
Chapter 6

Single Server Queueing Model with Feedback

6.1 Introduction

The studied M/M/1 service model with feedback can be visualized as scheduling
mechanisms in multi-access service systems like time-sharing computer systems.
The single-processor gives a quantum of time in random to each specific process.
A process once started is allowed to run either until it has exhausted its quantum or
until it initiates a transfer to a peripheral device, or until an interrupt generated by
some other process occurs. If the allotted random quantum is exhausted, the process
is assigned a longer quantum and rejoins the queue. If the process initiates a transfer,
its quantum remains unaltered, and it rejoins the queue. If an externally generated
interrupt occurs, the interrupt is serviced. Servicing the interrupt may free some
other process already in the queue, in which case that process may be preferentially
restarted. Queue with feedback is defined as after being served each customer ei-
ther immediately rejoins the queue again randomly with some probability or departs
permanently with compliment probability.

Considerable efforts have been directed to drive docile and abstractly easy format
for the transient state probabilities for a single server queue. In decade of 50’s, sig-
nificant contributions have been observed to drive time-dependent solution of queue-
based service system with single server and continuous parameters using the math-
ematical concepts of generating functions, Laplace transform theory, complex anal-
ysis or combinatorics, spectral method et cetera (cf. [50], [24], [159], [37]). Kawa-
mura [124] analyzed the results on how fast the transient state probabilities and the
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mean value of the customers in the system tended to their equilibrium limits when
these existed. Parthasarathy [203] derived transient state probabilities of the classical
M/M/1 queueing model using modified Bessel function. Krinik [145] presented a
Taylor-series method for determining the transient probabilities of the classical sin-
gle server queue. Leguesdron et al. [165] proposed a new method based on the
uniformization technique of the Markov chain and the inversion of generating func-
tions. Sharma and Tarabia [224] obtained a series form for the transient state proba-
bilities of the single server Markovian queue with finite waiting space and derived a
recurrence relation for the coefficients. Tarabia [257] proposed a simple alternative
approach using Chebychev’s polynomial for the transient analysis of finite capacity
single server queue.

Takács [248] introduced the concept of feedback in queueing modeling with a
single server, and the author determined the distribution of the queue size, as well as
the Laplace-Stieltjes transform for a stationary process and the first two moments of
the distribution function of the total time spent in the system by a customer. Chan
[38] used generating function to obtain a necessary and sufficient condition for the
existence of statistical equilibrium of the multi-server queue with feedback in the in-
formation processing unit. Using Markov decision theory and convexity arguments,
[49] considered a system of two coupled queues where a packet after being served in
one queue may be fed into the other queue or may leave the system. Using matrix-
geometric method, [19] computed state probabilities of the service system at call
center considering retrial and feedback facility for calls. Transient state queue length
distribution and Laplace transform of their generating function were derived by [239]
in feedback queue with correlated departures. Exact and approximate methods to
calculate performance characteristics of the system were developed by [194] for the
multi-channel queueing model with feedback which occurred as returning a part of
serviced calls to get a new service.

Even nowadays, there is continuing interest to develop new insights and methods
for a better understanding of transient behavior in the classical single server queue-
based service system with some controllable arrival and controllable service policy.
Asymptotic behavior of the transient state probability of the server being idle and
mean queue size was discussed by [148] in the M/M/1 queueing model with the
possibility of catastrophes at the service station. Using modified Bessel function,
[7] derived a transient solution for infinite server queues with Poisson arrivals and
exponential service times with time-dependent arrival and service rate. Kumar and
Madheswari [149] obtained a transient solution for the system size in the M/M/1
queue with the possibility of catastrophes and server failure. Griffiths et al. [84]
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presented an advanced generalization of the modified Bessel function and its gener-
ating function. Later, [166] used the results derived by [84] as a generalization of
the modified Bessel function to determine transient-state probabilities of the single-
server queueing model with Erlangian service in k phases. Al-Seedy et al. [8] used
the technique of generating function to evolve the transient-state probabilities for
a multi-server system incorporating the impatience behavior of balking with fixed
probability and negative exponentially distributed reneging. Ammar et al. [11] il-
lustrated computable matrix technique that can be used to derive an explicit expres-
sion for the transient-state probabilities of a finite waiting space single-server queue
having discouraged arrivals and reneging. Kalidass and Ramanath [121] obtained
explicit expressions for the time-dependent probabilities of the M/M/1 queue with
server vacations under a multiple vacation scheme.

The practical applications of our studied service model can be observed in the
time-sharing interactive computer system. The interactive computer system consists
of the user requests and then receives service from the computer system. The events
usually forming an interaction are the user’s thinking, typing at his remote console,
waiting for a response from the computer system, and finally, watching the output.
These interactions are repeated until the user finds the desired output. The number
of interactions depends on the contents of a job, which is processed by the computer
system and on the goodness of the program, which is processed by the user in each
interaction. Since this number fluctuates stochastically, it may be considered as a
random variable.

