0 0 0 · · · 0 CR+2 AR+2 · · · 0 0
...

...
... · · · ...

...
... . . . ...

...
0 0 0 · · · 0 0 0 · · · AK−1 BR

0 0 0 · · · 0 0 0 · · · CK AK


This rate matrix Q of the Markov process is analogous to the quasi-birth and death
process. Each element of the rate matrix Q is a block square matrix of order (R+1)
that is represented as follows

An =



xn
1 yn

1 0 · · · 0 0 0
zn

2 xn
2 yn

2 · · · 0 0 0
0 zn

3 xn
3 · · · 0 0 0

...
...

... . . . ...
...

...
0 0 0 · · · xn

R−1 yn
R−1 0

0 0 0 · · · zn
R xn

R yn
R

0 0 0 · · · 0 zn
R+1 xn

R+1


We express each element of the above block matrix An for 0≤ n≤ K in the terms of
scalar values xn

j , yn
j , and zn

j for different values of j and the closed form expression
of xn

j , yn
j and zn

j are as follows:
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xn
j =



−
(
ξ̄ λ +θR

)
; n = 0 & j = 1

−
{

λ +θR− j+1 +( j−1)δ
}

; n = 0 & 2≤ j ≤ R

−(λ +Rδ ) ; n = 0 & j = R+1

−
[
ξ̄ λ +θR− j+1 +(n− j+1)ζ p1

+( j−1)µ +( j−1)δ ] ; 1≤ n≤ R−2 & 1≤ j ≤ R & j ≤ n+1

−
[
λ +θR− j+1 +nµ +( j−1)δ

]
; 1≤ n≤ R−2 & 1≤ j ≤ R & j > n+1

− [λ +Rδ +nµ] ; 1≤ n≤ R−2 & j = R+1

−
[
ξ̄ λ +θR− j+1 +(R− j)ζ p1

+( j−1)µ +( j−1)δ ] ; n = R−1 & 1≤ j ≤ R

− [λ +Rδ +(R−1)µ] ; n = R−1 & j = R+1

−
[
ξ̄ λ +θR− j+1 +(n− j+1)ζ p1

+( j−1)µ1 +( j−1)δ ] ; R≤ n≤ K−1 & 1≤ j ≤ R

−
[
ξ̄ λ +(n−R)ζ p1 +Rµ1 +Rδ

]
; R≤ n≤ K−1 & j = R+1

−
[
θR− j+1 +(K− j+1)ζ p1

+( j−1)µ1 +( j−1)δ ] ; n = K & 1≤ j ≤ R

− [(K−R)ζ p1 +Rµ1 +Rδ ] ; n = K & j = R+1

yn
j =

θR− j+1; 0≤ n≤ K & 1≤ j ≤ R

0; otherwise

and

zn
j =

( j−1)δ ; 0≤ n≤ K & 2≤ j ≤ R+1

0; otherwise

Similarly, we represent the block square matrix Bn for 0≤ n≤ R in the diagonal form
as
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Bn =



bn
1 0 0 · · · 0 0 0

0 bn
2 0 · · · 0 0 0

0 0 bn
3 · · · 0 0 0

...
...

... . . . ...
...

...
0 0 0 · · · bn

R−1 0 0
0 0 0 · · · 0 bn

R 0
0 0 0 · · · 0 0 bn

R+1


where,

bn
j =

ξ̄ λ ; 0≤ n≤ R & 1≤ j ≤ R+1 & j ≤ n+1

λ ; otherwise

Similarly, the structure of the block square matrix Cn for 0 ≤ n ≤ K is represented
as

Cn =



un
1 0 0 · · · 0 0 0

vn
2 un

2 0 · · · 0 0 0
0 vn

3 un
3 · · · 0 0 0

...
...

... . . . ...
...

...
0 0 0 · · · un

R−1 0 0
0 0 0 · · · vn

R un
R 0

0 0 0 · · · 0 vn
R+1 un

R+1


where the closed form representation of un

j and vn
j are given as

un
j =



[( j−1)µ +(n− j+1)ζ p1] ; 1≤ n≤ R−1 & 1≤ j ≤ R+1 & j ≤ n

nq2 µ; 1≤ n≤ R−1 & 1≤ j ≤ R+1 & j > n

[( j−1)µ1 +(n− j+1)ζ p1] ; n = R & 1≤ j ≤ R+1 & j ≤ n

nq2 µ1; n = R & 1≤ j ≤ R+1 & j > n

[( j−1)µ1 +(n− j+1)ζ p1] ; R+1≤ n≤ K & 1≤ j ≤ R+1

and

vn
j =


np2 µ; 1≤ n≤ R−1 & 2≤ j ≤ R+1 & j > n

np2 µ1 ; n = R & 1≤ j ≤ R+1 & j > n

0; otherwise
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2.2.2 Matrix Analytic Solution Algorithm

Let Π represents the steady-state probability vector associated with the rate matrix
Q. Assuming the partition of the vector Π as Π = [Π0,Π1,Π2, . . . ,ΠK−1,ΠK], where
each Πn is further expressed in the vector form as Πn = [P0,n,P1,n, · · · ,PR−1,n,PR,n]

for n = 0,1,2, · · · ,K, we have following homogeneous system of equations

ΠQ = 0 (2.1)

The governing homogenous system of the equation can easily be expressed in terms
of pre-defined block matrix in the following steady-state matrix equations as

Π0A0 +Π1C1 = 0 (2.2)

Πn−1Bn−1 +ΠnAn +Πn+1Cn+1 = 0; 1≤ n≤ R (2.3)

Πn−1BR +ΠnAn +Πn+1Cn+1 = 0; R+1≤ n≤ K−1 (2.4)

ΠK−1BR +ΠKAK = 0 (2.5)

Now, after suitable matrix manipulation and recursive substitution, we obtain

Π0 = Π1C1
(
−A−1

0
)
= Π1X0

Πn = Πn+1Cn+1

[
−{Xn−1Bn−1 +An}−1

]
= Πn+1Xn; n = 1,2, . . . ,R

Πn = Πn+1Cn+1

[
−{Xn−1BR +An}−1

]
= Πn+1Xn; n = R+1, . . . ,K−1

i.e., the matrix notation Xn for n = 0,1, · · · ,K−1 has the following closed form

Xn =


−C1A−1

0 ; n = 0

−Cn+1 (Xn−1Bn−1 +An)
−1 ; 1≤ n≤ R

−Cn+1 (Xn−1BR +An)
−1 ; R+1≤ n≤ K−1

Again by the recursive approach, we relate each steady-state probability vector Πn in
the product form of Xn;n = 0,1, · · · ,K−1 as

Πn = ΠK {XK−1XK−2XK−3 . . .Xn+2Xn+1Xn} ; n = 0,1,2, . . . ,K−1

Πn = ΠK

K−1

∏
i=n

Xi = ΠKΦn; n = 0,1,2, . . . ,K−1 (2.6)

The normalizing condition of probability is Πe = 1, where e is column vector of
dimension (K+1)R having all elements 1. Let u be also column vector of dimension
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(R+1) having all elements 1. Now, we get

K

∑
n=0

Πnu = 1

[Π0 +Π1 +Π2 + · · ·+ΠK−1 +ΠK]u = 1

ΠK [Φ0 +Φ1 + · · ·+ΦK−1 + I]u = 1

So, the closed form representation of above relation is

ΠK

[
K−1

∑
n=0

Φn + I

]
u = 1 (2.7)

Therefore, ΠK is obtained by solving the eqn(2.5) and eqn(2.7). Hence, using the
obtained ΠK and eqn(2.6), all the other steady-state probabilities are also easily de-
termined.

2.3 System Performance Measures

For the performance characterization of the queue-based service system, there are
some standard system performance indices. We also employ some performance mea-
sures to delineate the modeling and methodology used for finite capacity multi-server
service system with Bernoulli scheduled modified vacation and retention of reneged
customers and to exhibit the parametric analysis for the decision purpose. These per-
formance measures are quite correlated, and each recognizes as increased importance
in a particular environment. In this section, we describe these system performance
measures in matrix form by using the steady-state probabilities introduced in the
previous section as follows:
• Expected number of the customers in the service system

LS =
R

∑
j=0

K

∑
n=0

nPj,n

= 0Π0



1
1
1
...
1


+1Π1



1
1
1
...
1


+2Π2



1
1
1
...
1


+ · · ·+(K−1)ΠK−1



1
1
1
...
1


+K ΠK



1
1
1
...
1


=

K

∑
n=0

nΠnu (2.8)
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where, each vector Πn is a row vector of order (R+1) having the vector form
Πn = [P0,n,P1,n,P2,n, · · · ,PR−1,n,PR,n]; ∀n = 0,1,2, · · · ,K.
• Expected number of the customers in the queue