The objective of choosing the classical service model and using the methodology
for deriving an explicit expression for the state of the service system is threefold. (1)
Exponential distribution allows for a very simple portrayal of the state of the service
system at time t, namely the number of customers in the service system. Since the
exponential distribution is memoryless, neither we do have to recollect when the
previous customer arrived, nor we have to register when the earlier customer entered
service. (2) The classical service model seems like the foundation for the extended
study of the complex service systems for developing a better service system. (3) The
derived method is simple in the procedure and easy to understand and use only some
standard mathematical concepts.

The organization of the chapter is as follows: In section 6.2, we describe the
service model using some assumptions and notations and formulate the governing
equations. In section 6.3, we present a simple procedure to determine transient-
state probabilities of the M/M/1 queue-based service system with feedback using
a modified Bessel function. In section 6.4, we derived the closed-form of some
measure of effectiveness. In section 6.5, we summarize the sensitivity of stationary
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Figure 6.1: State Transition diagram

process for continuous parameters. Finally, in section 6.6, we remark the conclusion
and discuss the future scope.

6.2 Model Description

In this chapter, we analyze the service model with exponential inter-arrival times with
mean 1/λ , exponential service times with mean 1/µ , and a single server. The served
customers may rejoin the service system for completing the unsatisfactory service
with probability ξ or may leave the service system with probability ξ̄ = (1−ξ ). Let
the random process N(t) be the number of the customers waiting in the queue and
being served by the server at time t. Suppose Pn(t) = Pr[N(t) = n] i.e. probability
that there are n; n = 0,1,2,3, ... customers in the service system at the time t is the
transient probability function.

Based on the memoryless property, the following set of Chapman-Kolmogorov
differential-difference infinite equations for the transient-state probabilities Pn(t) is
obtained as follows

dP0(t)
dt

=−λP0(t)+ ξ̄ µP1(t)

dPn(t)
dt

=−(λ +µ)Pn(t)+λPn−1(t)+ξ µPn(t)+ ξ̄ µPn+1(t),n = 1,2,3, ...
(6.1)

We assume that initially there are m(m≥ 0) customers in the service system i.e.

Pn(0) =

1; n = m

0; n 6= m
;n≥ 0 (6.2)

6.3 The Transient Solution

We develop simple and direct approach to compute an explicit expression for transient-
state probabilities Pn(t);n = 0,1,2, ... from set of birth and death eqn’s(6.1). Let us
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define

Fn(t) =

exp
{
(ξ̄ µ +λ )t

}[
ξ̄ µPn(t)−λPn−1(t)

]
; n = 1,2,3, ...

0; otherwise
(6.3)

and consider its generating function as

K(s, t) =
∞

∑
n=−∞

Fn(t)sn (6.4)

Using the eqn’s(6.1) & (6.3) and differentiating eqn(6.4) with respect to t, we obtain

∂K(s, t)
∂ t

=

(
λ s+

ξ̄ µ

s

)
K(s, t)− ξ̄ µF1(t)

K(s,0) = sm{ξ̄ µ(1−δ0m)−λ s}
(6.5)

where δ0m is the kronecker delta defined as

δ0m =

0; m 6= 0

1; m = 0
(6.6)

Since eqn(6.5) is linear differential equation in K(s, t), the solution is given by

K(s, t)exp

{
−
(

λ s+
ξ̄ µ

s

)
t

}
=−

∫
exp

{
−
(

λ s+
ξ̄ µ

s

)
y

}(
ξ̄ µ
)

F1(y)dy+g(s)

(6.7)

Using initial condition, we get g(s) = K(s,0). Hence,

K(s, t) = K(s,0)exp

{(
λ s+

ξ̄ µ

s

)
t

}
− ξ̄ µ

∫ t

0
F1(y)exp

{(
λ s+

ξ̄ µ

s

)
(t− y)

}
dy

(6.8)

It is well known from the literature of Bessels function (Griffiths et al. [85]) that for

α = 2
√(

λ ξ̄ µ
)

and β =

√(
λ

ξ̄ µ

)
, the generating function is given by

exp

{(
λ s+

ξ̄ µ

s

)
t

}
=

∞

∑
n=−∞

(β s)nIn(αt) (6.9)
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where In(α, t) is a modified Bessel function. On comparing the coefficient of power
of s, i.e sn; n = 1,2,3, ... on both side of eqn(6.8), we get

β
−nFn(t) = ξ̄ µ(1−δ0m)β

−mIn−m(αt)−λβ
−m−1In−m−1(αt)

−ξ̄ µ

∫ t

0
F1(y)In(α(t− y))dy

(6.10)

Since from eqn(6.3) Fn(t) = 0 for n < 0, the eqn(6.10) holds for n = −1,−2,−3, ...
with the left-hand side replaced by zero. Using the recurrence relation I−r = Ir for
r = 1,2,3, ... we have

ξ̄ µ

∫ t

0
F1(y)In(α(t− y))dy = ξ̄ µ(1−δ0m)β

−mIn+m(αt)

−λβ
−m−1In+m+1(αt); n = 1,2,3, . . .