LQ =
R

∑
j=0

K

∑
n= j

(n− j)Pj,n

= Π0



0
0
0
...
0


+Π1



1
0
0
...
0


+Π2



2
1
0
...
0


+ · · ·+ΠK−1



K−1
K−2
K−3

...
K−R−1


+ΠK



K

K−1
K−2

...
K−R


=

K

∑
n=0

Πnun (2.9)

• Expected number of servers on vacation in the service system

E(V ) =
R

∑
j=0

K

∑
n=0

(R− j)Pj,n

= Π0



R

R−1
R−2

...
0


+Π1



R

R−1
R−2

...
0


+Π2



R

R−1
R−2

...
0


+ · · ·+ΠK−1



R

R−1
R−2

...
0


+ΠK



R

R−1
R−2

...
0


=

K

∑
n=0

Πnv1 (2.10)

• Expected number of idle servers in the service system

E(I) =
R

∑
j=0

j

∑
n=0

( j−n)Pj,n

= Π0



0
1
2
...
R


+Π1



0
0
1
...

R−1


+Π2



0
0
0
...

R−2


+ · · ·+ΠR−1



0
0
0
...
1


+ΠR



0
0
0
...
0


=

R−1

∑
n=0

Πnwn (2.11)
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• Average balking rate

ABR =
R−1

∑
j=0

R−1

∑
n= j

ξ λPj,n +
R

∑
j=0

K−1

∑
n=R

ξ λPj,n

= ξ λ Π0



1
0
0
...
0
0


+ξ λ Π1



1
1
0
...
0
0


+ξ λ Π2



1
1
1
...
0
0


+ · · ·+ξ λ ΠR−1



1
1
1
...
1
0


+ξ λ ΠR



1
1
1
...
1
1


+ · · ·

· · ·+ξ λ ΠR+1



1
1
1
...
1
1


+ · · ·+ξ λ ΠK−2



1
1
1
...
1
1


+ξ λ ΠK−1



1
1
1
...
1
1


= ξ λ

R−1

∑
n=0

Πnan +ξ λ

K−1

∑
n=R

Πnu (2.12)

• Average reneging rate

ARR =
R−1

∑
j=0

R

∑
n= j+1

(n− j)ζ p1Pj,n +
R

∑
j=0

K

∑
n=R+1

(n− j)ζ p1Pj,n

= ζ p1 Π0



0
0
0
...
0
0


+ζ p1 Π1



1
0
0
...
0
0


+ζ p1 Π2



2
1
0
...
0
0


+ · · ·
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· · ·+ζ p1 ΠR−1



R−1
R−2
R−3

...
0
0


+ · · ·+ζ p1 ΠR



R

R−1
R−2

...
1
0



· · ·+ζ p1 ΠR+1



R+1
R

R−1
...
2
1


+ · · ·+ζ p1 ΠK



K

K−1
K−2

...
K−R−1

K−R


= ζ p1

K

∑
n=0

Πnun (2.13)

• Throughput of the service system

τP =
R−1

∑
j=0

j

∑
n=0

nµPj,n +
R−2

∑
j=0

R−1

∑
n= j+1

jµPj,n +
R−1

∑
n=0

nµPR,n +
R

∑
j=0

K

∑
n=R

jµ1Pj,n

= µ Π0



0
0
0
...
0
0


+µ Π1
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• Expected waiting time of the customer in the service system

WS =
LS

λeff
(2.15)

where,

λeff =
R

∑
j=1

j−1

∑
n=0

λPj,n +
R

∑
j=0

K−1

∑
n= j

ξ̄ λPj,n

= λ Π0



ξ̄
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1
...
1
1


+λ Π1



ξ̄

ξ̄
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...
1
1


+λ Π2



ξ̄

ξ̄

ξ̄

...
1
1


+ · · ·+λ ΠR−1



ξ̄

ξ̄

ξ̄

...
ξ̄

1



+λ ΠR



ξ̄

ξ̄

ξ̄

...
ξ̄

ξ̄


+ · · ·+λ ΠK−1



ξ̄

ξ̄

ξ̄

...
ξ̄

ξ̄


= λ

R−1

∑
n=0

Πncn + ξ̄ λ

K−1

∑
n=R

Πnu, a effective arrival rate.

The vectors u, un, v1, v2, wn, an, bn and cn are the column vectors of dimension
(R+1). Following are the respective structures of these vectors with corresponding
jth; j = 1,2, · · · ,R+1 element

u =
(
u j
)

s.t.u j = 1

un =
(
un j
)

s.t.un j = max{n− j+1, 0}; 0≤ n≤ K

v1 =
(
v1 j
)

s.t.v1 j = R+1− j

v2 =
(
v2 j
)

s.t.v2 j = j−1

wn =
(
wn j
)

s.t.wn j = max{ j−n−1, 0}; 0≤ n≤ R−1

an =
(
an j
)

s.t.an j =

1; 0≤ n≤ R−1& j ≤ n+1

0; 0≤ n≤ R−1& j > n+1
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bn =
(
bn j
)

s.t.bn j =


0; n = 0

( j−1); 1≤ n≤ R−1& j ≤ n+1

n; 1≤ n≤ R−1& j > n+1

cn =
(
cn j
)

s.t.cn j =

ξ̄ ; 0≤ n≤ R−1& j ≤ n+1

1; 0≤ n≤ R−1& j > n+1

2.4 Cost Analysis

Cost analysis is a systematic approach to estimate the strengths and weaknesses of
decision variables. It is used to govern alternatives that provide the best approach to
achieve benefits from the service system. Cost analysis is the act of characterizing
a cost incurred into its constituents and studying and reporting on each factor. For
this purpose, we formulate a cost function for the governing model, in which four
decision variables namely, number of servers (R), service rates (µ , µ1), and mean va-
cation rate (θ ) are used. The decision variable R is intuitively to be a positive integer
(Z+) and the continuous decision variables µ , µ1, and θ are non-negative real num-
bers. Our main objective is to find out the optimal number of servers in the service
system (R∗), the optimal values of service rates (µ∗, µ∗1 ), and optimal vacation rate
(θ ∗) so as to minimize the expected total cost. Moreover, we use various unit cost el-
ements associated with several states of the service system, having a significant idea
about the system performance. The definition of the governing unit cost elements are
as follows

Ch ≡ Unit holding cost for each customer present in the service system

Cv ≡ Unit cost associated with each server on vacation

Ci ≡ Unit cost associated with each idle server

Cm ≡ Unit cost for offering service with rate µ for each customer present in the service

system

Cm1 ≡ Unit cost for offering service with rate µ1 for each customer present in the service

system

Ct ≡ Unit cost associated with parameter θ for the server on vacation

Cr ≡ Unit cost associated with each server
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Cd ≡ Unit cost associated with each emergent condition which prompts vacation of the

server

C1 ≡ Unit cost associated with each balking and reneging of customers

Using the above-defined cost elements and derived performance measures in the pre-
vious section, we develop the following expected total cost function

TC(R,µ,µ1,θ) =ChLS +CiE(I)−CvE(V )+Cmµ +Cm1 µ1 +Ctθ +CrR+Cdδ

+C1(ABR+ARR); R ∈ Z+ and µ,µ1,θ ∈ R+∪{0}
(2.16)

The cost minimization problem of the designed model is formulated mathematically
as a constraint problem

TC (R∗,µ∗,µ∗1 ,θ
∗) = minimize

(R,µ,µ1,θ)
TC(R,µ,µ1,θ)

subject to 0 < µ < µ1

(2.17)

The cost elements listed above are considered to be linear in nature. Due to ex-
tremely high non-linearity and complexity of the expected total cost function, it
would have been an exhausting work to analytically establish the optimal values of
R∗,µ∗,µ∗1 ,and θ ∗. To compute the optimal values of decision variables with a global
minimum of the expected total cost (TC), we use metaheuristic optimizing technique
particle swarm optimization based on swarm intelligence.

2.5 Special Cases

For the validation and tractability of the investigated model, by relaxing one or more
assumptions, our results resemble with the results available in the existing literature.