(6.11)

Form eqn’s(6.10) and (6.11), we have

Fn(t) = ξ̄ µβ
n−m(1−δ0m) [In−m(αt)− In+m(αt)]

+λβ
n−m−1 [In+m+1(αt)− In−m−1(αt)] ; n≥ 1

(6.12)

Hence, from eqn(6.3) and iteration method, we have explicit expression for queue
size distribution as follows

P0(t) =
t∫

0

F1(y)exp
{
−(λ + ξ̄ µ)y

}
dy+δ0m (6.13)

and

Pn(t) =
exp
{
−(λ + ξ̄ µ)(t)

}
ξ̄ µ

n

∑
i=1

Fi(t)
(

λ

ξ̄ µ

)n−i

+

(
λ

ξ̄ µ

)n

P0(t) (6.14)

Besides the modified Bessel function of the second kind used above to compute
the transient-state probabilities, we can employ another kind of Bessel function also
with some significant modification to obtain similar results. We prefer the second
kind since the resultant expression in the computation of the solution is much resem-
bled with a standard expression of the Bessel function of the second kind. We can
further use some other special functions also [241]. Some mathematical approaches
like Laplace transform, generating function, etc. for computing the transient-state
probabilities can also be used, but it requires Rouchés theorem and have to identify
zeros of complicated algebraic equation [74].
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6.4 Measure of Effectiveness

In this section, we derive an expression of expected number of customers in the
service system EN(t) in terms of derived queue size distribution in previous section

6.3. Let us consider ρ =

(
λ

ξ̄ µ

)
. From eqn(6.14), we have

Pn(t) =
exp
{
−(λ + ξ̄ µ)t

}
ξ̄ µ

n

∑
i=1

Fi(t)ρ(n−i)+ρ
nP0(t) (6.15)

We know

EN(t) = E (N(t)) =
∞

∑
n=1

nPn(t)

=
[
1.P1(t)+2.P(t)+3.P3(t)+ ...

]
=

{(
exp
{
−(λ + ξ̄ µ)t

}
ξ̄ µ

)
F1(t)+ρP0(t)

}

+2

{(
exp
{
−(λ + ξ̄ µ)t

}
ξ̄ µ

)
[ρF1(t)+F2(t)]+ρ

2P0(t)

}
+ ...

=
exp
{
−(λ + ξ̄ µ)t

}
ξ̄ µ

[
1

(1−ρ)2 F1(t)+
{

(2−ρ)

(1−ρ)2

}
F2(t)+ ...

]
+

ρ

(1−ρ)2 P0(t)

=
exp
{
−(λ + ξ̄ µ)t

}
ξ̄ µ

[
1

(1−ρ)2

∞

∑
i=1

Fi(t)+
1

(1−ρ)

∞

∑
i=1

(i−1)Fi(t)

]
+

ρ

(1−ρ)2 P0(t)

Hence,

EN(t) =
1

(1−ρ)2

[
exp
{
−(λ + ξ̄ µ)t

}
ξ̄ µ

(
∞

∑
i=1

Fi(t)+(1−ρ)
∞

∑
i=1

(i−1)Fi(t)

)
+ρ.P0(t)

]
(6.16)

where Fi(t) is derived in eqn(6.12).
Now for sufficiently large value of t, i.e. t→ ∞, We get

|EN(t)−L|< ε (6.17)



160 Chapter 6. Single Server Queueing Model with Feedback

Figure 6.2: Queue size distribution Pn(t) wrt t for different n

where L is expected number of customers in the service system in steady-state
condition and given by

L =
ρ

(1−ρ)
(6.18)

6.5 Numerical Results

We develop the simple and direct approach for computing an elegant explicit expres-
sion for transient-state probabilities of the classical M/M/1 queue with feedback.
We have also computed the expression for the expected number of customers in the
service system in terms of the derived state probabilities. To validate the findings,
we illustrate some numerical experiments. For that purpose, we assume that there is
no customer in the service system initially. The results are depicted in Figs. 6.2–6.5
and Tables 6.1–6.3.
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Figure 6.3: Queue size distribution Pn(t) wrt t for different n
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Figure 6.4: Probability that there is no customer P0(t) wrt t for different parameters