Case 1: For ξ = 0 and ζ = 0, our model and results coincide with the results of the
model proposed by [131] . The model reduced to a multi-server queueing model with
a modified Bernoulli vacation.
Case 2: By setting the parameters value as θ = 0 and q1 = 0, our model will equiva-
lent to multi-server queueing model with balking and reneging which is proposed by
[8]. They have presented the transient solution for queue size distribution.
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Case 3: In the case 1 when p2 = 1 and q1 = 0, the model further deduced to multi-
server model with single vacation studied by [296] having very vast application.
Case 4: If we set ξ = 0, our model exhibits the results which was obtained by
[9]. They studied both single and multiple vacations for the server independently
with reneging and compared the results for M/M/1, M/M/c and M/G/1 queueing
models.
Case 5: For R= 1 and q2 = 0, the present model reduces to single server finite capac-
ity queueing model with balking, reneging and single vacation which was investigate
by [323] in past. Their numerical results are identical to the results of the present
model.
Case 6: The infinite capacity queueing model with balking, reneging and, the single
vacation was investigated by [189], which is a special case of case 5.

2.6 Particle Swarm Optimization

For the optimal analysis of the multi-server service system with the impatient behav-
ior of customers and Bernoulli’s scheduled modified vacation, we have implemented
the PSO technique in this section. The numerical simulation has been performed for
several combinations of system parameters, and results are depicted with the help
of different tables and several generations of the PSO algorithm. For more details
about the PSO technique, see the section 1.10.3 and its pseudo-code. The discrete
and continuous system design parameters R, µ , µ1, and θ are referred as x1, x2, x3,
and x4 respectively and the expected cost function TC as the objective function f .

2.7 Numerical Results

In this section, we perform the numerical simulation for the state-dependent finite ca-
pacity multi-server service system with Bernoulli scheduled modified vacation and
retention of the reneged customer. We observe the results of the various system per-
formance indices by calibrating the system parameters, particularly the mean vaca-
tion rate (θ ) and service rates (µ, µ1), etc. We validate our formulation of the service
model and methodology used by providing numerical illustrations through various
graphs and tables, which is helpful in system design, assessment and operation and
to the system designers, decision-makers in improving the system performance.

For the analysis purpose, we fix the default values of the system parameters as K=15,
R=2, λ=5, µ=7.5, µ1=10, θ=1.5, δ=0.05, ξ =0.3, ζ =0.7, p1=0.5, and p2=0.5. With
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Figure 2.1: Average balking rate of customers in the service system wrt λ for (i) R, (ii)
µ , (iii) θ , and (iv) δ .

Figure 2.2: Average reneging rate of customers in the service system wrt λ for (i) R, (ii)
µ , (iii) θ , and (iv) δ .

the aid of MATLAB software, the steady-state probabilities of various states are ex-
hibited numerically using the matrix-analytic method. In Fig. 2.1, we vary the values
of parameters R, µ , θ , and δ for varied λ and review the effect on the average balking
rate of customers in the service system. It is noted from each sub-figure of Fig. 2.1
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that when we increase the value of λ , the average balking rate of customers increases,
which is quite obvious. Also for any test instance, when we fix the value of λ and
increase the values of R and µ , the value of average balking rate decreases, which is
depicted in the respective Figs. 2.1(i)-(ii). The change is factual because as the value
of R and µ increases, the balking probability of the customer decreases. Fig. 2.1(iii)
shows that as we increase the value of θ , the value of average balking rate decreases.
The result is apparent from the fact that means vacation time is inversely proportional
to the vacation mean rate θ , so the incremental change in θ decreases the vacation
times, which results in a decrease in the probability of balking as expected. More-
over, the incremental change in δ increases the value of the average balking rate as
intuitively expected which is depicted in Fig. 2.1(iv). Similarly, we also observe the
effects of these parameters on the average reneging rate of customers in the service
system in Fig. 2.2. With these illustrations, system analyst may get complete infor-
mation about the impatience behavior of the customers and may opt some measures
to reduce to some extent.

Figure 2.3: Throughput of the service system (τp) wrt λ for (i) K, (ii) R, (iii) θ , and (iv)
δ .

Figs. 2.3 and 2.4 show the impact of parameters K, R, θ , and δ with varied arrival
rate λ and service rate µ respectively on the throughput of the service system (τP).
We observe from Fig. 2.3 that a larger value of throughput is obtained if a number
of customers in the service system is more. From Fig. 2.3(i), it is clear that for a
fixed value of λ , the higher value of K is insufficient to affect the throughput of
the service system and hence designed model is very much suitable to the system
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Figure 2.4: Throughput of the service system (τp) wrt µ for (i) K, (ii) R, (iii) θ , and (iv)
δ .

analyst for decision purpose. From Figs. 2.3(ii)-(iii), it can be concluded that for any
fixed value of λ , the increasing values of R and θ respectively lead to the increase
in throughput of the service system while for the increasing values of δ , the value of
throughput slight decreases as in Fig. 2.3(iv). Similarly, it appears from Fig. 2.4 that
as we increase the value of µ , the value of throughput of the service system increases,
which is quite obvious and on fixing the value of µ , we observe that the increasing
values of R increase the value of throughput too. In the same fashion, the increasing
values of θ impact the throughput of the service system in an increasing manner
because of inverse proportionality of mean vacation time with the vacation mean rate
θ . From Fig. 2.4(iv), it is noticeable that the throughput (τP) is unaffected for higher
values of µ with some fix values of δ but it decreases for increasing values of δ as
we fix the value of µ . So, as the conclusive remark, an extra effort for maintaining
the higher service rate is unworthy and hence there is a requirement to incorporate
the optimal service rate.

For the different pairs of system parameters, the change in the value of the ex-
pected total cost (TC) defined in eqn(2.16) is demonstrated in Figs. 2.5 and 2.6 re-
spectively. To calculate the expected total cost (TC), first we choose following unit
cost elements Ch = 200, Cm = 15, Cm1 = 25, Ct = 10, Cr = 15, Cv = 80, Ci = 20,
Cd = 5, and C1 = 150 as default cost elements. Fig. 2.5(i) represents the effect of
varied values of λ and K simultaneously on TC. As intuitively anticipated, the ex-
pected cost TC increases with the incremental change in these parameters. From
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 Figure 2.5: Expected total cost of the service system (TC) wrt system parameters (i)
(K, λ ), (ii) (R, λ ), (iii) (θ , λ ), and (iv) (δ , λ ).

Fig. 2.5(iii), we observe that for smaller values of λ and higher values of θ , the
expected total cost TC is calculated higher as compared to others. Similarly, it is
consistent with our intuition that the value of TC increases with the increasing val-
ues of µ and K as in Fig. 2.6(i) but in Fig. 2.6(ii), we observe that first, the value
of TC decreases with the increasing values of R and µ simultaneously and then in-
creases more rapidly. It shows that we are nearby the optimal expected cost along
with the optimal value of parameter R. In a similar way, we can define these results
for the rest of all the figures also. So, each of these figures incites that all governing
system parameters are commendable in system designing and play a key role in the
development of studied service model.

We perform varied numerical experiments to observe the effect on various system
performance measures of varying values of the several system parameters and results
are summarized in Table 2.1 and 2.2. In Table 2.1, we can see that if we increase
the value of K, the value of expected number of customers in the service system
(LS), effective arrival rate (λeff) and expected waiting time in the service system
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 Figure 2.6: Expected total cost of the service system (TC) wrt system parameters (i)
(K, µ), (ii) (R, µ), (iii) (θ , µ), and (iv) (δ , µ).

Table 2.1: Numerical simulation of various system characteristics wrt K, λ , µ , and θ .

(K,λ ,µ,θ) LS E(V ) E(I) τp λe f f WS

(10, 5.0, 6.5, 1.5) 0.74802 0.62941 0.81789 4.31948 4.38784 0.17047
(15, 5.0, 6.5, 1.5) 0.74805 0.62940 0.81789 4.31951 4.38788 0.17048
(20, 5.0, 6.5, 1.5) 0.74805 0.62940 0.81789 4.31951 4.38788 0.17048
(10, 5.5, 6.5, 1.5) 0.82837 0.65635 0.75289 4.68014 4.76331 0.17391
(10, 6.0, 6.5, 1.5) 0.91022 0.67873 0.69419 5.03272 5.13182 0.17737
(10, 5.0, 7.0, 1.5) 0.72806 0.63666 0.83115 4.32797 4.39652 0.16560
(10, 5.0, 7.5, 1.5) 0.70963 0.64338 0.84337 4.33581 4.40455 0.16111
(10, 5.0, 6.5, 2.0) 0.69770 0.50147 0.92844 4.44065 4.48531 0.15555
(10, 5.0, 6.5, 2.5) 0.67458 0.41527 1.00424 4.51624 4.54917 0.14829

(WS) increases while the throughput of the service system (τP) and the value of the
expected number of servers on vacation (E(V )) decreases. Also, if we increase the
value of λ , the value of LS increases and E(I) decreases as obvious. Table 2.2 shows
that (i) LS and WS decrease while E(V ), E(I), and τP increase as R increases. (ii)
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Table 2.2: Numerical simulation of various system characteristics wrt R, δ , ξ , and ζ .