We fix λ = 0.5, µ = 1.0, ξ = 0.5 in Fig. 6.2(i) and λ = 0.9, µ = 1.0, ξ = 0.5
in Fig. 6.2(ii) whereas we take λ = 0.5, µ = 2.0, ξ = 0.5 in Fig. 6.3(i) and λ = 0.5,
µ = 1.0, ξ = 0.25 in Fig. 6.3(ii). Figs. 6.2 and 6.3 illustrate how transient-state
probabilities Pn(t) for n = 0,1,2,3,5,10 very in range from 0 to 25 unit time. It is
observed from all the figures that state probabilities are tending to a constant value
which leads to a steady-state. It is also prompt from Fig. 6.2(ii) that probability of
more customers with time increases for high λ . By taking, it is clear that the proba-
bility of fewer customers increases with the increase of service rate µ and probability
ξ .

In Fig. 6.4, we demonstrate the variability of the probability of no customer in
the service system P0(t) with time and system parameters for λ = 0.5, µ = 1.0,
ξ = 0.5. As time spends more, P0(t) decreases to a stable value. It is also noticed
that its value gets decreased with the increment in the value of arrival rate λ and
the probability of feedback ξ and increases with service rate µ . Figs. 6.5(i) and (ii)
also comprise the variability of P0(t) for arrival rate and service rate for the different
values of probability of feedback for λ = 0.5 and µ = 1.0 respectively. The result
also demonstrates that P0(t) decreases with an increase of λ and ξ and increases with
µ . The red line illustrates the variation of the P0(t) without feedback policy, which
resembles the results of [203].
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Figure 6.5: Probability that there is no customer P0(t) wrt parameters for different ξ

Table 6.1: Expected number of customers in the service system wrt λ

λ t
0.10 0.25 0.50 1.00 2.00 5.00 10.00

0.05 0.0049 0.0120 0.0230 0.0433 0.0758 0.1347 0.1744
0.15 0.0148 0.0361 0.0698 0.1305 0.2311 0.4327 0.6178
0.25 0.0246 0.0603 0.1164 0.2184 0.3907 0.7643 1.1775
0.40 0.0394 0.0965 0.1866 0.3515 0.6372 1.3130 2.1964
0.55 0.2557 0.4750 0.6067 0.3812 1.0259 2.0537 3.3767

Table 6.2: Expected number of customers in the service system wrt µ

µ t
0.10 0.25 0.50 1.00 2.00 5.00 10.00

1.0 0.0488 0.1178 0.2232 0.4065 0.7018 1.3293 2.0549
1.5 0.0482 0.1144 0.2113 0.3683 0.5947 0.9876 1.3225
2.0 0.0476 0.1111 0.2002 0.3347 0.5081 0.7511 0.8959
3.0 0.0465 0.1050 0.1802 0.2792 0.3807 0.4720 0.4961
5.0 0.0443 0.0940 0.1478 0.2016 0.2364 0.2494 0.2500

Table 6.3: Expected number of customers in the service system wrt ξ

ξ t
0.10 0.25 0.50 1.00 2.00 5.00 10.00

0 0.0485 0.1164 0.2183 0.3906 0.6561 1.1774 1.7151
0.1 0.0486 0.1172 0.2212 0.4000 0.6830 1.2659 1.9105
0.2 0.0488 0.1180 0.2242 0.4098 0.7114 1.3624 2.1314
0.3 0.0489 0.1189 0.2272 0.4198 0.7412 1.4676 2.3800
0.4 0.0491 0.1197 0.2303 0.4302 0.7726 1.5820 2.6584
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In Tables 6.1–6.3, we tabulate the variation of expected number of customers
in the service system EN(t) with respect to time t for a different set of arrival rate
(λ ), service rate (µ) and probability of feedback (ξ ) respectively by fixing λ =

0.5,µ = 0.6,ξ = 0.5. Tables 6.1–6.3 show how the expected number of customers
in the service system EN(t) increases with respect to time t. Table 6.1 illustrates
increasing behavior of EN(t) with increment in the value of λ . Table 6.2 shows
EN(t) decreases for higher value of µ which is obvious result of any service system.
Table 6.3 depicts that the value of EN(t) also increases for high value of probability
of feedback. These results shows how feedback policy in any queue-based service
system makes the system better at the cost of some extra queue size.

6.6 Conclusion and Future Scope

In this chapter, we propose a simple and direct solution technique for computing an
explicit expression for transient-state probabilities of the classical M/M/1 queue-
based service system with feedback. We derive an elegant expression for Pn(t), the
equilibrium distribution of the state N(t) using modified Bessel function. We have
also illustrated the limiting value of state probabilities and the expected number of
customers in the service system analytically and numerically. Moreover, numerical
investigations show how parameters λ , µ , and ξ affect the measures of effectiveness
significantly. We can extend our approach for more controllable service policy, finite
capacity, non-Markovian queues, etc. [8], [121], [85].