(R,δ ,ξ ,ζ ) LS E(V ) E(I) τp λe f f WS

(2, 0.01, 0.2, 0.5) 0.76284 0.62592 0.84089 4.54198 4.59939 0.16586
(3, 0.01, 0.2, 0.5) 0.69546 0.82921 1.55544 4.78064 4.80066 0.14487
(4, 0.01, 0.2, 0.5) 0.67702 0.95033 2.39998 4.90738 4.91421 0.13777
(2, 0.05, 0.2, 0.5) 0.77217 0.64077 0.82757 4.53152 4.59165 0.16817
(2, 0.09, 0.2, 0.5) 0.78161 0.65532 0.81454 4.52117 4.58404 0.17051
(2, 0.01, 0.3, 0.5) 0.70884 0.62825 0.85508 4.36637 4.41442 0.16057
(2, 0.01, 0.4, 0.5) 0.65843 0.62987 0.86916 4.20015 4.23952 0.15531
(2, 0.01, 0.2, 0.7) 0.75509 0.62626 0.84240 4.52217 4.60049 0.16413
(2, 0.01, 0.2, 0.9) 0.74782 0.62657 0.84387 4.50332 4.60154 0.16251

LS, E(V ), WS increase and E(I), τP decrease with increasing values of δ . (iii) LS,
τP decrease and E(V ), E(I) increase with the increasing values of ζ . So as the
concluding remark these research findings would help the system analyst to make
a better decision keeping in mind the objectives of the problem and to provide the
optimal service strategy based on the desired performance measures.

 
Figure 2.7: Convex expected total cost (TC) wrt decision parameters (i) µ , (ii) µ1, (iii)

R, and (iv) θ .

From above graphs and tables, it is observed that there is need to evaluate optimal
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service strategy to expect minimum incured expected total cost. Now, to find the
optimal values of the decision parameters R, µ , µ1, and θ , we also provide several
numerical experiments to verify the convexity of the developed cost function since it
is an arduous task to obtain the analytical expressions of R∗, µ∗, µ∗1 , and θ ∗ due to
the extreme convexity and non-linearity of the cost function. So in the context of this
purpose, the values of various system parameters along with several cost elements
associated with their respective performance measures, are set as follows: K = 15,
R = 2, λ = 5, µ = 7.5, µ1 = 10, θ = 1.5, δ = 0.05, ξ = 0.3, ζ = 0.7, p1 = 0.5,
p2 = 0.5, Ch = 200, Cr = 15, Cv = 80, Ci = 20, Cd = 5, Cm = 15, Cm1 = 25, Ct = 10,
and C1 = 150. The lower and upper limits of decision variables µ, µ1 are taken as [1
11] and [1 16] respectively. Similarly, the lower and upper limits of R, θ are taken as
[1 11] and [0.1 10], respectively. The varied values of decision parameters R, µ , µ1,
and θ are shown graphically in Fig. 2.7, which leads that the desired expected cost
function TC(R,µ,µ1,θ) is convex in nature.

 

Figure 2.8: Surface plot for TC wrt combination of (µ, µ1).

From Figs. 2.8 and 2.9, we see that the expected cost function (TC) is very much
convex in nature for the joint values of decision parameters (µ,µ1) and (µ,θ) respec-
tively. Therefore, by combining results of surface plots and line plots in Figs. 2.7–2.9
we can infer that the expected total cost function TC(R,µ,µ1,θ) is convex wrt to
combined values of R and all continuous decision parameters µ , µ1, and θ .

PSO and many other metaheuristic optimization techniques are generation based,
as discussed in the previous section in detail. We can examine the inherent charac-
teristics of PSO that the interactions among particles are performed with the shared
knowledge on the best position obtained by neighbors. When a search particle within
the neighborhood sets up a position with an optimum local value, which is better than
neighbors’ value, the other particles will make corresponding adjustments and tend
to achieve nearest to that position. So, as the generations pass, all the search particles
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Figure 2.9: Surface plot for TC wrt combination of (µ, θ ).

Figure 2.10: Several generations of PSO algorithm on contour of TC(R,µ,µ1,θ) wrt µ

and µ1.

converge to the optimum and best of which is defined as the position with optimal
values of the decision variables for a minimum expected total cost TC(R,µ,µ1,θ) as
shown in Figs. 2.10–2.11.

Because the PSO technique does not incorporate the computation of gradient, it
is a convenient and flexible technique for optimization of single/multimodal complex
problems with non-differentiable objective function. Furthermore, it can be used to
search for the optimal values of discrete decision variables and continuous decision
variables at the same instant. Now, to examine the validity and the performance of
PSO algorithm for developed cost function, we provide some numerical experiments
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Figure 2.11: Several generations of PSO algorithm on contour of TC(R,µ,µ1,θ) wrt µ

and θ .

in Tables 2.3 and 2.4 which consider the following cost elements Ch = 200, Cm = 15,
Cm1 = 25, Ct = 10, Cr = 15, Cv = 80, Ci = 20, Cd = 5, and C1 = 150 with the
default parameters of PSO algorithm: κ1 = 2, κ2 = 2, and ω2 = 0.5. The value
of κ1, κ2, and ω2 are taken from the references cited in previous section for better
exploration and exploitation in search space. If we choose lower value, prospective
solution point stuck locally and search the local optimal very slowly and if we choose
higher value, searching in space proceed very fast and many good solution point
overshoot and may miss even global optimal. We set the lower and upper limits
for both µ, µ1 in the interval [2 15] and for θ in the interval [0.5 8.0] respectively.
Also, we set the number of servers (R) in the range [2, 10] and obtained the optimal
values of the continuous decision variables up to the sixth place of decimal as in
both the Tables. These bounds for decision parameters are decided in such way that
multi-dimensional search space should be convex in nature, feasible for computation
and appropriate for proper exploration and exploitation. Such search space can be
determined with a number of trial experiments. We can easily depict from Table 2.3
that as the value of θ increases, (R∗,µ∗,µ∗1 ) decreases while the cost of the developed
service model increases. The increasing values of (R∗,µ∗,µ∗1 ) are obtained as we
increase the value of λ . In the same manner, as we increase the values of δ and
ξ , R∗ keeps the same optimal value but the values of µ∗,µ∗1 increases respectively.
Similarly, we can analyze all the other results for Table 2.4.
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We depict the numerical results in Table 2.3 and 2.4 by taking 50 random gener-
ated particles, 100 independent generations, and 20 independent runs for each exper-
iment by the PSO algorithm. From literature, we decide these values for the number
of particles, generations, and runs. The lower value does not do complete exploita-
tion and exploration and has lack of randomness. Higher value makes searching very
slow and requires computationally efficient computing machine since it calculates the
objective function #particles×#generations×#runs. We also use the concept of statistical
inferences namely mean and maximum of the ratio of optimal TC in all runs of the
algorithm, to show the robustness of the PSO algorithm. Moreover, we examine from
both of the Tables that the mean and max values of

( TC
TC∗
)

lie between 1.00000232
and 1.00056970, where TC is the optimal value of the objective function obtained by
PSO algorithm and TC∗ is the best (minimum) solution among 20 independent runs
of PSO. It implies that the PSO technique is potent for all of the test instances and
the searching quality of PSO algorithm is outstanding.

2.8 Conclusion and Future Prospective

In this chapter, we have examined a finite capacity multi-server service system with
a retention policy of reneged customers and Bernoulli scheduled modified vacation
policy. To determine the steady-state probabilities, we have employed the matrix-
analytic method, and hence computed various system performance measures in vec-
tor form. We have also developed a cost function and formulate the cost minimization
constraint problem. To examine the optimal values of decision parameters R, µ , µ1,
and θ with the optimal stability condition and a global minimum of the cost function,
we have used a metaheuristic optimization algorithm: PSO with the aid of MATLAB
software. Further, we have also presented various generations and surface plots for
the pairs of decision parameters (µ, µ1) and (µ, θ ) by the PSO algorithm to show
the robustness of PSO algorithm in the context of providing the converging results.
The numerical simulation of various system performance measures has been accom-
plished to study the effects of all the system parameters. Finally, several numerical
experiments have been provided to illustrate and achieve optimal solutions.

The cost analysis signifies the validity and profitability of the developed model
in a very effective manner and will be helpful to the system designers and decision-
makers in minimizing the cost of service, which is a highly desired trait of any orga-
nization. This work can be extended by incorporating some more features, such as
bulk arrival and synchronous vacation and can also be modeled for machine interfer-
ence problem.
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